
Towards a Process Maturity Model for Evolutionary
Architecting of Embedded System Product Lines

Jakob Axelsson
School of Innovation, Design and Engineering

Mälardalen University
SE-721 23 Västerås, Sweden

+46 31 59 00 00

jakob.axelsson@mdh.se

ABSTRACT

Many companies developing embedded systems and software as
part of a product line struggle with how to improve their
architecting practices to deal with increasing complexity. As the
amount of legacy systems from previous products increases, the
architecting becomes more and more evolutionary. This paper
develops a process maturity model for evolutionary architecting,
that can be used by an organization to improve its practices. The
model is based on the Capability Maturity Model Integration
(CMMI) which is instantiated to suit the architecting needs.
Through this instantiation and simplification, it becomes feasible
also for a small architecting team to systematically improve its
maturity without dealing with the full CMMI. It is shown how the
resulting maturity model addresses a number of issues previously
collected from industrial case studies. The method is evaluated by
performing maturity evaluations at several companies.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management – software process

models.

General Terms

Management, Measurement, Standardization.

Keywords

Architecture, embedded systems, evolution, maturity model.

1. INTRODUCTION
In many companies developing technical products, such as the
automotive industry, process automation, or telecommunication,
embedded systems and software play an increasingly important
role. The embedded systems have developed into a large number
of computers with distribution networks and millions of lines of
software. This increasing complexity leads to soaring developing
costs, and many companies strive to curb this trend by reusing
software and hardware between products. Often, a product line
approach is applied, where the same platform is used as a basis,
with modifications to fit individual products and customers.

With a multiplicity of products and variants, the architecture is

becoming very important and is a source of increasing interest for
companies developing embedded systems. The decisions made by
architects in the early phases influence many decisions made later
on, and the architecting decisions are difficult to change further
down the process [10]. With a poor architecture, downstream
development activities will thus become much more expensive
and time consuming.

We have previously done in-depth studies of the current
architecting practices at a few automotive companies [13], [14].
The issues we found were later validated also in other industrial
areas where embedded software and systems play an essential
role. Among the issues, we saw a lack of processes for
architecture development, and the organizations had an unclear
responsibility for architectural issues. Also, there was a lack of
long-term strategy to ensure that legacy does not negatively
impact future decisions, and a lack of methods to evaluate the
business value when choosing the architecture. In short, the
organizations rely on the performance and knowledge of
individuals instead of on processes and methods.

These findings are typical signs of immature organizations that
rely on fire-fighting by individuals rather than fire-prevention
through a well-defined and repeatable process. The basis for
systematic process improvement is weak. These companies often
state that they never again expect to start from fresh in their
architecting, since it will be too expensive and complex. Instead,
they will continue to refine their existing products. Some of the
companies have tried to do major revisions of their architecture,
but have failed spectacularly and been forced to revert to
evolution of their existing solution.

1.1 Purpose and Contribution
Based on this information collected from industry, we find it
plausible to assume that a mature organization would work with
architecting of embedded systems and software mainly through
stepwise refinement rather than large leaps. We call this an
evolutionary architecting approach, in contrast with the
revolutionary approach focusing on large but rare changes. Since
the small steps will be carried out often and have short duration,
the process for doing the changes can be analyzed quantitatively
and the data can be used for continuous improvement. In a
revolutionary approach, there will never be enough relevant data
for systematic evaluation of how well the process works.

The purpose of this paper is to device a way for a company to
improve the maturity of its architecting practices. We hypothesize
that a maturity model similar to the Capability Maturity Model
Integration (CMMI) could be a useful basis for process
improvement in the architecting area. We choose CMMI since it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ECSA 2010, August 23-26, 2010, Copenhagen, Denmark.
Copyright (c) 2010 ACM 978-1-4503-0179-4/10/08 ...$10.00.

is, to our knowledge, the best established model of this kind.
Maturity levels help characterize a process and set out a strategy
for its improvement. Using such a model, the organization can
stepwise change its practices towards a better defined process.

So why not use CMMI as it is? The main reason is the complexity
of CMMI as such. The architecting teams are usually small (about
10 persons in a product development organization counting
thousands of engineers is typical). This has a benefit in that the
teams can use relatively light-weight processes and tools and
move rapidly. The drawback in this context is that a full CMMI
implementation is beyond the resources of such a team. Also, the
current CMMI v. 1.2 is not very strong on architecture (although
the next version plans to improve this [6]).

