
Integrated Global and Local Quality-of-Service
Adaptation in Distributed, Heterogeneous Systems

Larisa Rizvanovic1, Damir Isovic1, and Gerhard Fohler2

1 Department of Computer Science and electronics, Mälardalen University, Sweden
{larisa.rizvanovic,damir.isovic}@mdh.se

http://www.mrtc.mdh.se
2 Department of Electrical and Computer Engineering,University of Kaiserslautern, Germany

fohler@eit.uni-kl.de
http://www.eit.uni-kl.de/

Abstract. In this paper we have developed a method for an efficient Quality-of-
Service provision and adaptation in dynamic, heterogeneous systems, based on our
Matrix framework for resource management. It integrates local QoS mechanisms of
the involved devices that deal mostly with short-term resource fluctuations, with a
global adaptation mechanism that handles structural and long-term load variations on
the system level. We have implemented the proposed approach and demonstrated its
effectiveness in the context of video streaming.

Keywords: Quality-of-Service adaptation, distributed resource management, heterogenous
systems, networked architectures, resource limitations and fluctuations

1 Introduction

In distributed heterogeneous environments, such as in-home entertainment networks and
mobile computing systems, independently developed applications share common resources,
e.g., CPU, network bandwidth or memory. The resource demands coming from different
applications are usually highly fluctuating over time. For example, video processing results
in both temporal fluctuations, caused by different coding techniques for video frames, and
structural fluctuations, due to scene changes [1]. Similarly, wireless networks applications
are exposed to long-term bandwidth variations caused by other application in the system
that are using the same wireless network simultaneously, and short-term oscillations due to
radio frequency interference, like microwave ovens or cordless phones. Still, applications
in such open, dynamic and heterogeneous environments are expected to maintain required
performance levels.

Quality-of-Service (QoS) adaptation is one of the crucial operation to maximize overall
system quality as perceived by the user while still satisfying individual application de-
mands. It involves monitoring and adjustment of resources and data flows in order to en-
sure delivering of certain performance quality level to the application. This can be done
locally on a device, i.e., local resource adaptation mechanisms on devices detect changes
in resource availability and react to them by adjusting local resource consumption on host
devices, or globally, on the system level, i.e., the QoS adaptation is performed by a global
QoS manager with a full knowledge of the system resources. The first approach has the ad-
vantage that the application can use domain specific knowledge to adapt its execution to the
available resources. For example, in a video streaming application, this could be achieved
by decreasing the stream bit rate or skipping video frames. On the other hand, a global
resource management is aware of the demand of other applications and it has an overview
of the total resource availability on the system level. In this way, it may reassign budgets,
or negotiate new contracts to maximize system overall performance.



2 Rizvanovic et al.

While most of the existing approaches provide mechanisms for either local or global
adaptation, we believe that both methods should be used together in order to respond prop-
erly to both local and global fluctuations. Hence, we propose an integrated global and local
QoS adaptation mechanism, where the structural and long-term load variations on the sys-
tem level are object for global adaptation, while the temporal load and short-term resource
variations are taken care locally on devices. The task of the local adaptation mechanism is
to adjust resource usage locally on a device as long as the fluctuation is kept within a cer-
tain QoS range. If the resource usage exceeds the range’s threshold, the global adaptation
mechanism takes over and performs resource reallocation on the system level.

QoS-aware applications are usually structured in such a way that they can provide dif-
ferent discrete quality levels, which have associated estimations of the required resources.
We use the notion of abstract quality levels for defining QoS ranges, such as high, medium
and low resource availability. This provides a general QoS framework that is not application
or device specific. As long as an application or a device can express its resource demand
and consumption in terms of an abstract level, it can benefit from our method.

Implementation of the proposed integrated QoS mechanism is enabled by our previous
work, the Matrix framework for efficient resource management in distributed, heteroge-
neous environments [2]. It provides a global abstraction of device states as representation
of the system state for resource management and it decouples device scheduling and system
resource allocation. In this work, we use the Matrix as the infrastructure to develop global
and local adaptation mechanisms and to integrate them into a single QoS adaptation unit in
a system. While some parts of the resource management mechanism are adopted from the
original Matrix approach and further developed here in terms of the newly proposed global
adaptation mechanism, the local adaptation and the integrated mechanism are entirely new
contributions. Furthermore, the original parts of this paper include a new module in the
Matrix, the application adapter used for application adaptation, the quality level mapping
and interfacing, the closed-loop control model for resource monitoring and adaptation, as
well as the deployment of our approach in the context of video streaming and video stream
adaptation.

