

CHALLENGES FOR AGILE DEVELOPMENT OF COTS
COMPONENTS AND COTS-BASED SYSTEMS

A Theoretical Examination

Iva Krasteva
Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd, Sofia 1165, Bulgaria

Iva.krasteva@rila.bg

Per Branger, Rikard Land
Department of Computer Science and Electronics, Mälardalen University, Västerås, Sweden

per.branger@mdh.se, rikard.land@mdh.se

Keywords: Agile software development, component-based development, COTS-based development

Abstract: Component-based software engineering has had great impact in the desktop and server domain and is
spreading to other domains as well, such as embedded systems. Agile software development is another
approach which has gained much attention in recent years, mainly for smaller-scale production of less
critical systems. Both of them promise to increase system quality, development speed and flexibility, but so
far little has been published on the combination of the two approaches. This paper presents a comprehensive
analysis of the applicability of the agile approach in the development processes of 1) COTS components and
2) COTS-based systems. The study method is a systematic theoretical examination and comparison of the
fundamental concepts and characteristics of these approaches. The contributions are: first, an enumeration
of identified contradictions between the approaches, and suggestions how to bridge these incompatibilities
to some extent. Second, the paper provides some more general comments, considerations, and application
guidelines concerning the introduction of agile principles into the development of COTS components or
COTS-based systems. This study thus forms a framework which will guide further empirical studies.

1 INTRODUCTION

As software systems are increasingly built using
pre-fabricated components, there is a need to
consider how the processes need to be changed
compared to “classical” development where all parts
of the software are built in-house. In particular, one
needs to distinguish between development of
components and development of systems made of
components. It is possible to define three types of
development (Crnkovic, Larsson and Chaudron,
2006), characterized mainly by the business
relationships between these two processes (whether
they occur in the same or different organizations):
architecture-driven development (where components
are defined from a top-down decomposition and
developed internally or outsourced), product line
development (where components are built internally
but reused in several products) and COTS-based
development (where components are developed and
made available on an open marketplace; COTS

stands for “Commercial Off-the-Shelf”). This paper
focuses on COTS-based development including the
production of COTS components as well as the
development of systems made of COTS
components.

In recent years agile methodologies for software
development have proved very effective in the
current dynamic business environment. More and
more, the agile approach broadens its areas of
application to domains and projects previously
considered unsuitable for agile development (Turk,
2002). An EU project intended to scaling up agile
approaches in a globally distributed environment is
ongoing (FLEXI1), research papers and case studies
report on using agile ideas in safety-critical systems
(Greening, 2001; Bowers, 2002; Wayrynen, 2004)
and hardware intensive projects (EUREKA-ITEA
AGILE Project2; Manhart, 2004).

The research on introducing agile ideas in

1 http://flexi-itea2.org/index.html
2 http://www.agile-itea.org/

component-based systems and component
development itself is still quire sporadic and isolated
and most of the suggested solutions are partial. The
Evolutionary Process for Integrating COTS-based
systems (EPIC) (Albert and Brownsword, 2002) is a
framework for building, fielding and supporting
COTS-based solutions. It presents an alternative
approach for acquisition, management, and
engineering practices of COTS-based systems which
is based on Rational Unified Process (RUP).
Another study (Cooper, 2006), which sets EPIC as a
ground, extends the research question further
towards agile ideas and presents a set of questions
that need to be considered to introduce agility into
the process from a requirements engineering
perspective. Another part of COTS development
process, the selection of COTS components and the
applicability of agile principles for component
selection, is examined by (Navarrete, Botella and
Franch, 2005). A description of using CLARiFi
system (CLear And Reliable Information for
Integration) as an agile approach for retrieving
components from large repositories is provided by
(Scotto et al., (to appear)).

The aim of this paper is to present
comprehensive and systematic evaluation of the
applicability of agile approach in component-based
development processes. In addition, this theoretical
work lays the foundation for further empirical
studies in an industrial setting.

This paper is oriented towards a reader who
wishes to learn what to consider before introducing
agile methods into a component development project
or system development with components. For more
details, we refer the interested reader, as well as the
reader who wishes to scrutiny how we have arrived
at our conclusions, to a more detailed report
(Krasteva, Branger, Land, 2007).

