
Mälardalen University Press Dissertations
No. 108

SOFTWARE ARCHITECTURE EVOLUTION
THROUGH EVOLVABILITY ANALYSIS

Hongyu Pei Breivold

2011

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 108

SOFTWARE ARCHITECTURE EVOLUTION
THROUGH EVOLVABILITY ANALYSIS

Hongyu Pei Breivold

2011

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 108

SOFTWARE ARCHITECTURE EVOLUTION THROUGH EVOLVABILITY ANALYSIS

Hongyu Pei Breivold

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen försvaras

måndagen den 14 november 2011, 14.15 i Beta, Mälardalens högskola, Västerås.

Fakultetsopponent: Dr Ipek Ozkaya, Carnegie Mellon University

Akademin för innovation, design och teknik

Copyright © Hongyu Pei Breivold, 2011
ISBN 978-91-7485-040-6
ISSN 1651-4238
Printed by Mälardalen University, Västerås, Sweden

Mälardalen University Press Dissertations
No. 108

SOFTWARE ARCHITECTURE EVOLUTION THROUGH EVOLVABILITY ANALYSIS

Hongyu Pei Breivold

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen försvaras

måndagen den 14 november 2011, 14.15 i Beta, Mälardalens högskola, Västerås.

Fakultetsopponent: Dr Ipek Ozkaya, Carnegie Mellon University

Akademin för innovation, design och teknik

Mälardalen University Press Dissertations
No. 108

SOFTWARE ARCHITECTURE EVOLUTION THROUGH EVOLVABILITY ANALYSIS

Hongyu Pei Breivold

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen försvaras

måndagen den 14 november 2011, 14.15 i Beta, Mälardalens högskola, Västerås.

Fakultetsopponent: Dr Ipek Ozkaya, Carnegie Mellon University

Akademin för innovation, design och teknik

Abstract
In this thesis, we study evolution of software architecture and investigate ways to support this
evolution. The central theme of the thesis is how to analyze software evolvability, i.e., a system’s ability
to easily accommodate changes. We focus on two main aspects: (i) what software characteristics are
necessary for an evolvable software system; and (ii) how to assess evolvability of long-lived proprietary
systems in a systematic manner. A secondary focus is to investigate how evolvability is addressed in
open source software evolution.

We have performed a systematic review of architecture evolution research, and proposed
a software evolvability model, in which subcharacteristics of software evolvability and
corresponding measuring attributes are identified. Based on this model, we have proposed the
softwarearchitectureevolvabilityanalysis (AREA) process which provides repeatable techniques for
supporting software architecture evolution:

a) Qualitative evolvability analysis method that focuses on improving the capability of being
able to understand and analyze systematically the impact of change stimuli on software architecture
evolution;

b) Quantitative evolvability analysis method that provides quantifications of stakeholders’
evolvability concerns and potential architectural solutions’ impacts on evolvability.

These techniques have been validated in industrial settings of different domains, and can be used as
an integral part of software development and evolution process. This is to ensure that the implications
of the potential improvement strategies and evolution path of software architectures are analyzed with
respect to the evolvability subcharacteristics.

As a supplementary research contribution, we have conducted a systematic review of the existing studies
in open source software (OSS) evolution, and performed a comprehensive analysis which describes
how software evolvability is addressed during the development and evolution of OSS, and identified
challenges and future research directions in OSS evolution.

ISBN 978-91-7485-040-6
ISSN 1651-4238

To my parents, Xiaotian and Xincai, who made this all possible

through your love, encouragement, and sacrifice.

To my love Jon, and my precious Johanna, Martin, and Elin,

who have been with me every step of the way

and filled my world with strength, courage and meaning.

To the memory of Lasse Sletmo, my friend and mentor,

who would have been proud.

To my parents, Xiaotian and Xincai, who made this all possible

through your love, encouragement, and sacrifice.

To my love Jon, and my precious Johanna, Martin, and Elin,

who have been with me every step of the way

and filled my world with strength, courage and meaning.

To the memory of Lasse Sletmo, my friend and mentor,

who would have been proud.

Abstract

In this thesis, we study evolution of software architecture and investigate
ways to support this evolution. The central theme of the thesis is how to
analyze software evolvability, i.e., a system’s ability to easily accommodate
changes. We focus on two main aspects: (i) what software characteristics are
necessary for an evolvable software system; and (ii) how to assess
evolvability of long-lived proprietary systems in a systematic manner. A
secondary focus is to investigate how evolvability is addressed in open
source software evolution.

We have performed a systematic review of architecture evolution research,
and proposed a software evolvability model, in which subcharacteristics of
software evolvability and corresponding measuring attributes are identified.
Based on this model, we have proposed the software architecture
evolvability analysis (AREA) process which provides repeatable techniques
for supporting software architecture evolution:

a) Qualitative evolvability analysis method that focuses on improving
the capability of being able to understand and analyze systematically
the impact of change stimuli on software architecture evolution;

b) Quantitative evolvability analysis method that provides
quantifications of stakeholders’ evolvability concerns and potential
architectural solutions’ impacts on evolvability.

These techniques have been validated in industrial settings of different
domains, and can be used as an integral part of software development and
evolution process. This is to ensure that the implications of the potential
improvement strategies and evolution path of software architectures are
analyzed with respect to the evolvability subcharacteristics.

As a supplementary research contribution, we have conducted a systematic
review of the existing studies in open source software (OSS) evolution, and
performed a comprehensive analysis which describes how software
evolvability is addressed during the development and evolution of OSS, and
identified challenges and future research directions in OSS evolution.

Abstract

In this thesis, we study evolution of software architecture and investigate
ways to support this evolution. The central theme of the thesis is how to
analyze software evolvability, i.e., a system’s ability to easily accommodate
changes. We focus on two main aspects: (i) what software characteristics are
necessary for an evolvable software system; and (ii) how to assess
evolvability of long-lived proprietary systems in a systematic manner. A
secondary focus is to investigate how evolvability is addressed in open
source software evolution.

We have performed a systematic review of architecture evolution research,
and proposed a software evolvability model, in which subcharacteristics of
software evolvability and corresponding measuring attributes are identified.
Based on this model, we have proposed the software architecture
evolvability analysis (AREA) process which provides repeatable techniques
for supporting software architecture evolution:

a) Qualitative evolvability analysis method that focuses on improving
the capability of being able to understand and analyze systematically
the impact of change stimuli on software architecture evolution;

b) Quantitative evolvability analysis method that provides
quantifications of stakeholders’ evolvability concerns and potential
architectural solutions’ impacts on evolvability.

These techniques have been validated in industrial settings of different
domains, and can be used as an integral part of software development and
evolution process. This is to ensure that the implications of the potential
improvement strategies and evolution path of software architectures are
analyzed with respect to the evolvability subcharacteristics.

As a supplementary research contribution, we have conducted a systematic
review of the existing studies in open source software (OSS) evolution, and
performed a comprehensive analysis which describes how software
evolvability is addressed during the development and evolution of OSS, and
identified challenges and future research directions in OSS evolution.

Acknowledgements

It is often said that, “all of life is a journey. Which roads we take, what we
look back on, and what we look forward to, is up to us.” When I look back
over the past five years and the years behind, I cannot believe what an
incredible journey it has been. So much has happened, and I feel so very
fortunate that I have been able to live this dream. For this, I owe my
sincerest gratitude to my old friend, Lasse Sletmo, who introduced me to
Sweden in the first place and made this entire incredible journey possible.

Many wonderful people have worked hard, and supported me so much
through the past five years. I am grateful to the many dedicated individuals
who have supported me for so long, and I would like to thank you all.

My heartfelt thanks go to my main supervisor Prof. Ivica Crnkovic for
believing in me, and for making the creation of this dissertation a thoroughly
constructive and enjoyable experience. You have been teaching me so much
over the past five years, and inspiring me with the example of your hard
work and intensity. I am truly grateful for having the opportunity to work
under your direction. Thank you for being unfailingly generous with your
time, your knowledge and experience, giving me good advice and support
when it is needed, and for giving me the opportunities that have helped me in
academia.