The rest of this paper is organized as follows. In the next section we give an overview
of the related work. In Section 3 we describe the extended Matrix framework used in our
approach. In Section 4 we describe the global and the local adaptation mechanism and show
how to integrate them in a single approach. In the same section, we present an example of
how our method can be used in the context of media streaming. In Section 5 we describe
the current implementation status, followed by Section 6, which concludes the paper.

2 Related Work

Comprehensive work on distributed QoS management architectures has been presented in
[3–7]. However, those architectures are mostly designed to work over networks like ATM
or the Internet with Integrated Services (IntServ) and Differentiated Services (DiffServ)
support, i.e., networks that can provide guarantees on bandwidth and delay for data transfer.
In our work, we do not make any assumptions that the underlying system (OS or network)
can offer any QoS guarantees. We consider a distributed, heterogeneous environment where
applications share resources, such as CPU and network bandwidth. Applications can either
execute on a single device, or on several devices (e.g., a video streaming application that
involves reading a stream on a server and sending it through a network to a hand held device
to be decoded and displayed). Furthermore, we assume that handovers and other network
related issues are done by lower level in the system architecture, and those are not task of
our research.

While architectures like [8] give an overall management system for end-to-end QoS,
covering all aspects from a user QoS policies to network handovers, in our work we focus
on QoS management and resource adaptation in application domain. Our work is related to



QoS Adaptation in Distributed, Heterogeneous Systems 3

[9, 10], which present application-aware QoS adaptation. Both of them make a separation
between the adaptations on the system and application levels. While in [9] the application
adjustment is actively controlled by a middleware control framework, in [10] this process
is left to the application itself, based on upcalls from the underlying system.

Our work differs in how an application adaptation is initiated and performed. We do
adaptation on different architectural levels, but unlike the mentioned work, we address
global and local adaptation and the integration of both approaches. We perform global
adaptation of all resources within the system, while the work above focus on adjustment of
resources on the end system, where the adaptation is based on the limited view of the sate of
one device. We also provide an application independent approach, i.e., it can be used with
different types of applications. Furthermore our approach can support component-based,
decoupled approaches, where different components, like CPU or network schedulers can
easily be replaced.

More recently, control theories have been examined for QoS adaptation. The work pre-
sented in [11] shows how an application can be controlled by a task control model. Method
presented in [12] uses control theory to continuously adapt system behaviour to varying
resources. However, a continuously adaptation maximizes the global quality of the sys-
tem but it also causes large complexity of the optimization problem. Instead, we propose
adaptive QoS provision based on a finite number of quality levels.

3 Resource Management Framework

Here we present the resource management framework used in our QoS adaptation method.
First we give an overview of our previous work on distributed resource management, and
then we extend it to suit the needs of the integrated QoS adaptation approach that will be
presented in the next section.

3.1 Matrix framework

The Matrix is an adaptive framework for efficient management of resources in distributed,
heterogeneous environments. Figure 1 shows the data flow (information flow) between the
Matrix components. The Resource Manager (RM) is used to globally schedule and reserve
resources in the system, i.e., it makes decisions for resource usage for all devices in the sys-
tem. Likewise, each time a new application is about to enter the system, the RM performs
admission control.

For example, in a video streaming application, if the display device, e.g., a PDA, cannot
manage to decode and display all video frames on time, the Resource Manager will notice
this and instruct the sender device to send a less demanding version of the stream (e.g.,
with lower resolution).

In order to deal with resource reservation, the Resource Manager has to have knowl-
edge about currently available resources in the system. This is provided in the Status Matrix
(SM). For the example above, the Status Matrix will contain the information that CPU avail-
ability on the PDA is low while the bandwidth for the wireless link between the streaming
server and the PDA device is high. The SM also provides information about active applica-
tions resource requirements, priorities, sink and source destinations.

Based on the information stored in the Status Matrix, the Resource Manager will make
decisions for resource reallocation in the system, and store the orders for devices the Order
Matrix (OM). An example of such an order could be one given to the streaming server to
decrease the quality of streamed video.