The research method and the motivation behind
it are described in section 2 of the paper. Further
details about the systematic structure of the research
can be found in section 3. Section 4 reports the main
findings, followed by a discussion in section 5.
Section 6 concludes the paper.

2 RESEARCH METHOD

Since the combination of component-based
development (CBD) and agile approach is a novel
and scientifically largely unexplored area, there are
two research approaches, which are complementary
and are both necessary:

 Theoretical reasoning, where the fundamental
assumptions and inherent characteristics of the
two fields are compared, and any theoretical
incompatibilities are reported. The risk in this
type of study is that when comparing two models
of reality, which have evolved in parallel from
different needs with different concepts and
terminology, the theoretical reasoning may
become too disconnected from reality.

 Empirical studies of projects and organizations
where agile practices have been adopted in
component-based software processes. However,
without a theoretical basis for such studies, it
becomes extremely difficult to formulate research
questions which are relevant and concrete enough,
and to design study settings to actually allow
examination of the topic intended to be studied.

This work represents the first of these two

approaches and should be seen as a first phase,
laying the foundation for further empirical studies in
an industrial setting. These two steps are well-
defined parts of the research agenda of the
established PROGRESS Centre for Predictable
Embedded Software Systems3 and also the ITEA2
FLEXI project1 of which we are part.

When comparing Agile and CBD as two
independently evolved research areas, one first step
is to bridge all gaps between differences in their
respective self-representation, i.e. terminology and
concept formation. During this type of comparison,
the fundamental set of “facts” of each field should
be identified so that the majority of practitioners and
researchers in this field would agree with this
choice, and of course to make this choice explicit. At
each step of the logical reasoning, we have been
careful to document the basis for our conclusions, to
make choices explicit and to motivate them, thus
opening up our work for external scrutiny and
criticism.

Our aim has been to:
 Use the most established basis for terms and

concepts in these two fields, and present our
interpretation for scrutiny (thus ensuring construct
validity);

 Make our logical conclusions as explicit as
possible (thus ensuring internal validity and
reliability, also called conclusion validity).

 In the paper, in order to compare an approach – an
agile approach, and a process – the CBD process, we
study the application of agile values and principles

3 http://www.mrtc.mdh.se/progress/

for each of the activities of CBD processes. The
structure of the research is a subject of the next
section.

3 RESEARCH STRUCTURE

Agile values, stated in the Agile Manifesto4 in 2001,
outline the ideas of agile development. The twelve
agile principles behind the manifesto support all of
the values and provide directions for applying these
ideas in a software project. In the proposed study it
is examined how agile principles can be mapped to
concrete tasks and activities of CBD processes.
Although a subjective step of interpretation and
application is needed, we have made sure to
externalize the interpretation as much as possible by
supporting our conclusions with practices of
different agile methods such as XP (eXtreme
Programming) (Beck, 1999), Scrum (Schwaber,
2004), Crystal Clear (Cockburn, 2004), DSDM5
(Dynamic Systems Development Method) and Lean
Development (Poppendieck, 2003).

For processes in the component-based
community there is not definite set of “facts”, nor
any standard text to refer to in this matter. We have
chosen to use (Crnkovic, Larsson and Chaudron,
2006) for the fundamental description of the
component-based processes and their relation, and
complemented this with other descriptions of
characteristics of component-based processes, such
as (Crnkovic and Larsson, 2002; Heineman and
Councill, 2001; Wallnau et al, 2001).

The study and the presentation are structured in
the following way. First, the development process of
components is separated from the process of system
development with components (Crnkovic, Larsson
and Chaudron, 2006; Heineman and Councill, 2001;
Wallnau et al, 2001). For each of the two processes,
the basic development activities according to
Sommerville (Sommerville, 2006) are listed. Then
the meaning of the agile principles in the context of
given activity is studied and exemplified with
appropriate practices. Finally, the observations of
applicability of agile principles into CBD process
activities and tasks are summarized into several
groups:
 Comments point out some important

characteristics of a particular activity or agile
principle

4 http://www.agilemanifesto.org/
5 http://www.dsdm.org/version4/2/public/

 Contradictions between agile principles and
specifics of given process activities and tasks
(sometimes with proposed Solutions)

 Considerations describe the things that should be
taken into account when trying to apply agile
principles to an activity

 Applications provide summary of the
observations and guidelines on how to introduce
the agile ideas to the development lifecycle in
practice.