This paper contributes by providing an adaption and
simplification of CMMI specifically for evolutionary architecting
which can be used by industry as a tool for process improvement
and for status assessment, without investing in penetrating and
tailoring the full CMMI and performing detailed appraisals.

As a secondary contribution, we also see the model as a suitable
tool for academic researchers in the area of system architecture.
By performing a small appraisal using our model at a company, an
initial and objective summary of its current status can be rapidly
collected and used when analyzing its practices.

1.2 Related Work
The relation between CMMI and architecting is discussed in [6]
which describes how an IT company made its architecting process
CMMI Level 3 compliant due to a company requirement. A set of
requirements on the architecting process is derived from CMMI,
and it is also investigated how two generic processes from
literature meet these requirements. However, the actual
architecting process of the company is not described, and hence it
is hard to determine whether it is evolutionary or revolutionary,
and if it deals with embedded system product lines. Also, only a
subset of CMMI process areas is included in the analysis.

When it comes to evolutionary architecting, one of the papers in
the area is a case study describing how change requests to the
architecture is handled in an automotive company [1]. It provides
valuable information on the nature of the evolutionary process and
its relation to revolutionary architecting.

Two separate papers [2], [11] describe the application of CMM(I)
in small organizations. They conclude that these organizations
often lack both resources and funds to invest in CMMI appraisals.
Also, they note that since CMMI as such is written to suit a large
organization, the small ones have to tailor CMMI to suit their
needs, which makes it even more resource consuming. These
findings support our initial assumption that CMMI is too heavy to
use for a small architecting team and that a specialization of the
maturity model could reduce the entry threshold.

In [9], a maturity model for requirements engineering is described
which is loosely based on CMM. Although it addresses another
area than architecture, this paper has inspired us in developing a
less strict model than CMM(I), focusing more on internal process
improvement than on external appraisals.

Instantiating CMM(I) generically to a certain type of activity is
somewhat different from applying it at a specific company. A
similar approach is reported in [5] which describes how a CMM
appraisal is made of the software development process RUP.

In [8] an Architecture Alignment Model is presented where one
component is architecture maturity. However, the focus is on IT
systems rather than embedded systems, and the paper does not
provide a detailed way of establishing an organization's maturity.
The organizational integration of management and IT departments
is emphasized, but many other aspects of architecting are missing.

From the IT systems area comes also the Enterprise Architecture
Maturity Model Framework (EAMMF) [4], [12]. As CMMI, it
contains five levels ("stages") with similar definitions. At each
level, a number of practices ("core elements") are defined, and a
number of goals ("critical success attributes") exist across the
levels. Strangely, EAMMF does not make any reference to
CMM(I), despite these similarities. EAMMF is not as formal as
CMMI and probably the threshold for applying it is lower.
However, the specific practices are very clearly directed towards
the problem of integrating an organization with its IT tools. This
makes it hard to use EAMMF as a basis for our problem, which is
to integrate embedded systems into a product.

1.3 Overview of Paper
The remainder of the paper is structured as follows. In the next
section, we describe the evolutionary architecting process for
embedded systems and software. Certain characteristics of this
activity are important to understand, because they determine how
CMMI should be instantiated. Then, in Section 3, we summarize
the theoretical framework, which is the CMMI specification. In
Section 4, we develop the maturity model for architecting. The
following section presents an initial evaluation by performing
informal appraisals at a few companies, and some findings in the
study are discussed further. In the final section, the conclusions
are summarized together with ideas for future work.

2. Evolutionary Architecting
To better explain the activities involved in evolutionary
architecting, we put it in the context of a V-model for the overall
embedded system and software development (Figure 1). Often,
development starts with the design of functions (expressed from
an external or customer perspective). Based on this, systems are
designed that together implement (i.e. express from a technical
perspective) the functionality, and these systems are refined into
components. Later, verification and validation is performed on the
component, system, and function levels. Since the system-level
development activities depend on input from the architects, it is
important that the architecting process is predictable in terms of
delivery time and quality, since otherwise the overall product
development schedule will be delayed.

