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Abstract rectly functioning final product both from a functional as
well as extra-functional point of view. This paper presents

For most of today’s embedded software systems, correcthe hierarchical scheduling framework; a step towards con-
operation requires not only correct function, they mustiadd current development and reuse of complex embedded soft-
tionally satisfy specific extra-functional properties,gar- ware systems with extra-functional requirements on timing
ticular related to timing. System development (including and resource usage.
software development) is substantially facilitated if slys-
tem parts can be developed and verified in isolation, and 1.1 Background
if the correctness of the system can be inferred from the
correctness of its parts. Such modular and compositional ~ The hierarchical scheduling framework is a modular ap-
design of software system has for a long time been consid{roach for scheduling embedded real-time systems. A sys-
ered the holy-grail of system design, and is unfortunately tem is hierarchically divided into a humber of subsystems
only possible in selected scenarios. This paper deals withthat are scheduled by a global (system-level) scheduler.
one such scenario: using hierarchical scheduling to pro- Each subsystem contains a set of tasks that are scheduled by
vide predictable timing and temporal isolation of embedded a local (subsystem-level) scheduler. The division of a sys-
software. During the past years we have worked on varioustem into a number of subsystems naturally promotese
issues on hierarchical scheduling, and this paper presentsof subsystems from one system to another. Also, the hi-
an overview of selected research results, focusing ongssue erarchical scheduling framework allows for a subsystem to
related to synchronization among software modules. be developed and analysed in isolation, with its own local
scheduler, and then at a later stage, using an arbitrargiglob
scheduler, integrated with other subsystems without t+ola
ing the results of the analyses performed on the subsystem
inisolation. The integration involves a system-level sithe

lability test, verifying that all extra-functional reqgeiments

Component based software engineering is promoted aSyre met. Hence, hierarchical scheduling frameworks natu-
a key approach in providing structured software design a”drally supportconcurrent developmenf subsystems.

reuse for embedded (and other) software systems [3, 12].  Thg key enabler in allowing for concurrent development
Ad.vanced ope_ratmg system mechgnlsms such as hierargnq reuse of subsystems is the subsysteenface Subsys-
chical scheduling frameworks provide temporal and spa-emg are periodically scheduled in the hierarchical schedu
tial isolation through virtual platforms, thereby providi  jng framework, and the subsystem interface contains infor-
means for extending component based softwarg engineermation on the fraction of the CPU required by a subsys-
ing towards component based systems engineering. A COMiem in each subsystem period. As long as this fraction of
plex system can be divided into several modules, here de-py is always provided to the subsystem, it is guaranteed

noted subsystems, each performing a specific well definedy, ¢ the subsystem will function according to its specifica-
function. Development and verification of subsystems can jgg. e.g., that the extra-functional temporal requiretae

ideally be performed independently (and concurrently) and ot the subsystem are met. Hence, an interface contains in-

their seamless and effortless integration results in a cor-f5rmation representing the capacifyto be provided to the
*The work in this paper is supported by the Swedish Founddtion SUbSySt_em each subsystem peI’JBd_ If the hi_erarChical

Strategic Research (SSF), via the research programme PROSR scheduling framework supports sharing of logical resosirce

1 Introduction




among subsystems, the interface must also contain informaso as to achieve a clean separation in a multi-level hier-
tion on the length of the longest critical section in the sub- archical scheduling framework, and schedulability analy-
system [8]. Hence, interfaces for subsystems sharing logi-sis techniques [17, 35] have been introduced for this re-
cal resources contain, apart fraghand P, also the length  source model. In addition, Shin and Lee [34] introduced
of the longest critical sectioiX . another so-called periodic resource model (to charaeteriz

During the past years, we have developed a hierarchi-the periodic resource allocation behaviour), and many-stud
cal scheduling framework providing predictable timing. In ies have been proposed on schedulability analysis with this
particular, we have focused on the development of synchro-resource model under fixed-priority scheduling [13, 23, 31]
nization protocols for hierarchical scheduling togethéhw  and under EDF scheduling [34]. More recently, Easwaran
associated analysis techniques. Our overall goal is to de-et al.[16] introduced Explicit Deadline Periodic (EDP) re-
velop a cost efficient framework applicable for a wide range source model. However, a common assumption shared by
of applications, and this paper covers some of our recentall the studies in this paragraph is that tasks are required t
work in hierarchical scheduling, synchronization, adapta be independent, i.e., no sharing of logical resources is al-
tion and implementation. lowed.

1.2 Outline 2.2 Synchronization

This paper presents a hierarchical scheduling framework  In many real systems, tasks are required to interact with
based on the periodic resource model [34]. In Section 2,each other through mutually exclusive resource sharing.
the paper covers related work in the area of hierarchical Many protocols have been introduced to address the prior-
scheduling, and the related issue of synchronization amondty inversion problem for tasks sharing logical resources,
tasks executing in a hierarchical framework. The hierar- including the Priority Inheritance Protocol (PIP) [32]eth
chical scheduling framework is presented in detail in Sec- Priority Ceiling Protocol (PCP) [29], and Stack Resource
tion 3, along with its associated timing analysis in Secion  Policy (SRP) [4]. Recently, Fishest al. addressed the
Following, the paper covers synchronization techniques fo problem of minimizing the resource holding time [19] un-
hierarchical scheduling in Section 5, comparing several ap der SRP. There have been studies on extending SRP in a
proaches, and going into detail into one of these approachesierarchical scheduling framework, for sharing of logical
in Section 6; the approach of the Subsystem Integration andresources within a subsystem [2, 20] and across subsys-
Resource Allocation Policy (SIRAP) [8]. The paper con- tems [8, 14, 18]. Davis and Burns [14] proposed the Hi-
tinues with discussing the role of a hierarchical schedulin erarchical Stack Resource Policy (HSRP) supporting shar-
framework in dynamic systems in Section 7, allowing for ing of logical resources on the basis of an overrun mecha-
the system to change its configuration during runtime. Fi- nism. Behnanet al.[8] proposed the Subsystem Integration
nally, Section 8 discusses implementation issues and expeand Resource Allocation Policy (SIRAP) protocol that sup-
riences taken from an implementation of the hierarchical ports subsystem integration in the presence of shared log-
scheduling framework in the VxWorks operating system, ical resources, on the basis of skipping. Fisaeal. [18]

and Section 9 concludes. proposed the BROE server that extends the Constant Band-
width Server (CBS) [1] in order to handle sharing of logi-
2 Related work cal resources in a hierarchical scheduling framework. The

work in this paper focuses on HSRP and SIRAP, targeting
systems based on FPS schedulers. Note that FPS is the de-

