
O. Gervasi et al. (Eds.): ICCSA 2009, Part II, LNCS 5593, pp. 43–58, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards Guidelines for a Development Process for
Component-Based Embedded Systems

Rikard Land, Jan Carlson, Stig Larsson, and Ivica Crnković

Mälardalen University, School of Innovation, Design and Engineering, Västerås, Sweden
{rikard.land,jan.carlson,stig.larsson,ivica.crnkovic}@mdh.se

Abstract. Software is more and more built from pre-existing components. This
is true also for the embedded software domain, and there is a need to consider
how development processes need to be changed to best utilize the component-
based paradigm, and how processes and technologies must be designed to sup-
port each other. To facilitate this change towards component-based embedded
software, this paper presents a set of process guidelines, named the Progress
Process Guidelines (PPG), which is based on the structure of CMMI. This paper
presents the structure of the PPG, and presents and analyzes the PPG parts
which most closely relate to system verification, which is typically an important
and difficult activity for embedded software.

1 Introduction

It is truly a complex task to develop complex, distributed embedded systems. The
challenges lies both in technology and tool support, but also in process aspects such as
parallel development by distributed teams, short development cycles, reuse of existing
system parts of varying quality, and various business relations such as subcontracting
and the use of COTS. As new technologies and new paradigms arise, there is a need
to evolve existing process paradigms by considering their assumptions. The compo-
nent-based paradigm, i.e. the approach to build systems out of strictly separated com-
ponents, is such a new paradigm which introduces new challenges and possibilities.
How should a component-based development process and accompanying tools be
designed to best be able to e.g. monitor and follow up your projects, minimize
rework, increase parallelism, and ensure a high quality of the system? This is the
question this paper is answering in part.

The present paper is part of a large research effort1 where the state of the art in de-
velopment of embedded systems is advanced by adopting the component-based
approach. The research spans component models [1], verification methods
through e.g. model checking and static analysis [2][3][4], and runtime support [5][6],
all implemented as tool support. As a part of this effort, the Progress Process Guide-
lines (PPG) are being developed, which are intended to guide the design of

1 See http://www.mrtc.mdh.se/progress

44 R. Land et al.

industrial-strength processes utilizing the novel technologies in order to form an effi-
cient, effective, and predictable development process for predictable, component-
based embedded systems. The contribution of this paper is 1) to describe the basic
structure of the PPG, in particular in relation to CMMI, 2) to describe the information
and activities of PPG being central for system verification, and 3) to outline the re-
quirements on tool support required for a component-based development process for
embedded systems, provided the necessary tool support exists.

Related work is first presented in Section 2, followed by an introduction of the core
PPG concepts in Section 3. These are then related to the CMMI in Section 4, and
illustrated with an example process in Section 5. Further implications of the PPG are
briefly discussed in Section 6, and Section 7 concludes the paper and outlines future
research.

2 Related Work

For component-based processes in general, little has been written [7], and nothing
as comprehensive as the proposed PPG. In model-driven development (MDD) [8],
the scarce publications on processes discuss roles in terms of a meta-team of with
language developers and code generator developers [9][10]. MDD relates to the
verification-intensive paradigm of PPG, but while MDD relies on forward engineer-
ing in order to produce correct software, the PPG permits components produced in
many different ways, including the wrapping of legacy code. The exploratory
analysis and milestone verification presented in this paper inherits the basic ideas
from the concepts of daily builds, continuous integration, continuous verification,
and test-driven development [11][12][13][14], and adapts them to fit the compo-
nent-based approach.

The PPG is currently adapted to ProCom, but the ideas should be general enough
to apply to other component models with similar characteristics. A prerequisite is that
there is support for compositional reasoning of the attributes, and also that there is a
strong concept of component identity from early design to run-time; the mapping
from PPG to other component models and UML extensions for this domain such as
AADL [15], Autosar2, SysML3 and MARTE4, remain as future work.

There exist few process descriptions which explicitly utilize the structure of
CMMI, CMMI+SAFE being the notable exception [16].

3 Scope of PPG and Core Concepts

The intended scope of PPG are activities “close to the technology”, i.e. including
product requirements but excluding negotiations with stakeholders, including design

2 http://www.autosar.org/
3 http://www.sysml.org/
4 http://www.omgmarte.org/

 Towards Guidelines for a Development Process 45

and implementation, and including verification with respect to specified requirements
but excluding validation with respect to real users’ needs.