The resource status information in the Status Matrix is provided by the Order Managers
(OMR), located on the devices. For each type of shared resources, there is an Order Man-
ager responsible for publishing the current resource availability on the device in the Status
Matrix. This information is provided to the Order Manager through Local Monitors (LM),



4 Rizvanovic et al.

Resource
Manager

(RM)

Status Matrix 
(SM)

Order Matrix 
(OM)

Order
Manager
(OMR)

Order
Manager
(OMR)

Local
Monitor

(LM)

Local
Monitor

(LM)

Local
Scheduler

(LS)

Local
Scheduler

(LS)

Fig. 1. The Matrix: Information flow

time

Resource
availability

QoS
mapping
algorithm

Abstract QoS levels 
(q1,q2,q3,….,qn)

Fig. 2. Abstract QoS levels

that are responsible for continuous monitoring of a resource availability on a device, e.g.,
the available CPU or the network bandwidth. The accuracy of the information depends on
a chosen temporal granularity.

Furthermore, an Order Manager receives orders from the Order Matrix and makes sure
to adjusts local resource usage according to them. This is done through Local Schedulers
(LS), which are responsible for scheduling of a local resources, e.g., a network packets
scheduler that can adjust the packet sending rate according to available bandwidth.

For further details on Matrix framework we refer to our previous work [2, 13].

3.2 QoS levels

We want to use the minimum relevant information about devices states as needed for re-
source management, in order to reduce the system state presentation, and to abstract over
fluctuations, which could overload scheduling of resources. Thus, we use the notion of a
few abstract QoS levels that represent a resource’s availability and an application’s quality.
For example, the variations in the quality of network link connection between two devices
can be represented by e.g., three abstract QoS level values, (L)ow, (M)edium and (H)igh. H
means that the data can be transmitted through the link with full available capacity, while L
indicates severe bandwidth limitations. Likewise, quality of each application using certain
resources is mapped to a finite number of application QoS levels.

In general, the availability of each resource is represented in our approach as a vector of
discrete range of n QoS performance levels {q1, q2, ...qk, qk+1, ..., qn}, see Figure 2. The
value range of a QoS level qk is defined by its threshold values [qmin

k , qmax
k ].

In this work, we apply linear mapping between the resources and the QoS levels, e.g.,
based on experimental measurements [14]. For example, one simple mapping for the CPU
bandwidth based on the CPU utilization U could be e.g., 0 ≤ U ≤ 0.3 ⇒ H , 0.3 < U ≤
0.6 ⇒ M , 0.6 < U ≤ 1.0 ⇒ L. A more advanced mapping could, for instance, use fuzzy
logic to provide a larger number of QoS levels with finer granularity, but QoS mapping is
an ongoing work and it is out of the scope of this paper.

3.3 Application Adapter

The Matrix is an application independent framework, and application adaptation is not the
main focus of our work. However, in order to advance the usage of the Matrix along with



QoS Adaptation in Distributed, Heterogeneous Systems 5

various types of applications, we have extended the original Matrix architecture with an
additional component, the Application Adapter (AA). The Application Adapter performs
the mapping of QoS levels to the application specific parameters, and vice versa. For exam-
ple, the AA for a video streaming application could map abstract quality levels, such as H,
M and L, into real possible frame-per-second (fps) values for the stream, e.g., for a 30 fps
MPEG-2 stream high quality could mean the fps-interval between 24 and 30 fps, medium
quality is 16 to 23 fps and low quality could be defined as 10 to 15 fps.

Since this process is application specific, our ambition was to provide an interface for
this component, and than is up to the application designer to implement it. If there is a
way in an application to map its resource fluctuations into some abstract levels, then it can
be used with our design. Also, upon resource reallocation, the Application Adapter will
receive orders about new abstract levels from the Order Manager, which must be translated
into some concrete actions on the application level.

4 Integrated QoS Adaptation Approach

In this section we present our integrated global and local adaptation mechanism that uses
the Matrix framework. In our approach, global adaptation is performed by the Resource
Manager, while the local adaptation is taken care of locally on the devices.

Consider the following motivating example: A person uses a PDA to watch a video
stored on a local video server, which is delivered to the PDA through a wireless network.
As the person moves around with the PDA, at some point it becomes almost out of range
for the server, which results in video interruption due to packet losses. A local adaptation
on the PDA does not really help in this case, since the video disruption is caused by the
buffer underflow in PDAs decoder (in the case of buffer overflow, this could be treated
locally on the PDA by e.g., speeding up the video decoding task). However, if there is a
mechanism at the system level that can detect the lower bandwidth of the wireless link, i.e.,
the Matrix framework described in previous section, it could instruct the video server to
stream a lower quality video stream that takes less network bandwidth.