Before going into details describing our hierarchical . L
going | 's gescriuing our hi ! facto standard used (for local scheduling) in industry.

scheduling framework, this section outlines related wark i
the area of hierarchical scheduling and protocols for syn- ) _ _
chronization when systems are scheduled hierarchically. 3 The Hierarchical Scheduling Framework

2.1 Hierarchical scheduling This paper focuses on scheduling of a single node, where
each node is modeled as a syst&ntconsisting of one or
Hierarchical real-time scheduling, originating in open more subsystem$§; € S. The system is scheduled by

systems [15] in the late 1990’s, has been receiving an in-a two-level Hierarchical Scheduling Framework (HSF) as
creasing research attention [2, 13, 15, 17, 20, 22, 23, 26,shown in Figure 1. During runtime, the system level sched-
30, 34, 35]. Since Deng and Liu [15] introduced a two- uler (global scheduler) selects, at all times, which subsys
level hierarchical scheduling framework, its schedulabil tem that will access the common (shared) CPU resource.
ity has been analyzed under fixed-priority global schedul- The synchronization protocols, SRP mediates access to lo-
ing [20] and under EDF-based global scheduling [22, 25]. cal shared logical resources, and HSRP and SIRAP will me-
Mok et al.[27] proposed the bounded-delay resource model diate access to global shared logical resources.
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Figure 1. HSF with resource sharing.

3.1 Subsystem model

A subsystemS, consists of a sef, of n, tasks and a

unique static priorities and are sorted according to their p
orities in the order of increasing priority. Without loss of
generality, it is assumed that the priority of a task is equal
to the task ID number after sorting, and the greater a task
ID number is, the higher its priority is. The same assump-
tion is made for the subsystems. The set of shared resources
accessed by; is denoted{ R}. Lethp(i) return the set of
tasks with priorities higher than that ef and1p(¢) return

the set of tasks with priorities lower than that of tagkFor

each subsystem, we assume that the subsystem period is se-
lected such tha2 P, < T,,i,, wherer,,;, is the task with

the shortest period. The motivation for this assumption is
that higherP; will require more CPU resources [36]. In
addition, this assumption simplifies the presentation ef th
paper (evaluatind().

3.3 Shared resources

The presented HSF allows for sharing of logical re-
sources between arbitrary tasks, located in arbitraryysabs
tems, in a mutually exclusive manner. To access a resource
R;, a task must first lock the resource, and when the task
no longer needs the resource it is unlocked. The time dur-
ing which a task holds a lock is called a critical section. A
resource that is used by tasks in more than one subsystem is
denoted alobal shared resource

local scheduler. Once a subsystem is assigned the proces- To be able to use SRP in a HSF for synchronizing global
sor (CPU), its scheduler will select which of its tasks will shared resources, its associated terms resource, system an

be executed. With each subsystéim a subsystem timing
interfaceS; (P, Qs, X ;) is associated, wher@; is the sub-
system budget that the subsyst&gwill receive every sub-

system period’;, and X ; is the maximum time that a sub-
system internal task may lock a globally shared resource.

Finally, both the local scheduler of a subsyst8mas well

as the global scheduler of the systé&mns assumed to im-
plement the FPS scheduling policy. L&, be the set of
global shared resources accessedbyand letm, be the

cardinality of R ;.

3.2 Task model

The task model considered in this paper is the
deadline-constrained sporadic hard real-time task model

7:(T;, Ci, Dy, {ci ;}), whereT; is a minimum separation
time between arrival of successive jobsf C; is their
worst-case execution-time, an}; is an arrival-relative

deadline ( < C; < D; < T;) before which the execu-

subsystem ceilings are extended as follows:

e Resource ceiling Each global shared resourég is
associated with two types of resource ceilings; an
internal resource ceiling 1(c;) for local scheduling
and anexternal resource ceiling £X;) for global
scheduling. Lower bounds fotc; and RX; are de-
fined asrc!™® = max{i|r; € 7, accesse®;} and
RX;WP = max{s|S, accesse®; }, respectively.

e System/subsystem ceilinhe system/subsystem ceil-
ings (SClsc,) are dynamic parameters that change
during execution. The system/subsystem ceiling
is equal to the highest externall/internal resource
ceiling of a currently locked resource in the sys-
tem/subsystem.

Under SRP, a task, can preempt the currently execut-

tion of a job must be completed. Each task is allowed to ing taskr; (even inside a critical section) within the same
access one or more shared logical resources, and each elsubsystem, only if the priority of;. is greater than its cor-

mentc; ; € {c¢;;} is acritical section execution timthat

represents a worst-case execution-time requirementwathi

critical section of a global shared resoureg Itis assumed

responding subsystem ceiling. The same reasoning applies
for subsystems from a global scheduling point of view. An
attractive property of SRP is that it allows tasks within a

that all tasks belonging to the same subsystem are assigneslubsystem to share a common stack.