The approach is summarized in Figure 1. Activities
which cross the complete development processes are
further discussed in Section 5.

Component
Development System Development

Requirements

Design

Summary
 Comment: ...
 Contradiction/Solution: …
 Consideration: …
 Application: ...

...

Summary
 ...

Summary
 ...

...

Summary
 Comment: ...
 Contradiction/Solution: …
 Consideration: …
 Application: ...

Summary
 Comment: ...
 Contradiction/Solution: …
 Consideration: …
 Application: ...

Summary
 Comment: ...
 Contradiction/Solution: …
 Consideration: …
 Application: ...

AP #1 (Agile
Principle #1)
AP #2 (Agile
Principle #2)

...
AP #12 (Agile
Principle #12)

AP #1 Conse-
quences

AP #2 Conse-
quences

...
AP #12 Conse-

quences

AP #1 (Agile
Principle #1)
AP #2 (Agile
Principle #2)

...
AP #12 (Agile
Principle #12)

AP #1 Conse-
quences

AP #2 Conse-
quences

...
AP #12 Conse-

quences

AP #1
AP #2

...
AP #12

AP #1 Cons.
AP #2 Cons.

...
AP #12 Cons.

AP #1
AP #2

...
AP #12

AP #1 Cons.
AP #2 Cons.

...
AP #12 Cons.

AP #1
AP #2

...
AP #12

AP #1 Cons.
AP #2 Cons.

...
AP #12 Cons.

AP #1
AP #2

...
AP #12

AP #1 Cons.
AP #2 Cons.

...
AP #12 Cons.

Figure 1: The break-down structure of the study

We would like to point out that no particular order
of the process activities is assumed or advocated
(e.g. like a waterfall model). Also, as the focus is
only on the development activities, not all of the
principles are discussed. Some of the principles fall
into the scope of Project Management or are relevant
to the whole process not to the particular activity.
Two issues which cross-cut the activities, but which
turn out to be of big importance when discussing the
activities, are discussed in section 5: number of
customers and test-driven development. That part of
the study should be seen as more speculative.

Due to space limitation, this paper does not list
the full per-principle tables, but reports the main
findings, i.e. contradictions, solutions,
considerations, and notes on application; for all
details the interested reader is referred to the above-
mentioned report (Krasteva, Branger, Land, 2007).

4 AGILITY IN CBD ACTIVITIES

The section presents our observations when
introducing agile ideas in COTS-based development
processes. They are presented in terms of comments,
contradictions, considerations and applications.
Description is organized by process activities and
makes explicit distinction between development
activities for component creation and activities for
development of systems based on components.

4.1 Requirements Specification

Component Development
Contradiction: COTS components should meet

the requirements of many different customers and
users, while the agile approach assumes that
business people from the (singular) customer are
heavily involved during the component development
process.

Solution: Customer representatives can be used
(see “Application” below).

Consideration: As component interfaces cannot
be changed very often issues such as backward and
forward compatibility and compliance with
standards, should be decided early in the
requirements phase. The requirement on backward
and forward compatibility means that “enough” time
should be spent early to predict future changes, in
order to make those changes easier and backwards
compatibility easier (Examples: file formats, APIs.)

Application: In order to benefit from close
collaboration with the business, as agile approach
suggests, some additional steps for identifying a
‘proxy’ customer of a component should be done
(this is further discussed in section 5.1). However,
the requirements are identified to satisfy as many
different business scenarios as possible. The overall
requirements specification is needed in advance so
that component interfaces are not changed during
subsequent releases of a component. Non-functional
requirements for a component are specified and
addressed along with functional ones.

System Development
Component selection is a basic part of the

process of system development with components. It
is performed in parallel with the system activities
and includes requirements specification, design,
implementation, testing and integration. In the
current study the discussion of component selection
process is presented along with requirements
development activity. It is further extended in
section 5.

Contradiction: The contradiction that exists in
the context of requirements specification is about the
responsiveness to change and the possibility to
introduce change late in the development process of
component-based systems. Requirements for
systems based on components should be pretty well
defined in advance. The reason for this is that
changing a COTS component is a very hard task.
COTS are delivered to the team as a black-box,
sometimes without source code and often without
detailed specification. The way of changing a
component (if possible at all) is to contact the
supplier. This includes sending a mail with the
proposed changes, waiting for a response, meetings
with the supplier, negotiating schedule and costs,
etc., which can significantly disturb the development
process. That is why introducing changes in the
requirements of a component-based systems
involves either reconfiguration of components or
replacing components. However, both activities are
limited to the extent they can actually meet the
changed requirements.