3.1 The Component-Based Paradigm

With a component-based approach, the software is designed as components which
have clear boundaries, and which interact only through explicit interfaces. This has
been successful in e.g. the desktop domain, and has also partly found its way into the
embedded systems domain [17][18][19]. From a process perspective, this means the
processes of component development and system development are treated separately,
but interact [20]. Component development could be a result of system top-down de-
composition, and result in either internal development or in hiring a subcontracting. A
system may also be built from pre-existing components, such as Off-the-Shelf (OTS)
components (components developed for the marketplace), or as part of a product line
initiative [21]. The PPG currently utilizes the Progress component model ProCom
[22]; the generality of PPG with respect to other component models was discussed in
Section 2. Semantically, a “system” is a special case of a “component” only in that it
is the root node of a hierarchical tree.

From the process point of view, the following aspects of a component are of
importance:

• Composition. A component may be implemented as a structure of other
components.

• Various other types of implementation. As realistic problems are being ad-
dressed, components are allowed to be of any type of implementation – or un-
known type of implementation – such as pre-existing COTS and reuse of legacy
subsystems not built with Progress technologies. However, in these cases there
are limits as to what can be predicted in general.

• Attributes. The concept of attributes is a general and extensible mechanism
used to attach information to components. Such information can be technical
features like “maximum memory consumption” but also “vendor name” for a
COTS component. The type of values may range from simple values and
strings, to complex models, such as a timed automaton describing the function-
ality. (Although this paper mainly focuses on attributes of components, other
types of entities in ProCom may also be attributable are component ports, con-
nections, networks, etc. [23].)

3.2 Conceptual Product Meta-model

To be able to describe activities, PPG defines a conceptual product model of the in-
formation needed, on which the activities operate. To support the process in reality,
this model is easy to implement in tools, so that the information about components
etc. are stored, updated and managed throughout a project. The practical challenges
for tool support are further discussed in Section 6. Fig. 1 describes the information
needed to explain the activities in this paper: each Component may have a number of
Attributes. Each Attribute has an id which stands for an attribute type such as “maxi-
mum memory consumption”. Each Attribute may be assigned several values, which is

46 R. Land et al.

Component

+name

hierarchical decomposition

Attribute

+(RD) id

0..*

Implementation

+(TS) version

Attribute Value

+(TS) data

0..*

Milestone Verification

+(PP/VER) milestone id
+(RD) required value
+(RD/VER) required source

0..*

Metadata

+(TS) source
+(TS) version

1

1

Data

+(TS) value

1

1

Fig. 1. The PPG conceptual product model, showing the concepts relevant for verification

modeled with the concept Attribute Value, each with a data (e.g. “64 kb” or “61 kb”),
a source which specifies how the value was obtained, such as “Expert estimate”,
“Analysis tool XYZ”, or “Measured”.

For project management to keep track of project progress, a number of Milestone
Verifications are associated with each Attribute. Here is specified a required value (of
for example “64 kb”) and a required source describing how the value must have been
obtained in order for the verification to be considered successful. For an early mile-
stone, there may be a required value of “64 kb” as estimated by an expert, and for a
milestone half-way into the project there may be a milestone specifying “32 kb” as
measured, since this milestone will contain an implementation of half of the features.

Also, there are versions and milestone ids, concepts which are here used rather in-
formally to denote the need of keeping track of how values are associated with some
version of the component. For example, measured values need to be associated with
the version of the component used during the measurement. More complicated to
model is an early estimate of the final component. These issues are solvable with
sophisticated enough configuration management (CMMI process area “CM”), and
will be modeled with explicit concepts in further development of the PPG. For now
these issues are therefore left out of the discussion.

Once again, here is only presented the small part of the complete PPG which is
relevant for this paper; for example, “milestone” is also a first-class concept, the units
of attribute values (e.g. “kb”) are modelled in a more sophisticated manner, “meas-
ured” will need to be further specified with e.g. number of runs and input profile, etc.
Two notes on the notation: first, the prefixes PM, RD, TS, and VER refer to CMMI
process areas. This notation indicates that updates of the (UML) attributes of the con-
cepts are within the responsibility of the indicated process area, as will be further
explained in the next section. Second, the conceptual model should not be mistaken

 Towards Guidelines for a Development Process 47

for an implementation class diagram; we believe that in practice the information will
be distributed over several tools, i.e. a requirement management tool is used to store
and manage concepts and attributes prefixed with RD, etc.