Many thanks go also to my assistant supervisor Prof. Magnus Larsson for
your constant support and encouragement throughout this work, for
providing me the great flexibility to combine work and studies, and for
sharing your talent and inspiration with me. I am grateful to Prof. Ivica
Crnkovic, and Prof. Magnus Larsson, who made time in their very busy
schedules, carefully reading through the dissertation in its various stages and
giving me practical feedback that have led to great improvements of this
work. Very special thanks to Prof. Sasikumar Punnekkat and Dr. Patricia
Lago for insightful comments on my initial proposal and licentiate thesis,
which paved the way for shaping the dissertation into its ultimate form.
Special thanks go also to Dr. Muhammad Ali Babar, Dr. Rikard Land, Dr.

Acknowledgements

It is often said that, “all of life is a journey. Which roads we take, what we
look back on, and what we look forward to, is up to us.” When I look back
over the past five years and the years behind, I cannot believe what an
incredible journey it has been. So much has happened, and I feel so very
fortunate that I have been able to live this dream. For this, I owe my
sincerest gratitude to my old friend, Lasse Sletmo, who introduced me to
Sweden in the first place and made this entire incredible journey possible.

Many wonderful people have worked hard, and supported me so much
through the past five years. I am grateful to the many dedicated individuals
who have supported me for so long, and I would like to thank you all.

My heartfelt thanks go to my main supervisor Prof. Ivica Crnkovic for
believing in me, and for making the creation of this dissertation a thoroughly
constructive and enjoyable experience. You have been teaching me so much
over the past five years, and inspiring me with the example of your hard
work and intensity. I am truly grateful for having the opportunity to work
under your direction. Thank you for being unfailingly generous with your
time, your knowledge and experience, giving me good advice and support
when it is needed, and for giving me the opportunities that have helped me in
academia.

Many thanks go also to my assistant supervisor Prof. Magnus Larsson for
your constant support and encouragement throughout this work, for
providing me the great flexibility to combine work and studies, and for
sharing your talent and inspiration with me. I am grateful to Prof. Ivica
Crnkovic, and Prof. Magnus Larsson, who made time in their very busy
schedules, carefully reading through the dissertation in its various stages and
giving me practical feedback that have led to great improvements of this
work. Very special thanks to Prof. Sasikumar Punnekkat and Dr. Patricia
Lago for insightful comments on my initial proposal and licentiate thesis,
which paved the way for shaping the dissertation into its ultimate form.
Special thanks go also to Dr. Muhammad Ali Babar, Dr. Rikard Land, Dr.

 ii

Stig Larsson, Dr. Daniel Sundmark, and Muhammad Aufeef Chauhan for
nice cooperation.

I would also like to thank Prof. Hans Hansson for guidance in research
planning, Dr. Gordana Dodig-Crnkovic and Dr. Jan Gustafsson for
introducing me to the research methodology, Dr. Thomas Nolte for advice
on networking and research in general, Dr. Radu Dobrin for advice on
presentations, Gunnar Widforss, Harriet Ekwall, Monica Wasell, and Carola
Ryttersson for helping out. Many thanks go also to colleagues from ABB,
people from the SAVE-IT industrial graduate school and BESS (Business
oriented Engineering of Software intensive Systems) research group for nice
company and discussions. Additionally, the work would not have been
possible without the support from ABB Corporate Research and KKS,
providing me with opportunities and resources for the research study. Very
special thanks to Helena Malmqvist for constant support.

I would also like to acknowledge Swedsoft (http://www.swedsoft.se/) for
providing the forum for cooperation and exchange of ideas between
companies, and Ericsson for making it possible to conduct our case study. In
particular, I would like to thank Anders Fredén, Magnus Norlander, Erik
Lind, and all the others involved in the case study at Ericsson for their help
and participation in our case study, and for their valuable input and positive
feedback.

Over the years, I have had the opportunity to get acquaintance with the best
creative people who have given much joy and moral support. I especially
want to thank Séverine Sentilles, Aneta Vulgarakis, Juraj Feljan, Cristina
Seceleanu, Tiberiu Seceleanu, Adnan Causevic, Aida Causevic, Hüseyin
Aysan, Moris Behnam, Yue Lu, Farhang Nemati, Dag Nyström, Stefan
Bygde, Leo Hatvani, Jagadish Suryadevara, Yina Zhang, Chen Yang Steen,
and Anna Östholm for your friendship. I would also like to thank all my
friends from Arosia Network for all the cheerful talks over lunches and nice
company in various activities.

This work would not be possible without the support of my family. I
especially want to thank my parents, who have sacrificed a good many years
of their lives to let me go and pursue my dreams. They have always
understood that it is impossible for me to visit them or to be with them as
often as they would have liked. Thank you for seeing me through every step
of the way, for cheering me up during times of trouble, and for rejoicing
with me over every little triumph, despite the distance between us. Many
thanks go to my brother for always caring about me and being there for me. I
want also to express my immense appreciation to Anita Sletmo, and Stig

 iii

Lundvall, who have been one inseparable part of our family throughout the
years. Your courage and determination to stand up to various difficult
challenges in life have been inspiring me and pushing me forward. Finally, I
would like to thank my beloved husband and my wonderful children for
sharing my dreams and for all the joy you brought to my life!

Hongyu Pei Breivold

Shenyang, July, 2011

 ii

Stig Larsson, Dr. Daniel Sundmark, and Muhammad Aufeef Chauhan for
nice cooperation.

I would also like to thank Prof. Hans Hansson for guidance in research
planning, Dr. Gordana Dodig-Crnkovic and Dr. Jan Gustafsson for
introducing me to the research methodology, Dr. Thomas Nolte for advice
on networking and research in general, Dr. Radu Dobrin for advice on
presentations, Gunnar Widforss, Harriet Ekwall, Monica Wasell, and Carola
Ryttersson for helping out. Many thanks go also to colleagues from ABB,
people from the SAVE-IT industrial graduate school and BESS (Business
oriented Engineering of Software intensive Systems) research group for nice
company and discussions. Additionally, the work would not have been
possible without the support from ABB Corporate Research and KKS,
providing me with opportunities and resources for the research study. Very
special thanks to Helena Malmqvist for constant support.

I would also like to acknowledge Swedsoft (http://www.swedsoft.se/) for
providing the forum for cooperation and exchange of ideas between
companies, and Ericsson for making it possible to conduct our case study. In
particular, I would like to thank Anders Fredén, Magnus Norlander, Erik
Lind, and all the others involved in the case study at Ericsson for their help
and participation in our case study, and for their valuable input and positive
feedback.

Over the years, I have had the opportunity to get acquaintance with the best
creative people who have given much joy and moral support. I especially
want to thank Séverine Sentilles, Aneta Vulgarakis, Juraj Feljan, Cristina
Seceleanu, Tiberiu Seceleanu, Adnan Causevic, Aida Causevic, Hüseyin
Aysan, Moris Behnam, Yue Lu, Farhang Nemati, Dag Nyström, Stefan
Bygde, Leo Hatvani, Jagadish Suryadevara, Yina Zhang, Chen Yang Steen,
and Anna Östholm for your friendship. I would also like to thank all my
friends from Arosia Network for all the cheerful talks over lunches and nice
company in various activities.

This work would not be possible without the support of my family. I
especially want to thank my parents, who have sacrificed a good many years
of their lives to let me go and pursue my dreams. They have always
understood that it is impossible for me to visit them or to be with them as
often as they would have liked. Thank you for seeing me through every step
of the way, for cheering me up during times of trouble, and for rejoicing
with me over every little triumph, despite the distance between us. Many
thanks go to my brother for always caring about me and being there for me. I
want also to express my immense appreciation to Anita Sletmo, and Stig

 iii

Lundvall, who have been one inseparable part of our family throughout the
years. Your courage and determination to stand up to various difficult
challenges in life have been inspiring me and pushing me forward. Finally, I
would like to thank my beloved husband and my wonderful children for
sharing my dreams and for all the joy you brought to my life!