Expressed in more general terms, resource consumption is adjusted locally on devices
as long as the fluctuation stays within the range of requested QoS. For example, the Lo-
cal Monitor detects a change in available CPU for a certain application, but this change is
not large enough to enforce a different quality level to the application. Instead, the Local
Scheduler could perform some local countermeasures, e.g., prioritize the application on the
cost of some other application running on the same device. However, if the resource avail-
ability passes the defined thresholds (abstract QoS levels), the entire system gets involved
via the global adaptation mechanism. The whole idea is illustrated in Figure 3.

L

M

H

x x x

x x x

x

x x

Global adaptation
changes in resource
availability overstep 
the range of 
requested QoS

Available 
Resources

Time

Local adaptation
changes in 
resource
availability
within the range 
of requested 
QoS

Fig. 3. Different types of resource variations handled on different architectural levels



6 Rizvanovic et al.

4.1 Local Adaptation Mechanism

Local adaptation involves detecting the changes in resource availability and reacting to
those via the local scheduler. The ideas from control theory can be used to achieve this.
We use the closed loop model, i.e., a control model that involves feedback to ensure that
a set of conditions is met. It involves the Local Monitor, the Local Scheduler, and the
Order Manager, see Figure 4. Expressed by terminology of the control theory, we use the
following terms for inputs and outputs variables in our control model; control variable,
vctrl, is the value observed by the local monitor (e.g. network packet loss, CPU utilization),
reference variable, vref , is concrete performance specification for Local Schedulers made
by the order manager, error ε is the difference between the value observed by the Local
Monitor and the reference variable, and control input variable, v in, is the value calculated
by the adaptation algorithm in order to adapt scheduling of the local resources. The Local

Local
Monitor

control
variable vctrl

Quality Level 
(from RM)

[qmin, qmax]

no

error
-

sample

yes

Order Manager

control input 
variable vin

Local
Scheduler

Quality Level
(to RM)

reference 
variable vref

Run-Time Mechanism (System)

Application
adapter

data

Application Mapping
[qmin, qmax]

Mapping to 
QoS level

Fig. 4. Local QoS Adaptation Mechanism

Monitor continuously monitors available resources in the system (e.g., CPU or bandwidth).
Thus, in our control model it acts as an observer of the controlled system. It send the
observed control value to the Order Manager. The Order Manager calculates the difference
between the desired value, defined by the currently used QoS level, and the observed control
value, i.e., it calculates the error value of the control loop. As long as resource availability
stays within the boundaries for the given QoS level, i.e., the error falls in the range of the
current QoS level, the output of the adaptation algorithm, control input, is passed to the
Local Scheduler, i.e., the adapter part of control loop.

In the case that the error value implies a change in QoS levels, the values in the Status
Matrix are updated and the Resource Manager is informed about the change. From this
point, the global adaptation mechanism takes over, which we describe next.

4.2 Global Adaptation Mechanism

Whenever a local mechanism detects that a local resource availability has exceeded the
current QoS level, a global adaptation mechanism will be initiated. The objective of the
global adaptation is to adjust the resource usage among all involved applications. If the
resource availability has increased, it will be given to involved applications (in terms of



QoS Adaptation in Distributed, Heterogeneous Systems 7

increased quality levels). Similarly, if the resource availability has decreased, the quality
levels of the consumer applications will be decreased.

We support user defined priorities to be used when redistributing resources, i.e., the
higher the priority of an application, the faster the quality increase of the application. How-
ever, it is up to the user to use priorities or not. Based on this, we distinguish between three
reallocation policies in our approach, fair, fair prioritized and greedy.

Fair reallocation – If the priorities are not used, then the resources are adjusted (in-
creased or decreased) in a strictly fair fashion: for each consumer applications the quality is
adjusted step-by-step, one QoS level at the time, and then, if there are still resources to in-
crease/decrease, we repeat the procedure for all applications once again, until the resource
is consumed/replanished. For example, consider four different applications a 1,a2, a3 and
a4 that are using the same resource r. The current quality level for each applications is set
to L. Assume that a4 gets terminated and the resource availability of r gets increased by
the portion used by a4. The freed resource is given back to the remaining three application
such that we first increase the the QoS level of a1,a2 and a3 to M, and then, if there are still
resources left, all QoS levels are increased to H .