Solution: Although a significant part of the
overall requirements specification should be done in
advance, the processes of requirements elicitation
and component selection are very liable to applying
agile principles. Initially requirements should not be
specified in too much detail, because it is practically
impossible to find a component which fulfils all
requirements. Instead, the requirements are refined
in more detail iteratively during component selection
and evaluation. Through “gap analysis” (Ncube and
Dean, 2002) along with the customer the component
which gives the most and leaves the least (in terms
of effort and cost) is identified.

Application: Agile ideas benefit the
requirements engineering activity for component-
based systems mainly by their adoption in the
processes of requirements elicitation and component
selection. Two directions for application can be
mentioned: customer participation and iterations.
Close collaboration with the customer would assure
that difficult decisions and trade-offs that should be
made during the selection process as well as the
appropriate requirements prioritisation are based on
business value. An iterative selection process
supports a fertile dialog with the customer and
makes the requirements elicitation and selection
process manageable and observable.

During the requirements specification process of
systems based on components, the architectural and
business requirements should be considered along
with the functional and non-functional ones.

An approach that adds additional value in
requirements specification of component-based
system is prototyping. Prototyping is a common
practice for identification and clarification of

customer requirements. Prototypes of systems that
are based on components are easily produced.
However, some policy issues, such as trial versions,
should be considered.

4.2 Design

Component Development
Contradiction: The biggest contradiction in

component design and agile design activities is
about the simplicity and generality. Additional
decisions should be made and considered during
component design specification. Some such
decisions are about component interfaces: how
should functional interfaces be specified and
designed to be as reusable as possible? How can the
number of interfaces that requires functionality be
minimized to make the component as independent as
possible? What configuration interfaces are needed
in order to support the adaptability? In addition, the
component interfaces should change as little as
possible from one version to another so they are
usually specified in the very first versions of the
component.

Another thing that should be considered during
the component design is about the component
technology and supported standards. Component has
to provide support for both the common standards
and the evolving ones in order to stay competitive on
the market.

Furthermore, COTS complexity and additional
non-functional requirements involve a more formal
approach to design and architecture than currently
suggested by agile methods.

No solution: Additional considerations about
component reusability, independence, adaptability
and dependability should be done when designing a
component. The overall component design should be
specified in advance so that all the interfaces are
kept the same during subsequent versions of the
component.

System Development
Application: Involving business people in

design activity for COTS-based systems is easily
achievable as the architecture specified by means of
components, is enough simple and understandable
for all involved project stakeholders (Stojanovic,
2003). An important goal for the design is to
minimize architectural mismatch (Crnkovic, 2002),
which can be done by considering compatible sets of
components as candidates. Similar to requirements,
replacement of components comes with a high cost
in terms of required redesign and reimplementation.
So developers must predict enough of future changes
to select future-proof components.

4.3 Implementation

Component Development
No particular constraints and restrictions exist in

applying agile principles to implementation activity
of components.

System Development
Comment: The coding activity when developing

a system with components is reduced by almost 50%
(Crnkovic, 2002). It involves adapting components
and writing wrappers and glue code, thus building
component assemblies to provide system
functionality. The integration process is central
when a system is developed out of components
(Larsson, 2007) and should be an integral part of the
component selection process. It is possible that
components need to be reconfigured when a new
component is added to the integrated system. Issues
with component integration exist even in run-time,
when components are added dynamically to the
system.

Application: Agile principles for early and
continuous delivery of working software are
supported to a great extent of the characteristics of
implementation activity of COTS-based systems.
Part of component integration is performed during
component selection process. Reduced coding time
allows for early receiving of feedback. Such an
implementation process supported by automated
tests can be very beneficial as it would assure safe
reconfiguration of the system.

4.4 Verification & Test

Component Development
Consideration: An additional complexity is that

of verifying the component in the absence of a
context (Fredriksson and Land, 2007; Alvaro, Land,
and Crnkovic, 2007), which is fundamental for the
idea of certification of components by independent
third parties (Alvaro, Almeida and Meira, 2005).

