
Mälardalen University Press Licentiate Theses
No. 108

A RESOURCE-AWARE COMPONENT MODEL FOR EMBEDDED
SYSTEMS

Aneta Vulgarakis

2009

School of Innovation, Design and Engineering

Copyright © Aneta Vulgarakis, 2009
ISSN 1651-9256
ISBN 978-91-86135-37-9
Printed by Mälardalen University, Västerås, Sweden

Abstract

Embedded systems are microprocessor-based systems that cover a large range
of computer systems from ultra small computer-based devices to large systems
monitoring and controlling complex processes. The particular constraints that
must be met by embedded systems, such as timeliness, resource-use efficiency,
short time-to-market and low cost, coupled with the increasing complexity of
embedded system software, demand technologies and processes that will tackle
these issues. An attractive approach to manage the software complexity, in-
crease productivity, reduce time to market and decrease development costs,
lies in the adoption of the component based software engineering (CBSE)
paradigm. The specific characteristics of embedded systems lead to impor-
tant design issues that need to be addressed by a component model. Con-
sequently, a component model for development of embedded systems needs
to systematically address extra-functional system properties. The component
model should support predictable system development and as such guarantee
absence or presence of certain properties. Formal methods can be a suitable
solution to guarantee the correctness and reliability of software systems.

Following the CBSE spirit, in this thesis we introduce the ProCom com-
ponent model for development of distributed embedded systems. ProCom is
structured in two layers, in order to support both a high-level view of loosely
coupled subsystems encapsulating complex functionality, and a low-level view
of control loops with restricted functionality. These layers differ from each
other in terms of execution model, communication style, synchronization etc.,
but also in kind of analysis which are suitable. To describe the internal behav-
ior of a component, in a structured way, in this thesis we propose REsource
Model for Embedded Systems (REMES) that describes both functional and
extra-functional behavior of interacting embedded components. We also for-
malize the resource-wise properties of interest and show how to verify whether
the behavioral models satisfy them.

i

ii

To my parents

Acknowledgements

I have always known that I wanted to get a higher degree than Master of Sci-
ence, and I have always been fascinated by research. However, I never thought
that I would ever live in Sweden. Coming from Macedonia, Sweden has al-
ways seemed to me just “too north”. But, then I was offered a Ph.D. candidate
position at Mälardalen University, which I simply could not refuse. That is
how my research journey started. I can not say that the journey has at all times
been “a piece of cake” for me, but I can definitely say that I had great support
from many people that made it a lot easier.

The work presented in this thesis would not have been possible without
the encouragement and guidance of my supervisors. My deepest thanks goes
to my main supervisor Ivica Crnković, for giving me the opportunity to be
a Ph.D. student and believing in me. I am always impressed by your ability
to work so much, and still be so positive and energetic. Second, I want to
thank my assistant supervisor Paul Pettersson. I am amazed by your ability to
make research topics seem less complicated. Last but not least, I want to thank
my second assistant supervisor Cristina Seceleanu. You have not been just my
supervisor, but an invaluable friend that has helped me in so many ways. Thank
you so much for this!

I have authored and co-authored 16 different papers. I would never have
done that without the help of very capable and hard working co-authors. Many
thanks go to Tomáš Bureš, Jan Carlson, Aida Čaušević, Michel Chaudron,
Ivica Crnković, Séverine Sentilles, Jagadish Suryadevara, Cristina Seceleanu
and Paul Pettersson.

I would like to thank PROGRESS-ers Andreas Ermedahl, Hans Hansson,
Björn Lisper, Kristina Lundqvist, Christer Norström, Sasikumar Punnekkat,
Mikael Sjödin, and Gunnar Widforss. Without you PROGRESS would not have
progressed to the point it is today. I would also like to thank Gordana Dodig-
Crnković and Jan Gustafsson for introducing me to the research methodology,

v

vi

Rikard Land and Frank Lüders for the stimulating collaboration in the courses
Distributed Software Development and Software Engineering, and the admin-
istrative staff at the department, in particular Hariet Ekwall, Monica Wasell and
Monika Matevska Stier.

Next, I would like to thank my officemates, Séverine Séntilles and Hongyu
Pei Breivold for the talks we had, but especially for bering with my sometimes
dancing behavior.

Having lunch and drinking coffee with the people from the department has
been an enjoyable activity. Many ideas, mostly outside of the research were
born during these breaks, such as time-machines and meta-printers. I want
to thank Adnan Čaušević, Aida Čaušević, Aleksandar Dimov, Ana Petričić,
Andreas Hjertström, Antonio Cicchetti, Batu Akan, Cristina Seceleanu, Dag
Nyström, Damir Isović, Daniel Sundmark, Farhang Nemati, Hongyu Pei Brei-
vold, Hüseyin Aysan, Iva Krasteva, Jan Carlson, Jagadish Suryadevara, Jo-
han Fredriksson, Johan Kraft, Josip Maras, Juraj Feljan, Kathrin Dannmann,
Lars Asplund, Leo Hatvani, Luka Lednicki, Nikola Petrović, Marcelo Santos,
Mikael Åsberg, Mikael Åkerholm, Moris Behnam, Pasqualina Potena, Radu
Dobrin, Séverine Séntilles, Stefan (Bob) Bygde, Thomas Nolte, Tiberiu Se-
celeanu and Yue Lu. Most of you have been more friends than colleges to
me. Not surprisingly, I would especially like to thank Juraj for being there and
making my days brighter!

Many thanks also to my Bulgarian friend Velemira Slaveykova, and my
Macedonian friends Bojana Bislimovska and Marija Taškova.

To my sister Sofija, her husband Boris and my nephew Filip - you have
given me positive energy when I needed it the most.

Finally, Mirjana and Janko, my parents. Thank you for always being with
me, and guiding me through life. Your love and support means the world to
me!

The journey continues...

Aneta Vulgarakis
Västerås, September, 2009

This work has been supported by the Swedish Foundation for Strategic Re-
search (SSF), via the research centre PROGRESS.

List of Publications

Publications Included in the Licentiate Thesis
Paper A: Ivica Crnković, Séverine Sentilles, Aneta Vulgarakis, and Michel

Chaudron. A Classification Framework for Component Models. Ac-
cepted to IEEE Transactions on Software Engineering (in the process of
revision).

Paper B: Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson,
and Ivica Crnković. A Component Model for Control-Intensive Dis-
tributed Embedded Systems. In Proceedings of the 11th International
Symposium on Component Based Software Engineering (CBSE), Karl-
sruhe, Germany, October 2008.

Paper C: Aneta Vulgarakis and Cristina Seceleanu. Embedded Systems Re-
sources: Views on Modeling and Analysis. In Proceedings of the 1st
IEEE International Workshop On Component-Based Design Of Resource-
Constrained Systems (CORCS 2008), IEEE CS, Turku, Finland, July,
2008.

Paper D: Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. REMES:
A Resource Model for Embedded Systems. In Proceedings of the 14th
IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS 2009), IEEE CS, Potsdam, Germany, June, 2009.

Paper E: Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson, Cristina Se-
celeanu, and Paul Pettersson. Formal Semantics of the ProCom Real-
Time Component Model. In Proceedings of the 35th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA),
Patras, Greece, August, 2009.

vii

viii

Other publications, not included in the thesis

Conferences and workshops:
• Aneta Vulgarakis and Aida Čaušević. Applying REMES behavioral mod-
eling to PLC systems. In Proceedings of the 22nd International Sym-
posium on Information, Communication and Automation Technologies
(ICAT 2009), Sarajevo, Bosnia Herzegovina, October 2009.

• Aida Čaušević and Aneta Vulgarakis. Towards a Unified Behavioral
Model for Component-Based and Service-Oriented Systems. In Proceed-
ings of the 2nd IEEE International Workshop On Component-Based De-
sign Of Resource-Constrained Systems (CORCS 2009), IEEE CS, Seat-
tle, Washington, July, 2009.

• Aneta Vulgarakis. Towards a Resource-Aware Component Model for
Embedded Systems. In Proceedings of the Doctoral Symposium of 33rd
Annual IEEE International Computer Software and Applications Con-
ference (COMPSAC 2009), IEEE CS, Seattle, Washington, July, 2009.

• Tomáš Bureš, Jan Carlson, Séverine Sentilles, and Aneta Vulgarakis.
A Component Model Family for Vehicular Embedded Systems. In Pro-
ceedings of the 3rd International Conference on Software Engineering
Advances (ICSEA), Sliema, Malta, October 2008.

• Ivica Crnković, Michel Chaudron, Séverine Sentilles, and Aneta Vul-
garakis. A Classification Framework for Component Models. In Pro-
ceedings of the 7th Conference on Software Engineering and Practice in
Sweden, Göteborg, Sweden, October 2007.

• Séverine Sentilles, Aneta Vulgarakis, and Ivica Crnković. A Model-
Based Framework for Designing Embedded Real-Time Systems. In Pro-
ceedings of the Work-In-Progress (WIP) track of the 19th Euromicro
Conference on Real-Time Systems (ECRTS), Pisa, Italy, July 2007.

MRTC reports:
• Jagadish Suryadevara, Aneta Vulgarakis, Jan Carlson, Cristina Sece-

leanu, and Paul Pettersson, ProCom: Formal Semantics, MRTC report
ISSN 1404-3041 ISRN MDH-MRTC-234/2009-1-SE,M Mälardalen Real-
Time Research Centre, Mälardalen University, March, 2009

ix

• Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. REMES:
A Resource Model for Embedded Systems. MRTC report ISSN 1404-
3041 ISRN MDH-MRTC-232/2008-1-SE, Mälardalen Real-Time Re-
search Centre, Mälardalen University, October, 2008

• Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and Aneta
Vulgarakis. ProCom – the Progress Component Model Reference Man-
ual, version 1.0. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-
230/2008-1-SE, Mälardalen Real-Time Research Centre, Mälardalen Uni-
versity, June 2008.

• Tomáš Bureš, Jan Carlson, Séverine Sentilles, and Aneta Vulgarakis.
Towards Component Modelling of Embedded Systems in the Vehicular
Domain. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-226/2008-
1-SE, Mälardalen Real-Time Research Centre, Mälardalen University,
April 2008.

• Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and Aneta
Vulgarakis. Progress Component Model Reference Manual - version
0.5. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-225/2008-1-
SE, Mälardalen Real-Time Research Centre, Mälardalen University, April
2008.

Contents

I Thesis 1

1 Introduction 3
1.1 Preliminaries . 5

1.1.1 Component Based Software Engineering 5
1.1.2 Formal Analysis . 7

1.2 Thesis Overview . 11

2 Research Problems 15
2.1 Problem Description . 15
2.2 Research Questions . 16

3 Research Results 19
3.1 Classification of Component Models 19
3.2 The REMES Behavioral Model 21
3.3 The ProCom Component Model 22
3.4 Questions Revisited . 25

4 Research Method 27

5 Related Work 29
5.1 Component Models for Embedded Systems 29
5.2 Resource Modeling and Analysis 33

6 Conclusions and Future Work 37
6.1 Contributions . 37
6.2 Future Research Directions 38

Bibliography 41

xi

xii Contents

II Included Papers 47

7 Paper A:
A Classification Framework for Component Models 49
7.1 Introduction . 51
7.2 The classification framework 53

7.2.1 Lifecycle . 54
7.2.2 The constructs . 57
7.2.3 Extra-Functional Properties 61
7.2.4 Domains . 66
7.2.5 The classification overview 66

7.3 Survey of component models 68
7.3.1 “Almost” component models 68
7.3.2 Component models 69

7.4 The comparison framework 70
7.4.1 Life-cycle classification 70
7.4.2 Constructs classification 71
7.4.3 Extra-functional properties classification 75
7.4.4 Domains classification 77

7.5 Related work . 78
7.6 Conclusion . 79
7.7 Survey of component models 80
Bibliography . 88

8 Paper B:
A Component Model for Control-Intensive Distributed Embedded
Systems 95
8.1 Introduction . 97
8.2 The ProCom two layer component model 98

8.2.1 ProSys — the upper layer 98
8.2.2 ProSave — the lower layer 99
8.2.3 Integration of layers — combining ProSave and ProSys 102

8.3 Example . 103
8.4 Conclusions . 104
Bibliography . 106

9 Paper C:
Embedded Systems Resources: Views on Modeling and Analysis 109
9.1 Introduction . 111

Contents xiii

9.2 Motivating Example . 112
9.3 Modeling and Analyzing ES Resources: Representative Cur-

rent Approaches . 114
9.3.1 Koala and Robocop: Code-level Analysis 114
9.3.2 UML-based Analysis 116
9.3.3 Formal Reasoning on Embedded Resources 119

9.4 Our Vision of Resource-aware ES Design 122
Bibliography . 126

10 Paper D:
REMES: A Resource Model for Embedded Systems 131
10.1 Introduction . 133
10.2 Preliminaries . 134

10.2.1 Priced Timed Automata 134
10.2.2 Multi Priced Timed Automata 135

10.3 REMES: The Proposed Resource Model 136
10.3.1 Classes of resources 136
10.3.2 Introducing REMES 137
10.3.3 Composition of REMES models 141

10.4 Analyzing REMES-based Systems 141
10.4.1 Analysis model for REMES 141
10.4.2 Feasibility Analysis 142
10.4.3 Optimal and Worst-Case Resource Consumption . . . 143
10.4.4 Trade-off Analysis 144

10.5 Example: A Temperature Control System 145
10.5.1 A REMES Model of TCS 145
10.5.2 A PTA model of TCS 148
10.5.3 Formal Analysis of the PTA model 149

10.6 Discussion and Related Work 150
10.7 Conclusions and Future Work 152
Bibliography . 154

11 Paper E:
Formal Semantics of the ProCom Real-Time Component Model 159
11.1 Introduction . 161
11.2 The Component Model . 162

11.2.1 ProCom . 162
11.2.2 Particularities of ProCom 164

11.3 Formal Semantics of Selected ProCom Architectural Elements 166

xiv Contents

11.3.1 Formalism and Graphical Notation 167
11.3.2 Formal Semantics of the FSM Language 168
11.3.3 Overview of ProCom Formalization 169
11.3.4 Services . 170
11.3.5 Data and Trigger Connections 171
11.3.6 Component Hierarchy 172
11.3.7 Linking Passive and Active Components 173

11.4 Discussion and Related Work 174
11.5 Conclusions . 176
Bibliography . 178

I

Thesis

1

Chapter 1

Introduction

An embedded system is a microprocessor-based system that is built (embed-
ded) in a larger system that may or may not be a computer system. Embedded
systems can be found in an enormous range of electrical items such as cell-
phones and PDAs, instruments such as GPS automotive navigation systems,
and also large engineering systems such as traffic control systems, or control
systems of nuclear power plants. Virtually any electronic device designed and
manufactured nowadays is an embedded system, and virtually all people are
touched by this technology.

Embedded systems have tightly constrained heterogenous requirements [1,
2]. They must often have low cost, constantly react to changes in the system’s
environment, must compute certain results in real time without delay and sat-
isfy reaction constraints, such as deadlines and throughput, must be sized to
fit on a single chip and consume minimum resources, and similar. Like all
computing systems, embedded systems consist of hardware and software in-
tegrations, in which the software reacts to the environment. Nevertheless, in
difference to other computing systems, most of the requirements of embed-
ded systems are related to extra-functional properties (such as reliability and
safety), and to limited resources. As such, design space exploration and verifi-
cation at an early design stage are desirable.

During recent decades, the vast majority of functionality of embedded sys-
tems is realized with software. For example, up to 40 percent of the devel-
opment time for an upper-class car is spent in car-IT (such as driver assis-
tance) [3]. Nowadays, a car may hold up to 80 control-units that are cross-
linked. The existing theories and methods for software development, when

3

4 Chapter 1. Introduction

applied to software design of embedded systems, reveal the two major chal-
lenges of embedded system design. The first challenge is to provide an arti-
fact (an embedded computer system) that provides the specified services un-
der given constraints. The second challenge is that relevant properties of this
artifact need to be modeled at different levels of abstraction by models of ad-
equate simplicity [4]. Accordingly, there is a need for improved software de-
velopment techniques and processes that will let developers to tame software’s
growing complexity, while reducing time to market and development costs. A
promising approach to handle the complexity, reduce time to market, intro-
duce structure and abstractions, lies in the adoption of the component based
software engineering (CBSE) paradigm. The central point of CBSE has been
reuse, but for embedded systems the structure and abstractions introduced by
components are equally important as a basis for construction of abstract formal
models. In that sense, the CBSE paradigm facilitates the use of formal meth-
ods, in modeling and analyzing the used components, to tackle the need for
early stage verification.

The goal of this thesis is to propose solutions for modeling modern real-
time embedded systems, in a component-based fashion, in an attempt to man-
age the associated extra-functional properties including resource constraints.
Following the CBSE spirit, this thesis introduces an analyzable component
model for development of distributed embedded systems, which tries to meet
the designer’s needs for building vehicular embedded systems in particular.
The component model is built in two layers, in order to address in same time
loosely coupled subsystems (big parts) and control tasks (small parts) of a sys-
tem. These parts differ from each other in terms of execution model, com-
munication style, synchronization etc., but also in kind of analysis which are
appropriate.

While a fully and semantically described interface of a component defines
the intent of a component, that is, what the component does, the content of a
component describes how the intent is realized [5]. Such information is hidden
from the end user and becomes important only to those who intend to modify
the component. Hence, in order to provide the designer with means for repre-
senting the internal behavior of a component, in a structured way, in this thesis
we also introduce a model that describes both functional and certain class of
extra-functional (such as timed behavior and resource consumption) behavior
of components. Any modification of a component’s internal description, even
if gives rise to a functionally equivalent model, might alter the component’s
original properties wrt timing and resource usage. To prove that the desired
properties are still exhibited by a modified component model, we formalize the

1.1 Preliminaries 5

resource-wise properties of interest and show how to verify such behavioral
models against them.

The work has been carried out within PROGRESS [6], a Swedish national
centre for development of predictable embedded systems. The main aim with
PROGRESS is to promote the development of embedded systems to a mature
engineering discipline. Thus, PROGRESS should provide theories, methods and
tools, which will increase quality, reduce costs and complexity in the develop-
ment of embedded systems.

The following section provides the background for the basic concepts of
CBSE, and formal analysis, as a foundation for reading the remainder of the
thesis. In the end of this chapter the overview of the thesis is presented.

1.1 Preliminaries

1.1.1 Component Based Software Engineering

The basic rationale for the field of CBSE [7, 8] is the idea of constructing sys-
tems by reusing existing components, in much the same way as standard com-
ponents are used in electronics or mechanics: integrated circuits, switches, etc.
It is a promising approach for efficient software development, facilitating well
defined software architectures and reuse.

With CBSE it is possible to divide large and complex software systems
into smaller, less complex modules. These modules can be decoupled from
each other and thus be implemented in parallel by different developers, in-
dependently of each others work. Therefore, development time is reduced.
Virtually reliability is increased because components which have been tested
thoroughly and worked good for one system may be reused in another system.
The extra time and effort required for selecting, evaluating, adapting, and inte-
grating components is mitigated by avoiding the much larger effort that would
be required to develop such components from scratch. Another advantage is
that software systems which consist of several modules are more flexible and
maintainable than monolithic software systems.

Although CBSE has been widely used for software development of desktop
and distributed enterprise applications, there is still a lack of broadly adopted
component technology standards which are suitable for embedded systems.
Due to the specific characteristics of embedded systems, a component archi-
tecture for embedded systems must have low overhead, be flexible to accom-
modate application unique requirements, and be able to address relevant extra-

6 Chapter 1. Introduction

functional issues (resource restrictions, timeliness, safety and dependability).
In CBSE the smallest functional building unit is a component. The idea

behind components originates from a paper published by M.D. McIlroy [9] at
the NATO conference in Garmisch in 1968 about the idea of mass-produced
software components. However, since McIlroy’s paper, component definitions
and notions advanced in various, and in same time contradictory directions. Up
until today there is no generally accepted definition of what a component is. A
definition that is commonly cited in publications is the one from Szyperski [8],
which focuses on the key characteristics of components:

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
composition by third parties.

This definition implies that in order a component to be deployed indepen-
dently, a clear distinction between the environment and other components is
required. A component must have clearly specified interfaces and the com-
ponent’s implementation must be encapsulated in the component and not be
directly reachable from the environment. The definition inclines that compo-
nents should be delivered in binary form, and that deployment and composition
should be performed at run-time. Regardless of its generality, it was shown
that Szyperski’s definition does not fully cover a wide range of component-
based technologies (e.g., those which do not support contractually specified
interface or independent deployment). Further, embedded systems require op-
timal utilization of hardware (which in many cases has limited resources), and
a predicable behavior, rather than flexibility at run time. A static compilation
of components into an image is proven to be more efficient and more accurate
than dynamic uploading of components. For this reason in embedded systems
components are usually expressed as models or source code.

A component based system is a composition of components, where a com-
ponent is an open system that communicates with the environment through its
interfaces. The behavior of an embedded system should be predictable, both
functionally and with respect to timeliness and resource usage. Ideally, the
behavior of a component should be the same regardless of the environment in
which it is deployed, i.e., the other components in the system, but this is not
straightforward to achieve for properties such as timing, resource usage or re-
liability. Although the behavior modeling and analysis of an embedded system
is very important it is often omitted in component models targeting embed-

1.1 Preliminaries 7

ded system design. Thus, there is a need to include behavioral modeling in
embedded systems.

Component models are used in the development of components to define
standards for their interfaces, illustrate their dependencies, specify their prop-
erties and composition mechanisms [7]. In other words, the component model
embraces a set of rules regulating how the components may or may not be used.

Nowadays a number of component models for embedded systems exist [10–
15], however they seldom provide support for relevant extra-functional proper-
ties.

1.1.2 Formal Analysis
Component technologies for embedded systems should support system devel-
opment with high degree of predictability. Predictability concerns the possibil-
ity to guarantee absence or presence of certain properties, or to predict/guaranty
a value of a property. The employed predictability analysis should guide the
design and selection of hardware and software system components.

Formal analysis is a process of rigorously exploring the correctness of sys-
tem designs expressed as abstract mathematical models, most likely with the
assistance of a computer. In this thesis, we consider two types of answers
to formal analysis: “yes/no” answers as a result of verifying properties that
can be either satisfied or not, but cannot be measured, and answers in form of
numbers, in the sense that the formal analysis returns a computed number that
might represent, in our case, the minimum/maximum value of the accumulated
resource usage for reaching a given goal expressed as a reachability property
for instance.

Today the best known formal analysis methods are model-checking and
theorem-proving, both of which have sophisticated tool support and have been
applied to non-trivial systems [16, 17]. Theorem-proving emphasizes highest
assurance (theorems can only be created by a logical kernel, which implements
the inference rules of the logic) and handling infinite-state systems, the main
challenge being proof automation. Model-checking emphasizes automation,
by relying on various efficient algorithms for deciding temporal logic formulas
on finite state models, the main challenge being to reduce problems to a form
in which they can be efficiently model checked. The advantage of model-
checking of providing high level input languages that support the modeling and
checking of complex computer systems, and the highest degree of automation,
justify our choice for model-checking as the verification paradigm.

To perform model-checking, an automata model describing the possible

8 Chapter 1. Introduction

system behaviors is fed into a model-checking tool, together with a desired
property (requirement) expressed in a temporal logic. The tool then automati-
cally traverses the system’s state space in an exhaustive manner. If an invariant
property is satisfied, the tool finishes the verification successfully, or if the in-
variant property is violated, it reports one of the traces that violates the property
as a counter-example to the model. For reachability properties the opposite is
true i.e., a trace is reported when the property is satisfied. Model-checking has
achieved huge success in industry for verifying hardware designs. Companies,
such as IBM, Intel, Motorola, Siemens are having in-house model-checking
groups. Despite these successes, formal analysis has not been widely used in
the development of embedded systems. One possible reason is the lack of ex-
pertise of design engineers for constructing and understanding abstract models
in an interactive environment formal specifications.

Due to the real-time requirements of embedded systems and the need to
verify the models against them, the designer should be equipped with methods
and tools that support modeling of real-valued variables, and the combination
of discrete and continuous behaviors. The framework of timed automata is an
established formal framework to support such needs, and the UPPAAL [18]
tool is one of the most popular and mature verification tools based on timed
automata, and it is also used in this thesis. In the following, we recall the model
of timed automata and the model of priced (or weighted) timed automata [19,
20], an extension of timed automata [21] with prices/costs on both locations
and edges.

Timed Automata

The model of timed automaton (TA) [21] is a timed extension of the finite-
state automaton. A notion of time is introduced by a set of non-negative real
numbers, called clock variables, which are used in clock constraints to model
time-dependent behavior. TA consists of a finite set of locations, connected by
edges. One of the locations is marked as initial. All clocks in TA start at zero,
evolve continuously at the same rate, and can be tested and reset to zero. Edges
are labeled with guard expressions, an action, and a reset set i.e., set of clocks
to be reset. We say that an edge is enabled if the guard evaluates to true and the
source location is active. Locations are labeled with clock constraints called
invariants, which enforce that the location is left before they are violated. The
semantics of TA is defined in terms of a timed transition system. A state of
TA depends on its current location and on the current values of its clocks. The
transitions between states can be of two kinds: delay and discrete. Delay tran-

1.1 Preliminaries 9

sitions are result of passage of time while staying at some location. Discrete
transitions are result of following an enabled edge in a TA to its destination
location with the clocks in the reset set, set to zero. Systems comprising mul-
tiple concurrent processes are modeled by networks of timed automata, which
execute with interleaving semantics and synchronize on channels.

UPPAAL is a tool set for modeling, simulation, and verification of networks
of timed automata. The UPPAAL model checker supports verification of tem-
poral properties, including safety and liveness properties. The simulator can be
used to visualize counter examples produced by the model checker. UPPAAL
automata extend timed automata by introducing bounded integer variables, bi-
nary and broadcast channels, and urgent and committed location.

II
Idle

press!

Off
Dim Bright

press?

press?

press?

t:=0

t<5

t<=10

(a) Lamp (b) User

Figure 1.1: Timed automaton of a lamp and a user.

An example of a network of timed automata modeled in UPPAAL is shown
in Figure 1.1. The timed automata consist of an automaton of a lamp and
an automaton of a user. The behavior of the lamp depends on when the user
presses the on/off switch. The automaton of the lamp consists of three locations
Off, Dim and Bright, and one clock t. The automaton starts at location Off. In
case the user presses the switch the automaton of the lamp switches to location
Dim and the clock t is reset, by the assignment t:=0. In location Dim the
automaton can remain as long as the clock is smaller or equal to 10. However,
if the user presses the switch of the lamp before 5 time units have elapsed
then the automaton of the lamp switches to location Bright, in which it stays
until the next pressing of the switch. Processes lamp and user synchronize by
sending and receiving events through channels. Sending and receiving via a
channel press is denoted by press! and press?, respectively.

10 Chapter 1. Introduction

Priced Timed Automata

Priced timed automata extend timed automata with prices/costs on both lo-
cations and edges. The cost labeling a location represents the price per time
unit for staying in that location, whereas the cost labeling an edge represents
the price for taking the transition. As such, every run in the priced timed au-
tomation has a global cost, which is the accumulated price along the run of
every delay and discrete transition. Multi priced automata [22] are extension
to priced timed automata in which a timed automation is augmented with more
than one cost variable. In this thesis, the framework of priced timed automata
is used for formally analyzing resource consumption in embedded systems.

Off
Dim Bright

press?

press?

press?

t:=0,

cost+=50

t<5

t<=10&&cost'==10 cost'==20

Figure 1.2: Priced timed automaton of a lamp.

Switching on a lamp and letting it burn uses energy, therefore in Figure 1.2
is depicted a priced timed automaton of the lamp elaborated earlier. The en-
ergy consumption is modeled by using costs. A special variable cost can be
increased explicitly on an edge by an update, or implicitly by specifying a rate.
Guards and invariants are, however, not allowed to refer to the cost variable.
The switch of the lamp from location Off to Dim is labeled with an update
cost+=50, indicating that the cost is 50 for switching on the lamp. In locations
Dim and Bright we have the cost rates cost’== 10 and cost’== 20, respec-
tively, which indicate that the energy consumption is 10 and 20 units per time
unit in the respective locations. When staying in these locations, cost is in-
creasing linearly with time, with rate 10 and 20, respectively.

1.2 Thesis Overview 11

1.2 Thesis Overview
The thesis is divided into two distinct parts. The first part is a summary of
the performed research. Chapter 1 describes the background and motivation of
the research. Chapter 2 formulates the main research goal and introduces the
research questions. Chapter 3 describes the research results and recapitulates
the research questions. Chapter 4 presents the research method used. Chapter 5
surveys related work. Finally, Chapter 6 concludes the thesis, summarizes the
contributions and outlines future work that formulates guidelines for further
PhD studies.

The second part of the thesis presents a collection of peer-reviewed journal,
conference and, workshop papers that contain details of the answers of the
research questions, methods and, results presented in the first part of the thesis.
The following five papers are included in the second part of the thesis:

Paper A. ”A Classification Framework for Component Models”. Ivica
Crnković, Séverine Sentilles, Aneta Vulgarakis, Michel Chaudron. Accepted
to IEEE Transactions on Software Engineering (in the process of revision).

Summary: This paper presents a survey of a number of component models,
described and classified with respect to a four dimensional classification frame-
work, which groups different aspects of the development process of component
models. As such, this classification framework identifies common character-
istics as well as differences between selected component models. The results
of the comparison have led to some observations which are discussed in this
paper.

Contribution: This paper was mostly written with equal contribution of the
first three authors. All the coauthors have contributed with ideas, discussions,
and reviews. I was responsible mainly for the lifecycle section and shared the
responsibility with Séverine Sentilles for collecting, analyzing and classifying
in tables the included component models. The classification framework was
developed in several iteration steps including observations and analysis. It was
discussed with several CBSE and empirical software engineering researchers
and experts from different engineering domains.

Paper B. ”A Component Model for Control-Intensive Distributed Embed-
ded Systems”. Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carl-
son, Ivica Crnković. In Proceedings of the 11th International Symposium on

12 Chapter 1. Introduction

Component-Based Software Engineering (CBSE2008), Karlsruhe, Germany,
October, 2008.

Summary: In this paper, the two-layered ProCom component model for
design and development of control-intensive distributed embedded systems is
introduced. ProCom takes into account the most important characteristics of
these systems and employs the concept of reusable components throughout the
whole development process, from early design to deployment. The two-layered
model is developed to efficiently cope with different design paradigms that
exist at different abstraction levels of embedded systems (high level view of
loosely coupled subsystems and a low-level view of control loops controlling a
particular piece of hardware). Additionally it provides ground for analysis and
predicting properties (e.g., timed behavior and resource consumptions) in such
systems.

Contribution: This paper was written with equal contribution from all the
authors. I took part in the discussions and contributed with writing and im-
proving parts of the paper, particulary in the discussions about the semantics of
the component model, analysis and predicting properties and the related work
section. The ProCom component model that we describe in this paper was
developed in several iteration steps resulting from the conducted discussions
between the authors.

Paper C. ”Embedded Systems Resources: Views on Modeling and Analy-
sis”. Aneta Vulgarakis, Cristina Seceleanu. In Proceedings of COMPSAC, the
1st IEEE International Workshop On Component-Based Design Of Resource-
Constrained Systems Software and Applications Conference (CORCS), Turku,
Finland, July, 2008.

Summary: In this paper, we discuss several representative frameworks that
model and estimate resource usage of embedded systems, identifying their ad-
vantages and limitations. As such, we divide the variety of approaches existing
in the literature into three distinctive categories: code-level resource modeling
and analysis of component assemblies, UML-based description of embedded
resources and higher-level formal approaches based on temporal logics and
process algebras. In the end, we present the resource-aware development view
that we are adopting throughout the rest of the thesis.

Contribution:This paper was written with equal contribution from all the

1.2 Thesis Overview 13

authors. I was specifically working on the code-level and UML- based resource
modeling and analysis.

Paper D. ”REMES: A Resource Model for Embedded Systems”. Cristina
Seceleanu, Aneta Vulgarakis, Paul Pettersson. In Proceedings of the 14th
IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS 2009), IEEE CS, Potsdam, Germany, June, 2009.

Summary: This paper introduces the model REMES for formal modeling
and analysis of both functional and extra-functional behavior of interacting em-
bedded components. REMES is a state-based behavioral language with support
for hierarchical modeling, resource description, continuous time, and notions
of explicit entry and exit points that make it suitable as a semantic basis for
component-based modeling of embedded systems. The analysis of REMES-
based systems is placed around a weighted sum in which the variables capture
the accumulated consumption of resources, respectively.

Contribution: This paper was written with equal contribution from all the
authors. I particularly worked on the classification of the resources and speci-
fied, modeled in REMES, and analyzed in UPPAAL CORA [23] the TCS system
presented as a case study in the paper.

Paper E. ”Formal Semantics of the ProCom Real-Time Component Model”.
Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson, Cristina Seceleanu, and
Paul Pettersson. In Proceedings of the 35th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA), Patras, Greece, Au-
gust, 2009.

Summary: In this paper, we define the formal semantics of the ProCom
component model in a small but powerful finite state-machine based formal-
ism, with notions of urgency, timing, and priorities. As such, the formalism
provides an unambiguous description of the modeling elements of ProCom,
sets the ground for formal analysis using other formalisms, and provides and
intuitive and useful description for both practitioners and researchers.

Contribution: I was the main driver and principal author of this paper and
contributed with defining a formal semantics of the ProCom component model
and exemplifying it on the modeling elements of ProCom. All the coauthors

14 Chapter 1. Introduction

have contributed with valuable discussions and reviews. The paper proceeded
from a technical report that was written together with the second author of this
paper.

Chapter 2

Research Problems

This chapter presents the scope of our work by formulating the research goal,
and introducing the research questions that address the goal.

2.1 Problem Description

Our research is in the area of component based development for embedded
systems, and was driven by the problems coming from the embedded systems
domain, such as managing complexity, distribution, resource limitations, anal-
ysis, managing the strong coupling between the components, the system and
the target platform. In this thesis, we address the problem of modeling modern
real-time embedded systems, in a component-based fashion, in an attempt to
tackle the system complexity and manage the associated resource constraints.
Concretely, the overall goal of the thesis is

design of an analyzable component model for real-time embedded
systems

This goal is broad and admits various answers. We approach the goal by an-
swering to three research questions that address component models for embed-
ded systems and behavioral modeling of embedded systems, which we formu-
late in the next section.

15

16 Chapter 2. Research Problems

2.2 Research Questions

Research question 1.
Component models are indispensable to CBSE, as they define rules for con-

structing individual components and for assembling them into systems. There
are various component models proposed in the literature as suitable for the
development of real-time embedded systems. Some characteristics are shared
among the component models, yet each of the latter has distinct characteristics
too. Therefore, it is important to analyze and compare the existing compo-
nent models in order to identify the most interesting for the development of
embedded systems. Such motivation justifies our first research question:

What are the common characteristics and differences between ex-
isting component models?