4 HSF schedulability analysis ; P P P P
This section presents the schedulability analysis of thei BD = : (1P i
HSF, starting with local schedulability analysis needed to__Q 2P2Q i g . Q 1 i Q
calculate subsystem interfaces, and finally, global sclaedu i
bility analysis. However, before jumping into the detailed | i R
analysis, the periodic processor model is presented, being ' 4 ' ' ' '
instrumental in the following analyses. §
QO
(7))
4.1 The periodic processor model
The notion of real-time virtual processor (resource) | : } —
model was first introduced by Mak al.[27] to characterize o 1 2 3 4 5 67 8 9 10
the CPU allocations that a parent node provides to a child
node in a hierarchical scheduling framework. TGPU Figure 2. Supply bound function of a periodic

supplyof a virtual processor model refers to the amount  virtual processor model T'(P, Q) for k = 3.
of CPU allocations that the virtual processor model can
provide. Thesupply bound functioof a virtual processor
model calculates the minimum possible CPU supply of the
virtual processor model for a time interval length

Shin and Lee [34] proposed the periodic virtual proces- {4+ T — D,
sor modell'(P, @), whereP is a period £ > 0) andQ is dbfepr(i,t) = {#
a periodic allocation time)( < @ < P). The periodic vir- T
tual processor modél(P, @) is defined to characterize the  The ocal schedulability condition under EDF scheduling is
following property: then ([34])

J .G 3)

supplyp (kP, (k+ 1)P) =(Q, wherek=0,1,2,.. (;L) Vi >0 Z dbfepr (i, t) < sbfp(t), 4)
el
where the supply functiosupplyr(¢1,t2) computes the
amount of CPU allocations that the virtual processor model  Let dbfgp(i,t) denote the demand bound function of a
T provides during the intervad, , t3). taskr; under FPS [21], i.e.,
For the periodic moddl'(P, ), its supply bound func-

tion sbfr(t) is defined to compute the minimum possible o t
CPU supply for every interval lengthas follows: dbtrp(i 1) = Ci + Z [T_,j G- (5)

T €hp(i)

t—(k+1)(P-Q) ifte[(k+1)P-20, The local schedulability analysis under FPS can then
sbfr(t) = (k+1)P - Q) easily be extended from the results of [4, 34] as follows:
(k—1)Q otherwise

2)
where k = max(((t — (P — Q))/P},l). Here, we
first note that an interval of length may not begin syn-
chronously with the beginning of perio®. That is, as
shown in Figure 2, the interval of lengthcan start in the
middle of the period of a periodic modE( P, Q). We also The global scheduler schedules subsystems in a similar
note that the intuition of in Eq. (2) basically indicates how Way as scheduling simple real-time periodic tasks. The rea-
many periods of a periodic model can overlap the interval son is that we are using the periodic resource model to ab-
of lengtht, more precisely speaking, the interval of length stract the collective timing temporal requirements of sub-
t — (P — Q). Figure 2 illustrates the intuition df and how systems, so the subsystem can be modeled as a simple pe-

V7,0 < 3t < D; dbfep(i,t) < sbfp(t). (6)

4.3 Global schedulability analysis

the supply bound functiosbfr(¢) is defined fork = 3. riodic task where the subsystem period is equivalent to the
task period and the subsystem budget is equivalent to the
4.2 Local schedulability analysis task execution time. Depending on the global scheduler (if

it is EDF, RM or DM), it is possible to use the schedulabil-
Letdbfepr(7, t) denote the demand bound function of a ity analysis methods used for scheduling periodic tasks in
taskr; under EDF scheduling [5], i.e., order to check the global schedulability.



4.4 Subsystem interface calculation be replenished at the beginning of the next subsystem
period P;.
Using HSF, a subsysterfi; is assigned a fraction of
CPU-resources which equals @,/P;. It is required to The SRP and PCP protocols can only solve the problem
decrease the required CPU-resources fraction for each subcaused by task preemption within a subsystem (case num-
system as much as possible without affecting the schedulaberl) since there is a direct relationship between the prior-
bility of its internal tasks. By decreasing the required GPU ities of tasks within the same subsystem. However, if tasks
resources for all subsystems, the overall CPU demand reare from different subsystems (inter subsystem preemption
quired to schedule the entire system (system load) will bethen priorities of tasks belonging to different subsystems
decreased, and by doing this, more applications can be in-are independent of each other, which make these protocols

tegrated in a single processor. not suitable to be used directly to solve the problem of syn-
tion required for a Subsystens’s and given PSa let |ng the prOtOCO|S SRP and PCP between Subsystems such

calculateBudget(Ss, P,) denote a function that calculates that if a task that belongs to a subsystem locks a global
the smallest subsystem budg@t that satisfies Eq. (4) resource, then this subsystem blocks all other subsystems
and Eq. (6). HenceR, = calculateBudget(S,, P,). The where their internal tasks want to access the same global

function is a searching function similar to the one presgtnte Shared resource.

in [34] and the resulting subsystem timing interface is  Another problem of directly applying the SRP and PCP
(Ps, Q). protocols in a HSF is that of budget expiry inside a crit-

ical section. The subsystem buddg} is said toexpire
. . . . at the point when one or more internal (to the subsystem)
> Hleramhlcal schedullng with - resource tasks have executed a total@f time units within the cur-
sharing rent subsystem periof;. Once the budget is expired, no
new tasks within the same subsystem can initiate execution
In this section we take a closer look into the problem of yntil the subsystem’s budget is replenished. This reptenis
allowing for sharing of logical resources in a HSF, and we ment takes place in the beginning of each subsystem period,

discuss and compare a number of possible solutions. where the budget is replenished to a valu€gf
Budget expiration can cause a problem, if it happens
5.1 Detailing the problem while a taskr; of a subsysten$; is executing within the

critical section of a global shared resourge. If another

When a task accesses a shared logical resource, all othetaskr,,, belonging to another subsystem, is waiting for the
tasks that want to access the same resource will be blockedame resourc®;, this task must wait until; is replen-
until the task that is currently accessing the resource re-ished sor; can continue to execute and finally release the
leases it. To achieve a predictable real-time behavior, thelock on resourcd?;. This waiting time exposed tg,, can
waiting time of other tasks that want to access a locked be potentially very long, causing, to miss its deadline.
shared resource should be bounded. The traditional syn-
chronization protocols such as SRP and PCP, protocols5.2 Supporting sharing of logical re-
that are often used with non-hierarchical scheduling, oann sources
without modification handle the problem of sharing global

resources in a HSF. To explain the reason, suppose afask  Several protocols have been proposed to enable sharing
that belongs to a subsystesi is holding a logical resource  of |ogical resources in a HSF. These protocols use differ-