Fair-prioritized reallocation – Note that in the fair approach, there is no guarantee that
a certain application will change its QoS level. In the example above, there could be a case
where the freed resource is entirely consumed after increasing the level of a 1 and a2 to
level M, so that a3 will remain running on level L, despite the fact that a3 might be the
most important one in the system. However, if we use priorities, we could instruct RM to
start by increasing the QoS levels of high priority applications first, i.e., a 3 in the example
above. In other words, the resources are reallocated in a fair fashion, i.e., each application’s
quality level is changed by one step before changing any other application’s level one more
step, but also we use priorities to determine which applications should be served first.

Greedy reallocation – Moreover, priorities enable for an another reallocation policy,
i.e., greedy redistribution. This means to increase (decrease) QoS level of an application
with the highest (lowest) priority until it reaches its maximum (minimum) QoS level, be-
fore we start with the next one application (in the priority order). For the example above,
we would continue increasing the QoS level of a3 until it reaches H, before doing any
QoS increase of a1 and a2. Furthermore, the priorities can be used when selecting which
applications to drop first if that becomes necessary.

If an application is processed by several different devices, then, before changing its quality
level, we need to check if the new level can be supported by all involved devices on the
application’s playout route. For example, in a video streaming application where a video
stream is sent from a video server to a hand held device via a laptop, the bandwidth increase
between the server and the laptop does not necessarily mean that we should start streaming
a higher bit rate stream, since the link between the laptop and the hand held device might
not be able to support it. Likewise, we have to consider if this increased quality can be
supported by all other types of resources that the application is consuming e.g., there is no
point to send more data over the communication link than it cannot be timely processed at
the receiver device (by the local CPU).

Our admission control approach for new applications is quite similar to the adaptation
approach described above. Thus, each time a new application is about to enter the system,
the Resource Manager has to determine if sufficient resources are available to satisfy the
desired QoS of the new connection, without violating QoS of existing applications. If yes,
then we accept the new application and publish orders for resource reservation/reallocation
into the Order Matrix. If no, we check if there are any existing application with the the
lower priority than the new one, and if so, decrease their QoS (starting with the lowest
priority application) to free some resources for the new application. If there are no available
resources, and no lower priority applications, the new applications is rejected.



8 Rizvanovic et al.

4.3 Pseudo-Code for Integrated Approach

Here is the pseudo-code for our current implementation of the integrated local and global
QoS adaptation mechanism. We introduce some additional terms, as a complement to the
terms presented earlier:

– A = {a1, a2, .., an}, a set of applications in the system.
– R = {r1, r2, ..., rm}, a set of resources in the system.
– D = {d1, d2, ..., dp}, a set of devices in the system.
– A(ri) ∈ A, a subset of applications that currently use resource r i.
– R(aj) ∈ R, a subset of resources currently used by application a j .
– R(dl) ∈ R, a subset of resources currently consumed on device d l.
– D(aj) ∈ D, a subset of devices currently used for processing of application a j .
– S(ri), current resource supply (availability) of resource r i.
– D(ri), current resource demand of all applications using r i.
– qk(ri) and qk(aj), the k-th QoS level of resource ri, respective application aj , as de-

scribed in section 3.2.

/* For the sake of simpler explanation, we omit in the pseudo-code for the start up
activities where the devices has reported the local resource availability, and the RM has
published initial QoS levels in the Status Matrix */

∀ di ∈ D /* For each device */
∀ ri ∈ R(di) /* For each resource on a device */

/* Invoke local adaptation based on the currently assigned quality level */
map qk(ri) ⇒[qmin

k (ri),qmax
k (ri)]

vref = qmax
k (ri), εmax = qmax

k (ri) − qmin
k (ri)

Do
get vctrl from LM
ε = vref - vctrl

calculate vin(ε) and send it to LS
While (0 ≤ ε ≤ εmax)

/* Prepare for global adapt. when the error exceeds the limit of current QoS level */
map ε ⇒ ql(ri), l �= k
publish ql(ri) in SM