Hongyu Pei Breivold

Shenyang, July, 2011

Contents

Chapter 1. Introduction ... 3

1.1 Research Motivation ... 3
1.2 Research Context .. 4

1.2.1 Proprietary Systems in Focus .. 4
1.2.2 Open Source Software as Complementary Focus 5
1.2.3 “How” Perspective of Software Evolution in Focus 6
1.2.4 Software Architecture Evolution in Focus 6
1.2.5 Architectural Analysis Techniques in Focus 7

1.3 Research Questions .. 7
1.4 Research Contributions .. 8

1.4.1 Description of Key Publications ... 10
1.4.2 Other Related Publications .. 17

1.5 Research Methodology ... 18
1.5.1 Research Process ... 19
1.5.2 Research Methods ... 21
1.5.3 Validity .. 23

1.6 Thesis Overview ... 25

Chapter 2. Software Architecture and Evolution 27

2.1 Software Evolution ... 28
2.1.1 Laws of Software Evolution .. 29
2.1.2 Software Aging ... 30

2.2 Software Architecture Evolution .. 31
2.3 Software Quality Models .. 33

2.3.1 Overview of Quality Models ... 34
2.3.2 Analysis of Software Evolvability in Quality Models 36

2.4 Software Process Models ... 39
2.5 Techniques and Methods Facilitating Architecture Evolution 41

2.5.1 Component-Based and Service-Oriented Engineering............ 41
2.5.2 Software Product Line Methods .. 43

Contents

Chapter 1. Introduction ... 3

1.1 Research Motivation ... 3
1.2 Research Context .. 4

1.2.1 Proprietary Systems in Focus .. 4
1.2.2 Open Source Software as Complementary Focus 5
1.2.3 “How” Perspective of Software Evolution in Focus 6
1.2.4 Software Architecture Evolution in Focus 6
1.2.5 Architectural Analysis Techniques in Focus 7

1.3 Research Questions .. 7
1.4 Research Contributions .. 8

1.4.1 Description of Key Publications ... 10
1.4.2 Other Related Publications .. 17

1.5 Research Methodology ... 18
1.5.1 Research Process ... 19
1.5.2 Research Methods ... 21
1.5.3 Validity .. 23

1.6 Thesis Overview ... 25

Chapter 2. Software Architecture and Evolution 27

2.1 Software Evolution ... 28
2.1.1 Laws of Software Evolution .. 29
2.1.2 Software Aging ... 30

2.2 Software Architecture Evolution .. 31
2.3 Software Quality Models .. 33

2.3.1 Overview of Quality Models ... 34
2.3.2 Analysis of Software Evolvability in Quality Models 36

2.4 Software Process Models ... 39
2.5 Techniques and Methods Facilitating Architecture Evolution 41

2.5.1 Component-Based and Service-Oriented Engineering............ 41
2.5.2 Software Product Line Methods .. 43

 vi

2.5.3 Aspect-Oriented Software Development 45
2.5.4 Model-Driven Development ... 47
2.5.5 Reverse Engineering and Reengineering 49

2.6 Summary .. 50

Chapter 3. Architecting for Software Evolvability 51

3.1 Systematic Literature Review Process ... 52
3.1.1 Review Protocol .. 52
3.1.2 Inclusion and Exclusion Criteria ... 53
3.1.3 Search Process ... 54
3.1.4 Quality Assessment ... 56
3.1.5 Data Extraction and Synthesis .. 57

3.2 Scope of the Systematic Review .. 58
3.3 Overview of the Primary Studies ... 60

3.3.1 Data Sources.. 60
3.3.2 Citation Status ... 62
3.3.3 Temporal View.. 64
3.3.4 Active Research Communities .. 65
3.3.5 Classification of the Primary Studies 66

3.4 Quality Considerations during Software Architecture Design 69
3.4.1 Quality Attribute Requirement-Focused 69
3.4.2 Quality Attribute Scenario-Focused .. 74
3.4.3 Influencing Factor-Focused .. 75

3.5 Quality Evaluation at Software Architecture Level 78
3.5.1 Experience-based .. 79
3.5.2 Scenario-based .. 82
3.5.3 Metric-based .. 86

3.6 Economic Valuation in Determining Level of Uncertainty 89
3.7 Architectural Knowledge Management .. 93
3.8 Modeling Techniques ... 97
3.9 Impacts on Research and Practice .. 103

3.9.1 Technology Maturation ... 103
3.9.2 Theoretical Foundation and Formalization 105
3.9.3 Combination of Approaches ... 106
3.9.4 Tailoring Approaches for Specific Contexts 107

3.10 Summary ... 108

Chapter 4. Analyzing Software Evolvability 111

4.1 Software Evolvability Model ... 112
4.2 Software Architecture Evolvability Analysis Process 115
4.3 Qualitative Evolvability Analysis Method 119

 vii

4.4 Quantitative Evolvability Analysis Method 122
4.4.1 Analytic Hierarchy Process ... 123
4.4.2 Quantitative Evolvability Analysis Method 125

4.5 Characterization of the Qualitative and Quantitative Methods 130
4.5.1 Application Contexts ... 131
4.5.2 Approaches Used in the Analysis Process 132
4.5.3 Analysis Output ... 132
4.5.4 Choosing Between Qualitative and Quantitative Methods ... 133

4.6 Summary .. 134

Chapter 5. Analyzing Proprietary Systems 137

5.1 Case Study I. Qualitative Software Evolvability Analysis 137
5.1.1 Context of the Case Study ... 137
5.1.2 Evolvability Subcharacteristics from Case Perspective 139
5.1.3 Applying the Qualitative Evolvability Analysis Method 140
5.1.4 Qualitative Evolvability Analysis: Experiences 148
5.1.5 Qualitative Evolvability Analysis: Lessons Learned 149

5.2 Case Study II. Quantitative Software Evolvability Analysis 151
5.2.1 Context of the Case Study ... 151
5.2.2 Evolvability Subcharacteristics from Case Perspective 152
5.2.3 Applying the Quantitative Evolvability Analysis Method 154
5.2.4 Quantitative Evolvability Analysis: Experiences 161
5.2.5 Quantitative Evolvability Analysis: Lessons Learned 163

5.3 Summary .. 163

Chapter 6. Open Source Software Evolution 165

6.1 Systematic Literature Review Process ... 166
6.1.1 Review Protocol .. 166
6.1.2 Inclusion and Exclusion Criteria ... 167
6.1.3 Search Process ... 167
6.1.4 Data Extraction and Synthesis .. 168

6.2 Overview of the Primary Studies ... 168
6.2.1 Demographic Information of the Primary Studies 169
6.2.2 Categories of the Primary Studies ... 169

6.3 OSS Evolution Trends and Patterns ... 170
6.3.1 Software Growth ... 170
6.3.2 Software Maintenance and Evolution Economics................. 173
6.3.3 Prediction of Software Evolution .. 174

6.4 Evolution Process Support ... 175
6.5 Evolvability Characteristics.. 176

6.5.1 Determinism .. 176

 vi

2.5.3 Aspect-Oriented Software Development 45
2.5.4 Model-Driven Development ... 47
2.5.5 Reverse Engineering and Reengineering 49

2.6 Summary .. 50

Chapter 3. Architecting for Software Evolvability 51

3.1 Systematic Literature Review Process ... 52
3.1.1 Review Protocol .. 52
3.1.2 Inclusion and Exclusion Criteria ... 53
3.1.3 Search Process ... 54
3.1.4 Quality Assessment ... 56
3.1.5 Data Extraction and Synthesis .. 57

3.2 Scope of the Systematic Review .. 58
3.3 Overview of the Primary Studies ... 60

3.3.1 Data Sources.. 60
3.3.2 Citation Status ... 62
3.3.3 Temporal View.. 64
3.3.4 Active Research Communities .. 65
3.3.5 Classification of the Primary Studies 66

3.4 Quality Considerations during Software Architecture Design 69
3.4.1 Quality Attribute Requirement-Focused 69
3.4.2 Quality Attribute Scenario-Focused .. 74
3.4.3 Influencing Factor-Focused .. 75

3.5 Quality Evaluation at Software Architecture Level 78
3.5.1 Experience-based .. 79
3.5.2 Scenario-based .. 82
3.5.3 Metric-based .. 86

3.6 Economic Valuation in Determining Level of Uncertainty 89
3.7 Architectural Knowledge Management .. 93
3.8 Modeling Techniques ... 97
3.9 Impacts on Research and Practice .. 103

3.9.1 Technology Maturation ... 103
3.9.2 Theoretical Foundation and Formalization 105
3.9.3 Combination of Approaches ... 106
3.9.4 Tailoring Approaches for Specific Contexts 107