Ry, the execution of the task can be preempted whilg  ent methods to handle the problem of bounding the waiting
is executing inside the critical section of the resouftie  time of other tasks that are waiting for a shared resource.
(see Figure 3) due to the following reasons: Most of them rely on the SRP protocol to synchronize ac-

cess to a shared resource within a subsystem to solve the
problem of intra subsystem preemption, and they also use
SRP among subsystems to solve the problem of inter sub-

2. Inter Subsystem preemptimready task—c that be|ong system preemption. Note that the effect of USing SRP with
to a subsystens» preemptsr; when the priority of both local and global scheduling should be considered dur-

subsystensp is higher than the priority of subsystem ing the schedulability analysis.
Sr. In general, solving the problem of budget expiry inside a
critical section is based on one of, or a combination of, the
3. Budget expiry inside a critical sectioif the budgetof  two approaches of
the subsysten$; expires, the task; will not be al-
lowed to execute until the budget of its subsystem will e adding extra resources to the budget of each subsystem

1. Intra subsystem preemptipa higher priority taskr
within the same subsystem preempts the tgsk
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Figure 3. Task preemption while running inside a critical section.

to preventthe budget expiration inside a critical section event of an overrun. Selecting which of these two mech-
(applied by HSRP [14]), and/or, anisms that gives better results in terms of task response
times in the general case is not stated, as it depends on the

e preventing a task from locking a shared resource if its Particular system parameters.

subsystem does not have enough remaining budget a
the time when the task tries to lock the resource (ap-
plied by BROE [18] and SIRAP [8]).

The following sections explain details of these two ap- 522 BROE
proaches as they are applied in the HSRP, BROE and SIRAP

protocols, respectively. The Bounded-delay Resource Open Environment (BROE)
server [18] extends the Constant Bandwidth Server
521 HSRP (CBS) [1] in order to handle the sharing of logical re-

sources in a HSF. The BROE server is suitable for open en-
The Hierarchical Stack Resource Policy (HSRP) [14] ex- vironments since it allows for each application to be devel-
tends the SRP protocol to be appropriate for hierarchicaloped and validated independently. For each applicatien, th
scheduling frameworks with tasks that access global sharednaximum CPU resource demand is characterized by server
resources. HSRP is based onasrrunmechanism work-  speed, delay tolerance (using the bounded-delay resource
ing as follows: when the budget of a subsystem expirespartition [27]) and resource holding time [10, 19]. These
and the subsystem has a jdpthat is still locking a global ~ parameters will be used as an interface between the appli-
shared resource, the jah continues its execution until it  cation and the system scheduler so that the system scheduler
releases the locked resource. When a job accesses a globailill schedule all servers according to their interface para
shared resource its priority is increased to the highest lo-eters. The interface parameters will also be used during the
cal priority, preventing any preemption during the accdss o admission control of new applications to check if there are
a shared resource from other tasks that belong to the samenough CPU resources to run this new application on the
subsystem. SRP is used at the global level to synchronizeprocessor. The BROE server uses the SRP protocol to arbi-
the execution of subsystems that have tasks accessing globdrate access to global shared resources and in order to pre-
shared resources. Each global shared resource has a ceilingent the budget expiration inside critical section prohlem
equal to the maximum priority of subsystems that have a The application performs a budget check before accessing
task accessing that resource. Two versions of overrun mecha global shared resource. If the application has sufficient
anisms have been presentedwith paybackwhich works remaining budget then it allows its task to lock the global
as follows: whenever overrun happens in a subsysigm  resource; otherwise it postpones its current deadlineend r
the budget of the subsystem will, in its next execution in- plenishes its budget (according to certain rules that guara
stant, be decreased by the amount of the overrun time. 2)ee the correctness of the execution of CBS servers) to be
without paybackno further actions will be taken after the able to lock and release the global resource safely.



5.2.3 SIRAP necessary to guarantee the schedulability of an entire
framework. By minimizing the system load, more sub-
systems can be integrated in a single processor, which
makes the framework cost-efficient and applicable for
a wide domain of applications, e.g., automotive, au-
tomation, aerospace and consumer electronics.

The Subsystem Integration and Resource Allocation Policy
(SIRAP) [8] protocol supports subsystem integration in the
presence of globally shared logical resources, and SIRAP
can as BROE be used in open environment systems. It uses
a periodic resource model to abstract the timing require-
ments of each subsystem. Each subsystem is characterized e Implementation complexityhe implementation of the

by its period, budget and resource holding time, and it is protocols is a very important issue that should be care-
implemented as a periodic server. SIRAP uses the SRP pro-  fully dealt with, as many protocols lose their effi-
tocol to synchronize the access to global shared resources i ciency when they are implemented, i.e., the overhead
both local and global scheduling. SIRAP applieskgping of implementing a protocol may be higher than the re-
approach to preventthe budget expiration inside critieed s sources that the protocol can save.

tion problem. The mechanism works as follows; when a job

wants to enter a critical section, it enters the criticatisec 53,1 Independency

at the earliest instant such that it can complete the ctitica - ] ] )

section before the subsystem budget expires. This can bd "€ Schedulability analysis associated with both SIRAP
achieved by checking the remaining budget before granting@d BROE support independent development of subsys-
the access to the global shared resources; if there is suffif€Ms, i.e., the schedulability of a subsystem can be an-
cient remaining budget then the job enters the critical sec-alyzed independently, making both protocols suitable for
tion, and if there is insufficient remaining budget, the loca OPen environments. However, HSRP does not support this
scheduler delays the critical section entering of the job un féature in the sense that information about other subsys-
til the next subsystem budget replenishment (i.e., the task!®Ms is needed in order to apply the schedulability analysis
that wants to enter the critical section will be blockedinte ~ fOr tasks. In [9, 33], we presented schedulability analysis

nally inside its subsystem until the next subsystem budgetthat enables independent development of subsystems using
replenishment). HSRP, by assuming that each subsystem will be supplied

with the minimum amount of CPU resources (i.e., consid-

5.3 Comparing the protocols ering a worst-case scenario) from the global scheduler.

This section compares HSRP, BROE, and SIRAP, look- 5.3.2  Universality
ing at independency, universality, abstraction, efficjenc

. . ; . The schedulability analysis presented for HSRP in [14] is
and implementation complexity, respectively.