⇒ break! invoke global adaptation

/* RM performs global adaptation based on new info in SM */

/* Case 1: total resource supply is greater than the total demand ⇒ increase QoS levels */
If (S(ri) > D(ri)) Then

Do
/* Based on the chosen realloc. policy get an application to increase its QoS level */
If (aj = getApplication(POLICY, INCREASE)) Then

/* Check if all aj’s proc. devices (other than di), support the next QoS level of aj*/
If (∀dj ∈ D(aj), dj �= di, dj supports qk+1(aj)) Then

/* Check if the new QoS level of aj can be served by all other aj’s resources*/
If (∀rn ∈ R(aj), rn �= ri, rn supports qk+1(aj)) Then

increase quality of aj to qk+1(aj)
/* incr/decr dem/sup for ri by the amount used to jump to next QoS lev.*/



QoS Adaptation in Distributed, Heterogeneous Systems 9

Δ = qmax
k+1 (ri) − qmax

k (ri)
D(ri)+ = Δ; S(ri)− = Δ

While (S(ri) > D(ri) AND aj �= NULL)

/* Case 2: total resource supply is less than the total demand ⇒ decrease QoS levels */
Else

/* Similar as above, but the QoS levels are decreased. Also, we do not need to check
other devices and resources, since the decr. quality will not put extra demands on them.
...(omitted)

4.4 Example

Here we illustrate our approach in the context of video streaming. Consider the example
scenario with the PDA and the streaming video server from Section 3, where the quality
of the streamed video was dependent on the distance between the PDA and the server. At
some point in time, the PDA is so far away from the server so it only makes sense to stream
a low quality video stream, i.e., stream S1 with the abstract quality level L and priority p1.
Assume also that there is another video stream in the system, S2, streamed from the server
to a laptop with a quality level H and higher priority p2. The CPU availability (bandwidth)
on all devices is initially assumed to be high. The reallocation policy used is fair-prioritized.
The whole situation is depicted in Figure 5. The values within the parentheses are the new
QoS levels (obtained after adaptation).

Now, assume that the person with the PDA starts moving closer to the server. The local
adaptation mechanism on the one of the involved devices, i.e., either on the server or on
the PDA, will detect that more and more packets can be sent between them (let’s assume
the PDA will detect this first). As the PDA is coming closer to the server, at some point the
quality of the link connection will exceed the assigned threshold for the local adaptation,
and the global adaptation mechanism will take over, with the following steps involved (see
Figure 5 in parallel; the numbers below correspond to the numbers in the figure; some of
the steps are merged):

1. The Local Monitor on the PDA detects that the link quality between the server and the
PDA has increased.

2. This is reported to the Order Manager, who will map the new values to the quality level
H (we can assume a sudden large connection improvement e.g., by entering the room
where the server is placed).

3. Order Manager publishes the new quality level H in the Status Matrix.
4. Assume also that there has been some change in the CPU availability on the laptop, i.e.,

it gets decreased from H to L due some new, CPU intensive application that has started
to run on the laptop. Initially, the local adaptation mechanism on the laptop will react
to the changes in the CPU load by e.g., by performing selective frame skipping in the
video decoder that is processing the stream S2. However, at some point the CPU QoS
threshold will be exceeded and the new QoS value will be calculated and published in
the Status Matrix for the CPU.

5. The Resource Manager is notified about the new quality level values.
6. Now, it is up to the Resource Manager to take a decision about the resource realloca-

tion. Considering the available bandwidth and the streams priorities, one solution could
be to set the quality of S1 to M (since it has lower priority), and left the quality of S2

unchanged. However, streaming the high quality video stream to the laptop may not
be a good solution, since the CPU on the laptop is overloaded and video frames will
be skipped anyway. Hence, the Resource Manager, who has the total resource usage



10 Rizvanovic et al.

Video server
PDA

RM

(1)

OMR

LM LS

OMR

LMLS

OMR

LMLS

Laptop Stream S2 Stream S1

SM LAP SER PDA

CPU H (L) H H

BW H L (H)

S1 L L

HS2 H

(2)

(3)
(4)

(6)
(5)

(8)

(7)

AA

OM LAP SER PDA

CPU H (L) H H

BW H (L) L (H)

S1 L (H) L (H)

H (L)S2 H (L)

Fig. 5. Example global adaptation

view of the system, decides to set L for stream S2. This decision will not only reflect
the resource status on the laptop correctly, but also it will allow for S 1 to be set to H
(which can be done because the quality of the connection between the server and the
PDA has been changed to H).