(Q1)

Research question 2.
One of the main characteristics of embedded systems is the restriction of

available resources. The diversity of approaches on resource modeling and
analysis existing in the literature [24–31] indicate the difficulty of handling all
relevant embedded resources within the same formal model. This calls for an
innovative look on resource-aware design methods, based on the experience
gathered from the existing modeling approaches. In order to properly specify
and analyze embedded systems, the designer should use a modeling language
that incorporates resources as primitive types, that is, built-in the model. Ide-
ally, the same language should provide support for modeling and analyzing
functional and timing behavior too, besides the resource-wise behavior of the
embedded system. This would allow both separation of concerns as well as
simple model-to-model transformations, for analysis purposes. Accordingly,
the second research question can be formulated:

How can we model and formally analyze functional, timing and
resource-wise behavior in a unified manner?

(Q2)

2.2 Research Questions 17

Research question 3.
The potential benefits of CBSE are as attractive in the domain of embed-

ded systems as they are in other areas of the software industry. Beside compo-
nent models, component technologies form another central concept of CBSE.
They make use of component models in practice, that is, a particular com-
ponent technology provides tools that enable development and deployment of
systems that adhere to a corresponding component model. Although there ex-
ist several component models and technologies for the development of embed-
ded systems (e.g., Koala [10], Robocop [14], BlueArX [15], AUTOSAR [32],
COMDES-II [33], Pecos [12], Rubus [13], and SaveCCM [11]), CBSE is still
not broadly used in the embedded systems industry. An important reason for
such limited success is the difficulty of providing solutions that meet typi-
cal embedded system requirements. Wolf [34] discusses about which domain
specific requirements a component technology targeting embedded system de-
velopment should be aware of. In the embedded systems domain, designing
for predictability requires architectures that meet both the corresponding func-
tional requirements (e.g., expected services, functionality and features), as well
as extra-functional ones (resource-feasibility, timing and/or reliability). Hard-
ware and software models annotated with performance, resource consumption
or size information can be beneficial to embedded system designers. In or-
der to simplify analysis and help the intuition behind the embedded system’s
functioning, one could create a hierarchy of models that will alow them to
reason about timed behavior, resource consumption and so on, without go-
ing down to to the instruction level. For instance, architectural models may
be used for modeling basic functionality, and behavioral models for modeling
functional and extra-functional behavior. Also, embedded system developers
must verify that applications meet their functional and extra-functional speci-
fication. All these requirements should be reflected in the component model.
However, the specifications of many component models are defined informally
and component models suffer from incomplete and imprecisely defined syn-
tax and semantics. Formalization of component models using formal methods
can provide precise definitions. The formalization should be designed to un-
ambiguously describe the elements of the component model. Thus the third
question is as follows:

What is an appropriate component model for real-time embedded
systems and how can we describe its elements in an unambiguous
way?

(Q3)

Chapter 3

Research Results

The current chapter presents the main lines of our contribution and research re-
sults, starting from the research questions proposed in Chapter 2. The research
does not provide complete answers to the questions, but only partially answers
them and gives directions for further research. The following sections describe
each research topic.

3.1 Classification of Component Models
Goal: The large number of existing component models having particularities,
different aims, sometimes unclear concepts, but also many similarities, calls for
a systematic analysis of such models. The goal of this research is to provide
a classification framework that will identify and discuss the basic principles of
component models. Later, according to this classification framework, existing
component models may be classified and compared. This framework could
also help in the design of new component models, since one of its goals is
to identify the elements of a component model that would be important when
designing a (new) component model.

Research process: The research was performed in several iterations of ob-
servations, analysis, classification, and validation. We have started with a large
number of component models, by first studying the state of the art on general
principles of CBSE, and the existing literature on classification of architecture
description languages, quality attributes and component models. From this we

19

20 Chapter 3. Research Results

have gained knowledge and made the first version of the classification frame-
work. Then, we discussed this classification framework with several CBSE and
empirical domain software engineering researchers and experts from different
engineering domains. The discussions have led to a refinement of the frame-
work. In the next iterations the refined framework was mapped on the studied
and new component models and discussed with other researchers and practi-
tioners. The research process has been completed when all studied component
models complied well with the classification framework.

Results: The result of this research is a classification and comparison frame-
work for component models. The classification framework includes four di-
mensions (lifecycle, constructs, extra-functional properties and domains) in
which the basic characteristics and principles of component models are dis-
tinguished: (i) The lifecycle dimension identifies the support provided (explic-
itly or implicitly) by the component model during components’ lifecycle, such
as modeling of components and component based systems, implementation,
packaging and distribution, and deployment of components into an executable
system or some target environment. (ii) The constructs dimension identifies (i)
the component interface used for the interaction with other components and ex-
ternal environment, and (ii) the means of component binding and communica-
tion. (iii) The extra-functional properties demension, identifies specifications
of different property values, and means for management and their composi-
tion. (iv) The domain dimension classifies component models according to
their usage domain: general-purpose, specialized or generative. Details about
the classification framework can be found in the included paper A.

Limitations and future work: The proposed framework can always be ex-
tended since it does not comprise all the elements of all component models.
Some component models have specific solutions related to particular models or
technologies. Furthermore, we have not characterized the components them-
selves (e.g., internal behavior, whether components are active or passive, etc.)
and the list of component models that we have studied can always be extended.
This is subject to future work. However, to our knowledge the proposed frame-
work identifies the minimal criteria for considering a model to be a component
model and it groups the basic characteristics of the models.

3.2 The REMES Behavioral Model 21

3.2 The REMES Behavioral Model
Goal: The competing or inconsistent requirements of real-time embedded
systems, such as minimizing memory consumption while still ensuring all
deadlines are met at run-time, call for rigorous analysis of the system’s re-
source consumption already at early design stages. Our goal is to propose a
model for formal modeling and analysis of embedded resources. The envi-
sioned outcome has been a behavioral model with support for reasoning about
functional, timing and resource-wise behavior in a unified way.

Research process: The research included several iterations. First we have
studied and grouped several representative frameworks that model and esti-
mate resource consumptions of embedded systems. The studied frameworks
indicate the possible difficulty of reasoning about all resource types within the
same theoretical framework. While studying them, we developed our own view
on how to model and, carry out analysis of embedded resources. In developing
our behavioral model we were inspired by the CHARON [35] modeling lan-
guage, used for specifying embedded systems as communicating agents, while
relying on hybrid automata for the semantic translation. Our main contribu-
tion is the introduction of resource as a built-in data type, and the addition
of other constructs (like the conditional connector) that facilitate the applica-
tion of REMES to modeling both functional and extra-functional behavior of
component-based embedded systems.

Results: The result of this research is the behavioral model REMES (RE-
source Model for Embedded Systems) and associated analysis techniques for
performing resource-wise behavioral analysis, such as feasibility analysis,
optimal/worst-case resource consumption, and trade-off analysis. In our stud-
ies we consider resources as quantities of finite size, and we classify them by
their discrete or continuous nature, the way they are consumed and/or allocated
and released, and whether they can be referred to, or not. The classification of
resources is not tied to any particular formal semantic representation. Conse-
quently, REMES can model number of generic resources (e.g., memory, CPU,
energy, bandwidth, etc.). REMES is a dense time state-based hierarchical be-
havioral language with a notion of explicit entry- and exit points, continuous
variables, flows and progress invariants. For formal analysis purposes, REMES
can be semantically translated into timed automata or (multi) priced timed au-
tomata depending on the analysis goals (i.e., timing analysis, resource con-
sumption, etc.). The analysis of REMES is based on a weighted sum in which

22 Chapter 3. Research Results

the variables capture the accumulated consumption of resources, respectively.
Details about the variety of approaches on resource modeling and analysis

existing in the literature and about REMES can be found in the included papers
C and D, respectively.

Limitations and future work: REMES is tailored for embedded systems,
but it is also suitable for modeling behavior of reactive systems. We have
performed analysis in UPPAAL CORA [23], which can currently only handle
priced timed automata models where the weighted sum is monotonically in-
creasing. As future work, we plan to integrate REMES in the
PROGRESS IDE, by first connecting REMES with ProCom, and second, by im-
plementing the kinds of analysis that we are interested in, in UPPAAL CORA.
The scalability and appropriateness of REMES for real-world industrial appli-
cations is unfortunately not exercised in this work. We plan to apply REMES
on a series of complex systems, in order to better identify its weaknesses and
limitations. The proposed cost analysis model for REMES is platform-aware.
Hence, as future work, it could benefit from including abstractions of platform
specific tools, such as the associated compiler, linker etc. We do believe that
in order to derive the costs, one could apply static analysis techniques on al-
ready implemented components. We underline the fact that the values of the
weights are a subjective matter; the way they are chosen depends mostly on the
designer’s experience, application domain and on the analysis goals.

3.3 The ProCom Component Model
Goal: The goal of this research is to propose a component model suitable for
development of real-time embedded systems, in particular vehicular-,
and telecommunication systems. The type of embedded systems found in the
targeted domains typically have specific characteristics when considered at dif-
ferent levels of granularity. The loosely coupled subsystems differ from the
control loops controlling a certain piece of hardware, with respect to execution
model, communication style, synchronization, etc. Also, there are differences
in the kind of information that must be available and the type of analysis that is
appropriate. Our goal has been the design of a component model that supports
both a high-level view of loosely coupled subsystems encapsulating complex
functionality, as well as low-level view of control loops having dedicated, re-
stricted functionality, simpler communication, which control a certain piece of
hardware.

3.3 The ProCom Component Model 23

To enable formal analysis, the component model should be given a formal
semantics. The formalization should not only describe the modeling elements
of the component model in a rigorous way, but also provide support for reason-
ing about functional and extra-functional behavior of the modeling elements.

Research process: The research process included studying existing compo-
nent models (in particular SaveCCM [11]) for the development of embedded
systems and discussions with domain experts from the targeted domains. From
this we have identified the following requirements that a suitable component
model should fulfill:

• manage complexity;

• manage the strong coupling between the system and the targeted plat-
form;

• deal with different types of components with respect to granularity, func-
tionality and semantics;

• utilize resources efficiently;

• provide support for different kinds of analysis (functional behavior, timed
behavior, resource usage, etc.).

Following these requirements, the ProCom component model has been devel-
oped in several iterations.

The formalization of ProCom’s architectural elements included several it-
erative steps as well. We first started with studying the formal semantics of
the SaveCCM [36] component model (ProCom’s predecessor). The formal se-
mantics of SaveCCM is based on timed automata (TA). While carrying out the
formalization work, we have managed to comprise the necessary semantic de-
scriptions in a simpler and more compact form than TA provides: a high-level
FSM-like model that abstracts away some aspects present in the corresponding
TA.

Results: The result from this research is the ProCom component model and
an associated architectural semantics based on an FSM - like representation.
In comparison to other component models targeting embedded systems, Pro-
Com addresses quality attributes, resource consumption and distribution more
systematically. In order to address the different concerns at different levels of
granularity, ProCom is structured in two distinct, but related, layers (ProSys

24 Chapter 3. Research Results

and ProSave). The two layers differ in terms of granularity, architectural style
and communication paradigm. The upper layer, called ProSys, is intended
for modeling the embedded system as a collection of complex active and con-
current subsystems, communicating via asynchronous message passing. The
lower layer, ProSave, serves for modeling the internal design of a subsystem
down to primitive functional components implemented by code. ProSave com-
ponents are passive units, which communicate based on a pipe-and-filter ar-
chitectural style with an explicit separation between data and control flow. In
both layers, information about a component is stored in a repository, including
requirements, textual documentation, formal semantics and REMES behavioral
models.

The FSM language, used for the ProCom formalization, has notions of ur-
gency, implicit timing and priorities. Its formal semantics, hence of the archi-
tectural elements of ProCom, is expressed in terms of TA with priorities [37]
and urgent transitions [38]. The FSM language has graphic simplicity, making
it simpler than the corresponding TA model, as it abstracts from real-valued
variables and synchronization channels. The FSM models of ProCom systems
can be analyzed both in a dense-time underlying framework, as well as in a
discrete-time one, since TA has been recently given a sampled semantics [39].
Hence, tools such as UPPAAL [18] can be employed for early-stage verifica-
tion of ProCom models, whereas discrete-time model-checkers, such as DT-
Spin [40], could be used for later-stage analysis, as sampled time semantics
is closer to the actual software or hardware system with a fixed granularity of
time.

Details about the design and formal semantics of the ProCom component
model can be found in the included papers B and E.

Limitations and future work: The current version of the ProCom compo-
nent model is developed for the vehicular domain and focuses on the design
of a class of distributed embedded systems that primarily perform real-time
controlling tasks. In the future, ProCom may be extended for instance to the
telecommunication domain. Additionally, ProCom has not yet been indus-
trially verified on a real-world example case study but we plan to do this as
future work. Although the FSM formalism sets the grounds for formal analy-
sis, the semantic descriptions focus only on formalizing the correct behavior of
ProCom architectural elements, without consideration for efficiency in formal
analysis of the resulted models. As future work, we plan to integrate REMES
with the formal semantics of ProCom.

3.4 Questions Revisited 25

3.4 Questions Revisited
In this section, we show how the research results and included papers give
answers to the research questions.

Question Q1: What are the common characteristics and differences between
existing component models?
From the research summary, we can see that this question is answered by the
first research topic and by paper A in which a classification framework for
component models is introduced. Among other things, the four-dimensional
framework identifies the common characteristics and differences between ex-
isting component models.

Question Q2: How can we model and formally analyze functional, timing
and resource-wise behavior in a unified manner?
The second research topic and included papers C and D contribute with an-
swers to this question. It is our intention that REMES is used to model both
functional and extra-functional behavior of interacting embedded components,
while relying on the solid verification framework of priced timed automata.

Question Q3: What is an appropriate component model for real-time embed-
ded systems and how can we describe its elements in an unambiguous way?
The second and third research topics give answers to this question. ProCom
is targeting the development of embedded systems and the semantics of the
ProCom architectural elements can be presented with the FSM language in-
troduced in paper E. REMES can be used for internal behavioral modeling
of ProCom-based systems, whereas the underlying PTA framework in which
REMES is translated can be used for formal verification of functional and
extra-functional requirements/properties.

Hence, all three questions have been at least partly answered. Needless to
say, we have provided one possible answer to each question, out of a possibly
large pool of valid answers.

Chapter 4

Research Method

Different research methods are suitable for different settings, and similarly
different validation techniques are suitable for different types of results. The
methodology that has been used in this research is based on the research steps
presented in [41]. The main activities are:

1. Identification of the research problem from real-world software engi-
neering issues.

2. Transferring the problem to a research setting, and defining the research
questions. In this stage the research problem is often refined and nar-
rowed down.

3. Analysis of the current state of the art addressing the research questions.

4. Answering the research questions and presenting the research results.
This stage includes several iteration steps, such as observations, discus-
sions, analysis and improvement of the research results.

5. Checking whether the research results adequately answer the research
questions. This can be performed in several different ways, e.g., by for-
mal proofs, by performing case-studies, by implementation of a proto-
type, by describing experiences etc.

6. Validating the research results in the sense of checking whether they are
feasible for the real-world software engineering problem.

27

28 Chapter 4. Research Method

Following the abovementioned activities to a great extent, we have initially
defined the research problem, as stated in Chapter 2. Second, from the re-
search problem we have identified the research questions and presented them
in Chapter 2. Later we have conducted a thorough investigation of the current
state of the art addressing the research questions. This investigation has re-
sulted in two papers: paper A and paper C. Further in papers B, D and E we
have presented our research results on designing a component model suitable
for development of embedded systems and a behavioral model for modeling
and analyzing functional, timing and resource-wise behavior in a unified man-
ner, which are summarized and discussed in Chapter 3. Since the research
done so far does not yet offer a complete solution to the research problem (a
thorough validation of the results is missing), the research results have been
applied on simple yet relevant “research examples” presented in papers A, B
and D. Accordingly, in paper A the classification framework was demonstrated
on a considerable number of component models. In paper B we have exem-
plified the ProCom component model on an electronic stability control system
of a car, but a deeper analysis of a real case is needed. Further in paper D,
we have performed a small case study demonstrating the principles of our re-
source modeling and analysis approach. The case study has been conducted
on an abstracted version of the internal design of a temperature control system
for a heat producing reactor. Again, a more detailed case study for a complete
evaluation is needed. Consequently, in the aforementioned research method-
ology, we have completed the first 3 activities. The methodology awaits the
validation of the research results, which might entail improving and extending
the research results towards applicability on real-world engineering problems.

Chapter 5

Related Work

This chapter relates the contributions presented in this thesis to relevant re-
search and practice areas, subdivided into two sections. Paper A and Paper C
contain extensive related work and state of the art so here we give only a short
summary.

5.1 Component Models for Embedded Systems

Nowadays many component models exist, either general purpose or dedicated
to specific domain. Still, only few component models target the develop-
ment of embedded systems and most of them are dedicated to specific sub
domains only. In these component models, component implementations are
mostly given in C programming language and components are composed be-
fore compilation. Often the component models are intended for applications of
an algorithmic nature and these applications are commonly modeled as data-
or signal-driven block diagrams. Another name for this is pipe-and-filter archi-
tecture. Most component models targeting embedded systems focus primar-
ily on “small” granularity components. Although they provide techniques for
handling extra-functional properties there is still need for further research to
improve the theories of specifying, modeling and analyzing extra-functional
properties of components and composed systems, and to develop tool support.
In this section we survey some component models that have been developed
specifically for application in the embedded system domain and compare them
with the ProCom component model proposed in this thesis. Special attention

29

30 Chapter 5. Related Work

is dedicated to the capability of these component models to model and analyze
extra-functional properties, in particular resource-related properties.

AUTOSAR(AUTomotive Open System ARchitecture) [32] component mod-
el has resulted from the cooperative research of a number of automotive manu-
factures and suppliers. The goal of AUTOSAR is to define a standardized plat-
form for automotive systems facilitating the exchange of “elements” between
different vehicle platforms and subsystem manufacturers. Although some sim-
ilarities with ProCom exist, such as the transparent communication between
subsystems and components with the use of standardized interfaces, distribu-
tion of the functionalities provided by each subsystem across several nodes,
some essential differences can also be noticed. In AUTOSAR, components are
runtime entities whereas in ProCom they are considered at design time. More-
over, in AUTOSAR subsystems are unaware of the characteristics of the under-
lying platform and not so much emphasis is put on analysis of the developed
elements. The upcoming AUTOSAR 4.0 release should contain a meta-model
extension for specifying timing properties and constraints of software compo-
nents and it is expected that TIMMO [42] project results will strongly influence
future AUTOSAR releases with respect to timing modeling.

BlueArX [15, 43] is a component model developed and used by Bosch for
automotive systems, such as engine control systems or chassis systems. Each
component consists of specification, documentation and implementation and
has an analytic interface which is used to store components’s extra-functional
properties (such as worst-case execution times, code memory, stack memory,
and data memory). Input to the analytic interface is the current context such
as hardware dependencies, tool chains and the setting of constants and/or cal-
ibration parameters in which the component should be applied. Properties are
specified in the service level of each component and the context information
is specified for each property. Semantic context information is also specified
by referring to the modes (such as initialization mode, cyclic executive mode
or shut-down mode). Bosch uses static analysis tool aiT [44] to analyze ob-
ject code and to extract the worst-case execution time of a component, and
SymTA/S [45] tool as a reasoning framework that aids analysis and prediction
of timing properties. The BlueArX concepts are close to to the ProSave layer
of the ProCom component model, however ProCom uses a management frame-
work to associate extra-functional properties to components and others entities
of the component model (component services, message ports, communication
channels and component instances).

COMDES-II (COMponent-based design of software for Distributed Em-
bedded Systems) [33] is a two-layered component model similar to ProCom,

5.1 Component Models for Embedded Systems 31

developed at University of Southern Denmark. At the system (first) layer, a
distributed system is modeled as a network of communicating actors, and at
the second level the functionality of individual actors is further specified by
interconnected function blocks. COMDES-II supports modeling architectural
and behavioral aspects of systems with a goal to analyze and verify system be-
havior at high abstraction level and to enable automatic code generation. In dif-
ference to ProCom, the timing behavior in COMDES-II is separated from the
functional behavior. The timing behavior is verified by schedulability analysis,
whereas functional properties are formally verified. Ke et al. [46] show how
a COMDES-II system can be equivalently transformed into UPPAAL timed
automata, and verified with preservation of system operational semantics.

IEC 61499 [47] is developed by the International Electrotechnical Commis-
sion (IEC) to support the development of automation and control systems. It
has evolved from IEC 61131-3 [48] standard that is widely used in the develop-
ment of software for PLCs. IEC 61499 components are called function blocks.
Similar to ProSave, the data between the blocks is transferred using pipe-and-
filter paradigm and the execution of the function blocks is event driven. In
comparison to ProCom, there is no support for specifying or reasoning about
extra-functional properties.

Koala component model [10] is designed and used by Philips for the devel-
opment of software in consumer electronics (such as TVs, VCRs, and DVDs).
Components are connected via provided and required interfaces that depict a
small set of semantically related functions. The Koala component model is
hierarchical, so, compound components may be defined. Since Koala com-
ponents are delivered as source code, it is possible to statically analyze com-
ponents and systems built by composing them. To some extent, Koala allows
calculating and predicting resource consumption (e.g., static memory), but it
lacks support for managing other extra-functional properties. Compared to
ProCom, Koala is geared towards less safety-critical applications.

PECOS [12] is a component model developed conjointly by ABB Corpo-
rate Research and academia for development of small reactive embedded sys-
tems in automation applications (such as industrial field devices). The PECOS
component model supports hierarchical component composition. Similarly to
ProSave level, components interact via data ports, and the communication be-
tween them is based on the pipe-and-filter paradigm. A PECOS component
can be active, passive or an event. Active and event components have their
own thread of execution, and passive components cannot control their execu-
tion and are used as part of the behavior of another component being executed
synchronously. Besides data ports, PECOS components have also interfaces to

32 Chapter 5. Related Work

express extra-functional properties and constraints. In PECOS, as in ProCom,
a strong importance is given to extra-functional properties, and there is pos-
sibility to specify component’s meta-data such as worst-case execution times
and memory usage, but the techniques differ. The behavior of the components
can be modeled with Petri nets.

Pin [49] component model is developed at Carnegie-Mellon University. Its
purpose is to be used as a basis for PECTs (Prediction-Enabled Component
Technologies), which are concerned with providing predictability principles
for the run-time behavior of assemblies of software components, such as per-
formance, safety and security. In order to attain predictability of a given prop-
erty PECT offers a reasoning framework that includes a component technol-
ogy powered by analytical interface and analysis theory. Analytical interfaces
are used for specification of the properties, which are n-tuples consisting of
a name, value and additional property-specific information (e.g., confidence
interval of the property value). Analysis theories are used to predict proper-
ties of component compositions. At this time PECT supports three reasoning
frameworks: λABA - for predicting average latency in assemblies with peri-
odic tasks, λss - for predicting average latency in stochastic tasks managed by
a sporadic server and ComFoRT - for formal verification of temporal safety
and liveness. Contrary to ProCom, Pin is not distributed, does not support hi-
erarchical component nesting and does not have support for high-level design.

Robocop [14] component model is a successor of the Koala component
model, and is developed out the collaboration between Philips and Eindhoven
Technical University. Similar to ProCom, a component is considered as “a
whole”, i.e., a collection of models gathering all the information needed and/or
specified at different points of time of the development process (e.g., documen-
tation, source code, functional model, resource model, simulation model and
execution model). Models may be used as well for depicting extra-functional
properties of Robocop components. These extra-functional models can include
timeliness, resource consumption, reliability, safety and security. The resource
model is based on resource predictions, which can not provide 100% guar-
antees if compared to formal methods. Therefore, it is not suitable for safety-
critical systems. The functionality offered by a component is logically modeled
as a set of “services”. Similar to Koala, Robocop is dealing only with static re-
source consumption, since it is assumed that consumption of resources stays
constant per operation of a service.

Rubus [13] is a component model developed in collaboration between Arcti-
cus Systems AB and Mälardalen University, and is intended for development
of distributed, resource-constrained, embedded control systems, with a mix of

5.2 Resource Modeling and Analysis 33

hard-, soft- and non real-time system requirements. Rubus components are
called software circuits and each of these circuits is defined by its behavior,
internal state, and interface. An interface is a set of input- and output ports.
ProCom has been influenced by Rubus time- and event-triggering features and
the ability to perform real-time analysis. In Rubus it is possible to specify
timing properties and there is is a tool for schedulability analysis. Similar to
ProSave, Rubus has data- and trigger ports, which capture data- and control
flow, respectively. However, Rubus does not provide support for distributed
implementation nor high-level design.

SaveCCM [36] is a component model for embedded control applications
of vehicular systems developed at Mälardalen University. ProCom has inher-
ited some concepts from SaveCCM, in particular in the ProSave layer, such
as the emphasis on reusability, a strong degree of analyzability of component
behavior wrt to timing behavior and safety due to the strong restrictions in the
proposed syntax and semantics, and the decoupling of data- and control-flows.
Component behavior modeling is done using timed automata extended with
tasks. Nevertheless, ProCom has a clearer concept of composite components,
and addresses distribution and extra-functional properties more systematically.

5.2 Resource Modeling and Analysis
Although, one may think of numerous extra-functional properties crucial for
embedded systems, in practice, they often reduce to timing, memory, perfor-
mance or throughput, and dependability/reliability-related aspects. These as-
pects may be addressed differently depending on the context or the applica-
tion domain (e.g., timing aspects have to be more precise for safety-critical
systems than for home-appliances). Thus, depending on the context, extra-
functional properties can be modeled or built-in at different levels of formality,
such as: informal level, which describes extra-functional aspects in natural
language; semi-formal, which uses notations such as the UML or even more
formal, which describes extra-functional aspects by using much more formal
notations such as temporal logics or process algebras. Using to a great ex-
tent the research detailed in paper C, this section summarizes the related work
on modeling and analyzing resources in component-based real-time embedded
systems and compares them with the REMES behavioral model proposed in
this thesis. The related work may be grouped into three categories.

First, research has been devoted to predicting code-level resource consump-
tion of component assemblies. In Koala [27] component model, compositional

34 Chapter 5. Related Work

ways of estimating static memory consumption have been performed for ap-
plications in which the instantiated components of a composition are known
prior to run-time. The resource information is exposed through a spacial type
of component’s interface, called IResource. The interface contains information
about different types of memory and a formula for estimating the memory size
of each type of memory is added to the IResource implementation. The tech-
nique supports budgeting i.e., the expected values of the resource consumption
of non implemented components can be also accounted for. In Robocop [28]
component model is presented a scenario-based prediction of run-time resource
consumption. Robocop resource model specifies the predicted resource con-
sumption for all operations implemented by the services of an executable com-
ponent. The resource consumption is given as a number of cost functions. The
resources that are claimed and released are specified per operation. Similar to
Koala, this method is also dealing with static resource consumption, since it is
considered that the consumption of resources is constant per operation. Both of
the aforementioned approaches deal with low-level code-driven resource esti-
mates, which can only be used in cases when one has access to the components
implementations. However, more abstract descriptions of expected resource
usage may be needed for not-yet implemented components, or for guiding the
selection of components from the repository. In such cases, the designer could
first employ REMES for early resource usage analysis, and then apply the ap-
proaches mentioned above.

The second category is represented by the attempts of software modeling
languages and profiles (e.g.,UML [50], UML/SPT [29] and MARTE [51]) to
tackle the modeling and analysis of embedded resources. Amar et al. [30]
model resources in UML-based simulative environment. They extend the UML
notation with new stereotypes for resources types. In one capsule diagram are
gathered the software architecture and the resources that the software compo-
nents require. As such, the capsule diagram is spilt in two parts: the software
side and the resource side. The resource side is composed by a Main Dis-
patcher, which is in charge of receiving resource requests from the software
side and a set of resource types. Internally every resource type capsule con-
tains an Internal Dispatcher and a set of actual resource instances. The UML
profile for Schedulability, Performance and Time (UML/SPT) [29] is a frame-
work for modeling concurrency, resources and timing concepts, which even-
tually produces models for schedulability and performance analysis. The core
of the profile represents the General Resource Modeling framework, which
describes resource types (hardware or software) and their management. The
UML/SPT profile provides set of stereotypes and tag values that can be used

5.2 Resource Modeling and Analysis 35

for annotation of the model elements and for performing analysis. The new
profile, MARTE (Modeling and Analysis of Real-Time and Embedded sys-
tems) [51], which emerged from the UML/SPT profile is dedicated to comple-
ment UML with the required extensions for supporting modeling and analysis
of embedded real-time systems. The new profile should address specification
of not only real-time constraints but also other embedded extra-functional char-
acteristics such as memory and power consumption and modeling and analysis
of component-based architectures. It provides a basic framework for platform-
based modeling, the General Resource Modeling (GRM). It is based on a clear
design pattern considering platforms as a set of resources containing possible
sub resources in hierarchical manner and offering at least one service. GRM
is refined in Software Resource Model and Hardware Resource Model ded-
icated to describe software and hardware computing platforms, respectively.
Although graphical and intuitive, these UML-based approaches are not pre-
cise and rigorous, and lack formally founded semantics. They can not entirely
guarantee the feasibility of the architecture, but rather give partial answer. In
contrast, REMES provides both a graphical behavioral notation, as well as a
rigorous underlying framework for formal analysis.

The third category is mainly represented by the higher-level formal ap-
proaches [25, 26], proposed by Lee et al. They propose a family of process-
algebraic formalisms, developed to unify formal modeling and analysis of em-
bedded systems resources. Their formalisms can theoretically account for var-
ious resource types and a resource is considered as a generic, first-class mod-
eling entity. A resource may be characterized by a set of attributes, such as
timing parameters, probability of failure, priority, power consumption, etc.,
which capture the resource’s behavior. The authors take into account sets of
resource classes important for embedded real-time systems: serially reusable
shared resources, used to model processor units, communication resources,
used to model synchronous and asynchronous communication channels, and
multi-capacity resources that naturally correspond to memory modules. The
framework is theoretically rich, however it is not intuitive and the tool support
is not equally mature. Ouimet et al. [31] use timed abstract state machines
as a unified formalism to specify functional and extra-functional properties of
embedded systems. The resources are described as simple annotations, in the
form of real-valued variable assignments. Consequently, the framework can
not support trade-off analysis of possibly conflicting resource requirements,
which is supported by REMES.

Chapter 6

Conclusions and Future
Work

In this thesis we have addressed the design, behavioral modeling and analysis
of resource-aware component model for development of distributed embedded
systems, vehicular embedded systems in particular. We have exemplified the
applicability of the results presented on two small case studies. However, full
validation of the research results in more realistic case studies is subject to
future work.

6.1 Contributions
The main contributions of the presented research are summarized as follows:

A four dimensional classification framework. In this thesis we present a
classification and comparison framework for component models. The classi-
fication framework consists of four dimensions (lifecycle, constructs, extra-
functional properties and domains) in which the basic characteristics and prin-
ciples of component models are distinguished.

A two-layered ProCom component model for embedded systems. Com-
paring with other component models targeting embedded systems, the ProCom
component model addresses quality attributes, resource consumption and dis-
tribution more systematically.

37

38 Chapter 6. Conclusions and Future Work

An unambiguous and compact description of the modeling elements of
ProCom. The description is based on an extension of finite-state machines
and sets the ground for formal analysis of systems built out of ProCom ele-
ments. The proposed finite-state machine language has graphical appeal, mak-
ing it simpler than the corresponding timed automata model, and it abstracts
from real-valued variables and synchronization channels.

REMES behavioral language. REMES is a dense time state-based hierarchi-
cal behavioral language that has a notion of explicit entry- and exit points,
continuous variables, flows and progress invariants. It is our intention REMES
to be used for unified modeling and formal analysis of functional, timing and
resource-wise behavior of embedded systems.

Performing resource-wise analysis. We present a method for encoding the
resource-wise analysis problem as a weighted sum in which the variables cap-
ture the accumulated consumption of resources, respectively. Thus, we per-
form three types of analysis: feasibility analysis, optimal or worst-case re-
source consumption analysis, and trade-off analysis. Feasibility analysis checks
whether the accumulated values of the resources consumed/used during all
possible system behaviors are within the available resource amounts provided
by the implementation platform. Optimal or worst-case resource consumption
analysis returns the cost of the “cheapest”, and/or most “expensive” trace that
will eventually reach some goal. This analysis may help in resolving the pos-
sible non-determinism in a component implementation. Trade-off analysis is
a systemic approach to balancing trade-offs between conflicting resource re-
quirements: memory vs. execution time, energy vs. memory, etc. The result of
this analysis is the best alternative between the conflicting requirements.

6.2 Future Research Directions
There are many possible future extensions of the work presented in this the-
sis. The current version of the ProCom component model is primarily target-
ing vehicular systems and focuses on design of a class of distributed embed-
ded systems that execute real-time controlling tasks. As future work, ProCom
component model may be extended for instance to the automation domain.
Additionally, ProCom has not yet been industrially verified on an industry case
study and we plan to do this as future work.

6.2 Future Research Directions 39

We have already started with studying the applicability of REMES to other
domains related to embedded systems, such as service-oriented systems and
programmable logic controllers. In future, we plan to integrate REMES and
its notion of resources in the ProCom component model. Here mapping be-
tween ProCom ports and REMES entry/exit points should be formally defined.
Further, we plan to perform automatization of the process of predicting the
resource usage of components and systems. As such, REMES GUI should
become part of the ProCom development IDE, that is currently in phase of
development. We have performed analysis in UPPAAL CORA, which can cur-
rently only handle priced timed automata models where the weighted sum is
monotonically increasing. Therefore, it is left for future work to conduct a
case-study which tackles feasibility analysis problem for a system in which
some of the edge prices are negative so that the global cost function is non-
monotonically increasing. In addition, all of the resource-wise verification al-
gorithms presented in this thesis need to be implemented in UPPAAL CORA
and the scalability of the approaches should be checked. As future work, we
also plan to integrate REMES with the formal semantics of ProCom. Another
opportunity for future work is to investigate the compositional reasoning i.e.,
analyzing each component of the system in isolation and allowing global prop-
erties (such as resource consumption of the whole system) to be inferred about
the entire system. This of course will leave us the obligation of proving that the
component specifications in turn imply the specification of the entire system.

Bibliography

[1] Frank Vahid and Tony D. Givargis. Embedded System Design: A Unified
Hardware/Software Introduction. Wiley, international student edition edi-
tion, October 2001.

[2] Thomas A. Henzinger and Joseph Sifakis. The Embedded Systems De-
sign Challenge. In Proceedings of the 14th International Symposium on
Formal Methods (FM), Lecture Notes in Computer Science, pages 1–15.
Springer, 2006.