Consideration: One important part of
component verification in absence of a system
context is verification of its “integrateability”, i.e.
the accompanying documentation of interfaces,
standard compliance, and perhaps illustrating its
possible usage by shipping it with code and
applications which illustrate the possibilities by
using the component (while also teaching how to use
it).

System Development
Comment: In general ideas are not contradictory

and are common for software development. The

restriction that exists is that system verification is
restricted to black-box testing.

Consideration: Since component behaviour is
known by its specification which is not always
sufficiently detailed, comprehensive test coverage is
not possible for an acquired component. The system
developer should focus its test suites on the
component features desired and/or used in a system,
and in practice extensive test coverage will be
achieved only for these features. Since components
are constructed to be general and to suit different
situations and environments, there will be many
features which are thus only partly tested by the
system developer

Consideration: Experimentation, formal testing
and prototyping would be an excellent way to learn
about the component behaviour (especially for non-
functional properties), and the tests would then be
stored to verify that no (bad) changes has been made
when a new version of the component is released (or
at least it becomes apparent what the changes are,
and you have the choice to adapt your system and
use the new version anyway). In this way, the
automated tests of component features would be
used and re-executed many times during the whole
system development process: first created and
executed during the selection process, then as part of
integration testing and system testing, and then
during subsequent iterations (if any) as regression
testing.

4.5 Integration

Component Development
Comment: No particular contradictions or

constraints seem to exist since component
development is not significantly different from
common application development as far as
integration is concerned.

Consideration: In agile methods integration
happens continuously, while when dependability
issues are addressed integration process should be
controlled.

System Development
There are no restrictions in applying agile ideas

to integration activity of COTS-based systems.

5 DISCUSSION

Two important issues which cross-cut the activities
are discussed in this section: the number of
customers and test-driven development.

5.1 Number of Customers

A fundamental difference in assumptions
between agile methods and the usage of COTS is the
relation to the customer(s). The agile principles
assume that there are one or more customers that
initiate the project and for whom the product is
created, while COTS products are developed and
then offered to an open market with many potential
customers. This fundamental difference in the
assumptions is the cause of many of the
contradictions mentioned earlier, and this needs to
be addressed. There are two ways, which can be
combined, to alleviate the problem outlined earlier:
 Someone internally, who knows the market well,

such as marketing people or domain experts,
would act as customer in an agile project.

 The component development organization could
involve real customers for e.g. requirements
gathering and evaluation of various alternatives
early during development.

When developing components for a larger

market it is the component vendor who finally
defines and prioritizes requirements. The goals are
not decided ultimately by the customers (or their
representatives) but by the one that develops the
component. The component developer should of
course listen to the customer but it is not the
customer who makes the decision. This also means
that the contract between component vendor and
customer representatives has to be different. Some
open questions that have to be answered are: Can a
component developer require an on-site customer?
Who pays who? etc.

5.2 Test-Driven Development and
Selection Methods

The general idea of test-driven development (TDD)
applied to system development with components
would mean that functional tests are specified before
implementing a function, after which the glue code
for the function is created, followed by tests
execution. When changes are made, these tests are
used for regression testing. The TDD approach can
easily be extended to also include component
selection: functional tests are specified together with
the customer, in parallel with a search for suitable
components. There are some established component
selection methods where the selection is closely
intertwined with requirements specification (Alves
and Castro, 2004; Chung and Cooper, 2004; Liu and
Gorton, 2003; Maiden and Ncube, 1998; Ncube and
Maiden, 1999). Selection and design also influence

each other in both directions: components must be
selected which fit the specified architecture, but the
availability of components will influence the design;
components can for similar reasons with advantage
be evaluated and selected in compatible sets
simultaneously (Bhuta and Boehm, 2005; Morisio et
al, 2002). The evaluation of components need to
start with some exploration and experimentation to
learn the component, but should then mainly consist
of the implementation of the features specified by
the functional tests. This ensures that the
development efforts are kept focused and that the
evaluation is relevant. This applies not only to
functional testing but also to quality tests.
Performance tests would by construction accurately
reflect the usage expected in the real system and it is
possible to find the relevant limitations and
bottlenecks.
The component evaluation can thus be seen as a
verification of the suitability of certain components
and a certain design as well as the suitability for
implementing the system requirements. Verification
of the design includes architectural properties and
“integrateability”, i.e. how well the components
integrate in practice. In this way, it is possible to
show something to the customer very early in the
process. It also becomes possible to involve the
customer in the selection decision, if we have, say,
three alternative implementations of the same
function to show, which is very much in line with
agile principles.