based on Fixed Priority Scheduling (FPS) for both local and

e Independencythe local schedulability analysis can 9global schedulers, and in [9], Earliest Deadline First (EDF
be performed independenﬂy and therefore the HSF isscheduling is used for both local and global scheduling.
suitable for use in open environment systems, whereFor SIRAP the local scheduler is FPS (Wlth some modifica-
applications may be developed and validated indepen-tions the local scheduler can be EDF as well) and the global
dently in different environments. scheduler can be either EDF or FPS. The BROE server uses

EDF both locally and globally. Note that BROE uses CBS

e Universality means that the scheduling algorithms g|obally, which means that the global scheduler is restrict
should not be specific to (a) certain algorithm(s), i.e., it 1o EDE.

should be possible to employ any scheduling algorithm

in the HSF. 5.3.3 Timing abstraction

e Timing abstraction each subsystem specifies the For comparison purposes, for HSRP, we use the local

amount of CPU demgnd reqmred t.o ;chgdule all inter- schedulability analysis presented in [9, 33] as the work pre
nal tasks through their respective timing interface. j’he sented in [14] did not show how to evaluate a subsystem’s
g'oba'. sqheQuler schedules all s_ut_)systems according tocorresponding subsystem interface; it assumes that the tim
their tlmlng_lnterfaces. Hence, it is required t(.) evalu- ing interface is given. To specify the subsystem timing in-
ate_the minimum c_oIIectwe CPU de"_‘a”d requirement, 1o tace for both HSRP and SIRAP we use the periodic re-
whl_ch will appear in the subsystem interface, guaran- source model,(P,, Q) [34], where P, and Q. are the
teeing feasibility of the local schedulers of a subsys- subsystem period and budget respectively. Since all proto-
tem. cols use SRP locallythen the effect of this should be in-

° Efﬁciency |ooking at CPU resource usage, the HSF cluded in the local schedulability analysis, which can be
_ShOUId use th_e CPU—resource eﬁiCie_ntly by minimiz- 1The HSRP version presented in [14] did not use SRP locallyitbut
ing the collective CPU requirement (i.e., system load) prevents any preemption while a task is accessing a globatdhesource.




considered as a blocking time that a task may block other5.3.5 Implementation complexity

tasks while accessing global shared resources. In addition h | ina th iodic et
SIRAP includes the effect of self blocking, thereby solving Both SIRAP and HSRP rely on using the periodic server

the problem of budget expiry inside a critical section, ia th implement each subsystem that is allowed to execute budget
local schedulability analysis Qs every periodP;. Implementing the BROE server is done

relying on a EDF global scheduler together with a modified
A final remark concerning subsystem interfaces is the version of CBS. Comparing the two types of servers, the

level of timing abstraction achieved. For all presented pro implementation of the periodic server is easier than the im-
tocols (HSRP, SIRAP and BROE) the values of resource plementation of the CBS server (CBS has more states and
holding times [19], which is the maximum time that a sub- the server change its state when it passes certain instances
system may lock a resource, should be included in the sub-in time). One more thing in the comparison is that the CBS
system interface, to be used in the global schedulability server should update its parameters (deadline, virtua tim
analysis. However, during runtime only SIRAP and BROE and reactivation time etc.) and it continuously changes the
require the explicit values of resource holding times ireord ~ state of the server (contending, non-contending, suspende
to check if there is enough remaining budget before locking inactive, blocked). On the other hand, using periodic serve
global shared resources; this is not necessary for HSRP.  the global scheduler can update the server parameters (re-

maining budget) and change the state of the server (ready,

non-ready, blocked).

Comparing SIRAP and HSRP using the periodic server,
the SIRAP protocol provides better isolation between the
local and the global scheduler. The reason for this is that

5.3.4 Efficiency (in terms of CPU resource usage) when using HSRP, (1) the local scheduler should inform
the global scheduler about events such as overrun, in order
to keep the server executing even when its budget is con-
. : " - sumed, and (2) the local scheduler should inform the global
be mclude_d_ in the gl.Obf':ll schedglab|l|ty. Similar to_IocaI scheduler when its task release a global resource in order to
schedulability analysis, its effect in the global analysil remove the server from the execution when executing out of

be visible as blocking times that a subsyst_em may bIO_Ck budget. While for SIRAP, no such communication between

each ﬁther sukt))system. Not;zl thst, thhe me:)xmum b|°9ﬁ'ggthe global and local schedulers is required since the prob-
time that a subsystem may block other subsystems will b€e 1 of the hudget expiration inside the critical section of a

equal to its maximum resource holding time. For HSRP global shared resource is solved locally

the effect of allowing a subsystem to overrun, in case of '

budget expiration inside a critical section, is also adaed t ) .
the global schedulability analysis. 6 Detailed analysis of SIRAP

When the SRP protocol is used globally, its effect should

For comparison purposes, let us defaystem loads a
guantitative measure to represent the minimum amount of
CPU allocations necessary to guarantee the schedulabilit
of the systen5. Eq. (13) in [9] shows how to evaluate the
system load when the global scheduler is EDF, and &q. (
in [33] yields the same information for an FPS global sched-
uler. An efficient protocol is a protocol that produces the
lowest system load once used. Comparing between SIRAP - ) )
and HSRP, it is not possible to prove that one of the pro- The local schedulability analysis under FPS is as fol-
tocols is more efficient than the other [6], as such a state-lows [4, 34]:
ment depends on the subsystem parameters as well as on
the parameters of the shared resources (even between the
two types of overrun mechanisms presented in [14] is not
easy to find which of them that requires less system load).
BROE seems to be more efficient than the other two, how-
ever it is not easy to prove such a property as in [18] the o . ;
authors did not e)>/<plai?1 how to evaISatg thg resourE:e Emld—the minimum pOSS|bI_e cPU suppl_y %, for every Inter-
ing times when using a BROE server (the authors left this val lengthz (see Section 4 f°F details), amthtrp (i, ) de-
issue to a future submission), and these values have gree{?Otes theequest bound functioof a taskr;. Note that, for
effect on the system load (Since they are used in the gIObaI 2A periodic server is a server that works/behaves similar perimdic
schedulability analysis as a blocking times). task.