[3] Gerd Beneken, Ulrike Hammerschall, Manfred Broy, Mara Victoria, Cen-
garle Jan, Jrjens Bernhard Rumpe, and Maurce Schoenmakers. Compo-
nentware - state of the art 2003. background paper for the understanding
components workshop, 2003.

[4] Hermann Kopetz. The Complexity Challenge in Embedded Systems
Design. In Proceedings of the 11th IEEE International Symposium
on Object/Component/Service-Oriented Real-time Distributed Comput-
ing (ISORC 2008), Orlando, Florida, USA, May 2008. IEEE Computer
Society.

[5] Ben Whittle. Models and Languages for Component Description and
Reuse. SIGSOFT Softw. Eng. Notes, 20(2):76–89, 1995.

[6] PROGRESS Project. http://www.mrtc.mdh.se/progress/
(Last Accessed: 2009-08-12).

[7] Ivica Crnkovic and Magnus Larsson. Building Reliable Component-
Based Software Systems. Artech House publisher, 2002.

[8] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. ACM Press and Addison-Wesley, New York, NY, 1998.

41

42 Bibliography

[9] D. Mcilroy. Mass-Produced Software Components. In Proceedings of
the 1st International Conference on Software Engineering, Garmisch Pat-
tenkirchen, Germany, pages 88–98, 1968.

[10] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The Koala Component Model for Consumer Electronics Software. Com-
puter, 33(3):78–85, 2000.

[11] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE approach to component-based development of vehicular systems.
Journal of Systems and Software, 80(5):655–667, May 2007.

[12] M Winter, C Zeidler, and C Stich. The PECOS software process.
Workshop on Components-based Software Development Processes, ICSR,
2002.

[13] Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg, John
Lundbäck, and Kurt-Lennart Lundbäck. The Rubus Component Model
for Resource Constrained Real-Time Systems. In Proceedings of the 3rd
IEEE International Symposium on Industrial Embedded Systems, June
2008.

[14] H. Maaskant. A Robust ComponentModel for Consumer Electronic Prod-
ucts, volume 3 of Philips Research, pages 167–192. Springer, 2005.

[15] Ji Eun Kim, Rahul Kapoor, Martin Herrmann, Jochen Haerdtlein, Franz
Grzeschniok, and Peter Lutz. Software Behavior Description of Real-
Time Embedded Systems in Component Based Software Development.
In ISORC ’08: Proceedings of the 2008 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing, pages 307–311, Washington,
DC, USA, 2008. IEEE Computer Society.

[16] Johan Bengtsson, W. O. David Griffioen, Kåre J. Kristoffersen,
Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
Verification of an Audio Protocol with Bus Collision Using UPPAAL. In
CAV ’96: Proceedings of the 8th International Conference on Computer
Aided Verification, pages 244–256, London, UK, 1996. Springer-Verlag.

[17] Thomas Stauner, Olaf Müller, and Max Fuchs. Using HYTECH to Verify
an Automative Control System. In HART ’97: Proceedings of the In-
ternational Workshop on Hybrid and Real-Time Systems, pages 139–153,
London, UK, 1997. Springer-Verlag.

Bibliography 43

[18] UPPAAL. www.uppaal.com, accessed August 2009.

[19] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson,
J. Romijn, and F. Vaandrager. Minimum-Cost Reachability for Priced
Timed Automata. In Maria Domenica Di Benedetto and Alberto
Sangiovanni-Vincentelli, editors, Proceedings of the 4th International
Workshop on Hybris Systems: Computation and Control, number 2034 in
Lecture Notes in Computer Sciences, pages 147–161. Springer–Verlag,
2001.

[20] Kim Guldstrand Larsen and Jacob Illum Rasmussen. Optimal Reach-
ability for Multi-Priced Timed Automata. Theor. Comput. Sci., 390(2-
3):197–213, 2008.

[21] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Com-
puter Science, 126(2):183–235, 1994.

[22] T. Brihaye, V. Bruyère, and J-F. Raskin. Model-Checking for Weighted
Timed Automata. In Proceedings of FORMATS-FTRTFT, number 3253
in Lecture Notes in Computer Science, pages 277–292. Springer–Verlag,
2004.

[23] UPPAAL CORA. http://www.cs.aau.dk/∼behrmann/cora/,
accessed August 2009.

[24] Insup Lee, Jin-Young Choi, Hee-Hwan Kwak, Anna Philippou, and Oleg
Sokolsky. A Family of Resource-Bound Real-Time Process Algebras. In
FORTE, pages 443–458, 2001.

[25] Insup Lee, Anna Philippou, and Oleg Sokolsky. A General Resource
Framework for Real-Time Systems. In RISSEF, pages 234–248, 2002.

[26] Insup Lee, Anna Philippou, and Oleg Sokolsky. Resources in Process
Algebra.

[27] Alexandre V. Fioukov, Evgeni M. Eskenazi, Dieter K. Hammer, and
Michel R. V. Chaudron. Evaluation of Static Properties for Component-
Based Architectures. In EUROMICRO, pages 33–39, 2002.

[28] Merijn de Jonge, Johan Muskens, and Michel Chaudron. Scenario-
Based Prediction of Run-Time Resource Consumption in Component-
Based Software Systems. In Proceedings of the 6th ICSE Workshop on

44 Bibliography

Component-based Software Engineering (CBSE6), pages 19–24. IEEE,
2003.

[29] Object Management Group. UML Profile for Schedulability, Perfomance
and Time Specification. Version 1.1, formal/05-01-02. 2005.

[30] Hany H. Ammar, Vittorio Cortellessa, and Alaa Ibrahim. Modeling Re-
sources in a UML-Based Simulative Environment. In AICCSA, pages
405–410, 2001.

[31] Martin Ouimet, Kristina Lundqvist, and Mikael Nolin. The Timed Ab-
stract State Machine Language: An Executable Specification Language
for Reactive Real-Time Systems, booktitle = Proceedings of the 15th In-
ternational Conference on Real-Time and Network Systems. 2007.

[32] AUTOSAR Development Partnership. AUTOSAR – Technical
Overview V2.2.1, 2008. http://www.autosar.org/download/
AUTOSAR_TechnicalOverview.pdf.

[33] Xu Ke, Krzysztof Sierszecki, and Christo Angelov. COMDES-II:
A Component-Based Framework for Generative Development of Dis-
tributed Real-Time Control Systems. In Proceedings of the 13th IEEE
International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, pages 199–208. IEEE, 2007.

[34] Wayne Wolf. Embedded Computing - What Is Embedded Computing?
IEEE Computer, 35(1):136–137, 2002.

[35] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, V. Kumar, I. Lee,
P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical Modeling and Anal-
ysis of Embedded Systems. Proceedings of the IEEE, 8(3):231–274,
1987.

[36] Mikael Åkerholm, Jan Carlson, John Håkansson, Hans Hansson, Mikael
Nolin, Thomas Nolte, and Paul Pettersson. The SaveCCM Language
Reference Manual. Technical Report MDH-MRTC-207/2007-1-SE,
Mälardalen University, January 2007.

[37] Alexandre David, John Håkansson, Kim Guldstrand Larsen, and Paul Pet-
tersson. Model Checking Timed Automata with Priorities using DBM
Subtraction. In 4th International Conference on Formal Modelling and
Analysis of Timed Systems (FORMATS’06), pages 128–142. Springer-
Verlag, September 2006.

Bibliography 45

[38] Johan Bengtsson, W. O. David Griffioen, Kre J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Automated Anal-
ysis of an Audio Control Protocol Using UPPAAL. Journal of Logic and
Algebraic Programming, 52–53:163–181, July-August 2002.

[39] P. A. Abdulla, P. Krcal, and W. Yi. Sampled Universality of Timed
Automata. In 10th International Conference Foundations of Software
Science and Computational Structures, FOSSACS 2007, part of ETAPS
2007, volume LNCS 4423, pages 2–16. Springer-Verlag, 2007.

[40] Dragan Bošnački and Dennis Dams. Discrete-Time Promela and Spin.
In FTRTFT ’98: Proceedings of the 5th International Symposium on For-
mal Techniques in Real-Time and Fault-Tolerant Systems, pages 307–310.
Springer-Verlag, 1998.

[41] Mary M. Shaw. The Coming-of-Age of Software Architecture Research.
In Proceedings of the 23rd International Conference on Software Engi-
neering, ICSE 2001, Toronto, Ontario, Canada, pages 656–664a. IEEE
Computer Society.

[42] TIMMO consortium. http://www.timmo.org, accessed August
2009.

[43] Ji Eun Kim, Oliver Rogalla, Simon Kramer, and Arne Haman. Extract-
ing, Specifying and Predicting Software System Properties in Component
Based Real-Time Embedded Software Development. In Proceedings of
the 31st International Conference on Software Engineering (ICSE), pages
28–38, 2009.

[44] aiT - Worst-Case Execution Time Analyzer.
http://www.absint.com/ait/, accessed August 2009.

[45] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter,
and Rolf Ernst. System Level Performance Analysis - the SymTA/S Ap-
proach. In Proceedings of Computers and Digital Techniques, 2005.

[46] Xu Ke, Paul Pettersson, Krzysztof Sierszecki, and Christo Angelov. Ver-
ification of COMDES-II Systems Using UPPAAL with Model Transfor-
mation. In RTCSA ’08: Proceedings of the 2008 14th IEEE International
Conference on Embedded and Real-Time Computing Systems and Appli-
cations, pages 153–160, Washington, DC, USA, 2008. IEEE Computer
Society.

[47] IEC. IEC 61499 Function Blocks for Embedded and Distributed Control
Systems Design. IEC, 2005.

[48] IEC. Application and Implementation of IEC 61131-3. IEC, 1995.

[49] Scott Hissam, James Ivers, Daniel Plakosh, and Kurt C. Wallnau. Pin
Component Technology (V1.0) and Its C Interface. Technical Note:
CMU/SEI-2005-TN-001, April 2005.

[50] The Object Management Group. UML Version 2.1.2.
http://www.omg.org/spec/UML/2.1.2/, accessed August
2009.

[51] Object Management Group. A UML Profile for MARTE, Beta 1, August
2007. Document number: ptc/07-08-04.

II

Included Papers

47

Chapter 7

Paper A:
A Classification Framework
for Component Models

Ivica Crnković, Séverine Sentilles, Aneta Vulgarakis, and Michel Chaudron
Accepted to IEEE Transactions on Software Engineering (in the process of
revision)

49

Abstract

The essence of component-based software engineering is embodied in com-
ponent models. Component models specify the properties of components and
the mechanism of component compositions. In last decade a rapid growth, a
plethora of different component models has been developed, using different
technologies, having different aims, and using different principles. This has
resulted in a number of models and technologies which have many similarities,
but also principal differences, and in a lot cases unclear concepts. Component-
based development has not succeeded in providing standard principles, as for
example object-oriented development. In order to increase the understanding
of the concepts, and to easier differentiate component models, this paper pro-
vides a Component Model Classification Framework which identifies and dis-
cusses the basic principles of component models. Further the paper classifies a
certain number of component models using this framework.

7.1 Introduction 51

7.1 Introduction

Component-based software engineering (CBSE) is an established area of soft-
ware engineering. The inspiration for “building systems from components” in
CBSE comes from other engineering disciplines, such as mechanical or elec-
trical engineering, software architecture. The techniques and technologies that
form the basis for component models originate mostly from object-oriented
design and Architecture Definition Languages (ADLs). Since software is in its
nature different from the physical world, the translation of principles from the
classical engineering disciplines into software is not trivial. For example, the
understanding of the term component has never been a problem in the classical
engineering disciplines, since a component can be intuitively understood and
this understanding fits well with fundamental theories and technologies. This
is not the case with software. The notation of a software component is not
clear: its intuitive perception may be quite different from its model and its im-
plementation. From the beginning, CBSE struggled with a problem to obtain
a common and a sufficiently precise definition of a software component. An
early and probably most commonly used definition coming from Szyperski [1]
(“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third party”) fo-
cuses on characterization of software component. In spite of its generality
it was shown that this definition is not valid for a wide range of component-
based technologies (for example those which do not support contractually spec-
ified interface or independent deployment). In the definition of Heineman and
Councill [2] (“A software component is a software element that conforms to a
component model and can be independently deployed and composed without
modification according to a composition standard”), the component definition
is more general actually a component is specified through the specification of
the component model. The component model itself is not specified. This defi-
nition can be even more generalized in respect to the component specification,
but component model can be expressed more precisely [3]:
Definition: A Software Component is a software building block that con-

forms to a component model. A Component Model defines standards for (i)
properties that individual components must satisfy and (ii) methods, and pos-
sibly mechanisms, for composing components.

This generic definition allows the existence of a wide spectrum of compo-
nent models, which is also happening in reality; on the market and in differ-
ent research communities, there exists many component models with different

52 Paper A

characteristics. However, it makes it more difficult to properly understand the
Component-Based (CB) principles. In particular, this is true since CB princi-
ples are not clearly explained and formally defined. In their diversities compo-
nent models are similar to ADLs; there are similar mechanisms and principles
but many variations and different implementations. For this reason there is a
need for having a framework which can provide a classification and compari-
son between different component models in a similar manner as it was done for
ADLs [4, 5]. In addition, a framework can help in the selection of a particular
component model or in the design of a new component model.

In this paper, we propose a classification and comparison framework for
component models. Since component models and their implementations in
component technologies cover a large range of different aspects of the develop-
ment process, we group these aspects in several dimensions and build a multi-
dimensional framework that counts different, yet equality important, aspects of
component models. We have also analyzed a considerable number of compo-
nent models, and compared their characteristics. The results of the comparison
have led to some observations which are discussed in the paper.

Our research methodology was based on several iterations of (i) observa-
tions and analysis, (ii) classification, and (iii) validation; in the first iteration,
based on the literature related to general principles of component- based soft-
ware engineering and existing classification [1–11], the classification model
was applied to a set of component models, and discussed with several CBSE
and empirical software engineering researchers and experts from different en-
gineering domains. The resulting analysis and discussions have led to a re-
finement of the framework. In the next iterations the refined framework was
applied to new component models and discussed with new researchers. The
process (which lasted more than one year) has been completed when in the last
iteration all new component models complied well with the framework. An-
other important issue that we learned was related to a decision what to define
as a component model and what not. This is discussed in section three.

The remainder of this paper is organized as follows. Section 7.2 motivates,
explains and defines the different dimensions of the classification framework.
Section 7.3 discusses the criteria for inclusion of different models/technologies
into to component models survey and the classification framework. The com-
parison framework and observations from the comparison are presented in sec-
tion 7.4. Related work is covered in section 7.5 and section 7.6 concludes the
paper. A very brief overview of the selected component models on which the
classification framework has been mapped is given in appendix 7.7.

7.2 The classification framework 53

7.2 The classification framework
The main concern of a component model is to (i) provide rules for the spec-
ification of component properties and (ii) provide rules and mechanisms for
component composition, including the composition rules of component prop-
erties. These main principles hide many complex mechanisms and models,
and have significant differences in approaches, concerns and implementations.
For this reason we cannot simply list all possible characteristics to compare
the component models; rather we want to group particular characteristics that
have similar concerns i.e. that describe the same or related aspects of compo-
nent models. Starting from the definition of component models, we distinguish
specification of components from specification of communication. Component
specifications express component functions (typically in a form of signatures),
and extra-functional properties. Most of the component models include only
specification of functions, in form of interfaces. Extra-functional properties, if
specified at all, are defined either in a form of extended interface or as compo-
nent metadata. The functional part of an interface is directly related to interac-
tion between components and realized through construction mechanisms using
different interaction (architectural) styles. Communication between compo-
nents is usually not explicitly specified, but there are different types of com-
munications that are assumed in component models.

Finally different component models cover different phases in a component
lifecycle; while some support only the modeling phase, others also provide
mechanisms supporting the implementation and run-time phase.

In this paper we divide the fundamental principles and characteristics of
component models into the following dimensions.

D.1 Lifecycle. The lifecycle dimension identifies the support provided (ex-
plicitly or implicitly) by the component model, in certain points of a life-
cycle of components or component-based systems. Component-Based
Development (CBD) is characterized by the separation of the develop-
ment processes of individual components from the process of system
development. There are some synchronization points in which a com-
ponent is integrated into a system, i.e. in which the component is being
bound. Beyond those points, the notion of components in the system
may disappear, or components can still be recognized as parts of the sys-
tem.

D.2 Constructs. The constructs dimension identifies (i) the component inter-
face used for the interaction with other components and external envi-

54 Paper A

ronment, and (ii) the means of component binding and communication.
In some component models, the interface comprises the specification of
all component properties, including both functional and extra-functional,
but in most cases, it only includes a specification of functional properties.
Directly correlated to the interface are the components interoperability
mechanisms. All these concepts are parts of the “construction” dimen-
sion of CBD.

D.3 Extra-Functional Properties. The extra-functional properties dimen-
sion identifies specifications and support that includes the provision of
property values and means for their composition. In certain domains
(for example real-time embedded systems), the ability to model and ver-
ify particular properties is equally important but more challenging than
the implementation of functional properties.

D.4 Domains. This dimension shows in which application and business do-
mains component models are used or supposed to be used. It indicates
the specialization, or the generality of component models.

In these four dimensions, we comprise the main characteristics of component
models but, of course, there are also other characteristics that can differentiate
them. For example, since in many cases component models are built on a
particular implementation technology, many characteristics come directly from
this supporting implementation technology and are not visible in component
models themselves. Still the intention with the classification and comparison
model is to comprise the main characteristics of component models.

7.2.1 Lifecycle
While CBSE aims at covering the entire lifecycle of component-based sys-
tems, component models provide only partial lifecycle support and usually are
related to the design, implementation and integration phases.

The overall component-based lifecycle is separated into several processes;
building components, building systems from components, and assessing com-
ponents [6]. Some component technologies provide certain support in these
processes (for example maintaining component repositories, exposing inter-
face, component deployment).

The component-based paradigm has extended the integration activities up
to the run-time phase; certain component technologies provide extended sup-
port for dynamic and independent deployment of components into running sys-

7.2 The classification framework 55

tems. This support is reflected in the design of many component models. In
contrast, in other component models components only exist as separate units
in the development stage and become assimilated into a system when the sys-
tem is built. In this case the system at run-time is monolithic. However not all
component models consider this integration phase. We can clearly distinguish
different component models that focus on one particular or more phases and
such phases can be different for different component models. Some compo-
nent technologies start in the design phase (e.g. Koala which has an explicit
and dedicated design notation of components and other elements of the compo-
nent model), while other component technologies focus on the implementation
phase (e.g. COM, EJB). For this reason one important dimension of our com-
ponent model classification lifecycle support. In our classification, we distin-
guish the lifecycle of components from the lifecycle of the component-based
system, which are different [3,7] and are not necessary temporally related they
are ongoing in parallel and have some synchronization points.

Component lifecycle stages

We identify the following stages of the component lifecycle.

L.1 Modelling stage. The component models provide support for the mod-
elling and the design of component- based systems and components.
Models are used either for the architectural description of the systems
and components (e.g. ADLs), or for the specification and the verification
of particular system and component properties (e.g. statecharts, resource
usage models, performance models).

L.2 Implementation stage. The component model provides support for pro-
duction of code. The implementation may stop with the provision of
the source code, or may continue up to the generation of a binary (exe-
cutable) code. The existence of executable code is a precondition for the
dynamic deployment of components (during run-time).

L.3 Packaging stage. Because components are the central unit in CBSE,
there is a need for their storage and packaging either in a repository or
for distribution. A component package is a set of metadata and code
(source or executable). Accordingly, the result of this stage can be a file,
an archive, or a repository in which the packaged components reside
prior to decisions about how they will be run in the target environment.
For example, in Koala, components are packed into a file system-based

56 Paper A

requirements

modelling

implementation

packaging

deployment

execution

Component lifecycle

Component forms in a component lifecycle

Specification

- interface

- models

- metadata

Code

- source code

- executable code

- executable models

Storage

- repository

- package

- metadata Installed files Executable code

Figure 7.1: Component lifecycle and component forms

repository, with a folder per component. The folder includes a number
of files: Component Description Language (CDL) file and, a set of C
and header files, test file and different documents. Another example of
packaging is achieved in the EJB component model. There, packaging
is done through jar archives, called ejb-jar. Each archive contains XML
deployment descriptor, component description, component implementa-
tion and interfaces.

L.4 Deployment stage. At a certain point of time, a component is integrated
into a system. This activity may happen at different phases of the sys-
tems lifecycle. In general, the components can be deployed at:

(a) compilation time, so it is no longer possible to change the way the
components interact with each other. For instance, Koala compo-
nents are deployed at compilation time and they use static binding
by following naming conventions and generated renaming macros.

(b) run time as separate units by using means such as registers (COM)
or containers (CCM,EJB). For example, CORBA components are
deployed at run time in a container by using information of the de-
ployment descriptor packed with the component implementation.

Figure 7.1 illustrates different stages in a component lifecycle and the as-
sociated forms of the components. Through the stages some of the forms are
transformed into new ones, some remains, while some disappear. In the figure
the requirements and execution phase are denoted with the dashed lines which

7.2 The classification framework 57

indicate that in these stages components do not necessary exist as independent
units. The forms of the components will be different across phases for different
component models.

7.2.2 The constructs
As defined in [12], the verb “construct” means “to form something by putting
different things together”, so in applying this definition to the CBSE domain,
we define by the Constructs dimension, the way components are connected
together within a component model in order to provide communication means.
But although this communication aspect is of primordial importance, it is not
often expressed explicitly. Instead, it is reflected implicitly by some underlying
mechanisms. This should be distinguished from specifications of functional
and sometimes extra-functional properties in a form of component interfaces.
Consequently, a component interface has a double role: It first specifies the
component properties (functional and possibly extra-functional), and second, it
identifies the connection points through which components are interconnected.

Interface

Interface specification is the characteristic “sine qua non” of a component
model. Interfaces are defined either by using special languages, or elements
of programming languages. Several languages exist that specify components
interfaces and their connections: modeling languages, such as UML or differ-
ent Architecture Description Languages (ADLs), particular specification lan-
guages, such as Interface Definition Languages (IDLs), programming languages
such as Interface in Java, or abstraction class in C++, or some additions built
directly in a programming language, such as pre-defined structs in C. In case of
special languages, the interface specifications are translated to a programming
language. In a few cases (e.g. COM), the interface is also defined in a binary
format in order to have a standard representation at deployment and run-time.
Some mechanisms such as introspection in Java are also used to discover the
interfaces of a component at run-time.

The component models that use programming languages or their extensions
for component specification, also inherit properties of these languages. For ex-
ample the component models that use object-oriented languages utilize the con-
cepts of classes and (interface) inheritance. Typically a component is expressed
as a class in which the interface is defined as a set of operations/functions and
attributes. However there exist other types of interfaces so called port-based

58 Paper A

where ports are entries for receiving/sending different data types and events.
Note that this concept is different from the concept in UML 2.0 [13] in which
a port is defined as a set of specifications.

Some component models distinguish also the “provides”-part (i.e. the spec-
ification of the functions that the component offers) from the “requires”-part
(i.e. the specification of the functions the component requires) of an interface.

In order to ensure that a component will behave as expected according to
its specification and operational mode, and in order to ensure that a compo-
nent is supplied with expected input and environment the notion of contract
has been adjoined to interfaces. According to [8], contracts can be classified
hierarchically in four levels which, if taken together, may form a global con-
tract. We only adopt the three first levels in our classification since the last level
“contractualizes” only the extra-functional properties and this is not in direct
relation with interoperability

• Syntactic level: describes the syntactic aspect, also called signature, of an
interface. This level ensures the correct utilisation of a component. That
is to say that the “calling-component” must refer to the proper types,
fields, methods, signals, ports and handles the exceptions raised by the
“respondingcomponent”. This is the most common and most easy agree-
ment to certify as it relies mainly on an, either static or dynamic, type
checking technique.

• Semantic level: reinforces the previous level of contracts in certifying
that the values of the parameters as well as the persistent state variables
are within the proper range. This can be asserted by pre-conditions, post-
conditions and invariants. A generalization of this level can be assumed
as semantics.

• Behaviour level: dynamic behaviour of services. It expresses either the
composition constraints (e.g., constraints on their temporal ordering) or
the internal behaviour (e.g. dynamic of internal states).

Finally, the constructs dimension refers to the notions of reusability and
evolvability, which are important principles of CBSE. Indeed many component
models are endowed with diverse features for supporting them; one typical
solution is the ability to add new interfaces to a component. This makes it
possible to embody several versions or variants of functions in the component.

7.2 The classification framework 59

Composition of constructs

While compositions in general consider compositions of component proper-
ties, both functional and extra-functional, compositions of constructs are re-
lated to components interactions. Constructs compositions are implemented
as connections of interaction channels and the process of this connection is
called binding. The binding mechanism is related to the component lifecycle;
it can occur at compilation time (when a compiler provides connections be-
tween components using programming language mechanisms), or at runtime,
in which connection mechanisms are utilised that are provided by the underly-
ing run-time infrastructure. Such a run-time infrastructure may consist of dedi-
cated component middleware, and/or a component framework or of a common
operating system or middleware.

A so-called “docking interface” method is commonly used when binding
occurs at run-time. This docking interface does not offer any application func-
tionality, but serves instead for managing the binding and subsequent interac-
tion between a component and the underlying run-time infrastructure. In many
component models (e.g. CCM, EJB) the composition specification is location-
transparent; the run-time location of components (placed on a local or a remote
node) is specified separately from the binding information. This information
about the location is used in the deployment phase.

Connectors, introduced as distinct elements in ADLs, are not common
among the first class citizens in most component models. Connectors are me-
diators in the connections between components and have a double purpose:
(i) enabling indirect composition (so called exogenous compositions), and (ii)
introducing additional functionality, especially for mediation between compo-
nents. In the exogenous composition information concerning the binding re-
sides outside of the components; the components have no knowledge of who
they are connected to. Exogenous composition enables more seamless evolu-
tion because it separates changes to components from changes to their bind-
ings. In several component technologies, connectors are implemented as spe-
cial types of components, such as adaptors or proxies, either to provide ad-
ditional functional or extra-functional properties, or to extend the means of
intercommunication. In direct (endogenous) type of composition the compo-
nents are connected directly through their interfaces. Information concerning
the binding resides inside components.

The interface specification implicitly defines the type of interaction be-
tween components to comply with particular architectural styles. In most cases,
a particular component models provide a single basic interaction style (for ex-

60 Paper A

ample, “request-response” or “pipe & filter”, but others, such as Fractal, Pin
and BIP allow the construction of different architectural styles.

An important question related to the composability of components has con-
cerned the research community [9]: Can the assemblies of components (by
assemblies we assume a set of components mutually connected) be treated as
components themselves, i.e. is he composition hierarchical? There are two
kinds of assemblies supported by existing component technologies. The first is
the first order assembly which is not treated as a component in the component
model. This type of assembly is merely a set of components of an arbitrary
form, creating an application or a part of an application. In terms of binding
the component models refer to “horizontal composition” or “horizontal bind-
ing”. The second type of assembly is hierarchical which means that the assem-
bly, created from components, again satisfies the properties that an individual
component should satisfy according to the component model. In that case we
refer to “hierarchical composition” or “hierarchical binding”. The criteria for
vertical composition are related to constructs (interface specification and the
interaction), and possibility extra-functional properties. Most of the compo-
nent models support partial vertical composition. For example interfaces can
be composed recursively in modeling phase, but not in the deployment phase
(in particular when deployment is performed during run-time).

Constructs classifications

Following the observations and reasoning from above we identify the following
classification characteristics for interfaces and connections in the constructs
dimension.

C.1 Interface specification, in which different characteristics allowing the
specification of interfaces are identified:

(a) The distinction of interface type: operation-based (e.g. methods
invocations) and port-based interface (e.g. data passing).

(b) The distinction between the provides-part and the requires-part of
an interface.

(c) The existence of some distinctive features appearing only in this
component model (such as special type of ports, optional opera-
tions).

(d) The language used to specify the interface.

7.2 The classification framework 61

(e) Interface levels which describes the levels of contractualisation of
the interfaces, namely syntactic, semantic and/or behaviour level.

C.2 Interactions, which comprise the following characteristics:

(a) Interaction style which describes the main underlying architectural
style used.

(b) Communication type which details mainly if the communication
used are synchronous and/or asynchronous.

(c) Binding type describes the way components may be linked together
through the interfaces. It is realized in two subtypes:

i. The exogenous/endogenous sub-category describing whether
the component model includes connectors as architectural el-
ements, and

ii. The hierarchical sub-category expressing the possibility of hav-
ing a hierarchical composition of components (horizontal com-
position is an intrinsic part of all component models, thus it
is implicitly assumed, and not put in the classification frame-
work).

7.2.3 Extra-Functional Properties
Properties are used in the most general sense as defined by standard dictionar-
ies, e.g.: “a construct whereby objects and individuals can be distinguished” [9].
There is no unique taxonomy of properties, and consequently many property
classification frameworks can exist. One commonly used classification is to
distinguish functional from extra-functional properties. While functional prop-
erties describe functions or services of an object, extra-functional properties
(EFPs) specify the quality, or in general a characteristic of interest, of objects.
In CBSE, there is also a distinction between component properties and system
properties. A property at the system level can result from the composition of
the same properties of constituent components, but also from the composition
of different properties. In latter case such property can exist only on a system
level. Such properties are called emerging properties.

Composition of extra-functional properties

EFPs can be complex and abstract or, they can be tangible and concrete. Exam-
ples of abstract (and complex) properties are dependability or performance and

62 Paper A

examples of tangible properties are memory footprint or scalability. Complex
properties are typically the result of the composition of several more tangi-
ble properties. An important concern of CBSE is composition of properties
expressed in the following way. For an assembly A that is composed of com-
ponent C1 and C2

A = C1 ◦ C2

expresses a property of the assembly as a composition of properties of the
components

P (A) = P (C1) ◦ P (C2)

are specified in very different ways. Also computing the compositions of
EFPs require different composition theories for different EFPs. In relation to
composability, one of the challenges of CBSE is predictability. To enable anal-
ysis at the design stage and to avoid expensive, tedious and non-accurate tests
and increase reusability, a lot of efforts has been made in CBSE research com-
munities to design component models that enable predictability. According
to [9], the properties can be classified according to types of compositions in
the following basic categories.

• Directly composable properties (example: static memory): A property
of an assembly is a function of, and only of, the same property of the
components involved.

P (A) = f (P (C1) , . . . , P (Ci) , . . . , P (Cn))

• Architecture-related properties (example: performance): A property of
an assembly is a function of the same property of the components and of
the software architecture.

P (A) = f (SA, . . . P (Ci) . . .) ,

i = 1 . . . n

SA = softwarearchitecture

• Derived properties (example: response time vs. execution time): A
property of an assembly depends on several different properties of the

7.2 The classification framework 63

components.

P (A) = f (SA, . . . P i (Cj) . . .) ,

i = 1 . . . m

j = 1 . . . n

P i = componentproperties

Cj = components

• Usage-depended properties (example: reliability): A property of an as-
sembly is determined by its usage profile.

P (A, U) = f (SA, . . . P i (Cj, U) . . .) ,

i = 1 . . .m

j = 1 . . . n

U = usageprofile

• System environment context properties (example: safety): A property is
determined by other properties and by the state of the system environ-
ment.

P (S, U, X) = f (SA, . . . P i (Cj, U, X) . . .) ,

i = 1 . . .m

j = 1 . . . n

S = system

X = systemcontext

This idealised classification indicates the limitations of the compositions
of EFPs. Determining the compositions of properties of components becomes
feasible when restrictions are imposed on the design of individual components
(by means of rules/constraints in of the component model) and system archi-
tecture. For example static memory usage of an assembly can be defined as
the sum of static memory usage of involved components, but only using par-
ticular composition policies (e.g. no concurrency). In this way, we can obtain
predictability of the considered property. Other properties are related to us-
age profile and if we cannot predict usage profile we cannot predict the system
properties. Some other properties are not composable at all, and in that case
we cannot predict their composition.

64 Paper A

Management of extra-functional properties

component

EFP management

componentcomponentcomponent

EFP management

Endogenous EFP

 management

Exogenous EFP

 management

EFP management

component

EFP management

component

Component Execution Platform

Component Execution Platform

EFP management

EFP management

component

EFP management

component

Component Execution Platform

EFP management

Component Execution Platform

EFP managed per collaboration EFP managed systemwide

C D

A B

Figure 7.2: Management of extra-functional properties

Even if EFPs are not composable, they can be manageable, i.e. they can
be obtained by using some solutions encapsulated in component models and
standardized architectural solutions. Different types of EFP management exist
according to the way the component models handle them. We distinguish two
main dimensions Fig. 7.2:

1. A property is managed by the components (endogenous EFP manage-
ment – approaches A and B), or by the system (exogenous EFP manage-
ment – approaches C and D) or managed.

2. A property is managed on a system-wide scale (approaches B and D), or
the property is managed on a per-collaboration basis (approaches A and
C).

Approach A (endogenous per collaboration). A component model does not
provide any support for EFP management, but it is expected that a component

7.2 The classification framework 65

developer implements it. This approach makes it possible to include EFP man-
agement policies that are optimized towards a specific system, and also can
cater for adopting multiple policies in one system. This heterogeneity may
be particularly useful when COTS components need to be integrated. On the
other hand, the fact that such policies are not standardized may be a source of
architectural mismatch between components. This approach can hardly man-
age emerging properties.
Approach B (endogenous systemwide). In this approach, there is a mecha-

nism in the component execution platform that contains policies for managing
EFPs for individual components as well as for EFPs involving multiple compo-
nents. The ability to negotiate the manner in which EFPs are handled requires
that the components themselves have some knowledge about how the EFPs
affect their functioning. This is a form of reflection.
Approach C (exogenous per collaboration) and Approach D (exogenous

systemwide). In these approaches the components are designed such that they
address only functional aspects and not EFP. Consequently, in the execution
environment, these components are surrounded by a container. This container
contains the knowledge on how to manage EFPs. Containers can either be
connected to containers of other components (approach C) or containers can
interact with a mechanism in the component execution platform that manages
EFPs on a system wide scale (approach D). The container approach is a way
of realizing separation of concerns in which components concentrate on func-
tional aspects and containers concentrate on extra-functional aspects. In this
way, components become more generic because no modification is required to
integrate them into systems that may employ different policies for EFPs. Since
these components do not address EFPs, another advantage is that they are sim-
pler and hence cheaper to implement. A disadvantage of this approach might
be a degradation of the system performance.

Extra-functional properties classification

For the EFPs we provide a classification in respect to the following questions:

E.1 Management of EFPs: Which type of management (if any) is provided
by the component model?

E.2 EFP specification: Does the component model contain means for spec-
ification and management of specific EFPs. If yes, which properties or
which types of properties?