These concepts will be explained with a simple development scenario in Section 5,
but first, the activities of the PPG are described in relation to CMMI.

4 PPG in Relation to CMMI Process Areas

CMMI for development [24] is a well-known reference text which defines a number
of good practices for software organizations to perform. Its development was initial-
ized in order to improve the quality and timeliness problems experienced in software
development projects for complex embedded systems.

The CMMI does not prescribe a process in the sense how things should be done,
but rather defines criteria according to which actual processes can be evaluated. It is
organized as a number of process areas with suggested good practices. The CMMI is
perhaps most known in its so-called staged representation, which is used to classify
organizations into maturity levels, but more recently the CMMI also exist in a con-
tinuous representation, which describes the process areas in four categories instead of
levels. However, the process areas themselves are the same in the two representations,
and PPG does not prefer either representation over the other. For pedagogical reasons
however, the four categories of the continuous representation are briefly described.

The categories are: Project Management, Process Management, Engineering, and
Support. Of these, the paper mainly focuses on Engineering (in Sections 4.1 through
4.4), but also describes how these process areas interact with the Project Management
process areas (in Section 4.5) and the Support process areas (Section 4.6).

The PPG consists of an augmentation of some goals and practices of some process
areas, by adding some subpractices and/or amplifications [24]. Fig. 2 describes sche-
matically how the PPG augments some elements of CMMI which are used to design
concrete organizational processes. The rest of this section describes the PPG activities
per each of the following process areas (in alphabetical order): Requirements Devel-
opment (RD), Technical Solution (TS), Product Integration (PI), and Verification
(VER), and then briefly describes the rest of the process areas in the Project
Management category.

4.1 Requirements Development (RD)

“The purpose of Requirements Development (RD) is to produce and analyze cus-
tomer, product, and product component requirements” [24]. Within the focus of this
paper, the PPG adds the following RD subpractices or amplifications:

RD1. Specify which attributes for components on which there are requirements. (This
corresponds to instantiating an Attribute in Fig. 1 and providing a Name.)

RD2. Specify a Required Value for the attribute.
RD3. Together with VER and PP, specify required source for Milestone Verifications.

(See VER1 in Section 4.4, and Section 4.5.) Also included, but not shown ex-
plicitly in the model, is to add some additional conditions, such as for an early
analysis of design models, that the design models must be “detailed enough”,
meaning that the component structure has to be “fine-grained enough”.

48 R. Land et al.

CMMI Organization
Processes

PPG

PA w

PA z

PA y

PA x PA x

PA y

PA z

Legend:
Uses for process
implementation
Augments

Fig. 2. PPG in relation to CMMI and concrete organizations and projects

Note: First and foremost, requirements will be specified for the “root component”, i.e.
the system, and its immediate children, but may also be specified for constituent
components, in interaction with design work, i.e. the process area Technical Solutions.

4.2 Technical Solution (TS)

“The purpose of Technical Solution (TS) is to design, develop, and implement
solutions to requirements” [24]. Within the focus of this paper, the PPG adds the
following TS subpractices or amplifications:

TS1. Create an Implementation of the component (refer to Fig. 1), which
automatically gets a version.

TS2. Assign values to attributes, by instantiating a new Attribute Value and
providing its data; it automatically gets a version and source.

TS3. Perform exploratory analysis at any time, by comparing any value for attrib-
utes with their required values, using any information in the conceptual
model available at the time. See Fig. 3.

Note on TS1. The implementation could be a subdivision into components, or a
“primitive” component of some kind: COTS or some other package from a third
party, imported legacy code, or a small, relatively simple implementation of C code
(which is how the primitive components in ProCom are implemented).

Note on TS2. The assignment of values to attributes could be of several kinds, for
example explicit and manual (such as when an architect enters an expert estimate) or
explicit and automatic (such as when someone executes an analysis tool on a compo-
nent), or possibly implicit and automatic (such as when a composite component is
analyzed with a tool which traverses each subcomponent and assigns attribute values
before composing these values for the containing component).