This section present a detailed analysis of the SIRAP
rotocol, starting with the local schedulability analy$a-
owed by how to derive various parameters, and finishing
with the global schedulability analysis.

6.1 Local schedulability analysis

V7, 3t 0 <t < D, rbep(i,ﬁ) < Sbfs(t), @)

wheresbf,(t) is the supply bound functiobased on the
periodic resource model presented in [34] that computes




Eq. (7),t can be selected within a finite set of scheduling One way to handle this problem is by preventing the pre-

points [24]. emption inside the subsystem when a task is accessing a
The request bound functiarbfep(i,t) of a taskr; is shared resource as proposed in [14]580; = ¢;;. It
given by: can be implemented using SRP by assigning the resource

ceiling of all resources equal to the maximum task priority
rc; = ns wWheren, is the task ID number of the highest
rofrp(i,t) = C; + Is(i) + Iu (i, t) + Ip(i), (8) priority task. However, Bertognat al. [10] showed that
preventing preemption while accessing a global shared re-
) source may violate the local schedulability of the subsyste
Is(i) = Z Xk, (9) and proposed an algorithm based on increasing the ceiling
Rie{R'} of all resources in steps as much as possible without violat-
ing the local schedulability. Finally, Shat al.[33] showed
) t that there is a tradeoff between decreasing the valugof
In(ist) = Z [TW (Cj + Z Xjx),  (10) and the minimum subsystem budget required to guarantee

mienp(i) 7 Rye{RI} the schedulability of the subsystem.
The result of this paper does not depend on any of the
I (i) = max (2. max_(Xy;)), (11)  discussed methods to set the internal resource ceiling. So

- €1p(2 VR; i > . -
1€ ezt we assume that the internal ceiling of resouftecan be

whereIs(i) is the self blocking of task;, I (i,t) is the  selected within the following range, > rc; > rejVE.
interference from tasks with priority higher than thatrof
andIy (i) is the interference from tasks, with priority lower 6.4 Global schedulability analysis
than that ofr;, that access shared resources.
The general condition for global schedulability is

6.2 Calculating X,
VS, Jt:0<t < Py, RBF(t)+ By <t (14)

Given a subsysterfi;, its critical section executiontime  whereB, is the maximum blocking imposed to a subsystem
X, represents a worst-case CPU demand that internal tasks,, when it is blocked by lower-priority subsystems (sup-
of S; may collectively request while executing inside any pose thatS; imposes the maximum blocking ofi, then
critical section. Note that any task accessing a resource B, = X;). Eq. (15) is used to evaluakBF,(¢) for the
R; can be preempted by tasks with priority higher thhan SIRAP protocol:
Note that SIRAP prevents subsystem budget expiration in-
side a critical section of a global shared resource. When RBF,(t) = Q. + Z iw - Qr (15)
atask experiences self-blocking during a subsystem budget S1,€HP(s) P

period it is guaranteed access to the resource during thie nex . . L
period. A sufficient condition to provide this guarantee is whereHP(s) is the set of subsystems with priority higher

than than of subsyste§y. Note that the way of calculating

0. > X.. (12) RBF,(t) depends on the synchronization protocol.

We now deriveX, < Qs < P, and since we assume 7 Adaptive and reconfigurable systems
that2P; < T,,;, then all tasks that are allowed to preempt
while Ti accesseﬁj will be activated at most one time from The HSF is Very usefu| When |t comes to the imp'emen_
the time that Self bIOCking happens until the end of the next tation of Operating System Support for adaptabmty and re-
subsystem period. Theki; ; can be computed as follows,  configurability needed in dynamic open systems, where ap-
. plications (one or more subsystems) may be allowed to join
X, =cij+ Z Ch. (13) and/(_)r Iea_ve the system _du_ring runtime. In allowing such
functionality, a propeadmission contro{AC) must be pro-

Fred vided. Also, the HSF allows for a convenient implementa-
Let X; = max{X;,[forallm; € 7;accessing?;},  tion of quality of service management policies, allowing fo
thenX, = max{X;,| forall R; € R.}. a dynamic allocation of resources to subsystems.
The admission control (AC) applies one or more algo-
6.3 Internal resource ceiling rithms to determine if a new application (consisting of one

or multiple subsystems) can be allowed to join the system

Looking at Eq. (13), assigning internal resource ceilings and start execution (admission) without violating the re-
according to SRP may make the value Xf very high quirements of the already existing applications (or the re-
which causes the subsystem to require more CPU resourcegjuirements of the whole system). The decision of the AC



depends on the state of the system resources and the rgrovided by the platform. Such an algorithm is very sim-

sources required by the new application asking for admis-ple; however, the accuracy of the result is not high as all

sion. If there are enough resources available in the systemapplications will not likely need their specified maximum

the application will be admitted; otherwise the applicatio memory space at the same time. Higher efficiency can be

will be rejected. achieved by the usage of algorithms such as the approxi-
In general, since the AC uses online algorithms the mated algorithm presented in [11].

complexity and overhead of implementing these algorithms

should be very low for several reasons, such as maintaining

scalability of the AC an(_j minimizing |_ts |_nterference on the 7.1.3 Energy resources

system. Hence, one objective in designing the AC concerns

keeping the input to these algorithms as simple as POSSI\10st of the modern processors support changing the fre-

ble, e.g., the resource requirement for each individu&l tas ! : .
’ ' . n nd vol f the CP ring runtime, in control-
could be abstracted to the subsystem level. Another objec—que ¢y and voltage of the CPU during runtime, in contro

five concermns minimizind interference between the AC and ling the CPU’s power consumption. The HSF can use this
v S minimizing int ) W feature to select the lowest frequency/voltage that guaran
the system online, making it desirable to perform as much

work as possible offline Fees the hard real time requiremen_ts_ of the system. Decreas-
: ing the frequency of a processor will increase the worse-cas
.. execution time (WCET) of its tasks. In doing this, more
7.1 Admission of resources CPU resources should be allocated to subsystems in order
to ensure that all hard real time tasks will meet their dead-
The resourcesconsidered by the AC may include, but |ines. Looking at the HSF, if predefined levels of frequen-
are not limited to CPU resourcesmemoryresourcesnet-  cjes are used, we can find a subsystem interface for each
workresource anenergyresources. Initially, we have been  frequency level for all subsystems. Then, during runtime,
focusing on CPU and network resources, and are now alsqhe AC will make sure that the processor is working with the

looking at memory resources. lowest frequency keeping the schedulability of the current
set of subsystems. When it is required to add a new sub-
7.1.1 CPU resources system, the AC will check the schedulability condition with

the current processor frequency; if the system is deemed not
schedulable, then the AC will try with higher frequencies.
SWhen a subsystem is removed from the system, the AC will

ing the global schedulability test in the HSF [34, 35]. This . 4, requce the frequency of the CPU in order to reduce its
algorithm depends on the type of system level SChedUIerpowerconsumption.