In this process, the architects get input primarily from the function
developers in terms of the requirements on those functions. These
requirements are complemented by needs from other stakeholders.
The architects then try to design a high-level technical solution,
which focuses on the distribution of functionality onto the
different systems, and on the interfaces. When doing so, they also
take into account architectural quality attributes, which are
properties of the architecture itself which they strive to maintain.
The architectural solutions are modeled, and from the model pre-
requisites are derived and passed to the system developers.

When a totally new system is developed, the architects would
typically try to collect the functional requirements of all functions
at the same time, and take the total mass of functionality as input
when designing the architectural solution. However, when
working with product lines and platforms, most of the

functionality will already exist in the platform, and the architects
can focus on dealing with the few change requests (CR) that
capture added or changed functionality in the new products to be
derived from the platform. We call this the evolutionary

architecting process (EAP).

In the EAP, the existing architecture for the platform, and the
requirements that led to that architecture, are important input in
the architecting process. The organization must find a way to deal
with the architecture description of the platform as an asset that
exists between instantiations of the process. It is also worth
noting that several instances of the EAP can be active at the same
time, dealing with different CRs, and therefore some co-
ordination is necessary. Each CR is limited in scope, so the
planning for each request does not need to be very detailed.

3. Overview of CMMI
The theoretical framework used in this research is the CMMI for
Development, version 1.2 [3] which is based on "best practices" in
software and systems engineering. In this section, a brief
summary of the relevant parts is provided.

3.1 Maturity Levels
CMMI defines a sequence of maturity levels, where each level
provides a set of process areas that characterize different
organizational behaviors. This approach offers a systematic and
structured way to improve the processes one stage at a time, from
an ill-defined state to a state that uses quantitative information to
determine and manage improvements. The levels are:

1. Initial. Processes are usually ad hoc and chaotic.
Success depends on the people in the organization.

2. Managed. Work is planned and executed in accordance
with policy (i.e., guiding principles established by
senior management) by skilled people with adequate
resources. Relevant stakeholders are involved and
progress is monitored and controlled. The work is
evaluated for adherence to the process descriptions.

3. Defined. Processes are well characterized and
understood, and are described in standards, procedures,
tools, and methods. Standard processes are established
and improved over time, and are adapted by projects
through tailoring guidelines. Processes are described
more rigorously than at level 2.

4. Quantitatively managed. The organization establishes
quantitative objectives for quality and process
performance and uses them as criteria in managing
processes. Special causes (i.e., unique and disruptive
events) of process variation are identified and their
sources are corrected to prevent future occurrences.
Process performance is more predictable than at level 3.

5. Optimizing. The organization continually improves its
processes based on a quantitative understanding of the
common causes of variation. Process performance is
quantitatively predictable, whereas at level 4 the
predictability is qualitative.

3.2 Process Areas, Goals, and Practices
CMMI defines 22 process areas. At Level 1, no process areas are
defined, and then more process areas are added at each level.

Each process area relates to a number of goals that are required to
be met. There are both specific goals that relate to only a
particular process area, but also two generic goals that relate to
many process areas. The generic goals relate primarily to how the
process improvements can be institutionalized. The generic goals
associated with a maturity level should be applied to all process
areas that are relevant at that level, even if those process areas
were first introduced at another level.

For each goal, a number of practices are defined, that are expected
(but not required) to be implemented. There are both specific

practices that relate to a certain specific goal, and generic

practices that relate to a certain generic goal.

4. Evolutionary Architecting Maturity Model
In this section, we present the Evolutionary Architecting Maturity
Model (EAMM). When developing EAMM, we have
axiomatically assumed that everything in CMMI is correct and
relevant, unless we can find good reasons for changing it. The
reasons for changing are primarily based on the characteristics of
the evolutionary architecting process and organization described
in Section 2. Also, the terminology has been updated to suit the
architecting activities. In a few cases, additions to or
reinterpretations of CMMI have been made. Since architecting is
an internal activity, formal appraisals are not focused. Instead,
self-assessment is a more relevant tool for the architects.

In the remainder of this section, we will present each maturity
level of EAMM, and discuss in more detail the contents of the
process areas. Space does not permit a detailed description of how
CMMI goals and practices are incorporated into EAMM, but
instead a short summary of each level and process area is given.