 Towards Guidelines for a Development Process 49

AttributeFor each

 : TS role

 : Verification : Attribute : Attribute Value

1 : Exploratory Analysis()

2 : get Required Value()

3 : get Value()

4 : compare Value with Required Value()

Fig. 3. Exploratory Analysis

Note on TS3. Exploratory analysis can be seen as more relaxed version of milestone
verification (which is the responsibility of VER). Current values of attributes, which
may be any combination of estimates, values produced by tools based on incomplete
implementations, etc. may be used exploratory to answer questions like “how near the
limit for memory consumption are we right now?” There are no absolute guidelines
how to perform this type of analysis; in some cases it is reasonable to use the average
of several values, or use the most pessimistic of all values for an attribute, or add 20%
to measured values to add a safe margin, or because some features are not imple-
mented yet, or decrease 20% from some measured values because it is believed that
low-level optimization at the end will achieve this. (It is exactly all these decisions are
formalized into milestone verification; see further VER2 in Section 4.4.)

The TS process area is where the main part of the research of the Progress centre
lies, and here only the high-level approach is outlined; ideally, for each attribute there
exist a way to analyze a primitive component, as well as a composition theory or
analysis technology [25]. For example, a primitive component may be analyzed
regarding “maximum memory consumption” through static analysis, and/or meas-
urements. It is essential that the developers are aware of alternative methods’ assump-
tions and limitations; a static analysis usually gives safe but too pessimistic upper
bounds, while measurements may give average values and upper bounds which are
not safe if total predictability is required. All these issues have to be resolved by the
team together, mainly it is the responsibility for TS and VER.

4.3 Product Integration (PI)

“The purpose of Product Integration (PI) is to assemble the product from the product
components, ensure that the product, as integrated, functions properly, and deliver the
product” [24]. This process area concerns how to integrate product parts into a sys-
tem. It can be expected that any component-based approach, with proper tool support,
makes integration a less effort-consuming task [26]. The user will be aware of incom-
patible components already during design, indeed with a proper tool it is not even
possible to connect incompatible interfaces. Similarly, missing connections are de-
tected interactively during design and implementation. In short, some integration

50 R. Land et al.

AttributeFor each

 : VER role

 : Verification : Attribute Value : Attribute : Milestone Verification

1 : Milestone Verification()

If all tests are OK, milestone verification has succeeded

2 : get Required Source()

3 : get Required Value()

4 : get Version from Milestone ID()

5 : get Attribute Value matching Version ID and Required Source()

6 : get Data()

7 : Assert: Required Value == Data.Value()

8 : Test of additional conditions() Verify that e.g. the level of detail of the design
is fine-grained enough.

Fig. 4. Milestone Verification

activities are covered in the Technical Solution process area, and the Product Integra-
tion process area will require less effort. Also important, it can be expected that less
errors are discovered during integration since the system to a large extent should be
correct by construction.

However, this said, there will still be many qualified integration tasks to do, which
however may be performed earlier in the development process. For example, the
deployment to hardware is not addressed in the current version of PPG, nor is the
integration of ProCom parts with legacy systems, nor is it clear how the process needs
to consider the relationship to software platforms such as operating systems.

4.4 Verification (VER)

“The purpose of Verification (VER) is to ensure that selected work products meet
their specified requirements” [24]. Within the focus of this paper, the PPG adds the
following VER subpractices or amplifications:

VER1. Together with Requirements Developer, specify required source for
Milestone Verifications. (See Fig. 1; also refer to RD3 in Section 4.1).

VER2. Perform milestone verification as planned by PP. See Fig. 4.

Note on TS3 and VER2. To keep the sequence diagrams simple, only the main flow
is shown. For example, if some test fails as much information as possible should be
shown to the user, or, at least, made available, and it may or may not make sense to
continue traversing other attributes.

Note on TS3 and VER2. To keep the sequence diagrams simple, it is assumed that
the correct attribute value is used, out of the potentially many with different sources

 Towards Guidelines for a Development Process 51

and versions. However, this is not a trivial assumption and is further discussed in
Section 6.

4.5 The Project Management Category

The above approach enables projects to define requirements and milestones precisely,
in terms of attributes of components and their verification. These are apparently in-
tended to be used to monitor and control projects. Although outside the scope of this
paper, it can be mentioned that the PPG further describes how this information is used
in the Project Management category, in summary as follows:

• Project Planning (PP). One additional subpractice or amplification is defined:
Define major and minor milestones for the project. (This corresponds to instan-
tiating a number of Milestone Verifications in Fig. 1 and together with RD,
VER, and TS, specify required source. (See RD3 in Section 4.1 and VER1 in
Section 4.4.)

• Risk Management (RSKM). The possibility for almost continuous automatic
verification is one method of reducing risks in the project.