7. The Order Managers on respective devices are informed about the new values (arrows
to the OMRs of the PDA and the laptop are omitted in the figure to ease readability).

8. The Order Managers then enforce the new settings via their local schedulers and appli-
cation adapters. For example, in the case of the server, the stream application adapter
will make sure to decrease the quality of stream S2. This can be done in several ways,
e.g., by reading a lower quality version of S2 that has been stored on the server in
advance, or by using an online modification of original S 2 by using the quality-aware
preventive frame skipping methods that we have developed in our previous work [15].

5 Implementation and Evaluation

The Matrix framework is quite complex and we are still working on its full implementa-
tion. However, we have implemented a mock-up of Matrix approach [2] using HLA [16].
Moreover, some basic benefits of our method, has been demonstrated by simulations.

5.1 Implemented modules

The hierarchical architecture and the loose coupling between system modules makes it
possible to work on different parts independently. Current implementation includes Local
Monitors and Schedulers for CPU and network bandwidth, and a Video Stream Adapter.

Local Network Scheduler – For network scheduling we use the traffic shaping ap-
proach, which provides different QoS by dynamically adapting the transmission rate of
nodes, to match the currently available bandwidth of a wireless network. The Traffic Shaper
adjusts the outbound traffic accordingly to input parameters (i.e., the amount of available
bandwidth assign to the Local Scheduler). Please see [14] for full implementation details.



QoS Adaptation in Distributed, Heterogeneous Systems 11

Local Network Monitor – For monitoring and estimation of available bandwidth (over
802.11b wireless Ethernet), we use a method that provides us with the average bandwidth
that will be available during a certain time interval. The architecture consists of a bandwidth
predictor that first uses a simple probe-packet technique to predict the available bandwidth.
Then, exponential averaging is used to predict the future available bandwidth based on the
current measurement and the history of previous predictions, see [14] for details.

Local CPU Scheduler – The allocation of CPU to the applications depends on the
scheduling mechanism that is used. We have developed a predictable and flexible real-time
scheduling method that we refer to as slot shifting [17]. The basic idea is to guarantee a
certain quality of service to applications before run-time, and then adjust it at run-time
according to the current status of the system.

Local CPU Monitor – Since we use a real-time scheduling mechanism, the CPU mon-
itoring is very simple to achieve. The spare capacity mechanism of slot shifting provides
easy access of the amount and the distribution of available resources at run-time [17].

Video Stream Adapter – We have implemented an Application Adapter for MPEG-2
video stream adaptation, based on quality-aware, selective frame skipping. Order Manager
sends allowed abstract quality level to the video adapter, which then adjusts the stream
according to available resources by skipping the least important video frames. For the frame
priority assignment algorithm we have proposed a number of criteria to be applied when
setting priorities to the frames. Please see our previous work [15] for details.

5.2 Evaluation

We have evaluated our method in the context of video streaming. Here we present re-
sults from a 15 minutes video streaming simulation using our integrated approach for
global and local adaptation. We simulate usage of 30 devices in the system and show
how a MPEG-2 video stream is adapted based on current resource availability (network
bandwidth). We use the following quality levels for available bandwidth (given in Mbps):
q1(BW ) = [qmax

1 , qmin
1 ] = [1.5, 2.5] (L), q2(BW ) = [qmax

2 , qmin
2 ] = [2.5, 4] (M),

q3(BW ) = [qmax
3 , qmin

3 ] = [4, 11] (H). Figure 6 shows that the local adaptation mech-
anism is deployed most of the time (77%), while the global mechanism is triggered only
when necessary (23%), i.e., the QoS has changed that much that the system reallocation
must take place.

1

2

3

4

5

6

0 20 40 60 80 100 120

av
ai

la
bl

e 
ba

nd
w

id
th

 (
M

bp
s)

time (sec)

resource fluctuation
global adaptation

Fig. 6. Invocation of global adaptation

0

1

2

3

4

5

0 20 40 60 80 100

ba
nd

w
id

th
 Q

oS
 le

ve
s 

(M
bp

s)

time (sec)

QoS level based on global system view
QoS level published by the device

Fig. 7. Global vs Local system view

Figure 7 shows the difference between QoS levels based on one device’s local view
and those assigned by global adaptation, i.e. the possible spared resources (available band-
width) on just one device due to global adaptation. It illustrates efficiency of our integrated
approach where adjustment of resources is not just based on the limited local system view
of one device, but also on the current available resources of all involved devices. In that
way, our approach enables a system wide optimization.