66 Paper A

E.3 Composability of EFPs: Does the component model provide means,
methods and/or techniques for composition of certain extra-functional
properties and/or what type of composition?

7.2.4 Domains

Some component models are aimed at specific application domains as for in-
stance consumer electronics or information systems. In such cases, require-
ments from the application domain penetrate into the component model. The
benefits of a domain-specific component models are that the component tech-
nology facilitates achieving certain requirements. Such component models are,
as a consequence, limited in generality and will not be so easily usable in do-
mains that are subject to different requirements.

Some component models are of general-purpose. They provide basic mech-
anisms for the specification and the composition of components, but do not
assume any specific architecture beyond general assumptions (like interaction
style, support for distributed systems, compilation or run-time deployment).
A general solution that enables component models to be both generally ap-
plicable but to also cater for specific domains is through the use of optional
frameworks. A framework is an extension of a component model that may
be used, but is not mandatory in general. There is a third type of component
models, namely generative; they are used for instantiation of particular com-
ponent models. They provide common principles, and some common parts of
technologies (for example modeling), while other parts are specific (for exam-
ple different implementations). According to this, we classify the component
models as

A.1 General-purpose component models;

A.2 Specialized component models;

A.3 Generative component models.

7.2.5 The classification overview

Fig. 7.3 summarizes the classification framework in a graph form.

7.2 The classification framework 67

 Generative
 A.1

General -

purpose

 A.2

Specialised

 A.3

Endogenous

Collaborative

Endogenous

 Systemwide

 Exogenous

Collaborative

 Exogenous

 Systemwise

Composition and

Analysis Support

 E.3

Specification

 E.2

Management

 E.1

Domains

 D.4

Binding Type

Exogenous /

Endogenous

Vertical

Asynchronous

Synchronous

Communication

 Type

Interaction

 Style

Interactions

 C.2

 Interface

Specification

 C.1

Interface

 Style

 Distinction of

Provides / Requires

Distinctive

 Features

Interface

 Levels

 Interface

Language

At run-time

At compilation

Deployment

 L.4

Packaging

 L.3

Implementation

 L.2

Modelling

 L.1

Component

 Model

Lifecycle

 D.1

Constructors

 D.2

Extra-Functional

 Properties

 D.3

Figure 7.3: The hierarchical structure of the classification framework

68 Paper A

7.3 Survey of component models
Nowadays a number of component models exist. They vary widely: in usage,
in support provided, in concerns, in complexity, in formal definitions, etc.. In
our classification of component models, the first question is whether a partic-
ular model (or technology, method, or similar) is a component model or not.
Similar to biology in which viruses cover the border between life and non-life,
there is a wide range of models, from those having many elements of com-
ponent models but still not assumed as component models, via those that lack
many elements of component models, but still are designated as component
models, to those which are broadly accepted component models. Therefore,
we identify the minimum criteria required to classify a model, or a notation as
a component model. This minimum is defined by the definition of component
models given in the introduction: A model that defines rules for the design
and specification of components and their properties and means of their com-
position can be classified as a component model. It should be noted that this
condition is mandatory, but not sufficient. We have identified several models
that fulfill this condition, but still we have not included them in the survey. We
can call them “almost” component models.

7.3.1 “Almost” component models

A wide range of modeling languages contains the term “component” and even
(semi)formally specifies components and component compositions. For exam-
ple in the classification of ADLs [5] one of the basic elements are components
(and connectors as means for construction composition). UML 2.0 is even
closer to component models since it provides a metamodel for components,
interfaces and ports. Still we have deliberately chosen not to select them as
component models, in difference to some other classifications (such as [11]).
One reason is that their purpose is not component-based development but rather
the specification of system architectures. ADLs and UML 2.0 are excellent lan-
guage candidates for modeling component-based systems and components in
the design phase, but are missing other characteristics to be declared as com-
ponent models. Certain languages derived from UML, such as xUML [14]
in which the component specification is translated to an executable entity, are
even closer candidates for component models. However xUML and similar
languages do not operate with components as first class citizens (for example
components are not treated as separate development or executable entities), but
components are only architectural elements.

7.3 Survey of component models 69

On the other side of the lifecycle line are services. One can argue that
services are special types of components. Services are focused on run-time
retrieval and run-time deployment. Similar to components, services are speci-
fied by an interface, and provide support for constructs compositions [15]. Still
we have not included services in the classifications for similar reasons as for
ADLs their focus is not component-based development. In analogy to ADLs,
services are not component models but rather use component models. Further,
we have not included technologies such as Unix processes and “pipe & filter”
mechanisms, or modeling environments such as Simulink or Ptolemy [16], as
again the components are not the primary concern in these approaches.

Finally we have not included technologies like Eclipse or Photoshop that
enable the integration of plugins from third parties and in this way suit well to
a part of Szyperskis definition of components (“deployed independently and is
subject to composition by third party”). However they do not provide mecha-
nisms of compositions between components, rather mechanism between com-
ponents and the underlying platform.

For these “almost component models” one can argue that they are compo-
nent models or technologies, and that they could be included into the survey.
Our position is that their inclusion will break the spirit of the component mod-
els as defined in this paper according to the arguments presented.

7.3.2 Component models

In our classification framework we have selected a number of component mod-
els that appeared in the research literature and in practice. While some of them
are widely spread and proven, others are used as demonstrators or illustrations
of ideas in research.

The classification framework does not show the success of particular com-
ponent models, or any business model, but it is based on the technical char-
acteristics only. The components models that we have included in the list are
shortly referred to in the appendix 7.7.

It is worth to mention that for some of the component models that we found,
our selection criteria were satisfied, however because of scarcity of available
documentation it was impossible to get the needed detailed information (which
usually is a sign that no activity around the model is going on). In these cases,
we have decided to omit them from our list.

70 Paper A

7.4 The comparison framework
The characteristics of the component models are collected in the tables below,
following the dimensions in the classification framework, namely lifecycle (Ta-
ble 7.1), constructs (Tables 7.2, and 3), extra-functional properties (Table 7.4),
and the domains (Table 7.5) lined in the alphabetic order. Following each table,
a short discussion gathering observations and their rationales is presented.

7.4.1 Life-cycle classification
From the observation of Table 7.1, one can notice that there is a group of com-
ponent models that do not provide any support for modeling of components or
component-based applications, but cover only implementation part (specifica-
tion and deployment). All these component models belong to the state of the
practice and most of them are widely used. Does that mean that the modeling
of components is not supposed to be a part of a component model? Or does
it mean that other tools, for example general-purpose modeling tools, such as
UML or ADLs are used for modeling, while component technologies are used
for the implementation? It is partially true that most of the practitioners do not
model their systems using formal specification languages, but rather express
their design in a non-formal way for documentation purpose only, or in a semi-
formal way typically using UML. In both cases neither the precise definitions
of components nor their interactions are assumed to be of high priority. This is
also an indicator of differences between state of the art and state of the practice;
many solutions that include modeling of components or their properties from
the state of the art have still not been realized or scaled up in practice.

The second observation from Table 7.1 is the fact that most of the compo-
nent models use object-oriented languages for the implementations with dom-
ination of Java. Still there exist component models using other languages, for
example imperative programming languages such as C.

It seems that the packaging and component repositories are not in focus of
component models. In most cases, certain standard archives are used (such as
DLL or JAR packages). The lack of repositories indicates a low focus of reuse,
in particular of COTS components.

Deployment at compile time and run-time occurs almost equally often. De-
ployment at compile time limits the flexibility at run-time, but on the other hand
enables easier predictability, richer composition features (such as hierarchical
composition), and more efficient reuse (such as deployment of implementation
parts that will be used in the application). This might be a reason why this

7.4 The comparison framework 71

is the primary deployment style chosen by specialized component models (cf.
Table 7.5).

7.4.2 Constructs classification

Tables 7.2 and 7.3 show interface and interaction specifications of the se-
lected component models. Although the existence of interface is a “conditio
sine qua non” for component models, and all selected component models iden-
tify the interface as an indispensable part of a component, Table 7.2 shows
that interfaces can be of different types. Most interfaces are of operation type,
thus using functions and parameters for defining elements of services the com-
ponent provides and requires. Still, many component models use ports as in-
terface elements using them for passing data. Such component models are
typically used in embedded systems and have their grounds from the concept
of hardware components. Some component models do not distinguish between
required and provided interface, but the interface is identified with the provided
interface, similar to the object-oriented approach. In port-based interfaces, in-
put and output interfaces consisting of ports that receive and send data (often
designated as sink and source) are distinguished, which corresponds to pro-
vided and required interface.

Since interfaces are an obligatory part of the component specification, all
component models provide at least the first level, i.e. syntactic specification.
A considerable number of component models also have behavior specifica-
tions, in most cases specified by a particular form of finite state machines
(state charts, timed automata). Rather few of the component models iden-
tify semantic of the interfaces. If semantics are defined, then mostly pre- and
post-conditions are used for this. It is worth to mention that interface seman-
tics should not be mixed with other types of semantics that some component
models can have (e.g. SaveCCM has execution semantics which defines the
process of the component execution in respect to time).

In line with the type of an interface (operation vs. ports), from the infor-
mation provided in Table 7.3 one can conclude that the dominating interac-
tion styles in the component models are “request response” (typically used in
client/server architectures), and dataflow and pipe & filter. Some component
models have specific additions to interaction styles – event-driven, broadcast
or rendez-vous.

72 Paper A

Table 7.1: Lifecycle Dimension

Component
Models Modelling Implementation Packaging Deployment

AUTOSAR N/A C
Non-formal

specification of
container

At compilation

BIP
A 3-layered representation:
behavior, interaction, and

priority
BIP Language N/A At compilation

BlueArX N/A C N/A At compilation

CCM N/A Language
independent

Deployment Unit
archive (JARs, DLLs) At run-time

COMDES II ADL-like language C N/A At compilation

CompoNETS Behavour modeling (Petri
Nets)

Language
independent

Deployment Unit
archive (JARs, DLLs) At run-time

EJB N/A Java EJB-Jar files At run-time

Fractal
ADL-like language (Fractal

ADL, Fractal IDL),
Annotations (Fractlet)

Java (in Julia,
Aokell)

C/C++ (in Think)
.Net lang. (in

FracNet)

File system based
repository At run-time

KOALA ADL-like languages
(IDL,CDL and DDL) C File system based

repository At compilation

KobrA UML Profile Language
independent N/A N/A

IEC 61131

Function Block Diagram
(FBD) Ladder Diagram

(LD) Sequential Function
Chart (SFC)

Structured Text
(ST) Instruction

List (IL)
N/A At compilation

IEC 61499 Function Block Diagram
(FBD)

Language
independent N/A At compilation

JavaBeans N/A Java Jar packages At compilation

MS COM N/A OO languages DLL
At compilation

and
at run-time

OpenCOM N/A OO languages DLL At run-time

OSGi N/A Java Jar-files (bundles)
At compilation

and
at run-time

Palladio UML profile Java N/A At run-time
PECOS ADL-like language (CoCo) C++ and Java Jar packages or DLL At compilation
Pin ADL-like language (CCL) C DLL At compilation

ProCom ADL-like language, timed
automata C File system based

repository At compilation

ROBOCOP
ADL-like language,

resource management
model

C and C++ Structures in zip files At compilation
and at run-time

RUBUS Rubus Design Language C File system based
repository At compilation

SaveCCM ADL-like (SaveComp),
timed automata C File system based

repository At compilation

SOFA 2.0 Meta-model based
specification language Java Repository At run-time

7.4 The comparison framework 73

Table 7.2: Constructs – Interface Specification

Component
Models Interface type

Distinction
of Provides/

Requires
Distinctive features Interface Language

Interface Levels
(Syntactic,
Semantic,
Bahaviour)

AUTOSAR
Operation-

based
Port-based

Yes AUTOSAR Interface C header files Syntactic

BIP Port-based No Complete interfaces,
Incomplete interfaces BIP Language

Syntactic
Semantic
Behaviour

BlueArX Port-based Yes N/A C Syntactic

CCM
Operation-

based
Port-based

Yes
Facets and receptacles
Event sinks and event

sources
CORBA IDL, CIDL Syntactic

COMDES II Port-based Yes N/A C header files State
charts diagrams

Syntactic
Behaviour

CompoNETS
Operation-

based
Port-based

Yes
Facets and receptacles
Event sinks and event

sources

CORBA IDL,
CIDL, Petri nets

Syntactic
Behaviour

EJB Operation-
based No N/A

Java Programming
Language +
Annotations

Syntactic

Fractal Operation-
based Yes Component Interface,

Control Interface

IDL, Fractal ADL,
or Java or C,
Behavioural

Protocol

Syntactic
Behaviour

KOALA Operation-
based Yes Diversity Interface,

Optional Interface IDL, CDL Syntactic

KobrA Operation-
based N/A N/A UML Syntactic

IEC 61131 Port-based Yes N/A N/A Syntactic

IEC 61499 Port-based Yes
Event input and event
output Data input and

data output
N/A Syntactic

JavaBeans Operation-
based Yes N/A Java Syntactic

MS COM Operation-
based No Ability to extend

interface Microsoft IDL Syntactic

OpenCom Operation-
based No

Interfaces additional to
COM-interface

managing lifecycle,
introspections, etc.

Microsoft IDL Syntactic

OSGI Operation-
based Yes Dynamic Interfaces Java Syntactic

Palladio Operation-
based Yes Possibility to annotate

interface UML Syntactic
Behaviour

PECOS Port-based Yes Ability to extend
interface

Coco language,
Prolog query, Petri

nets

Syntactic
Semantic
Behaviour

Pin Port-based Yes N/A

Component
Composition

Language (CCL),
UML statechart

Syntactic
Behaviour

ProCom Port-based Yes Data and trigger ports XML based, Timed
Automata

Syntactic
Behaviour

Robocop Port-based Yes
Ability to extend
different types of

interface/annotations

Robocop IDL
(RIDL), Protocol

specification

Syntactic
Behaviour

RUBUS Port-based Yes Data and trigger ports C header files Syntactic

SaveCCM Port-based Yes Data, trigger, and
data-trigger ports

SaveComp
(XMLbased),Timed

Automata

Syntactic
Behaviour

Sofa 2.0 Operation-
based Yes

Utility Interface,
Possibility to annotate
interface and to control

evolution

Java, SPC algebra Syntactic
Behaviour

74 Paper A

Table 7.3: Constructs – Interface Interaction

Component
Models Interaction Styles Communication

Type Binding Type

Exogenous Hierarchical

AUTOSAR Request response,
Messages passing

Synchronous,
Asynchronous No Delegation

BIP
Triggering,

Rendez-vous,
Broadcast

Synchronous,
Asynchronous No Delegation

BlueArX Pipe&filter Synchronous No Delegation

CCM Request response,
Triggering

Synchronous,
Asynchronous No No

COMDES II Pipe&filter Synchronous No No

CompoNETS Request response Synchronous,
Asynchronous No No

EJB Request response Synchronous,
Asynchronous No No

Fractal Multiple interaction
styles

Synchronous,
Asynchronous Yes Delegation,

Aggregation

KOALA Request response Synchronous No Delegation,
Aggregation

KobrA Request response Synchronous No Delegation,
Aggregation

IEC 61131 Pipe&filter Synchronous No Delegation

IEC 61499 Event-driven,
Pipe&filter Synchronous No Delegation

JavaBeans Request response,
Triggering Synchronous No No

MS COM Request response Synchronous No Delegation,
Aggregation

OpenCOM Request response Synchronous No Delegation,
Aggregation

OSGi Request response,
Triggering Synchronous No No

Palladio Request response Synchronous No No
PECOS Pipe&filter Synchronous No Delegation

Pin
Request response,
Message passing,

Triggering

Synchronous,
Asynchronous No No

ProCom Pipe&filter,
Message passing

Synchronous,
Asynchronous Yes Delegation

Robocop Request response Synchronous,
Asynchronous No No

Rubus Pipe&filter Synchronous No No

SaveCCM Pipe&filter Synchronous No Delegation,
Aggregation

SOFA 2.0 Multiple interaction
styles

Synchronous,
Asynchronous Yes Delegation

7.4 The comparison framework 75

Table 7.3 shows that the dominant communication type in component mod-
els is synchronous. Component models that provide support for asynchronous
type of communication also support synchronous communication. This indi-
cates that component models are not concerned about architecture (architec-
tural design), but rather targeting detailed design. This fact is also reflected in
the use of connectors. Quite a few of the component models have connectors as
first class entities, which indicates that components in many component mod-
els are implicitly assumed as fine-grained entities, in contrast to architectural
components.

Finally, one can observe that many component models do not support ver-
tical binding, i.e. the means for hierarchical composition. Composition of
vertical binding is implemented either through delegated interfaces (i.e. se-
lected interfaces from sub-components build up the interface of the composite
components) or as aggregation in which the composite component (or in this
case just an assembly) include all interfaces of the aggregated components.

7.4.3 Extra-functional properties classification

From Table 7.4 an interesting observation can be found: Many components
provide certain support for management of EFPs, either system-wide or per
container. However a significantly smaller number of component models have
formalisms for EFPs specifications. Even smaller number provides means for
composition of EFPs. This is particularly true for commercial component mod-
els. This is not surprising since many EFPs are either not formally defined, or
are considered too complex.

Some of the component models provide architectural solutions (for exam-
ple redundancy or authentication) which in general improve the quality of sys-
tems. These solutions have an impact on different properties (for example
reliability and availability). The solutions are usually not part of components
themselves but are built into the underlying platform, and added as additional
service used in some particular domains (for example COM+ used in MS COM
and .NET technologies). While these component models provide support for
increasing quality, they still do not support EFP compositions and by this do
not obtain “predictability by construction”. Clearly, composition of EFPs still
belongs to research challenges. A vast majority of EFPs that are explicitly
managed (specified and composed) belong to resource usage and timing prop-
erties.

76 Paper A

Table 7.4: Extra-Functional Properties

Component
Models Management of EFP Properties specification Composition and analysis

support

AUTOSAR Endogenous per
collaboration (A) N/A N/A

BIP Endogenous system wide
(B) Timing properties Behaviour compositions

BlueArX Endogenous per
collaboration (A)

Resource usage, Timing
properties N/A

CCM Exogenous system wide (D) N/A N/A

COMDES II Endogenous system wide
(B) Timing properties N/A

CompoNETS Endogenous per
collaboration (A) N/A N/A

EJB Exogenous system wide (D) N/A N/A

Fractal Exogenous per
collaboration (C)

Ability to add properties (by
adding property controllers) N/A

KOALA Endogenous system wide
(B) Resource usage Compile time checks of

resources

KobrA Endogenous per
collaboration (A) N/A N/A

IEC 61131 Endogenous per
collaboration (A) N/A N/A

IEC 61499 Endogenous per
collaboration (A) N/A N/A

JavaBeans Endogenous per
collaboration (A) N/A N/A

MS COM Endogenous per
collaboration (A) N/A N/A

OpenCOM Endogenous per
collaboration (A) N/A N/A

OSGi Endogenous per
collaboration (A) N/A N/A

Palladio Endogenous system wide
(B)

Performance properties
specification Performance properties

PECOS Endogenous system wide
(B)

Timing properties, generic
specification of other

properties
N/A

Pin Exogenous system wide (D) Analytic interface, timing
properties

Different EFP composition
theories, example latency

ProCom Endogenous system wide
(B) Timing and resources Timing and resources at

design and compile time

ROBOCOP Endogenous system wide
(B)

Memory consumption,
Timing properties,

reliability, ability to add
other properties

Memory consumption and
timing properties at

deployment

RUBUS Endogenous system wide
(B) Timing Timing properties at design

time

SaveCCM Endogenous system wide
(B)

Timing properties, generic
specification of other

propertie

Timing properties at design
time

SOFA 2.0 Endogenous system wide
(B) Behavioural (protocols) Composition at design

7.4 The comparison framework 77

7.4.4 Domains classification
From Table 7.5 we see that the distribution between general-purpose compo-
nent models and specialized component models is equal. We could expect
more specialized; Probably in practice there are more specialized proprietary
and not published component models. We have also observed a migration of
certain component models. For example OSGI was originally designed for em-
bedded systems, but later has been used as general-purpose component model
in different domains. There is also an opposite trend to this. General-purpose
component models have been adapted for particular domains by a combination
of addition of new features and restriction of some functions. Such examples
are CompoNETS and OpenCOM.

Specialized component models belong to two domains: a) embedded sys-
tems, and b) information systems. The component models from the embed-
ded systems domain have some common characteristics: the use of the “Pipe
& Filterdataflow” architectural style, components are usually deployable at
compilation time, components are resource-aware and often there is support
for management of timing properties. These component models are signif-
icantly different from general-purpose component models. The component
models from the information systems domains are significantly more similar to
general-purpose component models. Typically they have similar characteristics
as general-purpose component models, such as use of “request response” inter-
action, support for run-time run-time deployment, expandable interface, imple-
mentation in object-oriented language but they can be distinguished from gen-
eral purpose component models through specific support for distributed com-
ponents, data transaction support, interoperability with databases, and some
architectural solutions such as redundancy or location transparency.

Table 7.5: Domains

Domain A
U

TO
SA

R
B

IP
B

lu
eA

rX
C

C
M

C
O

M
D

ES
II

C
om

po
N

ET
S

EJ
B

3.
0

Fr
ac

ta
l

K
O

A
LA

K
ob

rA
IE

C
61

13
1

IE
C

61
49

9
Ja

va
B

ea
ns

M
S

C
O

M
O

pe
nC

O
M

O
SG

i
Pa

lla
di

o
PE

C
O

S
Pi

n
Pr

oC
om

R
ob

oc
op

R
ub

us
Sa

ve
C

C
M

SO
FA

2.
0

General-
purpose X X X X X X X X X X X

Specialised X X X X X X X X X X X X X
Generative X X X

78 Paper A

7.5 Related work

Over the last decade, several attempts to identify key features of software com-
ponents and component models have been proposed: classification or studies of
components and interfaces ([17], [18]), interfaces, extra-functional properties
([9]), ADLs ([5]), component models ([11]), characteristics of component
models for particular business domains ([10]), among others.

The models presented in [17] and [18] do not consider any component
model but rather focus on practical issues of component utilization and reuti-
lization. In [17], the interface classification is split into two categories: appli-
cation interfaces and platform interfaces. Application interfaces describe the
information about the interaction with other components (messages protocol,
timing issues to requests) whereas the platform aspect is concentrates on the
interaction between components and the executing platform. Similarly in [18]
a model for characterizing components is proposed which reuses the classifi-
cation model of interfaces from [17]. A component is there regarded as the
description of three main items (informal description, externals and internals)
each of them split into several subelements. The informal description is con-
nected with a set of human-related features which can influence on the selection
of a component such as its age, its provenance, its level of reuse, its context,
its intent and if there is any related component solving a similar problem. The
externals are concerned with interaction mechanisms both with other applica-
tion artifacts and with the platform (application interfaces, platform interfaces,
role, integration phase, integration frameworks, technology and non-functional
features). Finally the internals are concerned with elements related to the po-
tential information needed during the development process of a system (nature,
granularity, encapsulation, structural aspects, behavioural aspects, accessibility
to source code).

Similar to our work to some extent, a classification framework to classify
each of the proposed models, frameworks, or standards is proposed in [19],
trying to determine what the core features of a software component are. The
classification approach is different from ours; it includes identification of a
component by a set of elements/characteristics (unit of composition, reuse,
interface, interoperability, granularity, hierarchy, visibility, composition, state,
extensibility, marketability, and support for OO). The classification includes
only business components and business solutions. One of the problems with
this classification is the non orthogonality of some of the characterized items.

In [5], in which ADLs are classified, components are defined as basic ele-
ments of ADLs. The components are distinguished by the following features:

7.6 Conclusion 79

interface, types, semantics, constraints, evolution, and non-functional proper-
ties.

In [10], a classification model is proposed to structure the CBSE body of
knowledge. All research results are characterized according to several aspects
(concepts, processes, roles, product concerns and business concerns, technol-
ogy, off-the-shelf components and related development paradigms). Here, the
component model is only considered as one of the fifty elements in the CBSE
items. However, in this work, a more precise taxonomy of application do-
mains is proposed. The paper identifies the following application domains in
which component-based approaches are utilized: avionics, command and con-
trol, embedded systems, electronic commerce, finance, healthcare, real-time,
simulation, telecommunications and, utilities.

In [7], several component models (JB, COM, MTS, CCM, .NET and OSGI)
are mainly described according to the following criteria: Interfaces and Assem-
bly using ACME notation, Implementation, and Lifecycle. The models are not
compared or valuated, but rather these characteristics are described for each
component model.

In [11], a study of several component models is presented that considers
the following aspects: syntax, semantics and composition through an ideal-
ized component-based development lifecycle,. A smaller number of com-
ponent models are considered (also UML and ADLs are included). Based
on this study, a taxonomy centered on the composition criterion is proposed,
which clarifies at which steps of the development process of a given component
model, components can be composed and whether they can be retrieved from
a repository to be composed. Further the different types of bindings (compo-
sitions) of some of the component models are discussed in more details. This
taxonomy does not consider EFPs.

7.6 Conclusion
In this survey, we have presented a framework for the classification and com-
parison of component models, which identifies issues related to component-
based development. This survey indicates that many principles comprised in
the component-based approach are not always included in every component
model. Many of these principles are taken and further developed from other
approaches (OO development, modeling using ADLs) which also contributes
to an unclear understanding of component-based development.

The intention of this work is to increase the understanding of component-

80 Paper A

based approach by identifying the main concerns, common characteristics and
differences of component models. The proposed framework does not include
all the elements of all component models since many of them have specific
solutions some related to models, some related to particular technology solu-
tions. Further we have not characterized the component themselves (like im-
plementation, internal behavior, whether components are active or passive, and
similar). The framework however identifies the minimal criteria for assuming
a model to be a component model and it groups the basic characteristics of the
models.

From the results we can recognize some recurrent patterns, such as: general-
purpose component models utilize the “request response” style, while in the
specialized domains (mostly embedded systems) “pipe & filter/dataflow” is
the predominate style. We can also observe that support for composition of
extra-functional properties is rather scarce. There are many reasons for that: in
practice explicit reasoning and predictability of EFPs is still not widespread,
there are unlimited number of different EFPs, and finally the compositions of
many EFPs are not only the results of component properties, but also a matter
outside component models for example of system architectures, which makes
EFP an aspect that is difficult to handle at the level of traditional implementa-
tion languages.

In similarity with other technologies we could expect a convergence of the
main characteristics of component models, i.e. becomes more standardized,
using more commonly accepted concepts and terminology, even if the number
of different component models will not necessary decreased. The aim of this
work is to provide a help in this convergence process.

7.7 Survey of component models
In this appendix, we provide a brief overview of component models taken in the
survey and their main characteristics. The component models are listed in the
alphabetic order. The list should be understood as a provision of some charac-
teristic examples, or examples of widely used component models in Software
Engineering.

Note that when listing the component models we have not provided their
product name with edition number except for cases in which the edition num-
bers are part of the name or indicate significant difference from the previous
version.

7.7 Survey of component models 81

AUTOSAR (AUTomotive Open System ARchitecture) [20], the new
standard in automotive industry is the result of the partnership between sev-
eral manufacturers and suppliers from the automotive field. The main focus
of AUTOSAR is standardization of architecture, architectural components and
their interoperability, which allows a separation of development of component-
based applications from the underlying platform. AUTOSAR supports both the
client-server and sender-receiver communication types. An AUTOSAR soft-
ware component instance is only assigned to one computer node - Electronic
Control Unit (ECU). The AUTOSAR software components are implemented in
C. The main focus of AUTSOAR is the architecture not the component model
itself.
BIP (Behavior, Interaction, Priority) [21] framework developed at Ver-

imag is used for modelling heterogeneous real-time components. This hetero-
geneity is considered for components having different synchronization mech-
anisms (broadcast/rendez-vous), timed components or non-timed components.
BIP focuses on component behaviour through a model with a three-layer struc-
ture of the components (Behaviour, Interaction and Priority); a component can
be seen as a point in this three-dimensional space constituted by each layer. In
this model, compound components, i.e components created from already ex-
isting ones, and systems are obtained by a sequence of formal transformations
in each of the dimension. BIP comes up with its own programming language
but targets C/C++ execution. Some connections to the analysis tools of the
IF-toolset [22] and the PROMETHEUS tools [23] are also provided.
BlueArX [24] [25] is a component model developed and used by Bosch

for the automotive control domain. BlueArX defines a hierarchical component
model with focus on design-time, which does not require additional run-time or
memory resources on the target hardware. A BlueArX component consists of
specification, documentation and implementation (as object or C source code).
BlueArX components and interfaces are specified using MSRSW (Manufac-
turer Supplier Relationship SoftWare), a standardized XML format. Compo-
nents communicate using client-server and sender-receiver interfaces. Besides
name and type the interfaces specification lists additional details (e.g. mapping
between internal and physical representation, value range, and physical unit).
Other interfaces address component configuration (variation points), calibra-
tion data and extra-functional properties, like timing, memory usage or generic
specification of other properties.
COMDES II [26], developed at University of Southern Denmark, defines

various types of components to address both architectural and behavioral prop-
erties of control software systems. It employs a two-level model to specify

82 Paper A

system architecture. At the first (system) level a distributed control application
is conceived as a network of communicating actors and at the second (actor)
level an actor is specified as a software artifact containing a single actor task
and multiple I/O drivers. The functional behavior is specified by a composition
of different function block instances which implement concrete computation
or control algorithms. COMDES II defines four kinds of functional blocks:
basic, composite, modal and state machine. The former two can be used to
model continuous behavior (data flow) and the later two describe the sequen-
tial behavior (control flow). All non-functional information such as physicality,
real-time and concurrency is specified with respect to actors.
CompoNETS [27], developed at Universit Toulouse 1, is based on CCM

where additionally the internal behavior of a software component and inter-
component communication are specified by Petri Nets. Accordingly, a map-
ping from the constructs of the component models (e.g. facets, receptacles,
event sources and sinks) to the constructs of Petri-net based behavioral formal-
ism (e.g. places, transitions etc.) is defined. Other characteristics are the same
(or very similar) to CCM.
CCM (CORBAComponentModel) [28] evolved from Corba object model

and it was introduced as a basic model of the OMGs component specification.
The CCM specification defines an abstract model, a programming model, a
packaging model, a deployment model, an execution model and a metamodel.
The metamodel defines the concepts and the relationships of the other models.
CORBA components communicate with outside world through ports. CCM
uses a separate language for the component specification: Interface Defini-
tion Language (IDL). CCM provides a Component Implementation Frame-
work (CIF) which relies on Component Implementation Definition Language
(CIDL) and describes how functional and nonfunctional part of a component
should interact with each other. In addition, CCM uses XML descriptors for
specifying information about packaging and deployment. Furthermore, CCM
has an assembly descriptor which contains metadata about how two or more
components can be composed together.
EJB (Entreprise JavaBeans) [29], developed by Sun MicroSystems envi-

sions the construction of object-oriented and distributed business applications.
It provides a set of services, such as transactions, persistence, concurrency,
interoperability. EJB differs three different types of components (The Entity-
Beans the SessionBean and the MessageDrivenBeans). Each of these beans
is deployed in an EJB Container which is in charge of their management at
runtime (start, stop, passivation or activation) and EFPs (such as security, relia-
bility, performance). EJB is heavily related to the Java programming language.

7.7 Survey of component models 83

Fractal [30] is a component model developed by France Telecom R&D
and INRIA. It intends to cover the whole development lifecycle (design, im-
plementation, deployment and maintenance/management) of complex software
systems. It includes several features, such as nesting, sharing of components
and reflexivity in that sense that a component may respectively be created from
other components, be shared between components and can expose its internals
to other components. The main purpose of Fractal is to provide an extensi-
ble, open and general component model that can be tuned to fit a large variety
of applications and domains. Fractal includes different instantiations and im-
plementations: a C-implementation called Think, which targets especially the
embedded systems and a reference implementation, called Julia and written in
Java.
Koala [31] is a component model developed by Philips for building soft-

ware for consumer electronics. Koala components are units of design, devel-
opment and reuse. Koala has a set of modeling languages: Koala IDL is used
to specify Koala component interfaces, its Component Definition Language
(CDL) is used to define Koala components, and Koala Data Definition Lan-
guage (DDL) is used to specify local data of components. Koala components
communicate with their environment or other components only through ex-
plicit interfaces statically connected at design time. Koala targets C as imple-
mentation language and uses source code components with simple interaction
model. Koala pays special attention to resource usage such as static memory
consumption.
KobrA (KOmponentenBasieRte Anwendungsentwicklung) [32] is a hier-

archical component model that supports a model-driven, UML-based represen-
tation of components. In KobrA components are not physical components like
in the contemporary physical technologies (e.g. CORBA, EJB, .NET) but logi-
cal building blocks of the software system. The components can be constructed
in any UML modeling tool and deposited into a file system. They can be com-
pared to subsystems in UML with additional behavior. KobrA uses UML class
diagrams to specify structure, functional model to describe functionality and
finally the behavioral model describes the component behavior. Composition
of components is done in the design phase by direct method calls.
IEC 61131 [33] is a standard for the design of Programmable Logic Con-

trollers approved by the International Electrotechnical Commission (IEC). In
this standard, the software units are called function blocks and based on incom-
ing events, they execute some algorithms to update the internal variables. This
standard has been further extended to IEC 61499 [34] which provides distribu-
tion in the runtime environment through high-level abstraction of communica-

84 Paper A

tion primitives. IEC 61499 is an open communication standard for distributed
control systems.
JB (Java Beans) [35] developed by Sun Microsystems is based on Java

programming language. In the JavaBeans specification a bean is a reusable
software component that can be visually composed into applets, applications,
servlets, and composite components, using visual application builder tools.
Programming a Java component requires definition of three sets of data: i)
properties (similar to the attributes of a class); ii) methods; and iii) events
which are an alternative to method invocation for sending data. JavaBeans was
primarily designed for the construction of graphical user interface. The model
defines three types of interaction points, referred to as ports: (i) methods, as in
Java, (ii) properties, used to parameterize the component at composition time,
(iii) event sources, and event sinks (called listeners) for event-based communi-
cation.
COM (Microsoft Component Object Model) [36] is one of the most

commonly used software component models for desktop and server side ap-
plications. A key principle of COM is that interfaces are specified separately
from both the components that implement them and those that use them. COM
defines a dialect of the Interface Definition Language (IDL) that is used to
specify object-oriented interfaces. Interfaces are object-oriented in the sense
that their operations are to be implemented by a class and passed a reference
to a particular instance of that class when invoked. A concept known as in-
terface navigation makes it possible for the user to obtain a pointer to every
interface supported by the object. This is based on VTable. Although COM
is primarily used as a general-purpose component model it has been ported for
development of embedded software and extended for distributed information
systems
OpenCOM [37] is a lightweight component model developed at Lancaster

University which aims at exploiting component-based techniques within mid-
dleware platforms. It is built atop a subset of Microsofts COM. These in-
clude the binary level interoperability standard, Microsofts IDL, COMs glob-
ally unique identifiers and the IUnknown interface. The higherlevel features of
COM such as distribution, persistence, transactions and security are not used.
The key concepts of OpenCOM are capsules, components, interfaces, recepta-
cles and connections. Capsules are runtime containers and they host compo-
nents. Each component implements a set of custom receptacles and interfaces.
A receptacle describes a unit of service requirement, an interface expresses a
unit of service provision, and a connection is the binding between an interface
and a receptacle of the same type.