• Project Monitoring and Control (PMC). Monitor whether milestone verifica-
tions have been conducted as specified, and whether the results are satisfactory.
(See more details under VER2 in Section 4.4.) Otherwise, some corrective ac-
tion must be taken, which may e.g. involve renegotiating requirements, sched-
ule, or product features. This involves interaction with the appropriate process
areas, but is not is not further elaborated here.

• Quantitative Project Management (QPM). The data collected during verifica-
tion activities help to quantitatively answering questions about the project status.

4.6 The Support Category

In the Support category, the following process areas also interact heavily with the
approach outlined above:

• Configuration Management (CM). The approach requires, as described, a ma-
ture use of configuration management to keep track of correct versions of the
various artifacts.

• Process and Product Quality Assurance (PPQA). The whole verification-
intensive approach is clearly intended to increase product and process quality, as
well as provide the visibility necessary for efficient quality assurance.

5 Example

This section uses a simple example to illustrate how the PPG is instantiated in a con-
crete process. The system to be developed in the example is a refinement of the one
found in the ProCom reference manual [22], which is an electronic stability control
(ESC) subsystem of a car. Two requirements on the system (as specified in RD) are
used to illustrate the use of the PPG: functionality and static memory consumption.
Three milestones are defined in the project plan: MS1, MS2, M3 (all features

52 R. Land et al.

Fig. 5. Component design of an electronic stability control (ESC) subsystem of a car

implemented) and MS4 (the finished system). Given the toolset available, specifica-
tion methods for the attribute values are specified for each milestone, as well as the
target value. It can be noted that in some cases, the required value of the milestone is
defined as the required final value, but in some cases it makes sense to specify an-
other figure. Table 1 displays all this information; due to space limits of the paper,
this single table thus lists the information from several of the concepts of Fig. 1.

Initially, an architect sketches the division of the system into components (process
area TS) as depicted in Fig. 5. Together with developers or other experts the memory
requirements is divided into budgets for each component, as listed in Table 2. The
architect now performs an exploratory analysis, as was described in Fig. 3, to verify
that these values in fact compose to the target value for milestone MS4. The composi-
tion formula for static memory consumption is (in this simple example) the sum of the
static memory consumption of each ingoing component instance, plus 10% communi-
cation overhead. Using the values of Table 2, the computed static memory consump-
tion is 810 kb, which is less than the maximum value required of 1024 kb, and the

Table 1. Requirements on the ESC system

Attribute Name Milestone ID Required Value Source

MS1 (same as MS4) Manual Review
MS2 (same as MS4) Composition of design models
MS3 (same as MS4) Analysis of implementation

Functionality

MS4 Behavior specified by a
timed automaton (not
shown here)

Analysis of implementation

MS1 (same as MS4) Expert estimate of final system
MS2 Max 768 kb Static analysis (only partially im-

plemented)
MS3 (same as MS4) + 20% Static analysis

Static memory
consumption

MS4 1024 kb Static analysis combined with
measurements

… … … …

ESC

 Towards Guidelines for a Development Process 53

Table 2. Initially estimated memory consumption values for ESC and its subcomponents

Component Name Data Source

Wheels speed 64 kb Expert estimate

Stability Control System 192 kb Expert estimate

Traction Control System 256 kb Expert estimate

Anti-lock Braking System 128 kb Expert estimate

Combiner 32 kb Expert estimate

Brake Valves 64 kb Expert estimate

ESC 810 kb Composition of expert
estimates

architect is satisfied. Furthermore, this exploratory analysis qualifies as verification of
milestone MS1, unless there are any additional conditions specified regarding the
level of detail and granularity of the design model used as a basis for the estimates.

Some possible further events and decisions made are outlined below, in order to
illustrate various scenarios and how these are captured and supported by the PPG:

• For the Wheels speed component, there are three potential COTS components
available. These are investigated and one of these is chosen. If the component
comes as a white box, i.e. with all desired information, including source code, it
can be used for the static memory analysis required in some of the milestones.
The same is true if the component is packaged as a black box but comes with
models of its memory usage, which can be used in the composition theory. (This
also requires there are certification mechanisms in place, so that the legal impli-
cations are clear regarding the extent to which the system development organi-
zation can trust these assertions.) In a less than ideal world, the component
comes as a black box and with insufficient information, in which case the sys-
tem development organization has to rely on thorough testing. In this case, the
type of specification methods required in some milestones has to be re-
negotiated – or, if measurements are not considered safe enough, the COTS will
have to be replaced.