3.10 Summary ... 108

Chapter 4. Analyzing Software Evolvability 111

4.1 Software Evolvability Model ... 112
4.2 Software Architecture Evolvability Analysis Process 115
4.3 Qualitative Evolvability Analysis Method 119

 vii

4.4 Quantitative Evolvability Analysis Method 122
4.4.1 Analytic Hierarchy Process ... 123
4.4.2 Quantitative Evolvability Analysis Method 125

4.5 Characterization of the Qualitative and Quantitative Methods 130
4.5.1 Application Contexts ... 131
4.5.2 Approaches Used in the Analysis Process 132
4.5.3 Analysis Output ... 132
4.5.4 Choosing Between Qualitative and Quantitative Methods ... 133

4.6 Summary .. 134

Chapter 5. Analyzing Proprietary Systems 137

5.1 Case Study I. Qualitative Software Evolvability Analysis 137
5.1.1 Context of the Case Study ... 137
5.1.2 Evolvability Subcharacteristics from Case Perspective 139
5.1.3 Applying the Qualitative Evolvability Analysis Method 140
5.1.4 Qualitative Evolvability Analysis: Experiences 148
5.1.5 Qualitative Evolvability Analysis: Lessons Learned 149

5.2 Case Study II. Quantitative Software Evolvability Analysis 151
5.2.1 Context of the Case Study ... 151
5.2.2 Evolvability Subcharacteristics from Case Perspective 152
5.2.3 Applying the Quantitative Evolvability Analysis Method 154
5.2.4 Quantitative Evolvability Analysis: Experiences 161
5.2.5 Quantitative Evolvability Analysis: Lessons Learned 163

5.3 Summary .. 163

Chapter 6. Open Source Software Evolution 165

6.1 Systematic Literature Review Process ... 166
6.1.1 Review Protocol .. 166
6.1.2 Inclusion and Exclusion Criteria ... 167
6.1.3 Search Process ... 167
6.1.4 Data Extraction and Synthesis .. 168

6.2 Overview of the Primary Studies ... 168
6.2.1 Demographic Information of the Primary Studies 169
6.2.2 Categories of the Primary Studies ... 169

6.3 OSS Evolution Trends and Patterns ... 170
6.3.1 Software Growth ... 170
6.3.2 Software Maintenance and Evolution Economics................. 173
6.3.3 Prediction of Software Evolution .. 174

6.4 Evolution Process Support ... 175
6.5 Evolvability Characteristics.. 176

6.5.1 Determinism .. 176

 viii

6.5.2 Code Understandability ... 176
6.5.3 Complexity .. 177
6.5.4 Modularity ... 178

6.6 Examining OSS at Software Architecture Level 179
6.7 Summary .. 180

Chapter 7. Validity Discussions ... 183

7.1 Validity Aspects on Software Evolvability Model 183
7.2 Validity Aspects on AREA Process ... 185
7.3 Validity Aspects on Architecting for Software Evolvability 187
7.4 Validity Aspects on Open Source Software Evolution 189

Chapter 8. Conclusions and Future Work 191

8.1 Research Questions and Answers ... 191
8.2 Contributions .. 194

8.2.1 Main Research Contributions .. 194
8.2.2 Supplementary Research Contribution 196

8.3 Future Research Directions .. 196

Appendix A: Primary Studies in Chapter 3 ... 199

Appendix B: Primary Studies in Chapter 6.. 207

References .. 211

 viii

6.5.2 Code Understandability ... 176
6.5.3 Complexity .. 177
6.5.4 Modularity ... 178

6.6 Examining OSS at Software Architecture Level 179
6.7 Summary .. 180

Chapter 7. Validity Discussions ... 183

7.1 Validity Aspects on Software Evolvability Model 183
7.2 Validity Aspects on AREA Process ... 185
7.3 Validity Aspects on Architecting for Software Evolvability 187
7.4 Validity Aspects on Open Source Software Evolution 189

Chapter 8. Conclusions and Future Work 191

8.1 Research Questions and Answers ... 191
8.2 Contributions .. 194

8.2.1 Main Research Contributions .. 194
8.2.2 Supplementary Research Contribution 196

8.3 Future Research Directions .. 196

Appendix A: Primary Studies in Chapter 3 ... 199

Appendix B: Primary Studies in Chapter 6.. 207

References .. 211

Introduction

It has been recognized that, for long-lived industrial software, the largest part
of lifecycle costs is concerned with the evolution of software to meet
changing requirements [22]. To keep up with new business opportunities, the
need to change software on a constant basis with major enhancements within
a short timescale puts critical demands on the software system’s capability of
rapid modification and enhancement to achieve cost-effective software
evolution.

According to Madhavji et al. [119], the term evolution reflects “a process of

progressive change in the attributes of the evolving entity or that of one or

more of its constituent elements. What is accepted as progressive must be

determined in each context. It is also appropriate to apply the term evolution

when long-term change trends are beneficial, i.e., value or fitness is

increasing over time, and more adapted to a changing environment even

though isolated or short sequences of changes may appear degenerative.”
Specifically, software evolution relates to how software systems evolve over
time [185]. It is one term that expresses the software changes during a
software system’s lifecycle.

One of the principle challenges in software evolution is the ability to evolve
software over time to meet the changing requirements of its stakeholders
[130]. In this context, software evolvability is an attribute that is used to
describe the software system’s capability to accommodate changes. To better
explain the term evolvability, we refer to the definition of Software
Evolvability by Rowe et al. [154]:

“Software evolvability is an attribute that bears on the ability of a system to

accommodate changes in its requirements throughout the system’s lifespan

with the least possible cost while maintaining architectural integrity”.

1.1 Research Motivation
The ever-changing world makes evolvability a strong quality requirement for
the majority of software architectures [26, 153]. The inability to effectively

Introduction

It has been recognized that, for long-lived industrial software, the largest part
of lifecycle costs is concerned with the evolution of software to meet
changing requirements [22]. To keep up with new business opportunities, the
need to change software on a constant basis with major enhancements within
a short timescale puts critical demands on the software system’s capability of
rapid modification and enhancement to achieve cost-effective software
evolution.

According to Madhavji et al. [119], the term evolution reflects “a process of

progressive change in the attributes of the evolving entity or that of one or

more of its constituent elements. What is accepted as progressive must be

determined in each context. It is also appropriate to apply the term evolution

when long-term change trends are beneficial, i.e., value or fitness is

increasing over time, and more adapted to a changing environment even

though isolated or short sequences of changes may appear degenerative.”
Specifically, software evolution relates to how software systems evolve over
time [185]. It is one term that expresses the software changes during a
software system’s lifecycle.

One of the principle challenges in software evolution is the ability to evolve
software over time to meet the changing requirements of its stakeholders
[130]. In this context, software evolvability is an attribute that is used to
describe the software system’s capability to accommodate changes. To better
explain the term evolvability, we refer to the definition of Software
Evolvability by Rowe et al. [154]:

“Software evolvability is an attribute that bears on the ability of a system to

accommodate changes in its requirements throughout the system’s lifespan

with the least possible cost while maintaining architectural integrity”.

1.1 Research Motivation
The ever-changing world makes evolvability a strong quality requirement for
the majority of software architectures [26, 153]. The inability to effectively

Introduction 4

and reliably evolve software systems means loss of business opportunities
[21].

According to Weiderman et al. [177], software evolvability is a fundamental
element for an efficient implementation of strategic decisions and increasing
economic value of software. Thus, the need for greater system evolvability is
becoming recognized [153]. We have also observed this need from various
cases in industrial context [33, 53], where evolvability was identified as a
very important quality attribute that must be maintained. However, to our
knowledge, there are no systematic means for evaluating the evolvability of
a system and thus no means to analyze software systems in terms of
evolvability. Therefore, the motivation of this thesis is to define ways to
analyze the ability to evolve software.

In this thesis, we describe and make contributions to the following aspects:

1. Identify characteristics that are necessary for the evolvability of a
software system;

2. Describe the existing research studies in architecting for evolvability,
and identify important challenges and future research directions in
software architecture evolution;

3. Assess software evolvability in a systematic manner, with focus on
proprietary systems;

4. Describe how evolvability is addressed in open source software
evolution, and identify important challenges and future research
directions in open source software evolution.

1.2 Research Context
This section explains the scope of research context for this thesis. We focus
on software architecture evolution of proprietary systems, the “how”
perspective of software evolution, and architectural analysis techniques.
Moreover, we look into open source software area as a complementary
research focus, and analyze how evolvability is addressed in open source
software evolution.