7.7 Survey of component models 85

OSGi (Open Services Gateway Initiative) [38] is a consortium of numer-
ous industrial partners working together to define a service-oriented framework
with an open specifications for the delivery of multiple services over wide area
networks to local networks and devices. Contrary to most component defini-
tions, OSGI emphasis the distinction between a unit of composition and a unit
of deployment in calling a component respectively service or bundle. It offers
also, at contrary to most component models, a flexible architecture of systems
that can dynamically evolve during execution time. This implies that in the
system, any components can be added, removed or modified at run-time. In
relying on Java, OSGI is platform independent. There exists several additions
of OSGi that provides additional characteristics.
Palladio Component Model [39], developed at University of Oldenburg

and University of Karlsruhe, provides a domain specific modeling language
for component-based software architectures, which is tuned to enable early
life-cycle performance predictions. Palladio defines its own metamodel speci-
fied in EMF/Ecore and divided into several domain specific languages for each
developer role (i.e. component developers, software architects, system deploy-
ers and domain experts). All specifications can be combined to derive a full
Palladio component model instance. As a starting point for implementing the
systems business logic, the instance can be converted into Java code skeletons
via Model2Text transformation. Components are specified via provided and re-
quired interfaces which consist of a list of service signatures. In order to allow
accurate performance prediction, a so called resource demanding service effect
specification can be added to each provided service to describe the sequence
of called required services, resource usage, transition probabilities, loop itera-
tion numbers, and parameter dependencies. Components and their roles can be
connected via assembly connectors to build an assembly.
Pecos [40] is a joined project between ABB Corporate Research and Bern

University. Its goal is to provide an environment that supports specification,
composition, configuration checking and deployment for reactive embedded
systems built from software components. There are two types of components,
leaf components and composite components. The inputs and outputs of a com-
ponent are represented as ports. At design phase composite components are
made by linking their ports with connectors. Pecos targets C++ or Java as im-
plementation language, so the run-time environment in the deployment phase
is the one for Java or C++. Pecos enables specification of EFPs such as tim-
ing and memory usage in order to investigate in prediction of the behaviour of
embedded systems.
Pin [41] component model developed at Carnegie Mellon Software En-

86 Paper A

gineering Institute (SEI) is used as a basis in prediction-enabled component
technologies (PECTs). By using principles from PECT it aims at achieving
predictability by construction i.e. constraining the design and the implemen-
tation to analyzable patterns. To achieve predictability of a particular property
PECT proposes a building of a reasoning framework that includes a compo-
nent technology powered by analytical interface used for a specification of a
property of interest and analysis theory used in provision of the system prop-
erty composed from component properties. Accordingly, in order to perform
analysis, proper analysis theories must be found and implemented in a suitable
underlying component technology. PECT currently supports three reasoning
frameworks fro Pin Component model: ABA - for predicting average latency
in assemblies with periodic tasks, ss - for predicting average latency in stochas-
tic tasks managed by a sporadic server and ComFoRT -for formal verification
of temporal safety and liveness. Pin Components are defined in an ADL-like
language, in the component and connector style, so called Construction and
Composition Language (CCL). Pin components are fully encapsulated, so the
only communication channels from a component to its environment and back
are sink and source pins. Composition of components is obtained by connect-
ing source and sink pins and the behavior of the interaction, which is specified
as executable state machines.
ProCom [42] is a component model for control-intensive distributed em-

bedded systems being developed at PROGRESS Strategic Research Center at
Mlardalen University, Sweden. ProCom consists of two layers, in order to ad-
dress different concerns that exist at different levels of a distributed embedded
system. The upper layer, ProSys, focuses on modeling of the whole system
or large subsystems. It considers complex active subsystems as components
and captures the message flow between them. The lower layer, ProSave, serves
for modeling of ProSys components on a detailed level. It explicitly captures
the data transfer and control-flow between the components using a rich set of
connectors which makes a platform for modelling control loops in a way that
allows them to be easily analyzed and synthesized. The analysis is facilitated
by the explicit control-flow and by the abstraction provided by components
(read-execute-write semantics, encapsulation). The model provides support
for different types of analysis by making possible to attach various models (be-
haviour, timing, resource utilization, etc.) to different architectural elements
such as components, connections, subsystems, etc. Further, it considers de-
ployment as a specific activity which includes components allocations, trans-
formation of components to the entities complied with the execution model,
and synthesis, i.e. creation of a glue code.

7.7 Survey of component models 87

Robocop [43] is a component model developed by the consortium of the
Robocop ITEA project, inspired by COM, CORBA and Koala component
models. It aims at covering all the aspects of the component-based develop-
ment process for the high-volume consumer device domain. Robocop com-
ponent is a set of possibly related models and each model provides particular
type of information about the component. The functional model describes the
functionality of the component, whereas the extra-functional models include
modeling of timeliness, reliability, safety, security, and memory consumption.
Robocop components offer functionality through a set of services and each ser-
vice may define several interfaces. Interface definitions are specified in a Robo-
cop Interface Definition Language (RIDL). The components can be composed
of several models, and a composition of components is called an application.
The Robocop component model is a major source of for ISO standard ISO/IEC
23004-1:2007 Information technology - Multimedia Middleware.
Rubus [44] component was developed as a joint project between Arcticus

Systems AB and Mlardalen University. The Rubus component model runs
on top of the Rubus real-time operating system. It focuses on the real-time
properties and is intended for small resource constrained embedded systems.
Components are implemented as C functions performed as tasks. A component
specifies a set of input and output ports, persistent states, timing requirements
such as releasetime, deadline. Components can be combined to form a larger
component which is a logical composition of one or more components.
SaveCCM [45], developed within the SAVE project by several Swedish

universities, is a component model specifically designed for embedded control
applications in the automotive domain with the main objective of providing
predictable vehicular systems. SaveCCM is a simple model that constrains the
flexibility of the system in order to improve the analysability of the dependabil-
ity and of the real-time properties. The model takes into consideration the re-
source usage, and provides a lightweight run-time framework. For component
and system specification SaveCCM uses SaveCCM language which is based
on a textual XMLsyntax and on a subset of UML2.0 component diagrams.
SOFA (Software Appliances) [46] is a component model developed at

Charles University in Prague. A SOFA component is specified by its frame
and architecture. The frame can be viewed as a black box and it defines the
provided and required interfaces and its properties. However a framework can
also be an assembly of components in a composite component. The archi-
tecture is defined a grey-box view of a component, as it describes the struc-
ture of a component until the first level of nesting in the component hierar-
chy. SOFA components and systems are specified by an ADL-like language,

88 Paper A

Component Description Language (CDL). The resulting CDL is compiled by a
SOFA CDL compiler to their implementation in a programming language C++
or Java. SOFA components can be composed by method calls through connec-
tors. The SOFA 2.0 component model is an extension of the SOFA component
model with several new services: dynamic reconfiguration, control interfaces
and multiple communication styles between the components.

Bibliography

[1] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Professional, December 1997.

[2] George T. Heineman and William T. Councill. Component-Based Soft-
ware Engineering: Putting the Pieces Together. Addison-Wesley Long-
man Publishing Co., 2001.

[3] Michel Chaudron and Ivica Crnkovic. Software Engineering: Principles
and Practice, 3rd Edition, chapter chapter 18 in H. van Vliet, Component-
Based Software Engineering. Wiley, 2008.

[4] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Taylor. Moving
architectural description from under the technology lamppost. Inf. Softw.
Technol., 49(1):12–31, 2007.

[5] Medvidovic, Nenad and Taylor, Richard N. . A Classification and Com-
parison Framework for Software Architecture Description Languages.
IEEE Trans. Softw. Eng., 26(1):70–93, January 2000.

[6] Ivica Crnkovic, Michel Chaudron, and Stig Larsson. Component-based
Development Process and Component Lifecycle. Journal of Computing
and Information Technology, 13(4):321–327, November 2005.

[7] Ivica Crnkovic and Magnus Larsson. Building Reliable Component-
Based Software Systems.

[8] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien
Watkins. Making Components Contract Aware. Computer, 32(7):38–45,
1999.

89

90 Bibliography

[9] Ivica Crnkovic, Magnus Larsson, and Otto Preiss. Concerning Pre-
dictability in Dependable Component-Based Systems: Classification of
Quality Attributes. pages 257–278. 2005.

[10] Gerald Kotonya, Ian Sommerville, and Steve Hall. Towards A Classifi-
cation Model for Component-Based Software Engineering Research. In
EUROMICRO ’03: Proceedings of the 29th Conference on EUROMI-
CRO, page 43, Washington, DC, USA, 2003. IEEE Computer Society.

[11] Kung-Kiu Lau and Zheng Wang. Software Component Models. Software
Engineering, IEEE Transactions on, 33(10):709–724, 2007.

[12] Oxford advanced learners dictionary.

[13] The Object Management Group. UML Superstructure Specification v2.1,
April 2009.

[14] Stephen J. Mellor and Marc Balcer. Executable UML: A Foundation for
Model-Driven Architectures. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002. Foreword By-Jacoboson, Ivar.

[15] H.P. Breivold and M. Larsson. Component-Based and Service-Oriented
Software Engineering: Key Concepts and Principles. pages 13–20, Aug.
2007.

[16] John Reekie, Stephen Neuendorffer, Christopher Hylands, and Edward A.
Lee. Software Practice in the Ptolemy. Technical Report GSRC-TR-
1999-01, Gigascale Silicon Research Center, April 1999.

[17] Sherif Yacoub, Hany Ammar, and Ali Mili. A Model for Classifying
Component Interfaces. In Second InternationalWorkshop on Component-
Based Software Engineering, in conjunction with the 21 st International
Conference on Software Engineering (ICSE99, pages 17–18, 1999.

[18] Sherif Yacoub, Hany Ammar, and Ali Mili. Characterizing a Software
Component. In In Proceedings of the 2nd Workshop on Component-
Based Software Engineering, in conjunction with ICSE99, 1999.

[19] Klement J. Fellner and Klaus Turowski. Classification Framework for
Business Components. InHICSS ’00: Proceedings of the 33rd Hawaii In-
ternational Conference on System Sciences-Volume 8, page 8047, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

Bibliography 91

[20] AUTOSAR Development Partnership. Technical Overview V2.2.1,
February 2008. Available from www.autosar.org.

[21] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Heteroge-
neous Real-time Components in BIP. In Proceedings of the 4th IEEE
International Conference on Software Engineering and Formal Methods,
pages 3–12. IEEE, 2006.

[22] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph
Sifakis. The IF Toolset. In SFM, pages 237–267, 2004.

[23] Gregor Gssler. Prometheus - A Compositional Modeling Tool for Real-
Time Systems.

[24] Ji Eun Kim, Rahul Kapoor, Martin Herrmann, Jochen Haerdtlein, Franz
Grzeschniok, and Peter Lutz. Software Behavior Description of Real-
Time Embedded Systems in Component Based Software Development.
In ISORC ’08: Proceedings of the 2008 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing, pages 307–311, Washington,
DC, USA, 2008. IEEE Computer Society.

[25] Ji Eun Kim, Oliver Rogalla, Simon Kramer, and Arne Haman. Extract-
ing, Specifying and Predicting Software System Properties in Component
Based Real-Time Embedded Software Development. In Proceedings of
the 31st International Conference on Software Engineering (ICSE), 2009.

[26] Xu Ke, Krzysztof Sierszecki, and Christo Angelov. COMDES-II:
A Component-Based Framework for Generative Development of Dis-
tributed Real-Time Control Systems. In Proceedings of the 13th IEEE
International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, pages 199–208. IEEE, 2007.

[27] Rmi Bastide and Eric Barboni. Component-Based Behavioural Mod-
elling with High-Level Petri Nets. In MOCA ’04 - Third Workshop
on Modelling of Objects, Components and Agents , Aahrus, Denmark ,
11/10/04-13/10/04, pages 37–46. DAIMI, octobre 2004.

[28] OMG CORBA Component Model v4.0. Available from http://www.
omg.org/docs/formal/06-04-01.pdf.

[29] EJB 3.0 Expert Group. JSR 220: Enterprise JavaBeansTM,Version 3.0
EJB Core Contracts and Requirements Version 3.0, Final Release, May
2006.

92 Bibliography

[30] E Bruneton, T Coupaye, and J Stefani. The Fractal component model
specification. The ObjectWeb Consortium, Tech. Rep., Februar, 2004.

[31] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The Koala Component Model for Consumer Electronics Software. Com-
puter, 33(3):78–85, 2000.

[32] Atkinson, Colin and Bayer, Joachim and Bunse, Christian and Kamsties,
Erik and Laitenberger, Oliver and Laqua, Roland and Muthig, Dirk and
Paech, Barbara and Wüst, Jürgen and Zettel, Jörg. Component-based
product line engineering with UML. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2002.

[33] IEC. Application and Implementation of IEC 61131-3. IEC, 1995.

[34] IEC. IEC 61499 Function Blocks for Embedded and Distributed Control
Systems Design. IEC, 2005.

[35] Sun Microsystems. JavaBeans specification, 1997.

[36] D Box. Essential COM. Object Technology Series. Addison-Wesley,
1997.

[37] M Clarke, GS Blair, G Coulson, and N Parlavantzas. An Efficient Com-
ponent Model for the Construction of Adaptive Middleware. Proceedings
of the IFIP/ACM International Conference on Middleware, 2001.

[38] OSGi Alliance. OSGi Service Plaform Core Specification, V4.1, 2007.

[39] S Becker, H Koziolek, and R Reussner. Model-Based Performance Pre-
diction with the Palladio Component Model. the 6th international work-
shop on Software and performance, 2007.

[40] M Winter, C Zeidler, and C Stich. The PECOS software process.
Workshop on Components-based Software Development Processes, ICSR,
2002.

[41] Scott Hissam, James Ivers, Daniel Plakosh, and Kurt C. Wallnau. Pin
Component Technology (V1.0) and Its C Interface. Technical Note:
CMU/SEI-2005-TN-001, April 2005.

[42] Séverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carlson, and
Ivica Crnkovic. A Component Model for Control-Intensive Distributed

Embedded Systems. In Michel R.V. Chaudron and Clemens Szyperski,
editors, Proceedings of the 11th International Symposium on Compo-
nent Based Software Engineering (CBSE2008), pages 310–317. Springer
Berlin, October 2008.

[43] H. Maaskant. A Robust ComponentModel for Consumer Electronic Prod-
ucts, volume 3 of Philips Research, pages 167–192. Springer, 2005.

[44] Arcticus Systems. Rubus Software Components.
www.arcticus-systems.com.

[45] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE approach to component-based development of vehicular systems.
Journal of Systems and Software, 80(5):655–667, May 2007.

[46] T Bure, P Hntynkal, and F Plil. SOFA 2.0: Balancing Advanced Features
in a Hierarchical Component Model. Proceedings of SERA, 2006.

Chapter 8

Paper B:
A Component Model for
Control-Intensive
Distributed Embedded
Systems

Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, and Ivica
Crnković
In Proceedings of the 11th International Symposium on Component Based
Software Engineering (CBSE2008), Karlsruhe, Germany, October, 2008.

95

Abstract

In this paper we focus on design of a class of distributed embedded systems that
primarily perform real-time controlling tasks. We propose a two-layer compo-
nent model for design and development of such embedded systems with the
aim of using component-based development for decreasing the complexity in
design and providing a ground for analyzing them and predict their properties,
such as resource consumption and timing behavior. The two-layer model is
used to efficiently cope with different design paradigms on different abstrac-
tion levels. The model is illustrated by an example from the vehicular domain.

8.1 Introduction 97

8.1 Introduction

A special class of embedded systems are control-intensive distributed systems
which can be found in many products, such as vehicles, automation systems, or
distributed wireless networks. In this category of systems as in most embedded
systems, resources limitations in terms of memory, bandwidth and energy com-
bined with the existence of dependability and real-time concerns are obviously
issues to take into consideration.

Another problem when developing such systems is to deal with the rapidly
increasing complexity. For example in the automotive industry, the complexity
of the electronic architecture is growing exponentially, directed by the demands
on the driver’s safety, assistance and comfort [1]. In this class of systems, dis-
tribution is also an important aspect. The architecture of the electronic systems
is distributed all over the corresponding product (car, production cell, etc.),
following its physical architecture, to bring the embedded system closer to the
sensed or controlled elements.

In this paper, we propose a new component model called ProCom with
the following main objectives: (i) to have an ability of handling the different
needs which exist at different granularity levels (provide suitable semantics at
different levels of the system design); (ii) to provide coverage of the whole
development process; (iii) to provide support to facilitate analysis, verification,
validation and testing; and (iv) to support the deployment of components and
the generation of an optimized and schedulable image of the systems. The
focus of this paper is on the component model itself, described as means for
designing and modelling system functionality and as a framework that enables
integration of different types of models for resource and timing analysis.

The component model is a part of the PROGRESS approach [2] that distin-
guishes three key activities in the development: design, analysis and deploy-
ment. The design activity provides the architectural description of the system
compliant with the semantic rules of the component model presented in this
paper and enables the integration analysis and deployment capabilities. Anal-
ysis is carried out to ensure that the developed embedded system meets its de-
pendability requirements and constraints in terms of resource limitations. The
proposed component model provides means to handle and reuse the different
information generated during the analysis activity. The deployment activity is
specific for control-intensive embedded systems; due to timing requirements
and resource constraints, the execution models can be very different from the
design models. Typically, execution units are processes and threads of tasks.

The main focus of this paper is oriented towards system design. The two

98 Paper B

supplementary activities (analysis and deployment) are outside the scope of the
paper. A component model that enables a reusable design, takes into considera-
tion the requirements’ characteristics for control-intensive embedded systems,
and is used as an integration frame for analysis and deployment, is elaborated
in the subsequent sections.

The ideas underlying ProCom emanate partly from the previous work on
the SaveComp Component Model (SaveCCM) [3] within the SAVE project,
such as the emphasis on reusability, a possibility to analyse components for
timing behavior and safety properties. Several other concepts and component
models have inspired the ProCom Design. Some of them are the Rubus compo-
nent model [4], Prediction-Enabled Component Technology (PECT) [5], AU-
TOSAR [1], Koala [6], the Robocop project [7], and BIP [8].

8.2 The ProCom two layer component model
In designing our component model, we have aimed at addressing the key con-
cerns which exist in the development of control-intensive distributed embedded
systems. We have analyzed these concerns in our previous work [9], with the
conclusion that in order to cover the whole development process of the systems,
i.e. both the design of a complete system and of the low-level control-based
functionalities, two distinct levels of granularity are necessary.

Taking into consideration the difference between those levels, we propose
a two-layer component model, called ProCom. It distinguishes a component
model used for modelling independent distributed components with complex
functionality (called ProSys) and a component model used for modelling small
parts of control functionality (called ProSave). ProCom further establishes how
a ProSys component may be modelled out of ProSave components. The fol-
lowing subsections describe both of the layers and their relation. The complete
specification of ProCom is available in [10].

8.2.1 ProSys — the upper layer
In ProSys, a system is modeled as a collection of concurrent, communicat-
ing subsystems, possibly developed independently. Some of those subsystems,
called composite subsystems, can in turn be built out of other subsystems, thus
making ProSys a hierarchical component model. This hierarchy ends with the
so-called primitive subsystems, which are either subsystems coming from the
ProSave layer or non-decomposable units of implementation (such as COTS

8.2 The ProCom two layer component model 99

or legacy subsystems) with wrappers to enable compositions with other sub-
systems. From a CBSE perspective, subsystems are the “components” of the
ProSys layer, i.e., design or implementation units that can be developed inde-
pendently, stored in a repository and reused in multiple applications.

The communication between subsystems is based on the asynchronous
message passing paradigm which allows transparent communication (both lo-
cally or distributed over a bus). A subsystem is specified by typed input and
output message ports, expressing what type of messages the subsystem re-
ceives and sends. The specification also includes attributes and models related
to functionality, reliability, timing and resource usage, to be used in analysis
and verification throughout the development process. The list of models and
attributes used is not fixed and can be extended.

Message ports are connected via message channels— explicit design enti-
ties representing a piece of information that is of interest to several subsystems
— as exemplified in Fig. 8.1. The message channels make it possible to express
that a particular piece of shared data will be required in the system, before any
producer or receiver of this data has been defined. Also, information about
shared data such as precision, format, etc. can be associated with the message
channel instead of with the message port where it is produced or consumed.
That way, it can remain in the design even if, for example, the producer is
replaced by another subsystem.

Figure 8.1: Three subsystems communicating via a message channel.

8.2.2 ProSave — the lower layer
The ProSave layer serves for the design of single subsystems typically inter-
acting with the system environment by reading sensor data and controlling ac-
tuators accordingly. On this level, components provide an abstraction of tasks
and control loops found in control systems.

A subsystem is constructed by hierarchically structured and interconnected
ProSave components. These components are encapsulated and reusable design-

100 Paper B

time units of functionality, with clearly defined interfaces to the environment.
As they are designed mainly to model simple control loops and are usually not
distributed, this component model is based on the pipes-and-filters architectural
style with an explicit separation between data and control flow. The former is
captured by data ports where data of a given type can be written or read, and
the latter by trigger ports that control the activation of components.

A ProSave component is of a collection of services, each providing a par-
ticular functionality. A service consists of an input port group containing the
activation trigger and the data required to perform the service, and a set of
output port groups where the data produced by the service will be available.
Fig. 8.2 illustrates these concepts. The data of an output group are produced at
the same time, at which the trigger port of that group is also activated. Having
multiple output groups allows the service to produce time critical parts of the
output early.

S1

S2

Figure 8.2: A ProSave component with two services; S1 has two output groups
and S2 has a single output group. Triangles and boxes denote trigger- and data
ports, respectively.

ProSave components are passive, i.e. they do not contain their own execu-
tion threads and cannot initiate activities on their own. So each service remains
in a passive state until its input trigger port has been activated. Once activated,
the data input ports are read in one atomic operation and the service switches
into an active state where it performs internal computations and produces data
on its output ports. Before the service returns to the inactive state again, each
of its output groups should be written exactly once.

Input data ports can receive data while the service is active, but it would
only be available the next time the service is activated. This simplifies analysis
by ensuring that once a service has been activated it is functionally (although
not temporally) independent from other components executing concurrently.

A component also includes a collection of structured attributes which de-

8.2 The ProCom two layer component model 101

fine simple or complex types of component properties such as behavioural
models, resource models, certain dependability measures, and documentation.
These attributes can be explicitly associated with a specific port, group or ser-
vice (e.g. the worst case execution time of a service, or the value range of a
data port), or related to the component as a whole, for example a specification
of the total memory footprint. New attribute types can also be added to the
model.

The functionality of a component can either be realized by code (prim-
itive component), or by interconnected sub-components (composite compo-
nent). For primitive components, in addition to a function called at system
startup to initialise the internal state, each service is implemented as a single
non-suspending C function. Fig. 8.3 shows an example of the header file of a
primitive component.

typedef struct {
int *speed;
float *dist;

} in_S1;

typedef struct {
int *control;

} out_S1;

void init();
void entry_S1(in_S1 *in, out_S1 *out);

Figure 8.3: A primitive component and the corresponding header file.

Composite components internally consist of sub-components, connections
and connectors. A connection is a directed edge which connects two ports
(output data port to input data port of compatible types and output trigger port
to input trigger port) whereas connectors are constructs that provide detailed
control over the data- and control-flow. The existence of different types of con-
nectors and the simple structure of components makes it possible to explicitly
specify and then analyse the control flow, timing properties and system perfor-
mance.

The set of connectors in ProSave, selected to support typical collaboration
patterns, is extensible and will grow over time as additional data- and control-
flow constructs prove to be needed. The initial set includes connectors for
forking and joining data or trigger connections, or selecting dynamically a path
of the control flow depending on a condition. Fig. 8.4 shows a typical usage of
the selection connector together with or connectors.

ProSave follows the push-model for data transfers and the triggered service

102 Paper B

always uses the latest value written to each input data port. Since communica-
tion may eventually be realised over a physical connection, the transfer of data
and triggering is not an atomic operation. For triggering and data appearing
together at an output group, however, the semantics specify that all data should
be delivered to their destinations before the triggering is transferred, to avoid
components being triggered before the data arrives.

A

B

C D

Selection

Data

or

Control

or

Figure 8.4: A typical usage of selection and or connectors. When component
A is finished, either B or C is executed, depending on the value at the selection
data port. In either case, component D is executed afterwards, with the data
produced by B or C as input.

8.2.3 Integration of layers— combining ProSave and ProSys
ProCom provides a mechanism for integrating the low-level design of a sub-
system described by ProSave into the high-level design described by ProSys.
A ProSys primitive subsystem can be further specified using ProSave (as ex-
emplified in Fig. 8.6). Concretely, in addition to ProSave components, con-
nections and ProSave connectors, additional connector types are introduced to
(a) map the architectural style (message passing used in ProSys to pipes-and-
filters used in ProSave, and vice versa), and (b) specify periodic activation of
ProSave components.

Periodic activation is provided by the clock connector, with a single out-
put trigger port which is repeatedly activated at a given rate. To achieve the
mapping from message passing to trigger and data, and vice versa, the mes-
sage ports of the enclosing primitive subsystem are treated as connectors with
one trigger port and one data port when appearing on the ProSave level. An
input message port corresponds to a connector with output ports. Whenever a
message is received by the message port, it writes the message data to the out-
put data port and activates the output trigger. Oppositely, output message ports

8.3 Example 103

correspond to a connector with an input trigger and input data ports. When
triggered, the current value of the data port is sent as a message.

These composition mechanisms do not only allow a consistent design of
the entire system by integrated pre-existing subsystems but also provide mech-
anisms for analysis of particular attributes such as timing properties or per-
formance of the entire system using specifications or analysis results of the
subsystems.

8.3 Example
To illustrate the ProCom component model we use as an example an electronic
stability control (ESC) system from the vehicular domain. In addition to anti-
lock braking (ABS) and traction control (TCS), which aim at preventing the
wheels from locking or spinning when braking or accelerating, respectively,
the ESC also handles sliding caused by under- or oversteering.

The ESC can be modeled as a ProSys subsystem, as shown in Fig. 8.5.

Figure 8.5: The ESC is a composite subsystem, internally modelled in ProSys.

Inside, we find subsystems for the sensors and actuators that are local to
the ESC. There are also subsystems corresponding to specific parts of the ESC
functionality (SCS, TCS and ABS). In the envisioned scenario, the TCS and
ABS subsystems are reused from previous versions of the car, while SCS corre-

104 Paper B

sponds to the added functionality for handling under- and oversteering. Finally,
the “Combiner” subsystem is responsible for combining the output of the three.

The internal structure of a SCS primitive subsystem is modeled in ProSave
(see Fig. 8.6). The SCS contains a single periodic activity performed at a fre-
quency of 50 Hz, expressed by a clock connector. The clock first activates the
two components responsible for computing the actual and desired direction,
respectively. When both components have finished their respective tasks, the
“Slide detection” component compares the results (i.e., the actual and desired
directions) and decides whether or not stability control is required. The fourth
component computes the actual response, i.e., the adjustment of brakeage and
acceleration.

Figure 8.6: The SCS subsystem, modelled in ProSave.

8.4 Conclusions
We have presented ProCom, a component model for control-intensive dis-
tributed embedded systems. The model takes into account the most important
characteristics of these systems and consistently uses the concept of reusable
components throughout the development process, from early design to deploy-
ment. A characteristic feature of the domain we consider is that the model of
a system must be able to provide both a high-level view of loosely coupled
subsystems and a low-level view of control loops controlling a particular piece
of hardware. To address this, ProCom is structured in two layers (ProSys and
ProSave). At the upper layer, ProSys, components correspond to complex ac-
tive subsystems communicating via asynchronous message passing. The lower
layer, ProSave, serves for modelling of primitive ProSys components. It is

8.4 Conclusions 105

based on primitive components implemented by C functions, and explicitly
captures the data transfer and control flow between components using a rich
set of connectors.

The future work on ProCom includes elaborating on advanced features of
the component model (e.g. static configuration, mode shifting, error-handling,
etc.), building an integrated development environment and evaluating the pro-
posed approach in real industrial case-studies.

Acknowledgement
This work was partially supported by the Swedish Foundation for Strategic
Research via the strategic research centre PROGRESS.

Bibliography

[1] AUTOSAR Development Partnership. Technical Overview V2.2.1,
February 2008. Available from www.autosar.org.

[2] Hans Hansson, Mikael Nolin, and Thomas Nolte. Beating the Automotive
Code Complexity Challenge. In National Workshop on High-Confidence
Automotive Cyber-Physical Systems, Troy, Michigan, USA, April 2008.

[3] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE approach to component-based development of vehicular systems.
Journal of Systems and Software, 80(5):655–667, May 2007.

[4] Arcticus Systems. Rubus Software Components.
www.arcticus-systems.com.

[5] Kurt C. Wallnau. Volume III: A Technology for Predictable Assembly
from Certifiable Components (PACC). Technical Report CMU/SEI-2003-
TR-009, Carnegie Mellon, 2003.

[6] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The Koala Component Model for Consumer Electronics Software. Com-
puter, 33(3):78–85, 2000.

[7] Robocop project page.
www.extra.research.philips.com/euprojects/robocop.

[8] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Heteroge-
neous Real-time Components in BIP. In Proceedings of the 4th IEEE
International Conference on Software Engineering and Formal Methods,
pages 3–12. IEEE, 2006.

107

[9] Tomáš Bureš, Jan Carlson, Séverine Sentilles, and Aneta Vulgarakis.
A Component Model Family for Vehicular Embedded Systems. In
The Third International Conference on Software Engineering Advances.
IEEE, October 2008.

[10] Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and
Aneta Vulgarakis. ProCom – the Progress Component Model Refer-
ence Manual, version 1.0. Technical Report MDH-MRTC-230/2008-1-
SE, Mälardalen University, June 2008.

Chapter 9

Paper C:
Embedded Systems
Resources: Views on
Modeling and Analysis

Aneta Vulgarakis and Cristina Seceleanu
In Proceedings of the 1st IEEE International Workshop On Component-Based
Design Of Resource-Constrained Systems (CORCS 2008), IEEE CS, Turku,
Finland, July, 2008.

109

Abstract

The conflicting requirements of real-time embedded systems, e.g. minimizing
memory usage while still ensuring that all deadlines are met at run-time, re-
quire rigorous analysis of the system’s resource consumption, starting at early
design stages. In this paper, we glance through several representative frame-
works that model and estimate resource usage of embedded systems, pointing
out advantages and limitations. In the end, we describe our own view on how
to model and carry out formal analysis of embedded resources, along with de-
veloping the system.

9.1 Introduction 111

9.1 Introduction

Embedded systems (ES) are designed to perform dedicated functions, often
under real-time computing constraints. In most cases, they are made of com-
ponents that communicate with each other and the environment via sensors
and actuators. The resources that such systems use (CPU share, memory, en-
ergy, bus bandwidth, ports etc.) are limited in capacity, expensive and (usually)
not extensible during the system’s lifetime. In contrast to the fixed nature of
available resources, software can be subjected to change. To ensure that the
combination of components fits on a particular target platform, one needs to be
able to estimate the resource consumed by the application software. Further, to
facilitate reuse and fast integration of pre-designed components, the ES design
techniques should cover systems having minimal resource requirements.

The limited nature of the available resources, especially memory size and
computation resources, complicates meeting the real-time constraints. Hence,
the ability to quantify and reason about trade-offs between various resources,
under given technical constraints, is essential. Predictionmethods for resource
usage should be available throughout the whole system’s development lifecy-
cle. Access to such information at early stages of design can help the designer
to prevent resource conflicts at run-time. This can, in turn, help to decrease the
ES’ development time and, consequently, reduce development costs. Analysis
will then require models of resource usage and theories for composing resource
usage models.

Extensive research has been recently devoted to modeling and analyzing
ES resource consumption, in component-based design frameworks. Code-level
memory estimation for, e.g. Koala- [1, 2] and Robocop- based [3] composi-
tions, as well as higher-level formal approaches [4–7] aim to establish whether
certain resource-related properties hold for a system model.

The main problem of building an ES is correlating its various models of dif-
ferent degrees of detail, which are related via abstraction or refinement. This
impacts also on transferring the resource analysis results from one design stage
to another. Even so, performing resource consumption analysis at design-time
might guide the selection of the appropriate components from existing reposi-
tories, when adopting a bottom-up ES design method. Similarly, in a top-down
approach, it could help in the correct decomposition of the system’s speci-
fication into smaller parts (sub-systems) such that the latter could be easier
matched by existing sub-systems.

Designing a predictable ES amounts, among other things, to establishing
that the required resources do not exceed the available resources. For many

112 Paper C

ES, costs and other constraints make it important to “minimize” resource us-
age. Here, we advocate a deployment-oriented view of ES resource modeling
and analysis. For this, we argue that it is important, first, to keep the abstracted
hardware model at similar level of detail as the one of the software model, such
that the resource-usage analysis can become progressively refined, depending
on the design stage; second, we believe that striving for a general formal frame-
work that could be uniformly used throughout the design cycle could be of
great help in solving the problem of correlating analysis results.

The variety of approaches existing in the literature indicates the possible
difficulty in gathering all resource reasoning in one uniform theory. This calls
for a fresh look on resource-aware design methods, based on the lessons drawn
from the existing component-based approaches. In the following, we survey
some of the current trends in analyzing ES resource accesses, and point out
their limitations. We end by describing our view on what is needed to make
such methods applicable on a variety of ES, and underline the essential de-
mands of a resource-aware component-based design perspective.

9.2 Motivating Example

The systematic analysis of the resource consumption of an embedded system
must include ways of semantic representation of various types of resources, be
they of continuous, monotonic type (like energy), of continuous, non-monotonic
type (like memory), or of discrete nature (e.g. I/O ports). A representative anal-
ysis goal would be to answer the feasibility question: does the composition of
the worst-case resource requirements of components stay within the available
resources provided by the implementation platform? Checking whether the
resource-wise composition is feasible might not be always straightforward.

{R }C3

{R }C2

{R }C1

{R }Cn

C1

C2

C3

Cn

Figure 9.1: n-component Embedded System with resource annotations.