• The Stability Control System, Traction Control System, and Combiner require
new development. Of these, Stability Control System is outsourced to a subcon-
tractor, while the others are implemented internally. The Combiner is straight-
forward to implement, and implementation is finished within a month, well
before milestone MS2.

• The Anti-lock Braking System and Brake valves will be reused from the previous
generation of the car. No modifications are needed, other than those required to
function in the ProCom environment. However, it may happen that the source
code does not follow some required restrictions by the memory usage analysis
tool, and for these components the verification method also has to be re-
negotiated, with either the result that for example measurements is a qualified
specification method, or that the source code has to be modified so as to fulfill
the requirements of the analysis tool, or that the component will be re-
implemented completely in ProCom (reusing the previous design). In the

54 R. Land et al.

example, assume that Brake valves may be statically analyzed, while the Anti-
lock Braking System cannot but will be wrapped as a ProCom component with
as small modifications as possible nevertheless, and the project will therefore
have to rely on measurements of this component.

During development, developers and the architect perform exploratory analysis
whenever they need to explore some “what-if” scenarios (like “would it be fine to
implement an algorithm that executes faster but requires more memory?”) or to assure
themselves that the current state of the work products will pass the next milestone.

Table 3 lists the values of the memory consumption attribute at the time for mile-
stone MS2. Using these values, the computed memory consumption is 551 kb, which
is well less than 768 kb as specified for MS2 in Table 1. However, the specification
method is for three components not the required (“measurements” instead of “static
analysis”), but this is well motivated and has been approved (and Table 1 updated
accordingly) by project management, architects, and verifiers. Also important to con-
sider is the actuality of the figures used: since the Traction Control System is lagging
behind in implementation, the value 124 kb does not accurately reflect the contents of
the system as envisioned for MS2 and should be adjusted for this (probably by adding
an expert estimate using the value 124 kb and estimate the memory consumption of
the features not implemented in the current version).

Other events that may occur are that during exploratory analysis, or in one of the
milestone verifications, the composed values are more than 1024 kb. Clearly, the plan
must be changed, either by dropping some functional requirement, or by allocating
more memory (which may in some domains with large product volumes be totally
infeasible), or by putting more effort into optimizing the memory usage by some
algorithms (which may have effects on the time and staffing plan). Hopefully, the
possibilities of continuous exploratory analyses, and the possibility to formalize these
into milestone verifications to provide process visibility, will ensure that problems
like these are discovered as early as possible. But in the end, all plans and estimates
are only as good as the people behind them.

Table 3. Memory consumption values for ESC subcomponents

Component
Name

Data Source Remarks

Wheels speed 63 kb Measurement COTS

Stability Control
System

98 kb Static analysis Partially implemented, according to plan

Traction Control
System

124 kb Static analysis Partially implemented, lagging behind plan

Anti-lock Braking
System

128 kb Measurements Previous generation, have not been fully
wrapped as ProCom component

Combiner 24 kb Static analysis Fully implemented

Brake Valves 64 kb Measurements Wrapped as ProCom

ESC 768 kb Composition of
measurements and
static analysis

(Inherits every weakness of ingoing
composed values.)

 Towards Guidelines for a Development Process 55

6 Open Issues

There are a number of outstanding issues related to attributes. Some values are
strongly connected to a specific, existing component version, such as a static analysis
or measurements based on an implementation, while others may refer to a not yet
existing version of a component, such as estimates of the final system. Also, an esti-
mated attribute value, or a value derived from a design model may be outdated since
some requirements have been dropped since the attribute value was specified. In addi-
tion, there may exist two estimates which are equally “true”, such as estimates by two
different persons, or by a person and by a tool analyzing incomplete design models or
unfinished implementations, or when an analysis tool is used which is known to give
safe over-pessimistic attribute values. And the possibility of composing values from
values of different specification methods (such as measurements and static analysis in
the example) hints at the need of some kind of inheritance model. The possibility for
exploratory analysis addresses these problems, but only by postponing these decisions
to specific organizations and projects. We are currently working on how to create an
attribute model which is expressive enough, while not overloading developers and
other project members with work [23].

In the present paper, the functionality of a component has been considered to be an
attribute, but a component’s implementation has been modeled explicitly as a separate
concept. It is yet not clear which aspects of a component should be included in the
attribute concept. However, with appropriate languages, functional descriptions can
indeed be composable so the general approach holds.