4.1 Level 0: Incomplete
In the EAMM, we have included a Level 0. A company at this
level does not work with product lines at all, but each product has
its own architecture and the ambition for reuse is low. There is no
organizational responsibility for architecture across the products,
and no defined process.

4.2 Level 1: Initial
A company who fulfills the requirements that it is working
evolutionary based on product lines and has an organization
responsible for architecting the products is at least at EAMM
Level 1. At this initial level, the processes are usually ad hoc and
chaotic, and success is highly dependent on the skills of the

Figure 1. Architecting in the system development process.

D
evelopm

ent

V
er

ifi
ca

tio
n

&
 V

al
id

at
io

n

Function
level

System
level

Component
level

Architecting

Architecture
quality attributes

people. Many of the companies mentioned in Section 1.2 show all
the signs of being not much higher than this level.

4.3 Level 2: Managed
At EAMM Level 2, an organizational policy is established where
the roles and responsibilities of the architects are formalized with
respect to other parts of the development organization.

There is a need at this level to define what quality attributes
should serve as guiding principles for the architects' work. These
should not be connected to any specific function, and should
relate primarily to the product line architecture rather than to the
architecture of individual products.

A key factor in evolutionary architecting is to maintain the
architecture descriptions that are used and updated when
architecting each CR. These cross-project assets must be defined
clearly to allow efficient management, and the CMMI does not
provide clear guidance on how to manage data between projects.

EAMM defines six process areas at this level. In CMMI, a
seventh is included, namely Supplier Agreement Management
(SAM). It is removed from EAMM since architects do not usually
deal with suppliers, although the suppliers (or the purchasing
organization) should be included among the stakeholders.

Requirements Management (REQM). The organization
performs systematic requirements management to ensure that the
requirements are linked to the elements of the architecture
description. This is to prevent that a later CR leads to an
architecture update which is in conflict with old, but still valid,
requirements.

Configuration Management (CM). The organization performs
systematic configuration management of the architectural
description to ensure its integrity. This is to ensure consistency
between different versions of the common architecture used in
different products, but also to avoid that architects working in
parallel on different CRs make conflicting decisions. Also,
changes made late in the development process must be fed back
into the architecture description to ensure that future CRs are
based on a correct view of the current design.

Measurement and Analysis (MA). The organization has a
measurement capability that is used to support management
information needs. It has defined what metrics should be used and
how these should be measured. Usually, two kinds of metrics are
used: technical metrics that relate to the quality attributes that will
be used for technical decision making, and process related metrics
that will be used for process improvement activities.

Project Planning (PP). When a new CR arrives to the
architecture organization, a brief plan is expected to be created,
identifying what areas need to be investigated, the expected
duration and resource needs of the investigation, who is
responsible for it, and which stakeholders should be included.

Project Monitoring and Control (PMC). The project monitoring
and control area follows the processing of all on-going CRs. Some
organizations may implement this through regular progress
reports at an Architecture Change Control Board.

Process & Product Quality Assurance (PPQA). To ensure that
the architecting process has the expected performance and the
results meet the quality standards, objective evaluations are made.
At regular intervals, it is monitored that the formal process

description is followed, and that the resulting architectural
prerequisites delivered to the system-level are evaluated with
respect to quality and schedule.

4.4 Level 3: Defined
At EAMM Level 3, processes are institutionalized in the
organization, and they are improved over time and adapted for
each CR through tailoring guidelines. EAMM defines 11 process
areas at this level, which are the same as in CMMI.

Requirements Development (RD). In Level 2, the procedures
and tools for managing and storing requirements are defined. In
the requirements development area at Level 3, the actual
development of requirements is addressed, including collection,
refinement, and analysis. For architecting, each CR is analyzed to
identify the relevant stakeholders and elicit their needs, resulting
in a set of architecturally significant requirements expressed from
the customer's perspective. The requirements are analyzed to
ensure that they are necessary and complete, and in case of
conflicts between new or existing requirements, the necessary
trade-offs are made. The requirements are validated to ensure that
they really correspond to the stakeholders' intentions. It is
important to state that it is not the role of the architects to develop
all requirements, but only to gather those that are relevant to the
architectural decisions.

Technical Solution (TS). The Technical Solutions process area is
where the architectural decisions are made and the architectural
descriptions are written. It is expected that solution alternatives
are produced and evaluated based on a set of criteria. The
architectural description of the parts that change is written,
including the interfaces.