9.2 Motivating Example 113

In practice, it may be often necessary to replace a component with another
one having the same functionality, yet using a more sophisticated control al-
gorithm that requires bigger memory resources. Alternatively, if we assume a
repository of models, the designer might need, at some point, a refined com-
ponent model, with modified behavior or more efficiently implementable data
structures.

Let us now imagine the following scenario. Suppose that we start build-
ing up an embedded system for which we identify the interconnected software
components as being C1, C2, . . . , Cn (see Figure 9.1). The dotted lines repre-
sent connections to other possible system components. We also assume that the
hardware abstraction provides us with global available resources R. Consider
that the computed resource requirement of C1 is RC1, of C2, RC2 and so on.
In Figure 9.1, the components are annotated with this information.

Suppose now that a different designer wants to use some component B,
from the repository, instead of C1 (for one of the reasons mentioned previ-
ously). So, we replace C1 by B, both functionally and resource-wise. How-
ever, it so happens that B needs more resources than C1 to perform its function:
RB > RC1. Intuitively, the resource feasibility test will fail for the new com-
position, thus preventing us from accommodating B. In order to be able to
include B in the system, we need to “fine-tune”, in the sense of decreasing
enough, the resource requirements of one or more components, for instance,
by code-optimization. Then, by rechecking resource feasibility, we should get
a positive answer.

A more challenging situation arises if we do not have access to the com-
ponents implementation. How can we then accommodate B? One could think
of trying to change the communication between components, or maybe the al-
location of components to hardware units. We would be interested to assess,
before deployment, how would any of these design decisions affect the system
overall resource consumption. This amounts to finding an appropriate trade-off
between different configuration requirements and constraints.

Performing all kinds of analysis of the embedded system’s resource usage,
starting at an early stage of design, and up to an as close to implementation
stage as possible, is extremely desirable. First, it allows for carrying out a
potentially large number of design experiments, without increasing cost. Sec-
ond, it may guide designers in making correct decisions, such as selecting the
right components from some repository, choosing among various admissible
architectural designs, or transforming a component model into one with less
resource requirements.

114 Paper C

9.3 Modeling and Analyzing ES Resources: Rep-
resentative Current Approaches

9.3.1 Koala and Robocop: Code-level Analysis
The importance of predicting resource consumption of component assemblies
has motivated many researchers to investigate the issue. Compositional ways
of estimating the static memory consumption of Koala-based embedded sys-
tem models are already here to help us live up to the resource prediction chal-
lenge [1, 2]. Koala [8] is a software component model, introduced by Philips
Electronics, designed to build product families of consumer electronics. In
the mentioned approaches, resource information is exposed at the component’s
interface. The provides interface defines the operations offered by the compo-
nent, whereas the requires interface defines the operations of other interfaces
that the component needs to use. Since in a Koala model all the external func-
tionality that is required by the component needs to go through the “requires”
interface, it is somewhat straightforward to estimate the use of the system’s
resources, such as memory consumption. To estimate a Koala component’s
static memory consumption, one can assume that a special type of reflection
provides the interface. For this purpose, Eskenazi et al. introduce the interface
IResource, which contains the memory consumption demands of each com-
ponent (see Figure 9.2). Each of this interface’s members corresponds to a
particular type of memory. A formula for estimating the memory size of each
type of memory is added to the IResource implementation. Since the static
properties of a compound component are specified in the reflection interface of
its constituents, it follows that it is possible to reuse the respective components
in a similar, yet different, composition, without changing its specification.

The above technique supports budgeting, that is, the expected values of the
resource consumption of non-implemented components can also be accounted
for. An important drawback of the approach is that it can only be used on spe-
cific, reduced-size scenarios and concrete component model for which the set
of components instantiated in a composition is known before run-time. How-
ever, in real-world applications, the situation is much more complicated. If the
set of instantiated components changes during run-time, the method will only
estimate the memory consumption of the composition for a snapshot of com-
ponents instantiated at that moment. A lot of experiments, measurements and
simulations need to be carried out on the application.

Full state-space analysis of system models is most of the time accompanied
by combinatorial complexity, as encountered by model checking approaches.

9.3 Modeling and Analyzing ES Resources: Representative Current
Approaches 115

<<interface>>
interface IResource

{

 long XROMCODE_size;

 long XROMDATA_size;

 lomg IROMCODE_size;

 long IROMDATA_size;

 long XRAM_size;

 long IDRAM_size;

 long SRAM_size;

 long STACK_size;

 Bool iPresent();

}

Figure 9.2: Example of an ”IResource” interface of a Koala component.

In order to avoid such complexity, Jonge et al. [3] introduce a scenario-based
prediction of run-time resource consumption, this time for the Robocop com-
ponent model [9], a variant of the Koala component model. This approach
delivers resource estimations for a set of scenarios that represent critical us-
ages/executions of the system. The proposed resource model specifies the pre-
dicted resource consumption for all the operations implemented by the services
of an executable component. As such, the model contains a number of cost
functions that give the operations’ costs. There can be multiple cost functions,
for each resource. To increase the faithfulness of the prediction, the resources
that are claimed and released are specified per operation. Figure 9.3 shows
a revised example of how the service specification is done in [3]. Basically, it
specifies service s1 that requires interfaces I2 and I3, and provides interface I1.
Service s1 implements the operation f that uses the operations g and h from
interfaces I2 and I3, respectively. In Figure 9.3, we assume that operation f

requires 1200 cpu cycles, without counting the invocations of I2.g and I3.h;
also, operation f claims 100 bytes of memory before execution, and releases
100 bytes after finishing execution.

Similar to the reflection interface of the Koala component model, this method
is also dealing with static resource consumption, since it is assumed that con-
sumption of resources stays constant per operation. In reality, the former typ-
ically depends on parameters passed to operations and previous actions. In
addition, the validity of the analysis results still depends on the scenario se-
lection. Moreover, synchronization protocols for analyzing shared resource
accesses are not supported. On the other hand, this approach fits very well
within current system design practice, such as UML [10], where the dynamics
of systems are modeled using scenarios.

116 Paper C

service s1

 requires I2

 requires I3

provides I1 {

 operation f

 uses I2.g

 uses I3.h

 resource cpu

 require 1200

resource memory

 claim 100

 release 100

behavior

 operation f calls:

 I2.g*;

 I3.h}

Figure 9.3: Example of a Robocop component’s service specification.

The research reviewed so far has been mainly dealing with estimating static
memory usage. In many meaningful platform dependent applications, the
problem of dynamic resource allocation is acute. Huh et al. [11] address such
problem and solve it via dynamic load balancing techniques: in case the fea-
sibility test fails, one can either increase the available budget of the current
host, or migrate the application to the next best available host. However, this is
mostly applicable on distributed, heterogenous systems.

9.3.2 UML-based Analysis
Low-level, code-driven resource estimates are invaluable when one has access
to the implementation of the components, and especially when the components
conform to a particular model. Nevertheless, more abstract descriptions of the
expected resource usage are also needed in cases of not-yet implemented com-
ponents or when the designer has to select components from existing reposito-
ries, and adapt them to fit the design.

Such abstract descriptions have to not only state what and how many re-
sources are needed, but they should also include information of when and for
how long must the resources be available. This extra requirement calls for
system specification languages. The latter range from fully formal temporal
logics [4] and process algebras [12], to the less formal, yet widely used, Uni-
fied Modeling Language (UML) [10]. Let us look at some of the UML-based
attempts to tackle the analysis of embedded resources.

Baum et al. [13] present a structured approach of describing resource-usage
scenarios. For this, they distinguish between two basic classes of resources:
timed-shared and space-shared. Baum argues that any technique for model-
ing resource-usage scenarios has to consider three description aspects: service

9.3 Modeling and Analyzing ES Resources: Representative Current
Approaches 117

requirements, service provision and resource interaction. Service provision
captures the characteristics of the services offered by the resource, whereas
service requirements describe the resource’s demands. Finally, resource inter-
action links service requirements with provisions. However, such a modeling
approach lacks the ability to extend towards a formal description that could
provide us with more accurate resource reasoning results.

The UML profile for Schedulability, Performance and Time (UML/SPT)
[14] is a framework for modeling concurrency, resources and timing concepts,
which eventually produces models for schedulability and performance analy-
sis. From the user’s point of view, UML/SPT provides a set of stereotypes and
related tag values (i.e., “attributes” in UML 2.0) that can be used by the modeler
for the annotation of the model elements and for performing analysis. The core
of the profile is the General Resource Modeling (GRM) framework. The GRM
describes resource types, their static and dynamic interaction with the system,
and their management. Each resource offers services for which the effective-
ness or quality of service (QoS) is measured. One advantage of the framework
is that both static and dynamic resource requirements can be checked against;
the disadvantage is the lack of a unique semantical interpretation.

Resources can also be modeled within UML-based simulative environ-
ments [15]. For this, Amar et al. extend the UML notation with new stereo-
types for performance related items: resource types. The software architecture
and the resources that the software components require are both represented in
the same capsule diagram, which is split in two parts: the software side and the
resource side.

We exemplify the modeling idea of such an approach through the following
example.

Example: A Simple Light Switch System. Consider an ES composed of a
display and a fan component, which are turned on/off by the same switch [16].
The software that implements both the light display’s and the fan’s behaviors
utilize memory and processor computational resources.

The software architecture is described by the display and the fan capsules,
and the resources that these components require are represented by two more
capsules: the memory and the processor. (see Figure 9.4). The behaviors of
the light display, the switch and the fan are depicted in Figure 9.5. The re-
source requests issued by the display and the fan application software include
the amount of memory/processor needed by each to execute the respective soft-
ware block.

Suppose that the display application needs 300 bytes of memory and a share

118 Paper C

MemoryDemand

ProcessorDemand MemoryDemand

ProcessorDemand

 Memory

 Processor

 LightDisplay

MemoryDemand

ProcessorDemand

Communications

Communications

 Fan

Figure 9.4: Two-sided capsule diagram.

FanOFF

SwitchUp

SwitchDown

FanON

SwitchUp

SwitchDown

UpDown

LightDisplayOFF

SwitchUp

SwitchDown

LightDisplayON

Figure 9.5: Behavioral diagrams.

Resource_Interface

 Processor
 Main
Dispatcher

 Memory Internal
Dispatcher

 Processor
Processor_Interface

Configuring

WaitingToForward

Initial

Configuration_Complete

Incoming_Job

Registration

Configuring

WaitingToForward

Initial

Configuration_Complete

Process_Job

Registration

Processed_Job

Idle

Initial
Job_arrived

Process_Job

Busy
Job_finished

Figure 9.6: Resource model.

9.3 Modeling and Analyzing ES Resources: Representative Current
Approaches 119

of 25% processor time to be turned (and while) “on”, and just 100 bytes of
memory and 5% processor time to be turned “off” (similar for the software that
controls the fan). The resource side is composed by a Main Dispatcher and
two resource types: memory and processor. In Figure 9.6 three new stereo-
types have been introduced as capsules: a high-level Main Dispatcher, a low
level Internal Dispatcher, and a Processor resource. The state diagrams of
these stereotypes can be seen in the lower part of Figure 9.5. The processor
is modeled by a simple state diagram: upon a job’s arrival the system is in
“busy” state, returning to “idle” when no job is to be served anymore. When
the requested memory/processor share, needed for turning on or off the display
and/or the fan, has been consumed, a notification is sent to the internal dis-
patcher and then forwarded to the main dispatcher. The latter checks whether
the completed resource request has been satisfied, e.g. whether 300 bytes of
memory have been provided to turn on the display, or if the processor utiliza-
tion has been no more than 5%, for turning the same display off.

Although graphical and intuitive, the above approach is based on a simu-
lative environment, hence one can not entirely guarantee the feasibility of the
architecture, but rather provide a partial answer.

9.3.3 Formal Reasoning on Embedded Resources
Process Algebraic Approaches. In an attempt to unify formal modeling and
analysis of ES resources, Lee et al. [7, 17, 18] open a new gate: they propose a
family of process-algebraic formalisms that can theoretically account for vari-
ous resource types. The family relies on algebra of communicating shared re-
sources (ACSR), a discrete-time process algebra that extends classical process
algebras with the notion of resource. The starting point of the modeling is the
introduction of a resource as a generic, first-class modeling entity. This comes
closer to our wish of being able to correlate various analysis results at different
abstraction levels. The authors characterize the resource by a set of attributes,
such as timing parameters, probability of failure (π, assumed constant), pri-
ority (pr, variable), power consumption (pc, variable) etc., which capture the
resource’s behavior. For instance, a class of resources that may experience fail-
ures, consume power and whose use can be regulated by properties is captured
by the following model:

R : [π :< [0, 1] : stat>, pc :< int : dyn>, pr :< int : dyn>]

The authors consider sets of resource classes deemed useful for embedded
real-time systems: serially reusable shared resources, used to model processor

120 Paper C

units, communication resources, used to model synchronous and asynchronous
communication channels, and multi-capacity resources that naturally corre-
spond to memory modules. In addition, the general framework is instantiated
to several progressively more complex application domains [18].

A first instantiation is Milner’s calculus of communicating systems (CCS)
[12], in which the resource constraints are equated to just communication con-
straints between concurrent processes. For example, one can formally enforce
model correctness by composing in parallel two processes that send and re-
ceive on the same channel. Such an analysis is pretty restricted, as we need to
account for other types of resources, as well. Consequently, the authors pro-
ceed to extending CCS towards ACSR, which considers time and priorities as
resource attributes. An important restriction is the assumption that each ac-
tion takes exactly one time unit, and that only one process may use a resource
during a time step. However, the extension allows for more complex formal
analysis, such as correct time reservation of concurrent processes, based on
their synchronous execution. The semantic translation of the model gives rise
to a transition system that captures the nondeterministic behavior of processes.

Fault-tolerance analysis of embedded real-time systems can be carried out
within probabilistic resource failure in real-time process algebra (PACSR), the
probabilistic extension of ACSR [18]. Last but not least, memory use is cap-
tured as a shared resource among concurrent processes, in the multi-capacity
resources algebra (MCSR). Multi-capacity resources are introduced as a new
class with two attributes: the capacity of a resource and the memory used by a
process during one execution step. Such a rich resource model facilitates rea-
soning about the effects of reducing the memory use of a process at the expense
of its longer execution.

Although the ACSR framework is theoretically rich, the resource analysis
is not correlated with the steps towards ES deployment; the verification is inde-
pendent of the design stage, which makes it difficult to actually use the gained
information, when allocating components to the hardware units.
Algorithmic Methods. Quantifying resource usage, such as power consump-
tion, size of message queues, net profit etc., can be done by augmenting Dis-
crete TimeMarkov Chains (DTMCs) with real-valued quantities, called costs/rewards,
assigned to states and/or transitions [6]. Properties to be verified are expressed
in a probabilistic temporal logic (PCTL) extended with reward operators (R).
Quantitative verification involves a combination of the traversal of the state-
transition graph of the model and numerical computation.

If we consider the light switch example, the properties that could be verified
with DTMCs, are:

9.3 Modeling and Analyzing ES Resources: Representative Current
Approaches 121

R ≤300 [C≤150]
R ≤5 [F (light = off)]

The first property says that the expected memory consumption within the
first 150 time-steps of operation is less than or equal to 300. The second for-
mula states that the expected processor share when the state “light = off” is
reached is no more than 5. DTCMs are not really suitable for modeling real-
time systems, since there is no notion of real-time, though reasoning about
discrete time is possible through state variables “counting” transition steps [6].

A continuous-time approach to analyzing resource consumption is pro-
vided by the Priced Timed Automata (PTA) [19] framework. PTA are proper
extensions of Timed Automata, with cost information on both locations and
transitions. Although suited for real-time system modeling, PTA allow mainly
continuous, monotonically increasing consumption of resources (e.g. energy)
to be modeled and analyzed. How could one then handle non-monotonic re-
source models (e.g. memory), along with reasoning about, say, energy con-
sumption? The solution might require employing multi-priced TA [20], which
are PTA with multiple cost variables evolving according to given rates for each
location. Even though multi-priced TA are already on the market, a general,
unified PTA-based resource model is still missing, as are component-oriented
algorithms for verification.
Correct-by-ConstructionTechniques. The issues of how to deal with reusable
resources systematically, and how to convert a program into one requiring
less resources may become mind-boggling if systems are complex and heavily
resource-constrained. Naiyong and Jifeng [21] address these problems and in-
troduce a resource calculus where comparing two programs that consume/reuse
resources is possible. The algebraic laws include program transformation rules
that let the designer change the initial program into a less-resource-requiring
one. The limitations of the method stays in the fact that the proof-system is not
proved complete and program iterations are not considered. Besides, real-time
systems can not be covered, since timing information is missing from the mod-
els. Even if not component oriented, the approach sheds a light on the meaning
of resource-wise program refinements.

A related class of correct-by-construction techniques is focused on the use
of component interfaces [5]. A well-designed interface exposes exactly the
information about a component which is necessary to check for composabil-
ity with other components. In a sense, an interface formalism is a “type the-
ory” for component composition. As we have seen in the above, recent trends
are towards rich interfaces, which expose extra-functional information about a

122 Paper C

component, like resource consumption levels, besides the functional aspects.
Interface theories are especially promising for incremental design under such
quantitative constraints, because the composition of two or more interfaces can
be defined as to calculate the combined amount of resources that are consumed
by putting together the underlying components.
Timed Abstract State Machines (TASM) Approach. Timed Abstract State
Machines (TASM) is a unified formalism for the specification of functional
and non-functional properties of ES [16]. The model is made of two parts,
a timed ASM and an environment. Resources are defined at the environment
level, such that when a machine executes a step, the updated set of controlled
variables contains the step duration and the amounts of resources consumed
during the respective step execution. Hierarchical structures and parallel com-
positions of TASMs are supported, which makes the framework applicable to
resource analysis of more complex ES. However, the model seems inadequate
for modeling more detailed resource descriptions, since the resource informa-
tion is a simple annotation, in the form of a real-valued variable assignment.
Another limitation is the impossibility to carry out trade-off analysis of con-
flicting resource requirements.

9.4 Our Vision of Resource-aware ES Design
In order to be able to synthesize a predictable ES from components and com-
positions, a resource-aware design framework is a must.

Let us assume that the ES under design is real-time, and it is built from
components existing at one of the following three levels of granularity (see Fig-
ure 9.7): subsystem components (coarse grained with restricted inter-subsystem
interaction capabilities), architectural components (elements providing an in-
ternal decomposition and interconnection structure of subsystems), or soft-
ware components (containers of software with specific interfaces and prop-
erties) [22].

Predictability amounts to establishing that the total, worst-case resource us-
age, in terms of memory, bandwidth, power etc., is within the bounds given by
the resources of the selected execution platform. The employed predictability
analysis should guide the design and selection of components, as well as the
design and selection of the hardware and system software.

Our vision (Figure 9.7) relies on two pillars: early stage resource-usage
analysis based on abstract system models (at subsystem and architectural lev-
els) and platform assumptions (see virtual architecture in the figure), and later

9.4 Our Vision of Resource-aware ES Design 123

System

Requirements

Architecture

Component

Virtual

Architecture

Physical

Architecture

Executing

target
system

T
e

x
t

Available

memory

Bandwidth

CPU load

Available

power

Channel port

Res.

name

memA

Res. ID

ID 1

Res. type

memory

Sharing

Shared / non

Shared

Subsystems

Distribution

Allowed
behavior

Branching

Comm. type

Availability >

requirements

Resource

tradeoff

Yes / No

Estimation

Distr.

choices

Estimation

Type

used res.
min max unit

Figure 9.7: Resource analysis within our proposed ES design flow (courtesy of
Severine Sentilles).

stage (when a specific system instance to be executed on a specific target is
known) verification that the assumptions underlying the early analysis are still
valid.

The common model-based development approach for ES assumes a “one-
way” process, starting from requirements, followed by platform independent
system models (PIM), platform specific system models (PSM), and final im-
plementation. As opposed to such a method, we advocate a flexible (iterative)
resource-aware analysis framework for real-time ES, which is tightly correlated
with the deployment process, from the beginning. The correlation is ensured
by the notion of virtual architecture on which components can be (virtually)
mapped to [22]. The virtual architecture provides an abstraction of the targeted
platform, which is gradually added with detail, at the same time with increasing

124 Paper C

the detail of the system representation. The elements of the virtual architecture
(nodes and networks) have resource attributes (memory and power budgets per
node, CPU load per node, bandwidth of the communication network, etc.) that
allow feasibility analysis, w.r.t resource usage, at different levels of abstraction:

• Subsystem/Architectural/SoftwareComponent-level Resource Anal-
ysis (Early stage analysis). Suppose that the components C1, . . . , Cn

of the motivating example (Section9.2) are either subsystems or software
components (SC) mapped onto the virtual nodes. We can assume, at the
beginning, a one-to-one mapping. Various design solutions can be inves-
tigated for feasibility, by checking whether the resource demands of the
subsystems/SCs are smaller than the available ones of the virtual nodes,
respectively.

Early analysis requires a general, unified theoretical framework (like
in [19], or [7]) for composing resource-usage models of storage, com-
putation and communication resources. The model should be unified
especially for being able to perform trade-off analysis between appar-
ently conflicting resource requirements: memory vs. execution time,
energy vs. memory etc. If we assume a PTA formal real-time ES model,
trade-off analysis would require multi-objective model-checking algo-
rithms. However, creating the suitable mathematical framework is work-
in-progress, and involves other people than the authors too, hence we just
sketch the initial ideas below.

Within the PTA model, we can encode the notion of a resource, by con-
structing the weighted sum of all the objectives (c1, . . . , cn), as the fol-
lowing cost function: c = w1∗c1+w2∗c2+. . .+wn∗cn. Here, c1, . . . , cn

could describe, for instance, memory-usage cost, energy-consumption
cost etc., whereas w1, . . . , wn (weights) could represent the relative im-
portance of c1, . . . , cn. The values of the weights are a subjective mat-
ter; the way they are chosen depends both on the application and on
the analysis goals. For example, if we are designing a heavily resource-
constrained soft real-time ES that might tolerate lateness at the expense
of quality of service, and are considering trade-offs between memory
consumption and (execution) time, we can assign higher weight to mem-
ory than to time. To derive the costs, one could apply static analysis
techniques on the implementation of a previous version of the software
component [23]. Finally, the ES resource-usage would then be described
by equation: ċ = w1 ∗ ċ1 + . . . + wn ∗ ċn.

9.4 Our Vision of Resource-aware ES Design 125

• Task-level Resource Analysis (Later stage Verification). We now as-
sume some grouping of components C1, . . . , Cn into real-time tasks,
which are assigned to virtual nodes. Next, virtual nodes are mapped
onto physical nodes, according to the resource attributes assumed by the
virtual architecture, which are now requirements that the physical ar-
chitecture must satisfy. The later stage analysis requires a simple yet
faithful (abstract) description of the mapping of components, grouped
into real-time tasks, onto hardware units.
If, on top of the hardware abstraction used in the early analysis, we also
assume a simple task model (deadline, worst-case execution time, offset,
priority), we could roughly estimate resource-usage bounds per tasks,
respectively, and their compositions.

The resource analysis process described above is iterative, allowing feed-
backs between steps, in case the verification fails. This lets one narrow the
space of design solutions, at early stages in the design flow.

We hope that the reader will regard the above arguments as an incentive to
looking at more practical ways of incorporating resource information into ES
models.

Acknowledgements. The authors thank Séverine Sentilles for lending them
Figure 9.7. This work was performed within the Swedish national strategic re-
search centre PROGRESS, supported by the Swedish Foundation for Strategic
Research (SSF) and Mälardalen University.

Bibliography

[1] D.K. Hammer M.R.V. Chaudron E.M. Eskenazi, A.V. Fioukov. Estima-
tion of Static Memory Consumption for Source Code Components. In
Proceedings of Composing Systems from Components Workshop, 2002.

[2] A. V. Fioukov, E. M. Eskenazi, D. K. Hammer, and M. R. V. Chaudron.
Evaluation of Static Properties for Component-Based Architectures. EU-
ROMICRO Conference, pages 33–39, 2002.

[3] M. de Jonge, J. Muskens, and M. Chaudron. Scenario-Based Predic-
tion of Run-Time Resource Consumption in Component-Based Software
Systems. In Proceedings of the 6th ICSE Workshop on Component-based
Software Engineering, pages 19–24, 2003.

[4] P. Bellini, R. Mattolini, and P. Nesi. Temporal Logics for Real-Time
System Specification. ACM Comput. Surv., 32(1):12–42, 2000.

[5] Luca de Alfaro and Thomas A. Henzinger. Interface-based Design. In En-
gineering Theories of Software-intensive Systems, volume 195 of NATO
Science Series: Mathematics, Physics, and Chemistry, pages 83–104.
Springer, 2005.

[6] Marta Kwiatkowska. Quantitative Verification: Models Techniques and
Tools. In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 449–458,
New York, NY, USA, 2007. ACM.

[7] Insup Lee, Anna Philippou, and Oleg Sokolsky. Resources in Process
Algebra. Journal of Logic and Algebraic Programming, 72(1):98–122,
2007.

127

128 Bibliography

[8] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The Koala Component Model for Consumer Electronics Software. Com-
puter, 33:78–85, 2000.

[9] H. Maaskant. A Robust Component Model for Consumer Electronic
Products. In Philips Research Book Series, volume 3, pages 167–192.
Springer Netherlands, 2005.

[10] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Mod-
eling Language user guide. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 1999.

[11] Eui-Nam Huh, Lonnie R. Welch, Behrooz A. Shirazi, and Charles D. Ca-
vanaugh. Heterogeneous Resource Management for Dynamic Real-Time
Systems. In HCW ’00: Proceedings of the 9th Heterogeneous Comput-
ing Workshop, page 287, Washington, DC, USA, 2000. IEEE Computer
Society.

[12] Robin Milner. Communication and Concurrency. Prentice Hall Inter-
national Series in Computer Science. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

[13] Lothar Baum and Thorsten Kramp. Towards a Uniform Modeling Tech-
nique for Resource-Usage Scenarios. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Ap-
plications, pages 1324–1329. CSREA Press, 1999.

[14] Object Management Group. UML Profile for Schedulability, Perfomance
and Time Specification. Version 1.1, formal/05-01-02. 2005.

[15] Hany H. Ammar, Vittorio Cortellessa, and Alaa Ibrahim. Modeling Re-
sources in a UML-Based Simulative Environment. In AICCSA ’01: Pro-
ceedings of the ACS/IEEE International Conference on Computer Sys-
tems and Applications, pages 405–410, Washington, DC, USA, 2001.
IEEE Computer Society.

[16] Martin Ouimet, Kristina Lundqvist, and Mikael Nolin. The Timed Ab-
stract State Machine Language: An Executable Specification Language
for Reactive Real-Time Systems, booktitle = Proceedings of the 15th In-
ternational Conference on Real-Time and Network Systems. 2007.

[17] Insup Lee, Jin-Young Choi, Hee-Hwan Kwak, Anna Philippou, and Oleg
Sokolsky. A Family of Resource-Bound Real-Time Process Algebras. In
FORTE ’01: Proceedings of the IFIP TC6/WG6.1 - 21st International
Conference on Formal Techniques for Networked and Distributed Sys-
tems, pages 443–458, Deventer, The Netherlands, The Netherlands, 2001.
Kluwer, B.V.

[18] Insup Lee, Anna Philippou, and Oleg Sokolsky. A General Resource
Framework for Real-Time Systems. In Radical Innovations of Soft-
ware and Systems Engineering in the Future, 9th International Work-
shop, volume 2941 of Lecture Notes in Computer Science, pages 234–
248. Springer, 2002.

[19] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul
Pettersson, Judi Romijn, and Frits Vaandrager. Minimum-Cost Reacha-
bility for Priced Timed Automata. In Proceedings of the 4th International
Workshop on Hybris Systems: Computation and Control, pages 147–161.
Springer–Verlag, 2001.

[20] Kim Guldstrand Larsen and Jacob Illum Rasmussen. Optimal Reacha-
bility for Multi-Priced Timed Automata. Theoretical Computer Science,
390:197–213, 2008.

[21] J. Naiyong and H. Jifeng. Limited Resource Models and Specifications
for Programming Languages. UNU/IIST Report. Number 277, 2004.

[22] I. Crnkovic H. Hansson and T. Nolte. The World according to
PROGRESS, Draft paper, 2008.

[23] Armelle Bonenfant, Zezhi Chen, Kevin Hammond, Greg Michaelson,
Andy Wallace, and Iain Wallace. Towards Resource-Certified Soft-
ware: A Formal Cost Model for Time and its Application to an Image-
Processing Example. In SAC ’07: Proceedings of the 2007 ACM sym-
posium on Applied computing, pages 1307–1314, New York, NY, USA,
2007. ACM.

Chapter 10

Paper D:
REMES: A Resource Model
for Embedded Systems

Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson
In Proceedings of the 14th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS 2009), IEEE CS, Potsdam, Germany,
June, 2009.

131

Abstract

In this paper, we introduce the model REMES for formal modeling and analysis
of embedded resources such as storage, energy, communication, and computa-
tion. The model is a state-machine based behavioral language with support for
hierarchical modeling, resource annotations, continuous time, and notions of
explicit entry and exit points that make it suitable for component-based mod-
eling of embedded systems.

The analysis of REMES-based systems is centered around a weighted sum
in which the variables represent the amounts of consumed resources. We de-
scribe a number of important resource related analysis problems, including fea-
sibility, trade-off, and optimal resource-utilization analysis. To formalize these
problems and provide a basis for rigorous analysis, we show how to analyze
REMES models using the framework of priced timed automata and weighted
CTL. To illustrate the approach, we describe a case study in which it has been
applied to model and analyze resource-usage of a temperature control system.

10.1 Introduction 133

10.1 Introduction
The importance of resource awareness in embedded systems is growing rapidly
[1–7]. The limited availability of computing resources is preventing the intro-
duction of new product features and applications, especially in areas where
high-performance embedded systems are required. Resources include energy,
computational power, memory, and hardware components such as buses, in-
put/output ports, etc.

The systematic analysis of the resource consumption of an embedded sys-
tem must include ways of semantic representation of various types of resources,
be they of continuous type (like energy), or of discrete nature (e.g. memory,
I/O ports). A representative analysis goal is to verify the resource-wise feasi-
bility property. Such property can state that the composition of the worst-case
resource requirements of components stays within the available resources pro-
vided by the implementation platform, or that there exists an execution path
that uses no more than the available resources to behave correctly.

In practice, it may often be necessary to replace a component with another
one having the same functionality, yet using a more sophisticated control algo-
rithm that requires bigger memory resources. Alternatively, if one assumes a
repository of models, the designer might need, at some point, to replace a com-
ponent model with a refined one, having modified behavior or more efficiently
implementable data structures.

We would be interested to assess, before deployment, how would any de-
sign decision, such as, reallocation of components to hardware units, or re-
placement of components, affect the system’s overall resource consumption.
This amounts to finding an appropriate trade-off between different configura-
tion requirements and constraints.

The analysis of the embedded system’s resource usage at an early design
stage is extremely desirable. First, it allows for carrying out a potentially large
number of design experiments, without increasing cost. Second, it may guide
designers in making correct decisions, such as selecting the right components
from a repository, or choosing among various admissible design models.

In this paper, we propose a modeling framework and apply associated anal-
ysis techniques for performing quantitative analysis such as feasibility, trade-
offs, and optimal/worst-case resource consumption analysis. The model, called
REMES, is tailored for embedded systems, but it is generally suitable for reac-
tive systems. It provides support for discrete and continuous abstract resources
characterized further by the way in which they are consumed and released, and
by whether they can be referred to, or not. A number of generic resources can

134 Paper D

be modeled in this way, including memory, ports, energy, CPU, and buses. As
such, the characterized and classified abstract resource types are not tied to any
particular formal semantic interpretation.

In brief, our contribution is threefold:

• A classification of embedded resources, based on their rate of consump-
tion over time, and the attribute of being referable, or not (section 10.3.1).

• The behavioral language REMES (sections 10.3.2, 10.3.3).

• Encoding the resource-wise analysis problem as a weighted sum of con-
sumed resources (section 10.4.1).

Since REMES allows the description of functionality and timing in a dense
time state-based modeling language, we also show how the latter and a number
of important resource analysis problems can be formalized in the framework
of (multi-)priced timed automata (sections 10.4.2, 10.4.3, 10.4.4).

The main purpose of REMES is to narrow the gap between architectural
modeling (e.g., architecture description languages (ADLs) [8]) and formal anal-
ysis models (such as priced timed automata [9, 10]). This claim is supported
throughout a case study presented in section 10.5, in which a temperature con-
trol system is modeled and analyzed. Following the example, we discuss our
approach and compare to related work in section 10.6, then conclude the paper
and present a line of future work, in section 10.7.

10.2 Preliminaries

10.2.1 Priced Timed Automata
In the following, we recall the model of priced (or weighted) timed automata
[9,10], an extension of timed automata [11] with prices/costs on both locations
and transitions.

Let X be a finite set of clocks and B(X) the set of formulas obtained as
conjunctions of atomic constraints of the form x �� n, where x ∈ X , n ∈ N,
and �� ∈ {<,≤, =,≥, >}. The elements of B(X) are called clock constraints
over X .

Definition 1. A linearly Priced Timed Automaton (PTA) over clocks X and
actions Act is a tuple (L, l0, E, I, P), where L is a finite set of locations, l0 is
the initial location, E ⊆ L × B(X) × Act × P(X) × L is the set of edges,

10.2 Preliminaries 135

I : L → B(X) assigns invariants to locations, and P : (L ∪ E) → N assigns
prices (or costs) to both locations and edges. In the case of (l, g, a, r, l′) ∈ E,
we write l

g,a,r
→ l′.

The semantics of a PTA is defined in terms of a timed transition system
over states of the form (l, u), where l is a location, u ∈ RRX , and the initial
state is (l0, u0), where u0 assigned all clocks in X to 0. Intuitively, there are
two kinds of transitions: delay transitions and discrete transitions. In delay
transitions,

(l, u)
d,p
→ (l, u ⊕ d)

the assignment u ⊕ d is the result obtained by incrementing all clocks of the
automata with the delay amount d, and p = P (l) ∗ d is the cost of performing
the delay. Discrete transitions

(l, u)
a,p
→ (l′, u′)

correspond to taking an edge l
g,a,r
→ l′ for which the guard g is satisfied by u.

The clock valuation u′ of the target state is obtained by modifying u according
to updates r. The cost p = P ((l, g, a, r, l′)) is the price associated with the
edge.

A timed trace σ of a PTA is a sequence of alternating delays and action
transitions

σ = (l0, u0)
a1,p1

→ (l1, u1)
a2,p2

→ . . .
an,pn
→ (ln, un)

and the cost of performing σ is
∑n

i=1 pi. For a given state (l, u), the minimum
cost of reaching (l, u) is the infimum of the costs of the finite traces ending
in (l, u). Dually, the maximum cost of reaching (l, u) is the supremum of the
costs of the finite traces ending in (l, u).