used, e.g., EDF, FPS, etc. The AC checks the schedulabil-

ity condition of the system including the new subsystem. If

the system is still schedulable, the new subsystem will pass

this test; otherwise the new application will be rejected. | 7.1.4 Network resources

using this test, it is guaranteed that all hard real time re-

quirements will be met. The input to the algorithm is the This type of resource is important in distributed systems
subsystem interface (subsystem budget and period) of eackvhere there typically exist communications between nodes
running subsystem together with the interface of the newin the network. The network resource is different from the
subsystem. Note that these parameters are evaluated arfether resources previously described in the sense that the

determined during the development of the subsystem (of-network resource is shared by all nodes, while the other re-
fline). sources are local to each node. When the AC is faced with a

request for adding a subsystem, it should check if the com-
munications requirements will be met, i.e., check if all im-
portant messages will be delivered in proper time [28]. Se-
When allowing for a new application to enter the system, lecting an algorithm that checks this resource is more com-
the AC should guarantee that there is sufficient memory plex as there are many different requirements, communi-
space to be used by all subsystems. Otherwise, unexpectedation protocols, network types, etc. Covering all these as
problems may happen during run time. In a similar way as pects might not be necessary but as an illustration conaider
for CPU resources, the maximum memory space requiredsimple algorithm which relies on the communication band-
by each subsystem is evaluated during its development. Inwidth. During the development of each subsystem, their
the AC test, a simple algorithm can be used to check if theremaximum communication bandwidth requirements should
is enough memory space available in the system, by checkbe evaluated such that the AC can use it in order to check if
ing if the summation of the maximum memory space for the summation of required bandwidth for all subsystems is
all subsystems is less than or equal to the memory spacdess than 100%.

When using the HSF, traditional schedulability algorithms
can be used in order to check the CPU resources, e.g., by u

7.1.2 Memory resources



7.2 Approaches to admission control in . gA I QN 3'\'”_ :
. . 0. messages Single one ultiple
distributed systems Consistency | No problem Complex | No problem
Ordering Simple Complex | Complex
. . s . Fault Single point Fault Single point
Implementing _the AC in d_|str|buted systems is more tolerance of failure tolerant | of failure
complex than doing so for a single CPU. The main reason (system level) (resource level)
for this is that the information needed by the AC algorithms Memory Lxn Lxn*n | Lxn

must be consistent. For example, when using the network
resources, awareness of all network users must be main-
tained by the AC, and these users are typically located on
many nodes throughout the distributed system. Commonly,
information on the current state is kept at one place, managg
ing the information needed by the AC. Also, when an appli-
cation consists of more than one subsystem, and these sub- ] ) ] )
systems are located at different nodes, all these subsystem [N this section we compare and discuss some issues re-
should pass the AC tests before admitting the application. lated to the implementation of both SIRAP and HSRP. The
In designing the AC we have identified 3 different ap- corresponding implementation is based on our previous im-

; : lementation of the Hierarchical Scheduling Framework
roaches based on where the AC test will be implemented. P ) . .
P P (HSF) [7] in the VXxWorks operating system. In the imple-

mentation presented in [7], we have used periodic servers to
e A specialMaster Node (MA) will implementthe AC  jmplement subsystems assuming that tasks are independent,
tests of all resources in the system. Only the MA j e no sharing of logical resources is allowed.
will have information about resources in the system.  The implementation of HSF supports both FPS and EDF
Hence, consistency is not a problem, it is easy to de- 4t the local and global scheduler levels. To support syn-
termine the order between AC requests, and the AC chronization between tasks (or subsystems) when access-
does not have to contact multiple nodes in getting the jng global shared resources, advances in the implementatio
current system state as only a single AC request to themade since [7] include the implementation of the SRP pro-
MA is needed. On the downside the MA is a single tocol. Both schedulers (local and global) are activated pe-
system level point of failure. riodically according to task/server parameters and we have
used a timer to trigger the schedulers. The schedulers use a
e All Nodes (AN) will implement the AC tests of all re-  queue to save the time events called Tirae Event Queue
sources in the system. Each node should have the con{TEQ) (one TEQ to schedule the servers and one for each
sistent information of all resources that are used by the subsystem to schedule its internal tasks). The TEQ is a
system. Hence, in this fully distributed approach the priority queue that consists of sorted events (period, €dead
AC test can be performed without having to commu- line), according to absolute times, which are updated dt eac
nicate with other nodes. Also, the approach is toler- scheduler invocation. At each global/local schedulewaeti
ant to failures. On the downside, consistency must betion, the following is done:
maintained between all nodes, and ordering is more
complex compared with MA. Also, more memory is e Handle the scheduling event (period or deadline

Table 1. Properties of the 3 AC strategies.