The relatively simple attribute of “memory consumption” has deliberately been
used as the main example in this paper (although even this attribute is in reality not
quite as simple as assumed in the examples). For other attributes the composition
theories are not as straightforward, but are being researched. For example, response
time can in principle be calculated by analyzing the structure and aggregate individual
components’ response times or execution times, assuming there is also information
available about how they are allocated to hardware, how they are scheduled, etc. [27],
or by parameterizing the results [4][28]. Error propagation is another type of
structural analysis [29]. For the whole community, the composition of each such
attribute has to be solved to an industrially relevant level of confidence. From our
point of view, it is enough to state that a verification-intensive process relying on the
existence and accuracy of theories and tools is only as good as those theories and
tools.

7 Summary and Conclusion

This paper outlines the Progress Process Guidelines (PPG), which augments the
CMMI in order to provide support when creating organizational processes utilizing
the component-based paradigm with a strong tool-set for analysis and compositional
reasoning of various component attributes, such as the ProCom component model and
related tools.

56 R. Land et al.

7.1 Future Work

There are several directions to cover in more detail while developing the final PPG.
The conceptual product meta-model presented in this paper needs to be refined,
regarding for example attributes, component versions, and more, as indicated
throughout the paper. Also to be included is the allocation of components to
hardware, which has not been considered at all in this paper. Such allocations must
are also subject to verification, to ensure that e.g. the memory at different nodes of the
system will be sufficient, and timing requirements such as response time will have to
take into account task schedules on each node as well as network transportation
delays. The responsibilities and skills needed in the various process areas need to be
refined. Especially the TS roles needs to be better defined; possibly there needs to be
a distinction between (at least) architect, designer, modeler, and programmer. In
addition to the conceptual product meta-model, a large part of the PPG will be
structured according to the CMMI, as outlined in this paper, and the guidelines
formulated in CMMI terminology, i.e. as subpractices and/or amplifications [24].

In addition to the guidelines approach represented in this paper, some example
processes will be modeled, to serve as pedagogic examples to which organizations
can relate, as well as to be simulated. Process simulation is typically performed in two
steps: an existing process is first modeled and simulated using real data, followed by
some experimentation on the thus validated model. In our case, since a quite novel
process is modeled, only very modest conclusions can be drawn. Simulations may
nevertheless indicate interesting trends and correlations between modeled parameters,
and bottlenecks in the process. Expected results include rules of thumb regarding the
number of staff in each role is required, and exploration of relationships such as how
the level of automation in the analysis affects the time required for exploratory analy-
sis and verification, and this together with the expected number of non-conformances
being introduced in the process will affect how often it should optimally be
performed.

Modeling and simulation of concrete processes will later be followed by a pilot
case in industry, once the tools has been implemented and reached a mature enough
state. And finally, the usage of the analysis methods and tools developed at the
Progress centre will be related to, and described in terms of, PPG.

Acknowledgements

This work was partially supported by the Swedish Foundation for Strategic Research
(SSF) via the strategic research centre PROGRESS. The authors would like to thank
Jörgen Hansson at the SEI for his mentioning “Virtual Verification” in a talk, which
brought some structure to our early ideas.

References

1. Sentilles, S., Vulgarakis, A., Bureš, T., Carlson, J., Crnković, I.: A Component Model for
Control-Intensive Distributed Embedded Systems. In: Chaudron, M.R.V., Szyperski, C.,
Reussner, R. (eds.) CBSE 2008. LNCS, vol. 5282, pp. 310–317. Springer, Heidelberg
(2008)

 Towards Guidelines for a Development Process 57

2. Håkansson, J., Carlson, J., Monot, A., Pettersson, P.: Component-Based Design and
Analysis of Embedded Systems with UPPAAL PORT. In: 6th International Symposium on
Automated Technology for Verification and Analysis, Seoul, pp. 252–257 (2008)

3. Håkansson, J., Pettersson, P.: Partial Order Reduction for Verification of Real-Time Com-
ponents. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) Proceedings of the 5th International
Conference on Formal Modelling and Analysis of Timed Systems (2007)

4. Bygde, S., Lisper, B.: Towards an Automatic Parametric WCET Analysis. In: Worst-Case
Execution Time Analysis Workshop, Prague (2008)

5. Shin, I., Behnam, M., Nolte, T., Nolin, M.: Synthesis of Optimal Interfaces for Hierarchi-
cal Scheduling with Resources. In: Proceedings of the 29th IEEE International Real-Time
Systems Symposium (RTSS 2008), Barcelona (2008)