A network of PTA A1|| . . . ||An over X and Act is defined as the parallel
composition of n PTA over X and Act. Semantically, a network again de-
scribes a timed transition system obtained from those components, by requiring
synchrony on delay transitions and requiring discrete transitions to synchronize
on complementary actions (i.e. a? is complementary to a!).

In order to specify properties of PTA, the logic Weighted CTL (WCTL)
has been introduced [12]. WCTL extends Timed CTL with resets and testing
of cost variables. We refer the reader to [12] for a thorough introduction of
WCTL.

10.2.2 Multi Priced Timed Automata
An extension of PTA is the class of Multi Priced Timed Automata (MPTA) in
which a timed automaton is augmented with more than one cost variable [12,

136 Paper D

13]. In the case of two costs associated with a PTA, the minimal cost reachabil-
ity problem corresponds to finding a set of minimal cost pairs (p1, p2) reaching
a goal state. Note that the solution is a set of pairs, rather than a single pair,
since the costs contributed from the individual costs can be incomparable, i.e.,
if for two traces (p1, p2) and (p′1, p

′
2) e.g., p′1 < p1 and p2 < p′2. In this setting,

the minimal cost reachability problem is to find the set of pairs with minimum
cost reaching the goal state. Dually, the maximization problem is defined as
finding the set of pairs with maximal cost reaching the target location, or to
conclude (∞,∞) if the target location is avoidable in a path that is infinite,
deadlocked, or has a location in which it can make an infinite delay. A specific
problem is the optimal conditional reachability problem, in which one of the
costs should be optimized, and the other bounded by an upper/lower bound.
We refer the reader to [13] for a thorough description of optimization problems
in MPTA.

10.3 REMES: The Proposed Resource Model
In this section, we define the resources of interest and introduce the model
REMES intended for resource modeling and analysis.

10.3.1 Classes of resources
We consider resources as global quantities of finite size. We refer to the con-
sumption of a resource c as being the accumulated resource usage up to some
point in time, whereas the derivative of c, denoted ċ, is the rate of consump-
tion over time. Resource consumption can be of discrete or continuous nature.
We also classify resources depending on whether they are referable or non-
referable. A representative example of a referable resource is the memory.
Memory can be dynamically allocated, deallocated, addressed, and manipu-
lated during run-time.

Taking all these into consideration, Table 10.1 shows three identified re-
source classes and their characteristics of interest. Resource consumption for
resources that belong to class C is continuous, which is in opposition to the dis-
crete resource consumption nature for the resources from class A and B. The
consumption of the CPU can be modeled either by a discrete variable, denoting
the number of accumulated clock ticks, or by a continuous variable, which en-
codes the processor load (that is, the derivative describes, e.g., how many tasks
are starting execution, every time unit). Accordingly, CPU may be in either

10.3 REMES: The Proposed Resource Model 137

Resource Class Characteristics

A
discrete: ċ = 0

(memory) referable

B
discrete: ċ = 0

(CPU, bandwidth) non-referable

C
continuous: ċ = n, n ∈ Z

(CPU, energy, bandwidth) non-referable

Table 10.1: Resource classes/characteristics

class B or C (same applies to bandwidth). Only the resources from class A are
referable and can be dynamically manipulated.

10.3.2 Introducing REMES
Our REsourceModel for Embedded Systems (REMES) is intended to describe
the resource-wise behavior of interacting embedded components. REMES re-
lies heavily on the modeling language CHARON [14], used for specifying em-
bedded systems as communicating agents. Our main contribution is the ad-
dition of information regarding resource consumption and its rate, as well as
other constructs that facilitate the application of REMES to modeling both func-
tional and extra-functional behavior of (real-time) component-based systems.

In REMES, the internal behavior of a component is described by a mode.
We call a mode atomic if it does not contain any submode, and composite if it
contains a number of submodes (see Figure 10.1). Like in CHARON, the data
is transferred between modes via a well-defined data interface, that is, typed
global variables, whereas the (discrete) control is passed through a well-defined
control interface consisting of entry and exit points. Observe, in Figure 10.1,
that the entry and exit points are drawn as blank and filled circles, respectively.
The variables of mode M are partitioned into local variables, (LM), and global
variables (GM), and can be of types boolean, natural, integer, array, or of an
extra type clock that specifies continues variables evolving at rate 1. The global
variables are in turn partitioned into read variables, RdM, and write variables,
WrM, such that GM = RdM ∪ WrM.
Read/Write Variable Accesses. The local variables of M, LM, can not be
read or written by other modes, the set WrM, written by M can be read by other
modes, whereas the set RdM may be written by other modes. The sets WrM

138 Paper D

and RdM need not be disjoint; concurrent access to common write variables of
modes can be regulated by specifying certain synchronization protocols in the
REMES model.

Figure 10.1: A REMES Composite Mode.

The atomic modes Submode 1 and Submode n in Figure 10.1 are annotated
with their respective resource-wise continuous behavior, assuming that the cor-
responding component is consuming resources (r1, r2) belonging to class C.
Such consumption is expressed by the first derivatives of the typed resource
variables r1, r2 : TC , respectively, r1′, r2′, which give the rates at which the
composite mode consumes the resources in time, depending on the executing
submode.

For a composite mode, the control flow is given by a set of directed lines,
called edges, which connect the control points of the submodes, or of the com-
posite mode and its submodes. For example, in Figure 10.1, the composite
mode takes the edge labeled A0, in order to enter Submode 1, after initializa-
tion, and similarly, edges labeled A1, A2, . . . , An, to further enter Submode 1,
Submode 2, . . ., Submode n, respectively.

REMES supports two types of actions, delay/timed actions and discrete ac-
tions. A delay action describes the continuous behavior of the mode, and its
execution does not change the mode. The delay/timed actions are not visible in
a REMES model, but they are usually constrained by the differential equations
that annotate the modes, and they represent the solutions of such equations.
Observe that Submode 2 is decorated with letter U, meaning that such a mode

10.3 REMES: The Proposed Resource Model 139

exits right-away after its activation, without any delay. Such modes are called
urgent. On the other hand, discrete actions are instantaneous actions, and they
are represented as annotations of the edges. Executing a discrete action results
in a mode change, by taking the outgoing edge starting from the mode’s exit
point.

A discrete action A = (g, S) is a statement list prefixed by a boolean ex-
pression, with g called the action guard, and S the action body, that is, the
statement (assignment, conditional statement etc.) or sequence of statements
that must be executed once the corresponding edge has been taken. We say that
a discrete action A is enabled, hence it could be executed, if its corresponding
guard g evaluates to TRUE at some point in time. A discrete action is called
always enabled if its guard always holds, and empty if its body does not change
any of the mode variables (in such cases, the action body can be omitted).

In addition, one needs to specify for how long a (sub)mode is executed, so
an invariant, e.g., Inv 1,. . . , Inv n, that is, a predicate over continuous variables,
captures such a timing constraint. Once the invariant stops to hold, the mode is
exited by taking one of the outgoing edges.

Similar to Statecharts [15], REMES provides a conditional connector (de-
picted by C in Figure 10.1), which allows the selection of an outgoing edge,
out of two or more possible ones, via the guarding boolean conditions (guards
g1, g2, . . . , gn) of the discrete actions that correspond to the edges exiting the
conditional connector. For a discrete action to be possibly executed, the com-
ponent must be in the right mode and the corresponding guard must evaluate
to TRUE. If none of the guards evaluates to TRUE, then no discrete action is
executed and the component remains in its current mode, performing delay
actions. If more than one action guards are TRUE, then one of the enabled
discrete actions could be executed non-deterministically.

We classify a mode’s edges, and afferent discrete actions, as follows:
• entry edges: connect an entry point of the composite mode with the entry

point of a submode (e.g., annotated with action A0);
• exit edges: connect the exit point of a submode with the exit point of the

composite mode (e.g., annotated with action An);
• entry conditional top edges: connect an entry point of the composite

mode with a conditional connector (e.g., annotated with action AC);
• exit conditional top edges: connect a conditional connector with the exit

point of the composite mode;
• entry conditional sub edges: connect a conditional connector with the

entry point of a submode;

140 Paper D

• exit conditional sub edges: connect the exit point of a submode with a
conditional connector;

• internal edges: connect the exit point of a submode with the entry point
of another submode (e.g., annotated with actions A1, A2).

The control points of submodes should be connected by edges, such that
the termination of the internal behavior of the composite mode is ensured (e.g.,
in case cycles exist, termination can be guaranteed by decreasing a chosen
termination function each time the cycle is executed). Note that, in REMES,
each mode describes the behavior of a component, and a composite mode is a
way of encapsulating behavior and it describes a composite component.

Formal Definition of a Mode. A mode M is a tuple (SM, V, In, Out, E, RC,

Inv), where: SM is the set of submodes, V is the set of variables, In is the
set of entry control points, Out is the set of exit control points, E, the set of
edges, RC, the set of resource constraints that define the admissible values for
the consumption rates of the involved resources in class C, and, finally, Inv is
the set of invariants.

For the submodes of M, the condition GSM ⊆ LM ∪ GM should hold, for a
local variable of a mode to be accessible only in its submodes, and not any-
where else.

Mode Execution. The top-level mode, which is activated when a correspond-
ing event is received, enters execution for the first time through the special Init

entry point, while initializing the global variables, accordingly. After that, the
mode is re-entered through control point Entry.

A mode can execute either a discrete step, by a discrete action, or a con-
tinuous step, via a delay action, with such steps alternating as dictated by the
urgency of the mode. When executing a continuous step, the mode follows a
continuous path that satisfies the resource constraints (RC). When the mode in-
variant is violated, the mode must execute an outgoing discrete step. A discrete
step of a mode is a finite sequence of discrete steps of the submodes, that is,
a sequence of executing discrete actions. A discrete step begins in the current
mode and ends either at the entry point of a submode, or when it reaches the
current mode’s exit point, meaning that the current mode has passed control to
some other mode.

The fact that a mode can pass control is ensured by the closure construction:
each exit point of a mode is either connected to the exit point of the composite
mode, or deterministically connected to an entry point of another mode that
eventually leads to the composite mode’s exit.

10.4 Analyzing REMES-based Systems 141

For example, in Figure 10.1, the execution of Mode proceeds as follows: af-
ter initialization, the discrete step corresponding to A0 is executed, after which
a sequence of continuous steps is executed, until the invariant Inv 1 fails to hold;
alternatively, in case A1’s guard evaluates to TRUE, the mode could take a dis-
crete step and entry Submode n. Next, a similar sequence follows, while the
mode executes Submode n. When Inv n does not hold anymore, the mode takes
a new discrete step corresponding to discrete action An. The next time when
the control is passed to Mode, a discrete step corresponding to AC is taken and
the selection of a possible path is made through the conditional connector, etc.

10.3.3 Composition of REMES models
REMES atomic modes and composite modes can be composed in parallel with
each other. The parallel modes can execute concurrently, by interleaving ac-
tions, whereas the submodes can never execute in parallel; they simply obey
the strict execution order imposed by the control flow.

Like in CHARON, if M is a composite mode, and sm ∈ M is the variable
ranging over the constituent submodes, we have: LM ⊆ ∪sm∈MGsm, and GM =
∪sm∈MGsm − LM. The mode composition is defined as follows.

Definition 2. AssumeModeA andModeB are two REMES (atomic or compos-
ite) modes. Then, the compositionModeD = ModeA ||ModeB is the mode with
the set of local variables LModeD

= LModeA
∪ LModeB

, the set of write variables
WrModeD

= WrModeA
∪ WrModeB

, the set of read variablesRdModeD
= RdModeA

∪
RdModeB

, and the top-level modeModeA ∪ ModeB.

In Definition 2, the parallel composition of composite modes subsumes the
reunion of all the constituent submodes, corresponding edges and associated
actions.

10.4 Analyzing REMES-based Systems

10.4.1 Analysis model for REMES
Assume a set of resources R1, . . . , Rn that a set of REMES modes have ac-
cess to. Our main goal is to analyze various scenarios of the system’s resource
usage, and be able to compute, e.g., the maximum or minimum amounts of
needed resources for guaranteeing correct resource-wise system behavior. In-
tuitively, this problem reduces to a scalar problem if one constructs a weighted

142 Paper D

sum of all resource consumptions, which should then be minimized, maxi-
mized, or manipulated in order to compute trade-offs. Consequently, we pro-
pose the following function as the analysis model for REMES:

rtot � w1 × r1 + w2 × r2 + . . . + wn × rn,

where variable rtot represents the total consumption of resources R1, . . . , Rn,
and variables r1, . . . , rn denote the accumulated consumption of R1, . . . , Rn,
respectively. The constants, w1, . . . , wn (weights), represent the relative im-
portance of r1, . . . , rn. The values of the weights are a subjective matter; the
way they are chosen depends both on the application and on the analysis goals.
For example, in designing a heavily resource-constrained soft real-time em-
bedded system that might tolerate lateness at the expense of quality of service,
in order to determine trade-offs between memory consumption and (execution)
time, one can assign higher weight to memory than to time.

Informal Translation of REMES into PTA. In order to be able to analyze
REMES compositions, formally, we need a semantic translation of the model. If
we consider resource consumptions r1, . . . , rn as cost variables c1, . . . , cn, we
can use the framework of Priced Timed Automata as the underlying semantic
representation.

Informally, translating REMES into PTA is quite straightforward: the syn-
tactic REMES element of an edge corresponds to an edge in PTA, whereas the
REMES semantic discrete step is a transition in PTA’s semantics. An atomic
mode represents a PTA location, and global variables used for passing control
in REMES become synchronization channels in PTA. The formal translation of
the hierarchical REMES into a network of PTA and the associated tool are sub-
ject to future work. Next, we formalize some of the main analysis goals that
we are interested in.

10.4.2 Feasibility Analysis

Component-based feasibility analysis reduces to checking whether the accu-
mulated values of the resources consumed/used during all possible system be-
haviors are within the available resource amounts provided by the implementa-
tion platform. For resources like non-referable memory and energy, the compo-
sition of individual resource consumptions of REMES components is additive.

If one considers the PTA model of Definition 1 as the semantic translation
of a REMES model, feasibility goals can then be formalized as the following
WCTL properties that the PTA model can be checked against:

10.4 Analyzing REMES-based Systems 143

AFcost≤n v (10.1)
AG (q ⇒ AFcost≤n v) (10.2)
E Fcost≤n v (10.3)
AG (q ⇒ E Fcost≤n v) (10.4)

where G and F are the WCTL temporal operators “always” and “eventually”,
respectively [12].

The above properties are in fact liveness properties (10.1), (10.2), (10.4),
and a reachability property (10.3), indexed by cost constraints. The first two
properties specify strong feasibility: property (10.1) requires that for all exe-
cution paths, the target location v is eventually reached within a total cost of
n that can model the available resources provided by the platform; property
(10.2) states that, for all paths, it is always the case that, once q, the cost of
eventually reaching v will be no more than n, regardless of how v is reached.
We say that property (10.3) models weak feasibility: the target location v may
be reached within a total cost of n. Finally, property (10.4) states that for all
paths, it is always the case that once a location q is reached, there exists a way
by which v will be eventually reached within cost n. We call this last prop-
erty live feasibility. However, model-checking WCTL formulae is decidable
just for one-clock priced automata [16]. For other PTA, one can only verify
reachability properties of the form given by (10.3).

Assuming that the cost function equates to cost = w1×c1 + . . .+wn×cn,
and c1, . . . , cn are constants, the feasibility checks of the above properties in-
volve a single cost variable that represents the accumulated resource consump-
tion of all resources of interest, regardless of the class they belong to. Hence,
semantically, the various resources become undistinguishable in these cases.

10.4.3 Optimal and Worst-Case Resource Consumption
Optimal and worst-case resource consumption analyses require (symbolic) al-
gorithms on PTA, which compute the cost of the “cheapest”, and/or most “ex-
pensive” trace that will eventually reach some goal. The optimal/worst-case re-
source consumption problem reduces to minimizing/maximizing the one-cost
function cost = w1 × c1 + . . . + wn × cn, such that a given reachability, or
liveness property is satisfied.

Finding the optimal/worst-case resource consumption values to attain such
goals calls for synthesis algorithms of minimal/maximal reachability costs for

144 Paper D

PTA, which have been proposed by Larsen and Rasmussen [13]. Similar to the
feasibility case, only optimal/worst-case reachability costs can be synthesized
by a model-checker. Later, we show how such a cost-optimal trace can be
actually computed in the example of section 10.5.

A considerable verification challenge arises in case some of the edge prices
are negative, so that cost becomes a non-monotonically increasing cost func-
tion. In such situations, the usual branch-and-bound symbolic reachability al-
gorithms, for PTA, cannot be applied as such anymore, since minimal/maximal
reachability analysis requires a monotonically increasing cost function. The
optimal- and worst-case-cost reachability problems have been theoretically
solved even when negative costs are involved [17].

The tool used for verifying optimal resource consumption properties is UP-
PAAL CORA, where one could check, e.g., the relevant reachability property,
E F v, while the tool calculates the minimum cost, in terms of resource ex-
emption, “paid” to satisfy the property.

10.4.4 Trade-off Analysis

Minimization of memory usage plays a major role in the design of embed-
ded systems. Limited memory is one of the dominating constraints for many
advanced embedded systems. However, while trying to minimize memory con-
sumption, one might be forced to increase the execution time of real-time com-
ponents beyond acceptable limits, that is, limits that, if exceeded, would make
the set unschedulable.

As such, for a given REMES model, we may have more than one property to
satisfy simultaneously, and we want to know whether it is possible to satisfy all
of them, although they might be subjected to apparently conflicting constraints.
In such cases, there should be possible to compute a trade-off between the
considered resource consumptions.

Computing a trade-off between memory and execution time, or between
any resource belonging to classes A and B, or A and C, or B and C of Table
10.1, could be done in PTA, by employing a single-cost function. The trade-off
could then be achieved by varying the weights w1, . . . , wn, accordingly.

In some other cases, e.g., when one needs to compute trade-offs between
consumption of resources belonging to class C, the function cost = w1 × c1 +
. . . + wn × cn becomes a multi-cost function that lets one distinguish between
various types of resources (e.g., between energy and CPU). This forces one to
carry out the analysis on MPTA, rather than on PTA.

10.5 Example: A Temperature Control System 145

Assuming energy and CPU as the resources of interest, we want to deter-
mine which are the simultaneously achievable pairs of costs (weng×ceng, wcpu×
ccpu) such that energy consumption is minimized, while CPU consumption re-
mains bounded from above.Such synthesis of cost pairs, which can be seen as
a variant of trade-off analysis, can be achieved by applying optimal conditional
reachability algorithms on MPTA [18], while considering ceng as the primary
cost and ccpu as the secondary cost. Larsen and Rasmussen have proved that
such problems are decidable for MPTA [18].

Alternatively, one could perform a feasibility-like check, by requiring that
the following WCTL property is satisfied:

E F(weng×ceng)≤n (v ∧ (wcpu × ccpu) ≤ m)

The formula states that the accumulated weighted CPU usage will not be more
than m ticks at location v, while v may be reached by consuming no more than
n weighted energy units.

10.5 Example: A Temperature Control System
As a case study (taken from [19]) demonstrating the principles of our resource
modeling and analysis approach, we consider a temperature control system
(TCS) for a heat producing reactor. It has two rods that can be inserted into the
core of the reactor, to control the heat producing (chain) reaction. If inserted
into the core, the control roads absorb neutrons and consequently the reaction
is slowed down, so the temperature inside the core starts decreasing. If they
are pulled out, the reaction speeds up again, which in turn increases the core
temperature. The goal of the TCS is to maintain the temperature in the reactor
core between θmin and θmax. Whenever the core reaches temperature θmax,
it has to be cooled with one of the two rods. After a rod has been used for
cooling, it is then unavailable for T time units.

10.5.1 A REMES Model of TCS
We model an abstracted version of the internal design of TCS in the SaveComp
component model [20], with three components: HC controller, Rod selector,
and Clock as depicted in Figure 10.2.

The interfaces of the components are described in terms of ports. Save-
Comp distinguishes between input and output ports, which can be of the types:
data for transferring of data, triggering to trigger component executions, or
combined to combine the two.

146 Paper D

Figure 10.2: Component based TCS model.

The component HC controller activates the heating/cooling process of the
core using trigger port t2. The Rod selector uses temperature data of the core
conveyed through data port temp to control whether the core should continue
to heat, or if a rod should be selected for insertion into the core to slow down
the reaction. The latter must take the availability of rods into consideration,
as a rod has to rest for at least T time units after its previous use. Finally, the
Clock component, periodically generates the trigger event t1 that activates the
HC controller. The temp value in the HC controller is updated by reading the
value of variable tempROD that is assigned the cooling rate of the rods within
the Rod selector component.

We model the resource usage of the TCS components as modes in REMES.
The modes of the Clock, the HC controller, and the Rod selector are depicted
in Figure 10.3, 10.4, and 10.5, respectively.

The modes communicate data between each other using the global vari-
ables: temp, tempROD, t1, and t2. The modes of HC controller and the
Rod selector are made of submodes, conditional connectors, and edges, as
described in Section 10.3.

Figure 10.3: The Clock modeled in REMES.

In the TCS model, we make use of three resources: memory, energy, and
CPU, which belong to two different classes of the taxonomy presented in Sec-
tion 10.3.1. We assume that every simple cpu instruction utilizes one cpu tick.
We treat static memory and simple dynamic memory that is allocated when a
mode is entered and released as soon as the same mode is exited, without mem-
ory management.

10.5 Example: A Temperature Control System 147

Figure 10.4: The HC Controller modeled in REMES.

Figure 10.5: The Rod selector modeled in REMES.

148 Paper D

10.5.2 A PTA model of TCS
We have analyzed the REMES-based TCS system, as a network of three PTA
models, in UPPAAL CORA1. The PTA models of the Clock, the HC controller,
and the Rod selector are shown in Figure 10.6.

t1!

start

x<=P && cost'==weng*1

x>=P

x:=0

(a) The model of the
clock component as
a PTA.

t1?

CC heat_coolx:=0,cost+=wmem*80

t?

temp:=temp+temp_HC-tempROD,
cost+=wcpu*100-wmem*10 t2! x==C_HC

x:=0,
cost+=wmem*10

x<=C_HC &&
cost'==weng*100+wcpu*5

C

(b) The model of the HC controller component as a PTA.

C

C

C

C

temp<=(theta_min+margin)

tempROD:=0, rod:=0, x2:=0,

cost+=wcpu*3-wmem*7

temp>(theta_min+margin)

tempROD:=R2,
cost+=wcpu*1

t!

rod:=0,cost+=wmem*40

x1:=(x1==T?x1:x1+1),
x2:=(x2==T?x2:x2+1),
cost+=wcpu*10

not((x1>=T&&temp>=(theta_max-margin))or(x2>=T&&temp>=(theta_max-margin)))

rod==0

t2?

heat

cool2

cool1

rod:=1,
run(),
cost+=wcpu*1+wmem*2

x1>=T&&temp>=(theta_max-margin)

rod:=2,
run(),
cost+=wcpu*1+wmem*7

t2?rod==1

tempROD:=R1,
cost+=wcpu*1 temp>(theta_min+margin)

tempROD:=0, rod:=0, x1:=0,
cost+=wcpu*3-wmem*2 temp<=(theta_min+margin)

t2?

rod==2

void run(){
 if(count==3)
 return;
 trace[count]=rod;
 count+=1;
 }

x2>=T&&temp>=(theta_max-margin)

C

(c) The model of the Rod selector component as a PTA.

Figure 10.6: TCS modeled with three PTA.

The Clock is modeled as a simple PTA that, after every P time units,
periodically synchronizes on channel t1 with HC controller. The HC con-

troller PTA has three locations: Start, Idle, and Heat Cool. The constant
C HC is the execution time of the HC controller. The difference (temp HC −

1See the web page www.uppaal.org/cora for more information about the UPPAAL CORA tool.

10.5 Example: A Temperature Control System 149

tempROD), where temp HC is the heating produced by the reactor, and
tempROD is the current cooling effect of the rod, is used to update the re-
actor temperature.

The PTA Rod selector has five locations: Start, Select, Heat, Cool1, and
Cool2. The execution of the Rod selector consumes 40 units of static memory.
The locations Start, Heat, Cool1, and Cool2 are committed, as their actions
are atomic. The synchronization with HC controller is modeled using channel
t2. The selection of the rods is controlled by variable rod. From location Heat,
based on the temperature of the core, temp, and the time since a rod has been
previously used for cooling (i.e., x1 and x2 for rod1 and rod2, respectively),
an available rod is selected for insertion into the core, and, consequently, the
Rod selector enters location Cool1 or Cool2, or alternatively jumps back to
location Select, provided that no rod needs to be used.

For analysis purposes, we have added the TCS model with the function
run() (see Figure 10.6(c)) that merely stores the first few selections of rods, in
an array of integers.

10.5.3 Formal Analysis of the PTA model
In the analysis model, we have encoded the relative importance of the resources
energy, CPU, and memory. We consider CPU to be the most critical resource,
followed by memory. Energy is not critical, yet it is taken into consideration
in order to ensure higher energy efficiency in the system. Therefore, we give
highest weight to CPU and lowest to energy. The cost of resource usage is
influenced by the individual weights of each resource, and the consumed (uti-
lized) resource on each transition (location). Currently UPPAAL CORA can
only handle PTA models where the cost function is monotonically increasing.
This means that in order to keep the cost function monotonically increasing we
have to fine-tune the weights of the resources.

In the TCS system, we consider the following total cost function

ctot = wcpu× ccpu + wmem × cmem + weng × ceng

where wcpu = 15, wmem = 2, and weng = 1, and ccpu, cmem, and ceng are
the accumulated consumed amounts of cpu, memory, and energy, respectively.

After having fed UPPAAL CORA with the PTA model of the TCS, we were
able to analyze the minimum cost reachability problem, that is, to compute
the lowest cost of satisfying a given reachability property, and a corresponding
trace. However, we have first checked the model against the safety proper-
ties: AG temp ≤ thetamax and AG temp ≥ thetamin. In our case, we are

150 Paper D

interested in finding an execution order of the system (a cheapest sequence of
rod insertions) that results in the lowest possible total resource cost, that is,
to minimize ctot. Such information extracted from the analysis could be used
in the implementation stages of the TCS system, by resolving existing non-
determinism in such a way that a specific execution trace, the cheapest with
respect to total resource usage, is enforced.

To illustrate the technique, we check for an optimal trace satisfying the
property: EF(count == 3), that is, a trace in which rods are inserted into the
reactor three times. UPPAAL CORA has found that the second rod should be
inserted two times, followed by the first one, the third time. Table 10.2 shows
the cost of this best trace, and also the cost of another more expensive trace
where only rod 2 has been used.

For TCS, we can only partially tackle the trade-off resource analysis prob-
lem, by giving higher weight to the most critical resource, the CPU, followed
by memory and energy. Additionally, we have conducted optimal reachability
resource usage analysis, by minimizing the memory consumption, while im-
posing upper bounds on the CPU consumption, in the TCS. For example, for
three sequential insertions of the rods in the reactor’s core, it might happen that
it is necessary to insert the second rod three times in a row, in order to satisfy
all constraints, even though the total cost is higher for such a trace than for the
best execution trace.

Scenario Order of execution Cost
1 P2-P2-P1 127499
2 P2-P2-P2 127509

Table 10.2: Cost of execution for different rod insertion scenarios.

10.6 Discussion and Related Work
The REMES model presented in Section 10.3 can be employed in the design
of embedded systems, for representing the internal behavior of the interacting
embedded components. As such, it complements architectural description lan-
guages (ADLs) [8], which describe the software system’s conceptual architec-
ture as a collection of components, connectors and architectural configurations,
by adding component behavior. If one attaches semantics to the connection
points of the architectural elements of a system, REMES can then be used for

10.6 Discussion and Related Work 151

modeling the behavior of a generic embedded system. Moreover, we believe
that REMES is simple enough to be utilized by both formalists and engineers
with different backgrounds, as an intermediate layer between abstract architec-
tural modeling and very detailed behavioral modeling (e.g., by PTA [9, 10]).

The cost analysis model proposed in Section 10.4.1 is platform-aware.
Hence, as future work, it could benefit from including abstractions of platform
specific tools, such as the associated compiler, linker etc. We do believe that
the cost model can be derived from the results provided by static analysis tools,
which could be applied on already implemented components. A possible solu-
tion is presented by Bonenfant et al. [21]. In order to obtain provably correct
static analysis results, the authors propose a formal source-level cost model,
enriched with rules for deriving the execution cost of a subset of expressions
belonging to the system-oriented language Hume.

Last but not least, we underline the fact that the selection of the weights in
our resource model depends mostly on the designer’s experience and decisions.
However, by analyzing the results of model checking the chosen cost models,
one could adjust the weights accordingly.
Related Work. In a recent study [22], Vulgarakis and Seceleanu have pre-
sented related work on modeling and analyzing resources in component-based
embedded real-time systems, and they have grouped it into three categories, as
follows.

First, research has been devoted to code-level resource modeling and anal-
ysis, in component assemblies. In Koala [3] and Robocop [2] component
frameworks, static memory estimation has been performed for applications in
which the instantiated components of a composition are known prior to run-
time. Such low-level code-driven resource estimates can only be used in cases
when one has access to the components implementations. More abstract de-
scriptions of expected resource usage may be needed for not-yet implemented
components, or for guiding the selection of components from the repository.
In such cases, the designer could first employ REMES for early resource usage
analysis, and then apply the approaches mentioned above.

The second category is represented by the UML-based attempts [1, 4] that
have been undertaken to tackle the analysis of embedded resources. Although
graphical and intuitive, these approaches lack a formal description that could
provide the designer with verified resource usage claims. In contrast, REMES
provides both a graphical behavioral notation, as well as a rigorous underlying
framework for formal analysis.

Third, higher-level formal approaches [5, 6], proposed by Lee et al., en-
compass a family of process-algebraic formalisms, developed to unify formal

152 Paper D

modeling and analysis of embedded systems resources. The framework is theo-
retically rich, yet the tool support is not equally mature. Ouimet et al. use timed
abstract state machines [7] to describe resources as simple annotations, in the
form of real-valued variable assignments. Consequently, the framework can
not support trade-off analysis of possibly conflicting resource requirements.

Last but not least, as mentioned earlier, REMES focuses on component-
based behavioral modeling, and, if paired with ADL descriptions [8], could
provide the designer with a complete system representation.

10.7 Conclusions and Future Work
In this paper, we have introduced REMES — a language for resource model-
ing and analysis of embedded systems. The essence of REMES is a notion of
resources that are characterized by their discrete or continuous nature, the way
they are consumed and/or allocated and released, and whether they can be re-
ferred to, or not. Resources that can be easily modeled include memory, ports,
energy, CPU, busses etc.

In order to express resource usage in a system, REMES has a graphical
behavioral language influenced by CHARON, timed and hybrid automata, and
Statecharts. The language supports hierarchical modeling and has notions of
explicit entry and exit points that make it suitable as a semantic basis in compo-
nent based development frameworks. REMES has notions of continuous vari-
ables, flows, and progress constraints (invariants), which fit modeling timed
behaviors in embedded systems.

In this setting, we have defined three important resource analysis prob-
lems: feasibility analysis, trade-off analysis, and optimal/worst-case resource
analysis. All these problems rely on weighted sums of consumed amounts of
resources and their given weights. In this way, the analysis can result in opti-
mizing the overall resource usage of a system, with respect to parameters such
as criticality or costs of the available resources.

To illustrate analysis, we have shown in an example how REMES mod-
els can be analyzed in the framework of (multi) priced timed automata. The
studied example is a temperature control system of a reactor that consumes
CPU, energy, and memory resources. The system is architecturally modeled in
the component modeling language SaveCCM, and REMES is used to describe
function, timing, and resource usage of the included components. To synthe-
size the optimal resource usage of the system, we model the latter and the
weighted sum of resource costs, as a network of PTA, and perform the analysis

10.7 Conclusions and Future Work 153

in the UPPAAL CORA tool.
As future work, we plan to apply the results of Bouyer et al. [17], in order

to tackle the feasibility analysis problem for systems in which the global cost
function is non-monotonic. We also plan to integrate REMES and its notion
of resources in the recently proposed ProCom component model [23] and its
associated tools.
Acknowledgments: This work was partially supported by the Swedish Foun-
dation for Strategic Research via the strategic research centre PROGRESS, the
Swedish Research Council (VR), and the European Union via the Q-ImPrESS
research project (FP7-215013).

Bibliography

[1] Hany H. Ammar, Vittorio Cortellessa, and Alaa Ibrahim. Modeling Re-
sources in a UML-Based Simulative Environment. In AICCSA, pages
405–410, 2001.

[2] Merijn de Jonge, Johan Muskens, and Michel Chaudron. Scenario-
Based Prediction of Run-Time Resource Consumption in Component-
Based Software Systems. In Proceedings of the 6th ICSE Workshop on
Component-based Software Engineering (CBSE6), pages 19–24. IEEE,
2003.

[3] Alexandre V. Fioukov, Evgeni M. Eskenazi, Dieter K. Hammer, and
Michel R. V. Chaudron. Evaluation of Static Properties for Component-
Based Architectures. In EUROMICRO, pages 33–39, 2002.

[4] Object Management Group. UML Profile for Schedulability, Perfomance
and Time Specification. Version 1.1, formal/05-01-02. 2005.

[5] Insup Lee, Anna Philippou, and Oleg Sokolsky. A General Resource
Framework for Real-Time Systems. In RISSEF, pages 234–248, 2002.

[6] Insup Lee, Anna Philippou, and Oleg Sokolsky. Resources in Process
Algebra.

[7] Martin Ouimet, Kristina Lundqvist, and Mikael Nolin. The Timed Ab-
stract State Machine Language: An Executable Specification Language
for Reactive Real-Time Systems, booktitle = Proceedings of the 15th In-
ternational Conference on Real-Time and Network Systems. 2007.

[8] N. Medvidovic and R. N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, 26(1):70–93, 2000.

155

156 Bibliography

[9] Rajeev Alur. Optimal Paths in Weighted Timed Automata. In In HSCC01:
Hybrid Systems: Computation and Control, pages 49–62. Springer, 2001.

[10] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson,
J. Romijn, and F. Vaandrager. Minimum-Cost Reachability for Priced
Timed Automata. In Maria Domenica Di Benedetto and Alberto
Sangiovanni-Vincentelli, editors, Proceedings of the 4th International
Workshop on Hybris Systems: Computation and Control, number 2034 in
Lecture Notes in Computer Sciences, pages 147–161. Springer–Verlag,
2001.

[11] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Com-
puter Science, 126(2):183–235, 1994.