1.2.1 Proprietary Systems in Focus

The software systems that we have worked with throughout this research are
legacy systems that represent valuable software assets. Therefore, the focus

Introduction 5

of our research is primarily aimed at analyzing software evolvability for
industrial systems that often have a lifetime of 10-30 years and are
continuously changing. These systems are subject to and may undergo a
substantial amount of evolutionary changes, e.g., software technology
changes, system migration to product line architecture, ever-changing
managerial issues such as demands for distributed development, and ever-
changing business decisions driven by market situations. Software systems
must often reflect these changes to adequately fulfill their roles and remain
relevant to stakeholders. Therefore, software evolvability was identified in
these cases as a very important quality attribute that must be continuously
maintained during their lifecycle.

Moreover, these systems most likely have gone through many staff turnovers
of the original developers. Thus they show signs of many modifications and
adaptations. They also have the typical characteristics of legacy systems as
described by Demeyer et al. [60], e.g., increasing complexity, poor
documentation, and lack of understanding by the current developers. For
such systems, there is a need to address explicitly evolvability during the
entire lifecycle in order to prolong their productive lifetime.

1.2.2 Open Source Software as Complementary Focus

A complementary research focus is open source software evolution, as the
emergence of the open source software paradigm provides researchers with
access to the code bases of a large number of evolving software systems
along with their release histories and change logs. This has led to an interest
in the empirical study of software evolution. Moreover, as some of the open
source software projects have become long-lived products, e.g., OSS
operating system Linux, some findings in open source have also emerged to
compare the evolution of open source and proprietary systems. We can
notice that the evolution of OSS becomes as important as for proprietary
systems. In this aspect, we assume that, while the reasons of the OSS
evolution might be similar as those for proprietary systems, the mechanisms
and the characteristics can be different. Therefore, we collected information
based on the existing literatures, and performed a comprehensive analysis in
assessing and interpreting all available research studies instead of focusing
on a particular open source software project. In doing so, we attempt to
examine characteristics of evolving open source systems and analyze how
evolvability is addressed in open source software evolution.

Introduction 4

and reliably evolve software systems means loss of business opportunities
[21].

According to Weiderman et al. [177], software evolvability is a fundamental
element for an efficient implementation of strategic decisions and increasing
economic value of software. Thus, the need for greater system evolvability is
becoming recognized [153]. We have also observed this need from various
cases in industrial context [33, 53], where evolvability was identified as a
very important quality attribute that must be maintained. However, to our
knowledge, there are no systematic means for evaluating the evolvability of
a system and thus no means to analyze software systems in terms of
evolvability. Therefore, the motivation of this thesis is to define ways to
analyze the ability to evolve software.

In this thesis, we describe and make contributions to the following aspects:

1. Identify characteristics that are necessary for the evolvability of a
software system;

2. Describe the existing research studies in architecting for evolvability,
and identify important challenges and future research directions in
software architecture evolution;

3. Assess software evolvability in a systematic manner, with focus on
proprietary systems;

4. Describe how evolvability is addressed in open source software
evolution, and identify important challenges and future research
directions in open source software evolution.

1.2 Research Context
This section explains the scope of research context for this thesis. We focus
on software architecture evolution of proprietary systems, the “how”
perspective of software evolution, and architectural analysis techniques.
Moreover, we look into open source software area as a complementary
research focus, and analyze how evolvability is addressed in open source
software evolution.

1.2.1 Proprietary Systems in Focus

The software systems that we have worked with throughout this research are
legacy systems that represent valuable software assets. Therefore, the focus

Introduction 5

of our research is primarily aimed at analyzing software evolvability for
industrial systems that often have a lifetime of 10-30 years and are
continuously changing. These systems are subject to and may undergo a
substantial amount of evolutionary changes, e.g., software technology
changes, system migration to product line architecture, ever-changing
managerial issues such as demands for distributed development, and ever-
changing business decisions driven by market situations. Software systems
must often reflect these changes to adequately fulfill their roles and remain
relevant to stakeholders. Therefore, software evolvability was identified in
these cases as a very important quality attribute that must be continuously
maintained during their lifecycle.

Moreover, these systems most likely have gone through many staff turnovers
of the original developers. Thus they show signs of many modifications and
adaptations. They also have the typical characteristics of legacy systems as
described by Demeyer et al. [60], e.g., increasing complexity, poor
documentation, and lack of understanding by the current developers. For
such systems, there is a need to address explicitly evolvability during the
entire lifecycle in order to prolong their productive lifetime.

1.2.2 Open Source Software as Complementary Focus

A complementary research focus is open source software evolution, as the
emergence of the open source software paradigm provides researchers with
access to the code bases of a large number of evolving software systems
along with their release histories and change logs. This has led to an interest
in the empirical study of software evolution. Moreover, as some of the open
source software projects have become long-lived products, e.g., OSS
operating system Linux, some findings in open source have also emerged to
compare the evolution of open source and proprietary systems. We can
notice that the evolution of OSS becomes as important as for proprietary
systems. In this aspect, we assume that, while the reasons of the OSS
evolution might be similar as those for proprietary systems, the mechanisms
and the characteristics can be different. Therefore, we collected information
based on the existing literatures, and performed a comprehensive analysis in
assessing and interpreting all available research studies instead of focusing
on a particular open source software project. In doing so, we attempt to
examine characteristics of evolving open source systems and analyze how
evolvability is addressed in open source software evolution.

Introduction 6

1.2.3 “How” Perspective of Software Evolution in Focus

Lehman [113] describes two perspectives on software evolution: “what and

why” versus “how”. The “what and why” perspective studies the nature of
the software evolution phenomenon, and investigates its driving factors and
impacts. In this research, we focus on the “how” perspective of software
evolution, and address the pragmatic aspects, i.e., the development of
methods and tools that provide the means to control software evolution.

1.2.4 Software Architecture Evolution in Focus

According to Mens and Demeyer [128], one of the main challenges of
software evolution is that all artefacts produced and used during the entire
software lifecycle are subject to changes, ranging from early requirements
over analysis and design documents, to source code and executable code.
Consequently, there are many sub-disciplines within the area of software
evolution, e.g., requirement evolution, architecture evolution,
implementation evolution. In the meanwhile, analyzing and improving
software evolution can be done through various ways, e.g., analyzing release
histories, source code, and software architecture level.

Software systems undergo two main kinds of evolution [128], i.e., internal
evolution and external evolution. This thesis deals with the external
evolution.

- Internal evolution models the changes in the topology of the
components and interactions as they are created or destroyed during
execution. It captures the dynamics of the system.

- External evolution models the changes in the specification of the
components and interactions that are required to cope with new
stakeholder requirements. It entails adaptation of the software
architecture.

Our research focuses on the software architectural evolution for two reasons.
Firstly, Bass et al. [18] states that, the foundation for any software system is
its architecture, which allows or precludes nearly all of the quality attributes
of the system. For instance, a system without an adaptable architecture will
degenerate sooner than a system based on an architecture that takes changes
into account [71]. Secondly, the architecture of a software system describes
its high level structure and behavior. Thus, software architecture exposes the
dimensions along which a system is expected to evolve [74], and provides
basis for software evolution [126]. Therefore, architecture evolution permits

Introduction 7

planning and system restructuring at a high level of abstraction where quality
and business tradeoffs can be analyzed [75].

1.2.5 Architectural Analysis Techniques in Focus

In this thesis, we focus on architectural aspects, and propose architectural
approaches that are concerned with software architecture analysis and
software quality improvement related to software evolvability. Nevertheless,
software evolution spawns also research disciplines that are devoted to the
topic of migrating or reengineering legacy software systems by applying a
specific software development paradigm to facilitate software evolution,
e.g., product line engineering, component-based software engineering, and
service-oriented software engineering. However, due to the variety of
software development paradigms and the many sub-disciplines concerned in
each paradigm, we have chosen to constrain the scope of the thesis to
architectural analysis techniques that help analyze and improve software
evolvability. For those who are interested in the specific reengineering
techniques that facilitate software architecture evolution, please refer to my
licentiate thesis [30], which described the impact analysis of the introduction
of service-oriented software engineering to component-based software
engineering, as well as managing the migration of legacy systems towards
product lines.