6 CONCLUSIONS

Nowadays agile approach for software
development continuously enlarges its area of
application. The presented study is a step towards
introducing agility into the building of COTS-based
systems, by being a systematic, theoretical
examination of the applicability of the agile
approach to COTS-based development. This
examination is organized by mapping agile values
and principles to each of the activities of the two
development processes: development of systems
based on COTS components and COTS production
itself. The aim of the paper is to present the picture
of agile adoption as completely and thoroughly as
possible. However, to cover this broader picture
some details have been left out of the discussions;
these are published elsewhere (Krasteva, Branger,
Land, 2007).

We can expect the findings of the study to be
subject to adjustment and refinement (and rejection)
as data are collected in empirical studies, which is

the next phase of our research within the
PROGRESS Centre for Predictable Embedded
Software Systems3 and the ITEA2 FLEXI project1.
The examination presented in this paper will form
the theoretical foundation for these empirical
studies; for example, each of the contradictions
proposed in this paper are easily transformed to
study questions for empirical research, such as “how
serious is the contradiction in practice?”, and “how
can the contradiction be overcome in practice?”
Furthermore, the empirical adoption can benefit
from analysis on the severity and criticality of the
contradictions outlined in the paper and the impact
and effectiveness of mitigation activities proposed as
solutions.

In addition, the results of the study can be used
as a starting point when a company searches for an
appropriate agile development process (in terms of
lifecycle, products, roles, techniques and application
guidelines). Another direction for future work is to
include more development activities in the
examination, such as maintenance and evolution,
and also supporting activities such as project
management, configuration management, and
documentation. The same type of study can also be
made for other business contexts, such as
architecture-driven development and product line
development (Crnkovic, Larsson and Chaudron,
2006).

ACKNOWLEDGEMENTS

This work is partly funded by the Swedish
Foundation for Strategic Research and Bulgarian
Ministry of Education and Science.

REFERENCES

Albert, C., Brownsword, L., 2002. Evolutionary Process
for Integrating COTS-Based Systems (EPIC),
Technical Report CMU/SEI-2002-TR-005, Carnegie
Mellon University

Alvaro, A., Almeida, E. S., Meira, S. R. L., 2005.
“Software Component Certification: A Survey”, In
31st IEEE EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA),
Component-Based Software Engineering (CBSE)
Track, Euromicro

Alvaro, A., Land, R., Crnkovic, I., 2007. Software
Component Evaluation: A Theoretical Study on
Component Selection and Certification, MRTC report,
Mälardalen Real-Time Research Centre, Mälardalen
University

Alves, C., Castro, J., 2001. “CRE: a systematic method for
COTS components Selection”, In Proceedings of the
XV Brazilian Symposium on Software Engineering
(SBES), Rio de Janeiro

Beck, K., 1999. EXtreme Programming EXplained:
Embrace Change, Addison Wesley

Bhuta, J., Boehm, B., 2005. “A Method for Compatible
COTS Component Selection”, In Proceedings of the
4th International Conference on COTS-Based
Software Systems, LNCS, Vol. 3412, Springer

Bowers, J., May, J., Melander, E., Baarman, M., Ayoob,
A. 2002. Tailoring XP for large system mission
critical software development. In Extreme
Programming and Agile Methods - XP/Agile Universe
2002 Second XP Universe and First Agile Universe
Conference, Lecture Notes in Computer Science
Vol.2418, Springer-Verlag

Chung, L., Cooper, K., 2004. “Defining Goals in a COTS-
Aware Requirements Engineering Approach”, Systems
Engineering, Volume 7, Issue 1, pp. 61-83, Wiley

Crnkovic, I., Larsson, M. 2002. Building Reliable
Component-Based Systems, Artech House

Crnkovic, I., Larsson, S., Chaudron, M., 2006.
Component-based Development Process and
Component Lifecycle. In 27th International
Conference Information Technology Interfaces (ITI),
IEEE Computer Society

Cockburn, A., 2004. Crystal Clear: A Human-Powered
Methodology for Small Teams, Addison-Wesley
Professional