Product Integration (PI). In architecting, product integration
(PI) takes place at the level of architectural descriptions. In the TS
process area, a description is produced of what updates are needed
in the architecture as a result of a CR. In the PI process area, it is
ensured that this update is consistent with the already existing
architectural description where it is expected to fit in. This
includes ensuring that the interfaces are compatible, and to
integrate the updated architectural description.

Verification (VER). Verification is to ensure that the technical
solution meets the stated requirements, i.e. in this case that the
architectural description meets the architectural requirements. In
many cases, peer reviewing (or other structured reviews such as
FMEA) among architects and system developers is used.

Validation (VAL). Validation is done to ensure that the technical
solution meets the customer needs. As for verification, this is
usually done through reviews. However, whereas the verification
is done by having architects as peers, validation reviews should be
done by functional developers and other stakeholders to ensure
that their needs are correctly understood. In addition, the effects
on architectural quality attributes need to be validated.

Decision Analysis and Resolution (DAR). The purpose of
Decision Analysis and Resolution (DAR) is to analyze possible
decisions using a formal evaluation process that evaluates
identified alternatives against established criteria. In EAMM, the
primary use of this is when evaluating solution alternatives.

Integrated Project Management (IPM). The organization
ensures that each CR follows a standard processes. It also ensures
that relevant stakeholders are involved in the processing of a CR.

Risk Management (RSKM). The organization performs risk
management as part of dealing with each CR. This includes
identification, analysis, and mitigation of risks.

Organizational Process Definition (OPD). As part of moving to
EAMM Level 3, the organization develops a standardized
architecting process to deal with CRs. The interfaces to other roles
and organizations (primarily function developers and system
developers) are clearly defined.

Organizational Process Focus (OPF). To ensure continuous
improvement of the processes, the organization needs to identify
improvement opportunities. This is done by a periodical
assessment of the current processes.

Organizational Training (OT). One group to train is the
architects, but since these are relatively few, it is likely that tuition
and coaching by a more experienced architect is more suitable
than formal courses. Another group is the different stakeholders.

4.5 Level 4: Quantitatively Managed
At EAMM level 4, the organization uses quantitative analyses to
establish a stable architecting process with predictable behavior.

Organizational Process Performance (OPP). The organization
has defined what metrics it should use to measure the process
performance of its architecting processes. Typically, this will
include how efficiently (i.e. how much resources and time is
consumed) and how effectively (i.e. what the quality of the result
is) it can deal with architecture CRs. The organization has also
established objectives for quality and process performance, and
has made measurements to establish the current status. Finally, it
has developed prediction models that it uses to estimate key
metrics for a CR based on its characteristics.

Quantitative Project Management (QPM). Based on the
metrics defined in OPP, QPM measures the progress of individual
CRs to collect statistical data about the various sub-processes. The
organization puts up objectives and takes corrective actions if
these are not satisfied. Statistical methods are applied on the
collected data to identify causes of variation, with focus on special
causes (rare events) that need to be removed in order to reach a
stable process performance.

4.6 Level 5: Optimizing
At EAMM level 5, the organization continually improves its
processes and architectural assets based on a quantitative
understanding of the common causes of variation. It also
strategically manages the architecture by identifying future
bottlenecks and planning for refactoring at suitable times.

Causal Analysis and Resolution (CAR). Based on the data
collection put in place at level 4, the organization can start to
systematically detect defects and deviations from expected
performance in its work, and analyses the root causes.

Organizational Innovation and Deployment (OID). With
defined processes and measuring capability in place, the
organization can start to work systematically with a strategic
architecting processes to remove emerging bottlenecks before
they hinder the execution of CRs. At lower maturity levels, the
organization's behavior is reactive, and the aim is to resolve each
CR as well as possible. However, such organizations often run
into cul-de-sacs where the architecture's resources are suddenly
exhausted and a major revision is needed. A mature organization

instead pro-actively avoids such situations by analyzing the long-
term consequences of each decision.

To achieve this, the organization needs to identify which the
limiting factors are in the architecture. It must also monitor the
rate of change over time in these factors based on CRs, in order to
predict the most appropriate time for an architecture refactoring.
CRs are prepared to initiate the refactoring, and those CRs can
then be processed using the ordinary EAP.