1.3 Research Questions
We describe in the previous sections that software architecture evolution is a
critical part of software lifecycle, and that there is a need to explicitly
address software evolvability. Therefore, the overall question of this thesis
is:

How to analyze the evolvability of a software system?

Before we can determine how to analyze software evolvability, we need to
understand what characteristics of software constitute the evolvability of a
software system, i.e., what characteristics of software make it easier to
change a software system as requirements evolve. To this end, we formulate
the following research question which provides a starting point for further
research:

What subcharacteristics are of primary importance for the

evolvability of a software system? (Q1)

Introduction 6

1.2.3 “How” Perspective of Software Evolution in Focus

Lehman [113] describes two perspectives on software evolution: “what and

why” versus “how”. The “what and why” perspective studies the nature of
the software evolution phenomenon, and investigates its driving factors and
impacts. In this research, we focus on the “how” perspective of software
evolution, and address the pragmatic aspects, i.e., the development of
methods and tools that provide the means to control software evolution.

1.2.4 Software Architecture Evolution in Focus

According to Mens and Demeyer [128], one of the main challenges of
software evolution is that all artefacts produced and used during the entire
software lifecycle are subject to changes, ranging from early requirements
over analysis and design documents, to source code and executable code.
Consequently, there are many sub-disciplines within the area of software
evolution, e.g., requirement evolution, architecture evolution,
implementation evolution. In the meanwhile, analyzing and improving
software evolution can be done through various ways, e.g., analyzing release
histories, source code, and software architecture level.

Software systems undergo two main kinds of evolution [128], i.e., internal
evolution and external evolution. This thesis deals with the external
evolution.

- Internal evolution models the changes in the topology of the
components and interactions as they are created or destroyed during
execution. It captures the dynamics of the system.

- External evolution models the changes in the specification of the
components and interactions that are required to cope with new
stakeholder requirements. It entails adaptation of the software
architecture.

Our research focuses on the software architectural evolution for two reasons.
Firstly, Bass et al. [18] states that, the foundation for any software system is
its architecture, which allows or precludes nearly all of the quality attributes
of the system. For instance, a system without an adaptable architecture will
degenerate sooner than a system based on an architecture that takes changes
into account [71]. Secondly, the architecture of a software system describes
its high level structure and behavior. Thus, software architecture exposes the
dimensions along which a system is expected to evolve [74], and provides
basis for software evolution [126]. Therefore, architecture evolution permits

Introduction 7

planning and system restructuring at a high level of abstraction where quality
and business tradeoffs can be analyzed [75].

1.2.5 Architectural Analysis Techniques in Focus

In this thesis, we focus on architectural aspects, and propose architectural
approaches that are concerned with software architecture analysis and
software quality improvement related to software evolvability. Nevertheless,
software evolution spawns also research disciplines that are devoted to the
topic of migrating or reengineering legacy software systems by applying a
specific software development paradigm to facilitate software evolution,
e.g., product line engineering, component-based software engineering, and
service-oriented software engineering. However, due to the variety of
software development paradigms and the many sub-disciplines concerned in
each paradigm, we have chosen to constrain the scope of the thesis to
architectural analysis techniques that help analyze and improve software
evolvability. For those who are interested in the specific reengineering
techniques that facilitate software architecture evolution, please refer to my
licentiate thesis [30], which described the impact analysis of the introduction
of service-oriented software engineering to component-based software
engineering, as well as managing the migration of legacy systems towards
product lines.

1.3 Research Questions
We describe in the previous sections that software architecture evolution is a
critical part of software lifecycle, and that there is a need to explicitly
address software evolvability. Therefore, the overall question of this thesis
is:

How to analyze the evolvability of a software system?

Before we can determine how to analyze software evolvability, we need to
understand what characteristics of software constitute the evolvability of a
software system, i.e., what characteristics of software make it easier to
change a software system as requirements evolve. To this end, we formulate
the following research question which provides a starting point for further
research:

What subcharacteristics are of primary importance for the

evolvability of a software system? (Q1)

Introduction 8

Once we know what subcharacteristics are of primary importance for the
evolvability of a software system, we would like to have the means to assess
software evolvability. In this thesis, the system in focus is industrial
software system. Thus, the next question relates to the assessment of
software evolvability of this type of system:

How to assess software evolvability of long-lived

proprietary systems in a systematic manner? (Q2)

With the emergence of the open source paradigm, researchers are also
provided with a wealth of data for open source software (OSS) evolution
analysis. Moreover, as more empirical findings in open source have emerged
that appear to diverge from the classical view of proprietary systems,
studying OSS evolution is becoming important in order to investigate if the
mechanisms and concerns for evolution could be different between open
source and proprietary systems. Therefore, as a supplementary research, the
next question relates to studying how evolvability is addressed in OSS
evolution:

How is software evolvability addressed in the development

and evolution of open source software? (Q3)

1.4 Research Contributions
Motivated by the need to understand software architecture evolution and to
investigate ways to analyze software evolvability to support this evolution,
the central theme of this thesis focuses on four particular aspects:

- Identify software characteristics that are necessary to constitute an
evolvable software system;

- Assess evolvability in a systematic manner, with focus on
proprietary systems;

- Describe existing research studies in architecting for evolvability,
and identify important challenges and future research directions in
software architecture evolution;

- Describe existing research studies in open source software evolution,
and identify important challenges and future research directions in
open source software evolution.

The main contributions of the research include:

- Software evolvability model

Introduction 9

The software evolvability model refines evolvability into a collection
of subcharacteristics that can be measured through a number of
measuring attributes, and is established as a first step towards
analyzing and quantifying evolvability. This model provides a basis
for analyzing software evolvability, and a check point for evolvability
evaluation and improvement.

- Software architecture evolvability analysis (AREA) process

The AREA process provides repeatable techniques for supporting
software architecture evolution. These techniques are based on the
software evolvability model, and have been validated through our
participation in two industrial projects of different domains, driven by
the need of improving software evolvability. The experiences and
lessons learned from applying the qualitative analysis method in an
industrial case study provided input to the formulation of the
quantitative software evolvability analysis method, which is a further
refinement and extension of the qualitative evolvability analysis
method. The evolvability analysis techniques include:

- Qualitative evolvability analysis method

The qualitative analysis method focuses on improving the
capability of being able to understand and analyze
systematically the impact of change stimuli on software
architecture evolution.

- Quantitative evolvability analysis method

The quantitative analysis method provides quantifications of
stakeholders’ evolvability concerns and potential architectural
solutions’ impacts on evolvability.

- Systematic review of architecting for software evolvability

The systematic literature review of software architecture evolution
research synthesizes the existing studies in analyzing and achieving
software evolvability at architectural level. The identified primary studies
cover a spectrum of approaches with specific perspective or focus on a
particular architecture-centric activity in the software lifecycle. A
comprehensive overview and analysis of these studies is described. The
implications for research and practitioners are identified as well.

- Systematic review of open source software evolution

The systematic literature review of open source software (OSS) evolution
research analyzes how software evolvability is addressed during the

Introduction 8

Once we know what subcharacteristics are of primary importance for the
evolvability of a software system, we would like to have the means to assess
software evolvability. In this thesis, the system in focus is industrial
software system. Thus, the next question relates to the assessment of
software evolvability of this type of system:

How to assess software evolvability of long-lived

proprietary systems in a systematic manner? (Q2)

With the emergence of the open source paradigm, researchers are also
provided with a wealth of data for open source software (OSS) evolution
analysis. Moreover, as more empirical findings in open source have emerged
that appear to diverge from the classical view of proprietary systems,
studying OSS evolution is becoming important in order to investigate if the
mechanisms and concerns for evolution could be different between open
source and proprietary systems. Therefore, as a supplementary research, the
next question relates to studying how evolvability is addressed in OSS
evolution:

How is software evolvability addressed in the development

and evolution of open source software? (Q3)

1.4 Research Contributions
Motivated by the need to understand software architecture evolution and to
investigate ways to analyze software evolvability to support this evolution,
the central theme of this thesis focuses on four particular aspects:

- Identify software characteristics that are necessary to constitute an
evolvable software system;

- Assess evolvability in a systematic manner, with focus on
proprietary systems;

- Describe existing research studies in architecting for evolvability,
and identify important challenges and future research directions in
software architecture evolution;

- Describe existing research studies in open source software evolution,
and identify important challenges and future research directions in
open source software evolution.