Cooper, K., 2006. Can Agility be Introduced into
Requirements Engineering for COTS Component
Based Development?, In International Workshop on
Software Product Management (IWSPM'06), IEEE
Computer Society

Fredriksson, J., Land, R., 2007. “Reusable Component
Analysis for Component-Based Embedded Real-Time
Systems”, In 29th International Conference on
Information Technology Interfaces (ITI), IEEE
Computer Society

Greening, J. 2001. Launching Extreme Programming at a
Process-Intensive Company, IEEE Software, Volume
18, IEEE Computer Society

Heineman, G. T., Councill, W. T. , 2001. Component-
based Software Engineering, Putting the Pieces
Together, Addison-Wesley.

Krasteva, I., Branger, P., Land, R. 2007. A Systematic
Comparison of Agile Principles and the Fundaments
of Component-Based Software Development. MRTC
report, Mälardalen Real-Time Research Centre,
Mälardalen University

Larsson, S., 2007. Key Elements of Software Product
Integration Processes, Ph D Thesis, Mälardalen
University Press

Liu, A., Gorton, I., 2003. “Accelerating COTS
Middleware Acquisition: The i-Mate Process”, IEEE
Software, Volume 20, Issue 2, pp. 72-79, IEEE
Computer Society

Maiden, N. A., Ncube, C., 1998. “Acquiring COTS
Software Selection Requirements”, IEEE Software,

Volume 15, Issue 2, pp. 46-56, IEEE Computer
Society

Manhart, P., Schneider, K., 2004. Breaking the Ice for
Agile Development of Embedded Software: An
Industry Experience Report, In 26th International
Conference on Software Engineering, IEEE Computer
Society

Morisio, M., Seaman, C. B., Basili, V. R., Parra, A. T.,
Kraft, S. E., Condon, S. E., 2002. “COTS-based
software development: Processes and open issues”,
Journal of Systems and Software, Volume 61, Issue 3,
pp. 189-199, Elsevier

Ncube, C., Dean, J. C., 2002. “The Limitations of Current
Decision-Making Techniques in the Procurement of
COTS Software Components”, In Proceedings of the
First International Conference on COTS-Based
Software Systems, LNCS 2255, p176 - 187, Springer-
Verlag

Ncube, C., Maiden, N. A., 1999. “PORE: Procurement-
Oriented Requirements Engineering Method for the
Component-Based Systems Engineering Development
Paradigm”, In Second International Workshop on
Component-Based Software Engineering, Los Angeles

Navarrete, F., Botella P., Franch, X., 2005. How Agile
COTS Selection Methods are (and can be)?, In
Proceedings of the 2005 31st EUROMICRO
Conference on Software Engineering and Advanced
Applications (EUROMICRO-SEAA’05 , IEEE
Computer Society

Poppendieck, M., Poppendieck T., 2003. Lean Software
Development: An Agile Toolkit, Addison-Wesley
Professional

Schwaber, K., 2004. Agile Project Management with
Scrum, Microsoft Press

Sommerville, I., 2006, Software engineering, Pearson
Education, Eight Edition

Stojanovic, Z., Dahanayake, A., Sol, H. 2003. Component-
oriented agile software development, In Extreme
Programming and Agile Processes in Software
Engineering. 4th International Conference, Lecture
Notes in Computer Science Vol.2675, Springer-Verlag

Scotto M., Sillitti A., Succi, G., Vernazza T., (to appear)
Agile Methods, In CBSE: state of the art, practices,
and future directions, World Scientific, available at
http://www.unibz.it/web4archiv/objects/pdf/cs_library
/agilemethods.pdf

Turk, D., France, R., Rumpe, B. 2002. Limitations of
Agile Software Processes, In Third International
Conference of eXtreme Programming and Agile
Processes in Software Engineering

Wallnau K. C., Hissam S. A., Seacord R. C., 2001.
Building Systems from Commercial Components,
Addison-Wesley.

Wayrynen, J., Boden, M.; Bostrom, G. 2004. Security
engineering and extreme programming: an impossible
marriage? In Extreme Programming and Agile
Methods - XP/Agile Universe 2004. 4th Conference on
Extreme Programming and Agile Methods.
Proceedings, Lecture Notes in Computer Science
Vol.3134, Springer-Verlag