5. Evaluation
In this section, we present an initial evaluation of the EAMM
through informal appraisals at a few companies. The results and
experiences gained from this and from developing EAMM are
also discussed.

To be able to perform appraisals of how mature a company’s
architecting practices are according to EAMM, we have derived a
set of 53 appraisal questions which is presented in an appendix.
These were used for an initial validation through interviews with
architects at three companies in the automotive domain. The
results are summarized in Table 1.

Table 1. Summary of EAMM appraisals.

Level
No. of

questions

Percentage of maximum

score per level

A B C

1 3 100% 92% 92%

2 17 65% 37% 15%

3 22 66% 33% 16%

4 5 20% 0% 0%

5 6 67% 13% 17%

Total 53 3.17 1.57 1.39

In previous studies, we have done interviews and questionnaires
with people at all three companies concerning what they consider
to be issues or problems in their current architecting practices, as
described in Section 1 above. In those studies, Company B and C
have reported similar levels of identification with the issues,
whereas Company A has reported better results. This is in-line
with what the table shows from the EAMM appraisal.

The table also shows the expected trend that companies
implement practices up to a certain level, and then the number of
activities sharply decline. An interesting observation is that
Company A insisted that they already do several of the practices
at Level 5 and much fewer at Level 4. When digging deeper into
this, we found that at this company there is a strong culture to deal
seriously with all deviations and discover the root cause for them.
However, it does not involve a statistical analysis of measurement
data, but is done qualitatively.

5.1 Discussion
In this work we have defined EAMM by instantiating CMMI for
evolutionary architecting. When doing so, we have axiomatically
assumed that implementing CMMI provides benefits, being based
on "best practices" as it is. By tailoring CMMI for architecting we
hope to improve the cost-benefit-equation for an architecting team
by removing some of the cost but still provide similar benefits.

EAMM contains many activities that are rarely performed by
architecting organizations today. It would not be surprising if

more resources are needed as the organization proceeds up the
maturity scale, although we do not know this for sure. The benefit
of reaching high maturity levels would not be to have a leaner
process, but a more predictable one with less variability. This is
also important, because it would improve the overall development
planning for function and system developers.

An expected benefit of EAMM is also improved quality of the
resulting architecture. However, the positive effect of this is
difficult to measure in practice, because the result of poor
architecture quality is additional work downstream in the
development process. The cost of rework ("the hidden factory") is
thus located far from the architecting process and the cause-effect
relationship is hard to establish.

Being a small organization is both a curse and a blessing when it
comes to process improvement. On the one hand it can be hard to
find the resources to implement the process improvement program
(which is why we devised EAMM to reduce the cost). On the
other hand, it is much easier to get everyone in the same boat in a
small organization, and changes can be made much more rapidly.
We believe this would increase the chances that an architecting
organization can move beyond Level 3 (where many companies
seem to get stuck when applying CMMI).

6. Conclusions
In this paper, we have presented a maturity model for architecting
of embedded system product lines. The model is based on CMMI,
which is simplified and adapted to architecting. By doing so, we
hope to reduce the resource needs of implementing a process
improvement program for a small organization, while still
retaining the benefits of moving to higher maturity levels. Also, it
makes it possible for an organization to improve its architecting
practices without having to deploy CMMI companywide.

An initial evaluation shows that the model appears relevant for
companies developing embedded systems, and that it addresses
issues found in previous research. We conclude that CMMI can be
a basis also for improving the architecting processes.

However, we would like to stress that EAMM is not CMMI. We
have strived to create a light-weight model with no ambition for
formal appraisal, but something that could serve as a tool for self-
improvement by the architecting organizations.

6.1 Future Work
The results presented in this paper open several roads for future
research. In the direction of process improvement, it would be
interesting to do an action research project where the effects of
process improvement following the maturity model are studied
and evaluated. It would require a project over several years, with a
rigorous monitoring of many parameters.

We also plan to perform appraisals of a larger number of
companies, both in order to better understand the overall maturity
of the embedded systems industry, and to see if there are any
particular companies that stand out as role models for others.

Finally, we would also like to see if the model can be generalized
to other areas, such as IT systems or non-product line systems.