12 Rizvanovic et al.

6 Conclusions and Future Work

We proposed a method for efficient Quality-of-Service adaptation in dynamic, heteroge-
nous environments. It integrates global and local adaptation, where the first one takes care
of the structural resource fluctuations on the system level, while the second one is per-
formed locally on devices to handle short-term variations. The idea is to perform local
adaptation as long as possible, using a control model for resource monitoring and adjust-
ment, and if a resource availability passes the range of the currently assigned QoS level,
the global adaptation mechanism takes over.

Our current and future work include further developing the local control model by
formally describing the system’s behaviour with a set of differential equations. Futhermore,
we are working on a more general model for mapping between resources demands and
abstract QoS levels and exploiting the proposed framework in other application domains
than in-home networks.

References

1. Otero Perez, C., Steffens, L., van der Stok, P., van Loo, S., Alonso, A., Ruz, J.F., Bril, R.J.,
Garca Valls, M.: QoS-based resource management for ambient intelligence, Ambient intelligence:
impact on embedded system design, Academic Publishers Norwell, MA, USA, (2003)

2. Rizvanovic, L., Fohler, G.: The MATRIX: A QoS Framework forStreaming in Heterogeneous
Systems, International Workshop on Real-Time for Multimedia, Catania, Italy, (2004)

3. Nahrstedt, K., Smith, J.M.: Design, Implementation an Experiences of the OMEGA End-Point
Architecture, Distributed Systems Laboratory, University of Pennsylvania, Philadelphia

4. Nahrstedt, K., Chu, H., Narayan, S.: QoS-Aware Resource Management for Distributed Multime-
dia Applications, UIUCDCS-R-97-2030, (1997)

5. Campbell, A., Coulson, G., Hutchison, D.: A quality of service architecture, ACM SIGCOMM
Computer Communication Review, (1994)

6. Gopalakrishna, G., Parulkar, G.: Efficient Quality of Service in Multimedia Computer Operating
Systems, Washington University, (1994)

7. Shankar, M., De Miguel, M., Liu, J.W.S.: An end-to-end QoS management architecture, Real-
Time Technology and Applications Symposium, (1999)

8. Kassler, A., Schorr, A., Niedermeier, C., Schmid, R., Schrader, A.: MASA - A scalable QoS
Framework, Proceedings of Internet and Multimedia Systems and Applications (IMSA), Hon-
olulu, USA, (2003)

9. Li, B., Nahrstedt, K.: A Control-Based Middleware Framework for Quality-of-Service Adapta-
tions, Selected Areas in Communications, IEEE Journal, (1999)

10. Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn, J., Walker, K.R.: Agile
Application-Aware Adaptation for Mobility, 16th ACM Symposium on Operating Systems Prin-
ciples, France, (1997)

11. Li, B., Nahrstedt, K.: Impact of Control Theory on QoS Adaptation in Distributed Middleware
Systems, American Control Conference, (2001)

12. Stankovic, J.A., Abdelzaher, T., Marleya, M., Tao, G., Son, S.: Feedback control scheduling in
distributed real-time systems, RTSS, (2001)

13. Rizvanovic, L., Fohler, G.: The MATRIX - A Framework for Real-time Resource Management
for Video Streaming in Networks of Heterogenous Devices, Conference on Consumer Electronics,
Las Vegas, USA, (2007)

14. Lennvall, T., Fohler, G.: Providing Adaptive QoS in Wireless Networks by Traffic Shaping, Re-
source management for media processing in networked embedded systems (RM4NES), Nether-
lands, (2005)

15. Isovic, D., Fohler, G.: Quality aware MPEG-2 Stream Adaptation in Resource Constrained Sys-
tems, ECRTS, Catania, Italy, (2004)

16. IEEE Standard for Modeling and Simulation, High Level Architecture (HLA) - Federate Inter-
face Specification, No.:1516.1-2000

17. Isovic, D., Fohler, G.: Efficient Scheduling of Sporadic, Aperiodic, and Periodic Tasks with
Complex Constraints, 21st IEEE RTSS, USA, (2000)