Implementation

needed in maintaining all resource state replicas. event).
e Update the occurred eventin the TEQ.
e There will beOne Node (ON)implementing the AC e Fetch the nearest event (from TEQ) and set next sched-
test of each resource in the system. Each node will uler expiration to timer.

mainta_lin information about the _resource_s that is _re- « Update the SYSTEM TIME.
sponsible for. Hence, there will be no issues with

respec_t to datg conS|steQC|es between reph_cas of the Figure 4 illustrates how the scheduler is triggered. After
same mforn_]atlon, bUt a single AC request _rmght have the scheduler has taken care of the current scheduling event
0 commumcate with a number of r_mdes in order to (first node in the TEQ), this event is updated and put in the
geta valid system state. Also, ordering among AC re- TEQ. Triggering the scheduler to run at time 200 is done by
quests_ must be solved, and_each resource owner W'”setting a timer to the value of the next event’s absolute time
be a single resource level point of failure. subtracted with the current SYSTEM TIME since the timer
input should be in relative time. The schedulers SYSTEM
The characteristics of the above three approaches arélIME are discrete clocks used only by the schedulers (it
outlined in Table 1, wheré is the number of resources and has nothing to do with the OS system clock). The SYSTEM
n is the number of nodes. TIME is set to 200 at scheduling event 100, so the SYSTEM



TEQ.first- SYSTEM TIME HSRP will prolong the server budget, when the budget
> expires inside a critical section, by letting the protoca-m
1?0 | | 2?0 time nipulate (increase) the remaining budget in the server. The
budget will reset (equals to zero) when the critical section
execution s finished, which means that the global scheduler

Scheduler must be informed (called) about this from task level in order
to remove the server from the execution. This approach is
TEQ TEQ not good because of two reasons:
2001 220 | 290 220 | 290 | 300 Firstly, the scheduler needs .the. curr_ent absolute time in
order to set a correct next expiration time and the current
SYSTEM TIME SYSTEM TIME SYSTEM TIME is not correct since the activation of the
- - global scheduler is not in response to time event. Time
stamping must be used to get the correct current absolute

T time. The problem is that using timestamp to evaluate the
absolute SYSTEM TIME may add drift depending on the
resolution of this facility. If the timestamp value has aoerr
Figure 4. Scheduler execution. margin of 1us, then the scheduler could set its next expira-
tion 1 us too early or too late which will have a big impact
on the scheduling and might cause a drift. Normally, the in-
terrupt facility will start the scheduler in the amount ohé
TIME will equal to 200 until next event (at absolute time  equal to the expiration time that was set in the last schedule
200). invocation.

As mentioned before, SRP is used by both local and  Secondly, we break the isolation between the local and
global schedulers when accessing a global shared resourcgyiobal schedulers by letting the local level directly chit
so both HSRP and SIRAP require an SRP implementation.global entity. Subsystems must not be aware of the global

When a task wants to access a global shared resourcescheduling if subsystem development should be done in iso-
it first calls the function ock, and the task releases the |ation.
shared resource when it calls the functioml ock. The To enable the payback approach in HSRP (payback
| ock/ unl ock function has a similar implementation in  means that the overrun time will be paid back in the next
both SIRAP and HSRP. In order to manipulate or read execution instant), the overrun time is measured (by using
the VxWorks ready queue, resource queue or task blockingtimestamp) and the global scheduler decrease the budget of
queue (which are necessary to implement the SRP protocolthe server by the amount of overrun in the next execution
in a safe manner, theock/ unl ock must use interrupt  instant. Note that a server can be preempted during the exe-
disable, in very short time, during these operations. Lock- cution in overrun phase which should be taken into account
ing out interrupts is done in tHeock/ unl ock function to while measuring the overrun time.
create mutual exclusion between the synchronization pro-
tocol and the schedulers (which are the only ones who useg Summary
these data structures).

The main difference in the implementations of SIRAP
and HSRP is related to how they avoid budget expiration
inside a critical section. In SIRAP, we postpone the execu-
tion of the critical section to the next server period if ther
is not enough remaining budget to execute and release th
critical section before the budget expiration. Implement-
ing this is done by blocking the task that tried to enter the
critical section and set the subsystem ceiling equal to the
internal ceiling of the resources that the task tried to ac-
cess. Then letting the server continue to execute and queu
all the blocked tasks (which are blocked by the use of SRP
protocol) that have release times during the self-blocking
phase (from the time that the task try to lock a resource and
becomes blocked until the time at which the budget of the
subsystem expires). Hence, only the tasks that have prior-
ity higher than the subsystem ceiling are allowed to execute e Our original paper on the SIRAP synchronization pro-
during the self-blocking phase. tocol allowing for mutually exclusive sharing of log-

In this paper we have presented the Hierarchical
Scheduling Framework (HSF) together with a brief
overview of related approaches. Particular focus have been

ut on techniques to allow for synchronization in HSFs,

nd a number of synchronization protocols have been com-
pared. We have discussed some considerations regarding
using HSFs in dynamic, adaptable and reconfigurable sys-
tems, highlighting various approaches for implementing ad
mission control in distributed systems. Finally, we hawe pr
€ented experiences from our implementation of a HSF in
VxWorks, comparing issues related to the implementation
of several synchronization protocols.

Some pointers to further reading on related topics in-

ude:



ical resources in two-level hierarchically scheduled
real-time systems for single processors [8]. In this pa-
per, we have formally proven key features of the proto-
col, such as bounds on delays for accessing shared log-
ical resources, and we have developed schedulability
analysis for tasks executing in the subsystems; allow-
ing for hard real-time applications to use the protocol.

Techniques to handle budget expiration in hierarchi-
cal scheduling [9]. One problem that becomes ap-
parent when allowing for synchronization in hierar-
chical scheduling is how potential overruns shall be
coped with. We have analyzed three methods to han-
dle overruns due to mutual exclusive resource sharing
between subsystems. For each one of these three over-
run methods corresponding scheduling algorithms and
associated schedulability analysis have been presented
together with analysis that shows under what circum-
stances one or the other is preferred.

We have developed algorithms for (1) system-
independent synthesis of timing-interfaces for subsys-
tems and (2) system-level selection of interfaces to
minimize CPU load. We show that the use of shared
mutually exclusive logical resources results in a trade-
off problem, where resource locking times can be
traded for CPU allocation, complicating the problem
of finding the optimal interface configuration subject

to scheduability. We have presented a methodology [10]

where such a tradeoff can be effectively explored [33].
We have implemented a hierarchical scheduling frame-
work in a commercial operating system [7], together

with several synchronization protocols for mutual ex- [11]

clusion of shared logical resources.

Currently we are working on issues related to multipro-
cessors and implementation in Linux.

[12]
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