7. REFERENCES
[1] Axelsson, J. Evolutionary architecting of embedded

automotive product lines: An industrial case study. In Proc.
Joint 8th Working IEEE/IFIP Conference on Software

Architecture & 3rd European Conference on Software
Architecture, Cambridge, UK, Sept. 14-17, 2009.

[2] Brodman, J. G. and Johnson, D. L. What small businesses
and small organizations say about the CMM. In Proc. of the
16th International Conference on Software Engineering, pp.
331-340, Sorrento, Italy, May 16-21, 1994.

[3] CMMI for Development, Version 1.2. Software Engineering
Institute, CMU/SEI-2006-TR-008, 2006.

[4] Kaisler, S. H., Armour, F., Valivullah, M. Enterprise
architecting: Critical problems. In Proceedings of the 38th
Hawaii International Conference on Systems Sciences, 2005.

[5] Manzoni, L. V. and Price, R. T. Identifying extensions
required by RUP (Rational Unified Process) to comply with
CMM (Capability Maturity Model) levels 2 and 3. IEEE
Trans. on Software Engineering, Vol. 29, No. 2, pp. 181-192,
February 2003.

[6] Philips, M. and Shrum, S. Process Improvement for All:
What to Expect from CMMI Version 1.3. Crosstalk–The
Journal of Defense Software Engineering, Jan. 2010.

[7] Poort, E. R.,Postema, H., Key, A., and de With, P. H. N. The
Influence of CMMI on Establishing an Architecting Process.
In Proc. of the 3rd Intl. Conf. on Quality of Software
Architectures, pp. 215-230. Medford, USA, July 2007.

[8] van der Raadt, B., Soetendal, J., Perdeck, M., and van Vliet,
Hans. Polyphony in architecture. In Proceedings of the 26th
International Conference on Software Engineering, 2004.

[9] Sawyer, P., Sommerville, I., and Viller, S. Capturing the
benefits of requirements engineering. IEEE Software,
March/April 1999.

[10] Smith, P. G. and Reinertsen, D. G. Developing Products in
Half the Time: New Rules, New Tools. John Wiley, 1998.

[11] Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P.,
and Murphy, R. An exploratory study of why organizations
do not adopt CMMI. Journal of Systems and Software, Vol
80, pp. 883-895, 2007.

[12] United States General Accounting Office. Information
technology: A framework for assessing and improving
enterprise architecture management (version 1.1). GAO-03-
584G, April 2003.

[13] Wallin, P. and Axelsson, J. A case study of issues related to
automotive E/E system architecture development. In Proc.
15th IEEE Intl. Conf. on Engineering of Computer Based
Systems, pp. 87-95, Belfast, Northern Ireland, March 2008.

[14] Wallin, P., Johnsson, S., and Axelsson, J. Issues Related to
Development of E/E Product Line Architectures in Heavy
Vehicles. In Proceedings 42nd Hawaii International
Conference on System Sciences, Hawaii, January 5-8, 2009.

8. APPENDIX: APPRAISAL QUESTIONS
In this appendix, we present the appraisal questions used in
EAMM. We also show in brackets which process area, special
goal, and level of CMMI each question is derived from. The
questions are grouped in a thematic order (general, requirements,
architecture, quality assurance, project management, process), that
we have found becomes natural during interviews. The questions
are answered using a Likert scale with five levels: Never (1),
Rarely (2), Sometimes (3), Usually (4), and Always (5). A

summary indicating the approximate maturity level of the
organization can be calculated by using the following formula
(where qi is the number of questions at level i and sij is the answer
between 1 and 5 to question j at level i):

����� � 1
4��

	

���

���

To what extent does your organization… [PA, SG, Level]:

1. work with product lines, where different individual products
share components or systems? [-, -, 1]

2. have a team responsible for developing and maintaining the
architecture for all products? [-, -, 1]

3. make continuous additions and changes to an existing
architecture rather than developing a new architecture from
scratch for each new product? [-, -, 1]

4. collect requirements when handling an architecture change
request? [REQM, 1, 2]

5. systematically collect the needs that are significant for the
architecture for all stakeholders? [RD, 1, 3]

6. translate the stakeholder needs into a formal set of
architectural requirements? [RD, 2, 3]

7. analyze architectural requirements to ensure that they are
necessary and complete? [RD, 3, 3]