[12] T. Brihaye, V. Bruyère, and J-F. Raskin. Model-Checking for Weighted
Timed Automata. In Proceedings of FORMATS-FTRTFT, number 3253
in Lecture Notes in Computer Science, pages 277–292. Springer–Verlag,
2004.

[13] Kim Guldstrand Larsen and Jacob Illum Rasmussen. Optimal Reach-
ability for Multi-Priced Timed Automata. Theor. Comput. Sci., 390(2-
3):197–213, 2008.

[14] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, V. Kumar, I. Lee,
P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical Modeling and Anal-
ysis of Embedded Systems. Proceedings of the IEEE, 8(3):231–274,
1987.

[15] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 91(1), 2003.

[16] P. Bouyer, K. G. Larsen, and N. Markey. Model-Checking One-
Clock Priced Timed Automata. Logical Methods in Computer Science,
4(2:9):1–28, 2008.

[17] P. Bouyer, Th. Brihaye, V. Bruyère, and J.-F. Raskin. On the Optimal
Reachability Problem. Formal Methods in System Design, 31(2):135–
175, 2007.

[18] K. G. Larsen and J. I. Rasmussen. Optimal Conditional Reachability
for Multi-priced Timed Automata. In Proceedings of the 8th Interna-
tional Conference on Foundations of Software Science and Computa-

tional Structures (FOSSACS 2005/ETAPS 2005), number 3441 in Lecture
Notes in Computer Sciences, pages 234–249. Springer–Verlag, 2005.

[19] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic Anal-
ysis of Hybrid Systems. Theoretical Computer Science, 138:3–34, 1995.

[20] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE approach to component-based development of vehicular systems.
Journal of Systems and Software, 80(5):655–667, May 2007.

[21] Armelle Bonenfant, Zezhi Chen, Kevin Hammond, Greg Michaelson,
Andy Wallace, and Iain Wallace. Towards Resource-Certified Soft-
ware: A Formal Cost Model for Time and its Application to an Image-
Processing Example. In ACM Symposium on Applied Computing (SAC
’07), Seoul, Korea, March 11-15, 2007.

[22] Aneta Vulgarakis and Cristina Seceleanu. Embedded Systems Resources:
Views on Modeling and Analysis. In COMPSAC, pages 1321–1328,
2008.

[23] Sverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carlson, and Ivica
Crnkovic. A Component Model for Control-Intensive Distributed Em-
bedded Systems. In Proceedings of the 11th International Symposium on
Component Based Software Engineering (CBSE2008), pages 310–317.
Springer, Oct 2008.

Chapter 11

Paper E:
Formal Semantics of the
ProCom Real-Time
Component Model

Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson, Cristina Seceleanu, and
Paul Pettersson
In Proceedings of the 35th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), Patras, Greece, August, 2009.

159

Abstract

ProCom is a new component model for real-time and embedded systems, tar-
geting the domains of vehicular and telecommunication systems. In this paper,
we describe how the architectural elements of the ProCom component model
have been given a formal semantics. The semantics is given in a small but
powerful finite state machine formalism, with notions of urgency, timing, and
priorities. By defining the semantics in this way, we (i) provide a rigorous and
compact description of the modeling elements of ProCom, (ii) set the ground
for formal analysis using other formalisms, and (iii) provide an intuitive and
useful description for both practitioners and researchers. To illustrate the ap-
proach, we exemplify with a number of particularly interesting cases, ranging
from ports and services to components and component hierarchies.

11.1 Introduction 161

11.1 Introduction

Designing embedded systems (ES) in a component-based fashion has become
an attractive approach for embedded software development. With benefits
ranging from simplification and parallel working to pluggable maintenance
and reuse, the financial gains are significant. In this context, systems con-
sist of identifiable, relatively independent and generally replaceable units of
composition, called components, which encapsulate complex functionality.

Once a component is defined, it can be distributed and used in other ap-
plications. Examples of component models include JavaBeans [1], Koala [2],
SOFA [3, 4], ProCom [5, 6] etc. Out of these, ProCom is a recently proposed
component model tailored for developing real-time ES in the vehicular and
telecom domains.

To achieve predictability throughout the development of the ES, the de-
signer needs to employ a design framework equipped with analysis methods
and tools that can be applied at various levels of abstraction, in order to pro-
vide estimations and guarantees of relevant system properties. Usually, embed-
ded system designers deal with two kinds of requirements. Functional require-
ments specify the expected services, functionality, and features, independent of
the implementation. Extra-functional requirements specify the use of available
resources. For the same functional requirements, extra-functional properties
can vary depending on a large number of factors and choices, including the
overall system architecture and the characteristics of the underlying platform.
Consequently, ES modeling must deal with both computation and physical con-
straints, which calls for an underlying semantic framework that abstracts away
from both physical notions of concurrency and from all physical constraints on
computation.

In this paper, we formalize the semantics of ProCom [5] architectural el-
ements, while identifying potential trouble spots in modeling, which we de-
scribe in detail in Section 11.2.2. To tackle the mentioned modeling issues of
ES, ProCom consists of two distinct, but related, layers, which expose a num-
ber of modeling characteristics that pose challenges to the system designer. The
upper layer, called ProSys, serves the modeling of the ES as a number of active
and concurrent subsystems, communicating by message passing. The lower
layer, ProSave, addresses the internal design of a subsystem down to primitive
functional components implemented by code. ProSave components are passive
and the communication between them is based on a pipes-and-filters paradigm.
Bridging the semantic gap between the two communication paradigms is one
particular modeling challenge that we show how to solve within the proposed

162 Paper E

ProCom formalization.
Another distinguishing characteristic of ProCom is the possibility to model

both fully implemented components, described internally by code, and also
design-time components, possibly modeled internally as inter-connected ProSave
components that might co-exist with the implemented components.

In order to rigorously describe the above mentioned and all of the other be-
havioral features of ProCom models, and to provide support for formal analy-
sis, we use an underlying finite state machine (FSM) formalism, with notions of
urgency, timing and priority. The formal semantics of the FSM language, hence
of the architectural elements of our component model, is expressed in terms of
timed automata with priorities [7] and urgent transitions [8]. However, in the
following, we chose to present just some of the most interesting cases, like
the formal description of services, component hierarchy, and ProSys-ProSave
linking. The formalism is intended to provide a high-level, abstract representa-
tion of ProCom semantics, understandable and appealing to both formalists and
engineers. Our solution is based on a small semantic core to which the synthe-
sis of ProCom-based models of real-time embedded systems should conform.
Note that, although it sets the grounds for formal verification, our semantic
descriptions focus only on describing the correct behavior of ProCom archi-
tectural elements, without consideration for efficiency in formal verification of
the resulted models.

The remainder of the paper is organized as follows. In Section 11.2, we
briefly recall the ProCom component model and identify some of its particu-
larities. Section 11.3 presents our underlying formal notation and the actual
formalization of the selected ProCom architectural elements. The comparison
to related work is carried out in Section 11.4, whereas in Section 11.5, we
conclude the paper.

11.2 The Component Model

11.2.1 ProCom

The ProCom component model [6] is specifically developed to address the par-
ticularities of the embedded systems domain, including resource limitations
and requirements on safety and timeliness.

To achieve efficiency, ProCom components are design-time entities that
can comprise information about interfaces, internal structure, code, models,
attributes, etc., rather than discernable, concrete units in the final system. Ap-

11.2 The Component Model 163

plications are build as a collection of interconnected components, and in the
later stages of development this component-based design is transformed into
executable units, such as tasks that can be handled by traditional real-time op-
erating systems.

Another basis of the ProCom development approach is that various types
of analysis are carried out throughout the development process, in order to
ensure that the application will meet requirements on resource usage, safety
and timeliness. Early analysis is particularly emphasized, as it allows potential
problems to be discovered when the cost of resolving them is relatively low.
At early stages, analysis is mainly based on models and estimates, and in later
stages on, for example, source code and concrete design parameters. A key
concern is to provide means to perform analysis on systems where fully de-
veloped parts, for example reused components, co-exist with parts in an early
stage of development.

To address the different concerns that exist on different levels of granular-
ity, spanning from the overall architecture of a distributed embedded system, to
the details of low-level control functionality, ProCom is organized in two dis-
tinct, but related, layers: ProSys and ProSave. In addition to the difference in
granularity, the layers differ in terms of architectural style and communication
paradigm.

In ProSys, the top layer, a system is modeled as a collection of communicat-
ing subsystems that execute concurrently, and communicate by asynchronous
messages sent and received at typed output and input message ports.

Contrasting this, the lower lever, ProSave, consists of passive units, and
is based on a pipes-and-filters architectural style with an explicit separation
between data and control flow. The former is captured by data ports where
data of a given type can be written or read, and the latter by trigger ports that
control the activation of components. Data ports always appear in a group
together with a single trigger port, and the ports in the same group are read and
written together in a single atomic action.

Figure 11.1 (a) shows the graphical representation of a ProSys subsystem
with one input port and two output ports, and (b) shows a simple ProSave
component with one input port group and two output port groups. Triangles
and boxes denote trigger- and data ports, respectively.

In addition to simple connections from output- to input ports, ProSave con-
tains connectors that provide detailed control over the data- and control flow,
including forking, joining and dynamically changing connection patterns.

Both layers are hierarchical, meaning that subsystems as well as compo-
nents can be nested. The way in which the two layers are linked together is that

164 Paper E

Figure 11.1: A ProSys subsystem and a simple ProSave component.

a primitive ProSys subsystem (i.e., one that is not composed of other subsys-
tems) can be further decomposed into ProSave components. At the bottom of
the hierarchy, the behavior of a primitive ProSave component is implemented
as a C function.

For the purpose of analysis, it is possible to associate attributes with compo-
nents and subsystems to specify different functional and non-functional char-
acteristics. Some attributes can be represented by a single number, e.g., worst-
case execution time or static memory usage, but in the case of more com-
plex functional and extra-functional behavior (such as timing and resource
consumption), a dense time state-based hierarchical modeling language called
REMES [9] is used.

11.2.2 Particularities of ProCom
The ProCom component model imposes restrictions on the behavior of its con-
structs, which should be addressed and formally specified, in order to achieve
predictable behavior. This section recalls the informal behavioral semantics
of specific modeling constructs in ProCom: services, connections, component
hierarchy and building active subsystems out of passive components.

The functionality of a ProSave component is captured by a set of services.
The services of a component are triggered individually and can execute con-
currently, while sharing only data. A service consists of one input port group
and zero or more output port groups, and each port group consists of one trig-
ger port and a number of data ports. An input port group may only be accessed
at the very start of each invocation, and the service may produce parts of the
output at different points in time. The input ports are read in one atomic step,
and then the service switches to an executing state, where it performs internal
computations and writes at its output port groups. The data and triggering of

11.2 The Component Model 165

an output group of a service are always produced at the same time. Before
the service returns to idle, each of the associated output port groups must have
been activated exactly once. This restriction serves for tight read-execute-write
behavior of a service. Since a service is a complex concept, its formalization
is highly needed.

In the ProCom language, connections and connectors define how data and
control can be transferred between ProSave components. Since ProSave com-
ponents can not be distributed, the migration of data or trigger over a con-
nection is loss-less and atomic. However, the trigger signals are not allowed
to arrive to any port before all data have arrived to all end destinations. This
should hold also in case when the data passes through a connector. ProSave
follows a push model for data transfer, so whenever there is data produced on
an output port, it is forwarded by the connection to the input data port and
stored there. In case more data (trigger) connections are enabled at the same
time, the order in which they are taken is non-deterministic. Let us assume the
following modeling scenario: three components A, B and C, are interconnected
via a Data-Fork connector (see Figure 11.2). The Data-Fork connector is used
to split data connections, so data written to the input data port is forwarded
to the output ports. When component A has finished executing, component
B should start executing. However, since the input trigger port of component
B is directly connected to the output trigger port of component A, while the
data is not transferred directly, but via a connector, there is a risk that the trig-
ger signal may reach component B before the data has arrived. Hence, such a
scenario in which trigger might arrive before data should be prohibited by the
formalization.

A

B

Data
Fork

C
...

Figure 11.2: Example of a critical modeling of data and trigger transfer in
ProCom.

166 Paper E

Internally, a ProSave component may be described by code or other inter-
connected sub-components. When a trigger of an output group is activated
internally, all the data (assuming it is ready internally) and the trigger are
atomically transferred to the corresponding output port groups of the enclosed
component. This contributes to the fact that, externally, there is no difference
between components, which allows the coexistence of fully developed compo-
nents and early design units.

ProSys systems are active entities that communicate via message passing.
In contrast, the communication between ProSave components is based on the
pipes-and-filters paradigm. Internally, a ProSys system can be built out of other
ProSys (sub)systems. At the lowest level of ProSys hierarchy, a subsystem
can be internally modeled by ProSave components. In order to build active
subsystems out of passive components, we use clocks. A clock is a special type
of construct that has one output trigger port, which is activated periodically at
a given rate. Clocks are not allowed to drift, but it is not assumed that all
clocks are initially synchronized. Additionally, a mapping is needed between
the message passing in ProSys and the trigger/data communication used in
ProSave.

Given the above, we identify the following issues that have motivated our
formalism and that we show how to solve in Section 11.3:

• The data and triggering of an output group of a service must always be
produced atomically, and each of the service output port groups must
have been activated exactly once before the service returns to idle state.

• All the data must arrive to its end destinations before the trigger signal.
This rule should also hold in cases when data is transferred through a
connector.

• Coexistence of both fully implemented components having well known
inner structure, and early design black box components, should be sup-
ported.

• Bridging the two communication paradigms: message passing in ProSys
and pipes-and-filters in ProSave.

11.3 Formal Semantics of Selected ProCom Ar-
chitectural Elements

To describe the behavioral semantics of ProCom architectural elements, we in-
troduce a high-level formalism as an extension of finite state machine (FSM)

11.3 Formal Semantics of Selected ProCom Architectural Elements
167

notation and semantics. Our FSM formalism is enriched with additional no-
tions of urgency, priority and implicit timing, necessary for modeling seman-
tics of component-based architectures of real-time systems. The formalism
is small, but powerful enough to grasp all the information that is needed for
proper formalization of ProCom. In addition, we believe that the language is in-
tuitive enough to be used by developers/engineers, but also formalists/researchers.
Yet this has to be proved by experiments that we leave for future work.

The FSM formalism and related graphical notation are introduced formally
below.

11.3.1 Formalism and Graphical Notation
Let V be a set of variables, G a set of boolean conditions (or guards) over V ,
B the set of booleans, A a set of variable updates, and I a set of intervals of
the form [n1, n2], where n1 ≤ n2 and n1, n2 are natural numbers. Our FSM
language is a tuple 〈S, s0, T, D〉, where S is a set of states, s0 ∈ S is the initial
state, T ⊆ S ×G×B ×B ×A× S is the set of transitions between states, in
which B×B represent priority and urgency (described below), and D : S → I

is a partial function associating delay intervals with states.
The FSM language relies on a graphical representation that consists of the

usual graphical elements, that is, states and transitions labeled with guards,
priority, urgency, and updates, see first two columns of Figure 11.3. A transi-
tion can be either urgent or non-urgent, and it can have priority or no priority.
As shown in Figure 11.3, a transition may be decorated with the non-urgency
symbol *, and/or the priority symbol ↑. Note that, a transition that is not anno-
tated with * is urgent. A state can be associated with a delay interval, which is
graphically located within the state circle.

Intuitively, the execution of an FSM starts in the initial state. At a given
state, an outgoing transition may be taken only if it is enabled, i.e., its associ-
ated guard evaluates to true for the current variable values. If from the current
state, more than one outgoing transition is enabled, one of them is taken non-
deterministically, and prioritized transitions are preferred over non-prioritized
transitions. In case all enabled outgoing transitions of a state are non-urgent,
it is possible to delay in the state. On the other hand, if there are any outgoing
urgent enabled transitions, one of them must be taken immediately. Thus, the
notions of priority and urgency avoid unnecessary non-determinism among en-
abled transitions, clarifying the modeling aspects and possibly improving the
performance of formal analysis. A state that is associated with a delay interval
[n1, n2] may be left anytime between n1 and n2 time units after it is entered.

168 Paper E

Informal FSM TA

non-urgent transition
c?

a?

b?

d?

urgent transition

urgent transition with priority

non-urgent transition with priority

state with delay interval [n1,n2]

clki n2

clki n1

≤

≥clki 0=
[n1,n2]

∗

↑

∗ ↑

initial state

state

urgent transition with guard

x==5 and update x=x+1
x==5 x=x+1 x==5 a? x=x+1

Figure 11.3: The graphical notation of the FSM elements and their translation
into TA.

In order to form a system, FSMs may be composed in parallel. The seman-
tic state of the composed system is the combined states and variable values of
the FSMs. The notions of urgency and priority are applied globally, and time
is assumed to progress with the same rate in all FSMs.

11.3.2 Formal Semantics of the FSM Language
In this section, we formally define the semantics of our FSM language using
timed automata (TA) [10] with priorities [7] and urgent transitions [8] as a
semantic domain. The translation of each FSM element to TA is depicted in
Figure 11.3. The FSM language has four kinds of transitions: urgent transition,
urgent transition with priority, non-urgent transition, and non-urgent transition
with priority. In TA we introduce four channels: a, b, c, and d. Channels a and
b are urgent, and channels b and d have higher priority than channels a and c.
Accordingly we map the transitions of FSMs into TA edges labeled with the
appropriate channels, as defined in Figure 11.3. The translated TA edges need
a timed automaton offering synchronization on the complementary channels
(e.g., a! complementary to a?), depicted in Figure 11.4.

Each FSM state results into a TA location. For every FSM with delay states,

11.3 Formal Semantics of Selected ProCom Architectural Elements
169

a clock clki is introduced. Accordingly, an FSM state with delay interval [n1,
n2] is translated into a corresponding TA location with invariant clk i ≤ n2.
The clock is reset on all ingoing edges and the guards of all outgoing edges are
conjuncted with clk i ≥ n1.

The system represented by a composition of FSMs can be translated into a
network of TA in two steps. First, each FSM is translated into a timed automa-
ton and then all TA are composed into a network together with the automaton
of Figure 11.4.

a
! b!

d!

c!

chan c,d;

urgent chan a,b;

priority a,c < b,d

Figure 11.4: The automaton used for synchronization.

11.3.3 Overview of ProCom Formalization
In the formalization, each data and message port is represented by a variable
with the same type as the port. The variables are storing the latest value written
to the ports, respectively. Likewise, a trigger port is represented by a boolean
variable determining the activation of that port. Ports of composite components
are represented by two variables, corresponding to the port viewed from outside
and from inside. Accordingly, in the ProCom formalization we assume the
following set of shared variables through which the FSMs communicate:

• vdi
: variable associated with a data port di of corresponding type.

• vti
: boolean variable associated with a trigger port ti indicating whether

the port is triggered, default false.
• vmi

: variable associated with a message port mi of corresponding type.
• v′di

and v′ti
: internal variables for ports of composite components, corre-

sponding to port variables vdi
and vti

, respectively.

Additionally, we let ε be the null value of any type indicating that no data
is present on a data or message port.

170 Paper E

The complete formalization of ProCom is available in [11]. The semantics
of all ProCom elements is defined as a translation to the FSM language, and the
semantics of an entire ProCom system is defined by the parallel composition
of FSMs for the individual constructs.

In the following, we chose the most representative, and semantically chal-
lenging, architectural elements of ProCom, and present their formalization.
The elements are: services, connections, components, clocks and message
ports.

11.3.4 Services
Assume a ProSave component with one service, say S1 and let S1 consist of
one input port group and two output port groups (Figure 11.5 (a)). The in-
formal semantics of a service in ProSave is described in Section 11.2. The
formal semantics of a service, in this case, S1, is described below and shown
in Figure 11.5 (b).

(b)

Service

S1

d2

d3

t1

d4

d0

d1

t0

t2

(a)

 w1=true

v´t1=false

vt1=v´t1

vd3=v´d3

vd2=v´d2

vt0

(w
1

 /\ w
2

) /\ (¬
 v

´
t0)

Execute

(¬ (w
1 /\ w

2)) /\ (¬ v´
t0)

Error 1

vt0=false

w2=false

w1=false

v´t0=vt0

v´d1=vd1

v´d0=vd0

(¬ w1) /\ v´t1

w2=true

v´t2=false

vt2=v´t2

vd4=v´d4

(¬ w2) /\ v´t2

Error 2

Idle

(w

1
/\

 v
´ t1

) \
/ (

w
2

/\
v´

t2
)

Figure 11.5: (a) A ProSave service S1 and (b) its formal semantics.

Let w1 and w2 be boolean variables corresponding to the output port groups,
respectively; the variables indicate whether the respective group has been acti-
vated or not. By associating boolean variables with the output port groups, we
ensure that the groups are written only once during an execution instance of

11.3 Formal Semantics of Selected ProCom Architectural Elements
171

a service. While being in an Execute state a service may yield into two error
scenarios:

• A service might try to go back to the Idle state before all output groups
have been activated. In the formal semantics of a service this is depicted
by the state Error 1.

• During execution, a service might try to activate an already activated
output port group. This problem is captured by the state Error 2.

As such, the formal semantics, ensures the informal semantics described in
Section 11.2 i.e., the triggering and data of a service is always produced atomi-
cally and each of the service output groups is activated exactly once before the
service returns to the Idle state.

11.3.5 Data and Trigger Connections

We will now focus on the ProSave connections between two data ports d0 and
d1 and two trigger ports t0 and t1. The formal semantics of ProSave connec-
tions is presented in Figure 11.6, for data connection, and in Figure 11.7, for
trigger connection.

DataInTransit

(b)

vd1=temp

d0 d1

(a)

↑ε

↑

temp=vd0 vd0 = vd0 != ε

Figure 11.6: (a) A ProSave data connection and (b) its formal semantics.

To ensure that data is transferred prior to trigger, and to avoid undesirable
consequences otherwise, the transitions in the FSM formalism (Figure 11.6)
are associated with priority in the case of data connections. This is also the
case in the semantics of all connectors that forward data (detailed in [11]).

172 Paper E

(b)

TriggerInTransit
vt1=true

vt0

(a)

t0 t1

vt0=false

Figure 11.7: (a) A ProSave trigger connection and (b) its formal semantics.

11.3.6 Component Hierarchy

ProCom is a hierarchical component model, with each component being a par-
allel composition of services, executing concurrently and sharing data. The
functionality of a ProSave component can be implemented by a single C func-
tion (primitive component) or by inter-connected internal components (com-
posite component).

In early stages of development, a component may still be a black box with
known behavior, but unknown inner structure. Later on, the component may
be detailed and in the end implemented. However, all components follow the
same execution semantics. In an early stage of development, when only the
behavior of the component is assumed to be known, it is the responsibility
of the behavior model to signal the end of execution, and to take care of the
internal variables (data and trigger) of a component accordingly. In a later stage
of development, when the inner structure of a composite component is known,
its formalization is handled by the inter-connected subcomponents. In this
case, we assume that there is a virtual controller in charge of signaling when the
internal trigger of a component has become false i.e., all subcomponents have
returned to the idle state. Consequently, in both cases, the internal variables are
left to be modified by the behavior, code or inner realization, but the external
variables of a component are always handled by the semantics of a service
(defined in Section 11.3.4). This emphasizes the fact that, from an external
observer’s point of view, there is no difference between early design black box
components and fully implemented components.

11.3 Formal Semantics of Selected ProCom Architectural Elements
173

11.3.7 Linking Passive and Active Components
By definition, ProSave components are passive and they communicate via data
exchange and triggering. ProSave components can be used to define the in-
ternals of an active ProSys subsystem with some additional connector types:
clocks (see Figure 11.9 (a)) and input- and output message ports (see Fig-
ure 11.10 (a) and Figure 11.11 (a), respectively). These connectors are not
allowed inside a ProSave component, so the coupling between ProSave and
ProSys is done only at the top level in ProSave. The use of these connectors is
exemplified in Figure 11.8.

C1
C2

Clock
10 Hz

Clock
50 Hz

Figure 11.8: A ProSys subsystem internally modelled by ProSave.

A clock serves for generating periodic triggers. A ProSave component can
be activated by receiving a periodic trigger with appropriate period. The formal
semantics of a ProSave clock with period P is shown in Figure 11.9 (b). Thus,
the formal semantics complies to the informal semantics of a clock, described
in Section 11.2.

vt0=trueClock t0

(a)

[0,P] [P,P]

(b)

∗

∗

Figure 11.9: (a) A ProSave clock with period P and (b) its formal semantics.

Message ports bridge the gap between the two communication paradigms:
pipes and filters in ProSave and message passing in ProSys. Each message port
acts as a connector with a trigger and data port that may be connected to other
ProSave elements. Whenever a message is received, the input message port

174 Paper E

writes this message data to the output data port, and activates the output trigger.
Similarly, whenever the trigger from an output message port is activated, the
output message port sends a message with the data currently present on its
input data port.

We assume the following:

• todata(): is a function that translates messages into data.
• tomessage(): is a function that translates data into messages.
Given the above, the formal semantics of an input message port and an

output message port can be described as in Figure 11.10 (b) and Figure 11.11
(b), respectively.

vd0=todata(vm0)

vt0=true

(a) (b)

 vm0 !=

d0

m0

t0

ε

Figure 11.10: (a) A ProSave input message port and (b) its formal semantics.

vm0= tomessage(vd0)

vt0=false

(a) (b)

vt0

d0

m0

t0

Figure 11.11: (a) A ProSave output message port and (b) its formal semantics.

11.4 Discussion and Related Work
As shown previously, the formalization of the relevant ProCom architectural
elements can be subsumed by a small and simple FSM-like language, ex-
tended with an abstract representation of clocks, and also urgency and priority

11.4 Discussion and Related Work 175

on transitions. To place our contribution in the right context and emphasize
its strengths and weaknesses, in the following, we review some of the related
work to which ours can compare.

The BIP (Behavior, Interaction model, Priority) component framework in-
troduced by Gößler and Sifakis [12, 13] has been designed to support the con-
struction of reactive systems. By separating the notions of behavior, interaction
model, and execution model, it enables both heterogeneous modeling, and sep-
aration of concerns. The semantics of BIP is given in terms of Timed Automata
(TA), on which priority rules are successively applied to enforce certain invari-
ants of the expected real-time behavior. As opposed to our formal semantics,
the BIP formalization targets directly the efficient verification of the considered
models.

COMDES-II (Component-Based Design of Software for Distributed Em-
bedded Systems) [14] is a development framework in which the functional
units encapsulate one or more dynamically scheduled activities. Besides pro-
viding a clear separation of concerns (functional behavior from real-time be-
havior), in modeling, COMDES-II also offers support for formal analysis, by
specifying the activity behavior in terms of hybrid state machines. The Pro-
Com semantics presented in this paper does not focus on the transformational
aspects of component and system behavior, but more on the reactive and real-
time aspects, while emphasizing the co-existence of black-box and fully im-
plemented components, via the component hierarchy.

The communication among SOFA components [3] can be captured for-
mally, by traces, which are sequences of event tokens denoting the events oc-
curring at the interface of a component. The behavior of a SOFA entity (in-
terface, frame or architecture) is the set of all traces, which can be produced
by the entity. Such a formalization can be hard to comprehend, but the pro-
posed formalization of ProCom might, on the other hand, be more difficult to
implement and exploit towards efficient verification, due to its higher-level of
abstraction.

A process-algebraic approach to describing architectural behavior of com-
ponent models is advocated by Allen and Garlan [15], and Magee et al. [16],
who formalize the component behavior in CSP (Communicating Sequential
Processes) and via a labeled transition system with a possibly infinite number
of states.

Koala [2] is a software component model, introduced by Philips Electron-
ics, designed to build product families of consumer electronics. For Koala
compositions, the extra-functional information is exposed at the component’s
interface. The prediction of extra-functional properties is carried out by mea-

176 Paper E

surements and simulations at the application level. In contrast, the ProCom
semantics sets the ground for achieving predictability via formal verification
(by translating our FSMs into timed automata [7]), prior to implementation.

ProCom’s precursor, SaveCCM, is also an analyzable component model for
real-time systems [17]. SaveCCM’s semantics is defined by a transformation
into timed automata with tasks, a formalism that explicitly models timing and
real-time task scheduling. The level of detail of such a formal model is higher
than in our FSM notation, making it more suitable for formal verification; how-
ever, the timed automata models of SaveCCM can be cluttered with variables
whose interpretation is not necessarily intuitive, which makes the formal mod-
els less amenable to changes.

11.5 Conclusions
In this paper, we have presented the overall ideas and some lessons learned
from defining a formal semantics of the ProCom component modeling lan-
guage. The ProCom language is structured in two layers, and equipped with
a rich set of design elements aimed to primarily support the application area
of embedded systems. The ProCom language constructs include service inter-
faces, data and trigger ports, passive or active components, connections and
connectors, hierarchies of components, timing, etc.

Clearly, a formalization of the language needs to deal with all concepts of
the modeling language. Additionally, it has been our goal to make the for-
malization as simple and intuitive as possible, so that it can serve as a basis
both for engineers using ProCom, as well as researchers developing analysis
techniques, model-transformation tools, etc., within the ProCom framework.
In order to meet these sometimes contradicting goals, we have used a small
but powerful FSM language, in which the semantics of each ProCom element
is described. The FSM language builds on standard FSM, enriched with finite
domain integer variables, guards and assignments on transitions, notions of ur-
gency and priority, as well as time delays in locations. The language assumes
an implicit notion of time, making it easy to integrate with various concurrency
models (e.g., the synchronous/reactive concurrency model, or a discrete-event
concurrency model) [18]. Its formal semantics is expressed in terms of TA with
priorities and urgent transitions, as shown in Section 11.3.2. The FSM lan-
guage has graphical appeal and it is simpler than the corresponding TA model,
as it abstracts from real-valued variables and synchronization channels. More-
over, thanks to the TA formal semantics, the FSM models of ProCom systems

11.5 Conclusions 177

can be analyzed in a dense-time underlying framework, as well as in a discrete-
time one, since TA has been recently given a sampled semantics [19]. Hence,
tools such as UPPAAL can be employed for early-stage verification of ProCom
models, whereas discrete-time model-checkers, such as DTSpin [20], could be
used for later-stage analysis, as a sampled time semantics is closer to the actual
software or hardware system with a fixed granularity of time, and can become
appealing at later stages of design.

To illustrate our approach, we describe in detail how the design constructs
for services, data and trigger connections, component hierarchies, and passive
and active components of ProCom have been formalized in this manner. These
elements are deliberately chosen, since they represent the different types of
design elements in the language, and expose the encoding techniques used in
the ProCom-FSM translation.

As future work, we plan to develop support for model-based analysis tech-
niques such as model-checking, based on the formalization given in this paper.
In particular, we plan to integrate our recent work on modeling and analysis of
embedded resources and the associated modeling language REMES [9] with
the formal semantics of ProCom given in this paper.

Acknowledgment
This work was partially supported by the Swedish Foundation for Strategic
Research via the strategic research centre PROGRESS.

Bibliography

[1] R. Englander. Developing Java Beans. O’Reilly, 1997.

[2] R. van Ommering, F. van der Linden, and J. Kramer. The Koala Compo-
nent Model For Consumer Electronics Software, booktitle = IEEE Com-
puter, organization = IEEE, month = ”march”, year = ”2000”, pages =
”78-85”,.

[3] T. Bureš, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing Advanced
Features in a Hierarchical Component Model. In Proceedings of SERA
2006, pages 40–48. IEEE CS, August 2006.

[4] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for Com-
ponent Trading and Dynamic Updating. In Proceedings of ICCDS 98.
IEEE CS, May 1998.

[5] Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and
Aneta Vulgarakis. ProCom – the Progress Component Model Refer-
ence Manual, version 1.0. Technical Report MDH-MRTC-230/2008-1-
SE, Mälardalen University, June 2008.

[6] T. Bureš, J. Carlson, S. Sentilles, and A. Vulgarakis. A Component Model
Family for Vehicular Embedded Systems. In Proceedings of the Third
International Conference on Software Engineering Advances. IEEE, Oc-
tober 2008.

[7] Alexandre David, John Håkansson, Kim Guldstrand Larsen, and Paul Pet-
tersson. Model Checking Timed Automata with Priorities using DBM
Subtraction. In 4th International Conference on Formal Modelling and
Analysis of Timed Systems (FORMATS’06), pages 128–142. Springer-
Verlag, September 2006.

179

180 Bibliography

[8] Johan Bengtsson, W. O. David Griffioen, Kre J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Automated Anal-
ysis of an Audio Control Protocol Using UPPAAL. Journal of Logic and
Algebraic Programming, 52–53:163–181, July-August 2002.

[9] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. REMES: A
Resource Model for Embedded Systems. In Proceedings of the 14th IEEE
International Conference on Engineering of Complex Computer Systems
(ICECCS 2009). IEEE Computer Society, 2009.

[10] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Com-
puter Science, 126(2):183–235, 1994.

[11] J. Suryadevara, A. Vulgarakis, J. Carlson, C. Seceleanu, and P. Pettersson.
ProCom: Formal Semantics. Technical Report ISSN 1404-3041 ISRN
MDH-MRTC-234/2009-1-SE, Mälardalen University, March 2009.

[12] G. Gößler and J. Sifakis. Priority Systems. In Proceedings of FMCO’03,
volume LNCS 3188, pages 314–329. Springer-Verlag, 2004.

[13] G. Gößler and J. Sifakis. Composition for Component-based Modeling.
Science of Computer Programming, 55(1–3):161–183, 2005.

[14] Xu Ke, Krzysztof Sierszecki, and Christo Angelov. COMDES-II:
A Component-Based Framework for Generative Development of Dis-
tributed Real-Time Control Systems. In Proceedings of the 13th IEEE
International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, pages 199–208. IEEE, 2007.

[15] R.J. Allen and D. Garlan. A Formal Basis for Composing Components.
ACM Transactions on SW Engineering and Methodology, 1997.

[16] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed
Software Architectures. In Proceedings of the 5th European Software
Engineering Conference, 1995.

[17] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
SAVE approach to component-based development of vehicular systems.
Journal of Systems and Software, 80(5):655–667, May 2007.

[18] B. Lee and E. A. Lee. Interaction of Finite State Machines and Concur-
rency Models. In 32nd Annual Asilomar Conference on Signals, Systems,
and Computers, November 1998.

[19] P. A. Abdulla, P. Krcal, and W. Yi. Sampled Universality of Timed
Automata. In 10th International Conference Foundations of Software
Science and Computational Structures, FOSSACS 2007, part of ETAPS
2007, volume LNCS 4423, pages 2–16. Springer-Verlag, 2007.

[20] Dragan Bošnački and Dennis Dams. Discrete-Time Promela and Spin.
In FTRTFT ’98: Proceedings of the 5th International Symposium on For-
mal Techniques in Real-Time and Fault-Tolerant Systems, pages 307–310.
Springer-Verlag, 1998.

	Licentiate Theses 108 -ANETA
	thesis1