6. Behnam, M., Nolte, T., Shin, I., Åsberg, M., Bril, R.: Towards Hierarchical Scheduling on
top of VxWorks. In: Proceedings of the Fourth International Workshop on Operating Sys-
tems Platforms for Embedded Real-Time Applications (OSPERT 2008), Prague, pp. 63–
72 (2008)

7. Crnković, I., Chaudron, M., Larsson, S.: Component-based Development Process and
Component Lifecycle. In: International Conference on Software Engineering Advances
(ICSEA 2006), Tahiti (2006)

8. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Prac-
tice and Promise. Pearson Education, Boston (2003)

9. Krahn, H., Rumpe, B., Völkel, S.: Roles in Software Development using Domain Specific
Modelling Languages. In: Proceedings of the 6th OOPSLA Workshop on Domain-Specific
Modeling (DSM 2006), Portland, Oregon (2006)

10. Aagedal, J., Solheim, I.: New Roles in Model-Driven Development. In: Proceedings of
Second European Workshop on Model Driven Architecture (MDA), Canterbury, England
(2004)

11. Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-Wesley,
Upper Saddle River (2004)

12. McConnell, S.: Rapid Development, Taming Wild Software Schedules. Microsoft Press
(1996) ISBN 1-55615-900-5

13. Beck, K.: EXtreme Programming EXplained: Embrace Change. Addison-Wesley, Reading
(1999)

14. Duvall, P., Matyas, S., Glover, A.: Continuous Integration: Improving Software Quality
and Reducing Risk. Addison-Wesley Professional, Reading (2007)

15. As-2 Embedded Computing Systems Committee: Architecture Analysis & Design Lan-
guage (AADL). Standard Document Number AS5506 (2009)

16. Defence Materiel Organisation, Australian Department of Defence: +SAFE, V1.2: A
Safety Extension to CMMI-DEV, V1.2., Pittsburgh (2007)

17. Hänninen, K., Mäki-Turja, J., Sandberg, S., Lundbäck, J., Lindberg, M., Nolin, M., Lund-
bäck, K.-L.: Framework for Real-Time Analysis in Rubus-ICE. Hamburg (2008)

18. Larsson, M., Wall, A., Wallnau, K.: Predictable Assembly: The Crystal Ball to Software.
ABB Review (2) (2005)

19. van Ommering, R., van der Linden, F., Kramer, J.: The Koala Component Model for Con-
sumer Electronics Software. IEEE Computer 33(3), 78–85 (2000)

20. Crnković, I., Chaudron, M., Larsson, S.: Component-based Development Process and
Component Lifecycle. Journal of Computing and Information Technology 13(4), 321–327
(2005)

21. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Reading (2001)

58 R. Land et al.

22. Bureš, T., Carlson, J., Crnković, I., Sentilles, S., Vulgarakis, A.: ProCom - the Progress
Component Model Reference Manual, version 1.0., Västerås (2008)

23. Sentilles, S., Štěpán, P., Carlson, J., Crnković, I.: Integration of Extra-Functional Proper-
ties in Component Models. In: 12th International Symposium on Component Based Soft-
ware Engineering (CBSE 2009). Springer, Heidelberg (2009)

24. Chrissis, M., Konrad, M., Shrum, S.: CMMI Second Edition: Guidelines for Process Inte-
gration and Product Improvement. Addison Wesley, Boston (2007)

25. Hissam, S., Moreno, G., Stafford, J., Wallnau, K.: Packaging Predictable Assembly with
Prediction-Enabled Component Technology, Pittsburgh (2001)

26. Larsson, S.: Key Elements of Software Product Integration Processes, Västerås (2007)
27. Santos, M., Lisper, B.: Evaluation of an Additive WCET Model for Software Components.

In: 10th Brazilian Workshop on Real-time and Embedded Systems, Rio de Janeiro (2008)
28. Fredriksson, J., Nolte, T., Nolin, M., Schmidt, H.: Contract-Based Reusable Worst-Case

Execution Time Estimate. In: Proceedings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA 2007), Daegu
(2007)

29. Aysan, H., Punnekkat, S., Dobrin, R.: Error Modeling in Dependable Component-based
Systems. In: IEEE International Workshop on Component-Based Design of Resource-
Constrained Systems (CORCS 2008), Turku (2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