The main contributions of the research include:

- Software evolvability model

Introduction 9

The software evolvability model refines evolvability into a collection
of subcharacteristics that can be measured through a number of
measuring attributes, and is established as a first step towards
analyzing and quantifying evolvability. This model provides a basis
for analyzing software evolvability, and a check point for evolvability
evaluation and improvement.

- Software architecture evolvability analysis (AREA) process

The AREA process provides repeatable techniques for supporting
software architecture evolution. These techniques are based on the
software evolvability model, and have been validated through our
participation in two industrial projects of different domains, driven by
the need of improving software evolvability. The experiences and
lessons learned from applying the qualitative analysis method in an
industrial case study provided input to the formulation of the
quantitative software evolvability analysis method, which is a further
refinement and extension of the qualitative evolvability analysis
method. The evolvability analysis techniques include:

- Qualitative evolvability analysis method

The qualitative analysis method focuses on improving the
capability of being able to understand and analyze
systematically the impact of change stimuli on software
architecture evolution.

- Quantitative evolvability analysis method

The quantitative analysis method provides quantifications of
stakeholders’ evolvability concerns and potential architectural
solutions’ impacts on evolvability.

- Systematic review of architecting for software evolvability

The systematic literature review of software architecture evolution
research synthesizes the existing studies in analyzing and achieving
software evolvability at architectural level. The identified primary studies
cover a spectrum of approaches with specific perspective or focus on a
particular architecture-centric activity in the software lifecycle. A
comprehensive overview and analysis of these studies is described. The
implications for research and practitioners are identified as well.

- Systematic review of open source software evolution

The systematic literature review of open source software (OSS) evolution
research analyzes how software evolvability is addressed during the

Introduction 10

development and evolution of OSS. The challenges and future research
directions in OSS evolution are identified as well.

To summarize, the contributions of the thesis are visualized in Figure 1-1.

Figure 1-1: Research contributions of the thesis

1.4.1 Description of Key Publications

The following publications are the basis for the thesis.

Journals

 Software Architecture Evolution through Evolvability Analysis,
Hongyu Pei Breivold, Ivica Crnkovic, Magnus Larsson, submitted to
Elsevier Journal of Systems and Software, 2011.

Abstract: Software evolvability is a multifaceted quality attribute
that describes a software system’s ability to easily accommodate
future changes. It is a fundamental characteristic for an efficient
implementation of strategic decisions, and increasing economic
value of software. For long-lived systems, there is a need to address
evolvability explicitly during the entire software lifecycle in order to

Introduction 11

prolong the productive lifetime of software systems. However,
designing and evolving a software architecture is a challenging task.
This is mainly due to the fact that architecting for evolvable systems
implies a complex decision-making process in which multiple
aspects need to be taken into consideration, e.g., stakeholders’ needs
and goals, multiple quality requirements with competing priorities,
various architectural solutions with divergent implications on quality
requirements. To improve the capability of being able to understand
and analyze systematically the evolution of software system
architectures, we describe, in this paper, software architecture
evolution characterization, and propose an architecture evolvability
analysis process that provides repeatable techniques for performing
the activities to understand and support software architecture
evolution. The activities are embedded in: (i) the application of a
software evolvability model; (ii) a structured qualitative method for
analyzing evolvability at the architectural level; and (iii) a
quantitative evolvability analysis method with explicit and
quantitative treatment of stakeholders’ evolvability concerns and
potential architectural solutions’ impacts on evolvability. The
qualitative and quantitative assessments manifested in the
evolvability analysis process have been validated through their
applications in two large-scale industrial software systems at ABB
and Ericsson. The experiences and reflections in the case studies
with respect to managing software architecture evolution guided by
the evolvability analysis at architectural level are described as well
in the paper.

My contribution: I was the main author, and contributed with the
idea and definition of the software evolvability analysis process
along with its validation in industrial settings.

Usage in thesis: This article is the basis for Chapter 4 and 5 in this
thesis, and describes the software evolvability analysis process along
with its applications in industrial settings.

 A Systematic Review of Software Architecture Evolution Research,
Hongyu Pei Breivold, Ivica Crnkovic, Magnus Larsson, Journal of
Information Software and Technology, doi:
10.1016/j.infsof.2011.06.002, 2011.

Abstract: Software evolvability describes a software system’s
ability to easily accommodate future changes. It is a fundamental
characteristic for making strategic decisions, and increasing

Introduction 10

development and evolution of OSS. The challenges and future research
directions in OSS evolution are identified as well.

To summarize, the contributions of the thesis are visualized in Figure 1-1.

Figure 1-1: Research contributions of the thesis

1.4.1 Description of Key Publications

The following publications are the basis for the thesis.

Journals

 Software Architecture Evolution through Evolvability Analysis,
Hongyu Pei Breivold, Ivica Crnkovic, Magnus Larsson, submitted to
Elsevier Journal of Systems and Software, 2011.

Abstract: Software evolvability is a multifaceted quality attribute
that describes a software system’s ability to easily accommodate
future changes. It is a fundamental characteristic for an efficient
implementation of strategic decisions, and increasing economic
value of software. For long-lived systems, there is a need to address
evolvability explicitly during the entire software lifecycle in order to

Introduction 11

prolong the productive lifetime of software systems. However,
designing and evolving a software architecture is a challenging task.
This is mainly due to the fact that architecting for evolvable systems
implies a complex decision-making process in which multiple
aspects need to be taken into consideration, e.g., stakeholders’ needs
and goals, multiple quality requirements with competing priorities,
various architectural solutions with divergent implications on quality
requirements. To improve the capability of being able to understand
and analyze systematically the evolution of software system
architectures, we describe, in this paper, software architecture
evolution characterization, and propose an architecture evolvability
analysis process that provides repeatable techniques for performing
the activities to understand and support software architecture
evolution. The activities are embedded in: (i) the application of a
software evolvability model; (ii) a structured qualitative method for
analyzing evolvability at the architectural level; and (iii) a
quantitative evolvability analysis method with explicit and
quantitative treatment of stakeholders’ evolvability concerns and
potential architectural solutions’ impacts on evolvability. The
qualitative and quantitative assessments manifested in the
evolvability analysis process have been validated through their
applications in two large-scale industrial software systems at ABB
and Ericsson. The experiences and reflections in the case studies
with respect to managing software architecture evolution guided by
the evolvability analysis at architectural level are described as well
in the paper.

My contribution: I was the main author, and contributed with the
idea and definition of the software evolvability analysis process
along with its validation in industrial settings.

Usage in thesis: This article is the basis for Chapter 4 and 5 in this
thesis, and describes the software evolvability analysis process along
with its applications in industrial settings.

 A Systematic Review of Software Architecture Evolution Research,
Hongyu Pei Breivold, Ivica Crnkovic, Magnus Larsson, Journal of
Information Software and Technology, doi:
10.1016/j.infsof.2011.06.002, 2011.

Abstract: Software evolvability describes a software system’s
ability to easily accommodate future changes. It is a fundamental
characteristic for making strategic decisions, and increasing

Introduction 12

economic value of software. For long-lived systems, there is a need
to address evolvability explicitly during the entire software lifecycle
in order to prolong the productive lifetime of software systems. For
this reason, many research studies have been proposed in this area
both by researchers and industry practitioners. These studies
comprise a spectrum of particular techniques and practices, covering
various activities in software lifecycle. However, no systematic
review has been conducted previously to provide an extensive
overview of software architecture evolvability research.
In this work, we present such a systematic review of architecting for
software evolvability. The objective of this review is to obtain an
overview of the existing approaches in analyzing and improving
software evolvability at architectural level, and investigate impacts
on research and practice. The identification of the primary studies in
this review was based on a pre-defined search strategy and a multi-
step selection process. Based on research topics in these studies, we
have identified five main categories of themes: (i) techniques
supporting quality consideration during software architecture design,
(ii) architectural quality evaluation, (iii) economic valuation, (iv)
architectural knowledge management, and (v) modeling techniques.
A comprehensive overview of these categories and related studies is
presented. The findings of this review also reveal suggestions for
further research and practice, such as (i) it is necessary to establish a
theoretical foundation for software evolution research due to the fact
that the expertise in this area is still built on the basis of case studies
instead of generalized knowledge; (ii) it is necessary to combine
appropriate techniques to address the multifaceted perspectives of
software evolvability due to the fact that each technique has its
specific focus and context for which it is appropriate in the entire
software lifecycle.