8. make trade-offs between conflicting architectural
requirements, including old and new ones? [RD, 3, 3]

9. have routines for managing changes to architectural
requirements? [REQM, 1, 2]

10. ensure traceability between requirements and architectural
descriptions? [REQM, 1, 2]

11. produce architectural descriptions according to a well-defined
format? [TS, 2, 3]

12. clearly define the interfaces between different parts of the
architecture? [PI, 2, 3]

13. develop alternative architectural solutions and evaluate them
based on well-defined criteria? [TS, 1, 3]

14. have routines for releasing different versions of the
architecture descriptions? [CM, 1, 2]

15. have routines for handling changes to the architecture
descriptions? [CM, 2, 2]

16. ensure that the the released architecture description really
corresponds to the final as-built product? [CM, 3, 2]

17. make decisions based on an evaluation of alternatives using
established criteria while architecting? [DAR, 1, 3]

18. have well-defined quality attributes that the architecture
should meet? [MA, 1, 2]

19. regularly collect measurement data on the quality attributes of
the architecture? [MA, 2, 2]

20. identify and analyze improvement opportunities in the
architecture? [OID, 1, 5]

21. systematically trigger redesign activities to address
architecture improvement possibilities and avoid future
bottlenecks? [OID, 2, 5]

22. regularly review the quality of the architectural descriptions
produced by the architecting process? [PPQA, 1, 2]

23. have well-defined procedures and criteria for how to verify
that the architecture fulfils its requirements? [VER, 1, 3]

24. perform reviews to ensure that the architecture fulfils its
requirements? [VER, 2, 3]

25. have well-defined procedures and criteria for how to validate
that the architecture fulfils stakeholder's needs? [VAL, 1, 3]

26. perform reviews with stakeholders to ensure that the
architecture fulfils the stakeholder's needs? [VAL, 2, 3]

27. regularly follow up the progress of the processing of each
change request? [PMC, 1, 2]

28. quantitatively measure the progress and result of each change
request? [QPM, 1, 4]

29. take corrective actions when the processing of a change
request deviates from its plan? [PMC, 2, 2]

30. estimate the amount of work associated with a new change
request? [PP, 1, 2]

31. perform planning of the work associated with a change
request? [PP, 2, 2]

32. explicitly define the specific process to use for a certain
change request by tailoring a standard process? [IPM, 1, 3]

33. ensure that all stakeholders are involved when dealing with a
change request? [IPM, 2, 3]

34. have a defined risk management strategy for the architecture
development? [RSKM, 1, 3]

35. identify and analyze risks during architecture development?
[RSKM, 2, 3]

36. define and implement risk mitigation plans during architecture
development? [RSKM, 3, 3]

37. have a standardized architecting process description? [OPD, 1,
3]

38. regularly evaluate how well the defined architecting process is
followed? [PPQA, 1, 2]

39. have routines for tracking and resolving deviations from the
defined architecting process? [PPQA, 2, 2]

40. systematically analyze the root cause of defects and deviations
in the architecting process? [CAR, 1, 5]

41. take actions to remove the root cause to avoid recurrence of
defects and deviations in the architecting process? [CAR, 2, 5]

42. periodically assess its architecting process improvement
needs? [OPF, 1, 3]

43. plan and implement process improvements based on the
identified needs? [OPF, 2, 3]

44. have well-defined performance metrics that the architecting
process should meet? [MA, 1, 2]

45. regularly collect measurement data on the performance of the
architecting process? [MA, 2, 2]

46. have defined objectives for the metrics used to measure
process performance and quality for architecting? [OPP, 1, 4]

47. have models to estimate future values of the metrics used to
measure process performance and quality for architecting?
[OPP, 1, 4]

48. regularly summarize and present the current performance of
the architecting process? [OPP, 1, 4]

49. perform statistical analysis on the measurement data from the
architecting process to identify sources of variation? [QPM, 2,
4]

50. identify and analyze changes in the architecting process that
can lead to better values for the processes’ quality and
performance metrics? [OID, 1, 5]

51. systematically update the architecting processes based on
statistical data? [OID, 2, 5]

52. provide training in the architecting process for architects?
[OT, 1, 3]

53. provide training in the architecting process for stakeholders,
including function and system developers? [OT, 2, 3]