My contribution: I was the main author, and contributed with
leading and conducting the systematic literature review in software
architecture evolution research as well as analyzing and synthesizing
the results.

Usage in thesis: This article is the basis for Chapter 3 in this thesis,
and describes a systematic literature review of the software
architecture evolution research in architecting for software
evolvability.

Introduction 13

Licentiate thesis

 Software Architecture Evolution and Software Evolvability, Hongyu
Pei Breivold, Licentiate Thesis, ISBN 978-91-86135-15-7,
Mälardalen University Press, January, 2009.

Abstract: Software is characterized by inevitable changes and
increasing complexity, which in turn may lead to huge costs unless
rigorously taking into account change accommodations. This is in
particular true for long-lived systems. For such systems, there is a
need to address evolvability explicitly during the entire lifecycle,
carry out software evolution efficiently and reliably, and prolong the
productive lifetime of the software systems. In this thesis, we study
evolution of software architecture and investigate ways to support
this evolution. The central theme of the thesis is how to analyze
software evolvability, i.e., a system’s ability to easily accommodate
changes. We focus on several particular aspects: (i) what software
characteristics are necessary to constitute an evolvable software
system; (ii) how to assess evolvability in a systematic manner; (iii)
what impacts need to be considered given a certain change stimulus
that results in potential requirements the software architecture needs
to adapt to, e.g., ever-changing business requirements and advances
of technology. To improve the capability of being able to on
forehand understand and analyze systematically the impact of a
change stimulus, we introduce a software evolvability model, in
which subcharacteristics of software evolvability and corresponding
measuring attributes are identified. In addition, a further study of
one particular measuring attribute, i.e., modularity, is performed
through a dependency analysis case study. We introduce a method
for analyzing software evolvability at the architecture level. This is
to ensure that the implications of the potential improvement
strategies and evolution path of the software architecture are
analyzed with respect to the evolvability subcharacteristics. This
method is proposed and piloted in an industrial setting. The fact that
change stimuli come from both technical and business perspectives
spawns two aspects that we also look into in this research, i.e., to
respectively investigate the impacts of technology-type and
business-type of change stimuli.

Usage in thesis: The licentiate thesis is the basis for Chapter 2 in
this dissertation, and describes the topic of migrating or
reengineering legacy software systems by applying specific software
development paradigms, which complement the dissertation.

Introduction 12

economic value of software. For long-lived systems, there is a need
to address evolvability explicitly during the entire software lifecycle
in order to prolong the productive lifetime of software systems. For
this reason, many research studies have been proposed in this area
both by researchers and industry practitioners. These studies
comprise a spectrum of particular techniques and practices, covering
various activities in software lifecycle. However, no systematic
review has been conducted previously to provide an extensive
overview of software architecture evolvability research.
In this work, we present such a systematic review of architecting for
software evolvability. The objective of this review is to obtain an
overview of the existing approaches in analyzing and improving
software evolvability at architectural level, and investigate impacts
on research and practice. The identification of the primary studies in
this review was based on a pre-defined search strategy and a multi-
step selection process. Based on research topics in these studies, we
have identified five main categories of themes: (i) techniques
supporting quality consideration during software architecture design,
(ii) architectural quality evaluation, (iii) economic valuation, (iv)
architectural knowledge management, and (v) modeling techniques.
A comprehensive overview of these categories and related studies is
presented. The findings of this review also reveal suggestions for
further research and practice, such as (i) it is necessary to establish a
theoretical foundation for software evolution research due to the fact
that the expertise in this area is still built on the basis of case studies
instead of generalized knowledge; (ii) it is necessary to combine
appropriate techniques to address the multifaceted perspectives of
software evolvability due to the fact that each technique has its
specific focus and context for which it is appropriate in the entire
software lifecycle.

My contribution: I was the main author, and contributed with
leading and conducting the systematic literature review in software
architecture evolution research as well as analyzing and synthesizing
the results.

Usage in thesis: This article is the basis for Chapter 3 in this thesis,
and describes a systematic literature review of the software
architecture evolution research in architecting for software
evolvability.

Introduction 13

Licentiate thesis

 Software Architecture Evolution and Software Evolvability, Hongyu
Pei Breivold, Licentiate Thesis, ISBN 978-91-86135-15-7,
Mälardalen University Press, January, 2009.

Abstract: Software is characterized by inevitable changes and
increasing complexity, which in turn may lead to huge costs unless
rigorously taking into account change accommodations. This is in
particular true for long-lived systems. For such systems, there is a
need to address evolvability explicitly during the entire lifecycle,
carry out software evolution efficiently and reliably, and prolong the
productive lifetime of the software systems. In this thesis, we study
evolution of software architecture and investigate ways to support
this evolution. The central theme of the thesis is how to analyze
software evolvability, i.e., a system’s ability to easily accommodate
changes. We focus on several particular aspects: (i) what software
characteristics are necessary to constitute an evolvable software
system; (ii) how to assess evolvability in a systematic manner; (iii)
what impacts need to be considered given a certain change stimulus
that results in potential requirements the software architecture needs
to adapt to, e.g., ever-changing business requirements and advances
of technology. To improve the capability of being able to on
forehand understand and analyze systematically the impact of a
change stimulus, we introduce a software evolvability model, in
which subcharacteristics of software evolvability and corresponding
measuring attributes are identified. In addition, a further study of
one particular measuring attribute, i.e., modularity, is performed
through a dependency analysis case study. We introduce a method
for analyzing software evolvability at the architecture level. This is
to ensure that the implications of the potential improvement
strategies and evolution path of the software architecture are
analyzed with respect to the evolvability subcharacteristics. This
method is proposed and piloted in an industrial setting. The fact that
change stimuli come from both technical and business perspectives
spawns two aspects that we also look into in this research, i.e., to
respectively investigate the impacts of technology-type and
business-type of change stimuli.

Usage in thesis: The licentiate thesis is the basis for Chapter 2 in
this dissertation, and describes the topic of migrating or
reengineering legacy software systems by applying specific software
development paradigms, which complement the dissertation.

Introduction 14

Examples of specific software development paradigms include
component-based software engineering, service-oriented software
engineering, and product line software engineering.

Conferences and workshops

 A Systematic Review of Studies of Open Source Software
Evolution, Hongyu Pei Breivold, Muhammad Aufeef Chauhan,
Muhammad Ali Babar, 17th Asia Pacific Software Engineering
Conference (APSEC), IEEE, Sydney, Australia, November, 2010.

Abstract: Software evolution relates to how software systems
evolve over time. With the emergence of the open source paradigm,
researchers are provided with a wealth of data for open source
software evolution analysis. In this paper, we present a systematic
review of open source software (OSS) evolution. The objective of
this review is to obtain an overview of the existing studies in open
source software evolution, with the intention of achieving an
understanding of how software evolvability (i.e., a software system’s
ability to easily accommodate changes) is addressed during
development and evolution of open source software. The primary
studies for this review were identified based on a pre-defined search
strategy and a multi-step selection process. Based on their research
topics, we have identified four main categories of themes: software
trends and patterns, evolution process support, evolvability
characteristics addressed in OSS evolution, and examining OSS at
software architecture level. A comprehensive overview and
synthesis of these categories and related studies is presented as well.

My contribution: I was the main author, and contributed with
classification and analysis of the studies included in the systematic
literature review.

Usage in thesis: This paper is the basis for Chapter 6 in this thesis,
and describes a systematic literature review of the studies in open
source software evolution.

 An Extended Quantitative Analysis Approach for Architecting
Evolvable Software Systems, Hongyu Pei Breivold, Ivica Crnkovic,
Computing Professionals Conference Workshop on Industrial
Software Evolution and Maintenance Processes (WISEMP), IEEE,
Montréal, Québec, Canada, April, 2010.

Abstract: For long-lived systems, there is a need to address
evolvability, i.e., a system’s ability to easily accommodate changes,

Introduction 15

explicitly during the entire lifecycle. To improve the capability of
being able to understand and analyze systematically software
architecture evolution, we introduced in our earlier work a software
evolvability model and a structured qualitative method for analyzing
evolvability at the architectural level. As architecture is influenced
by system stakeholders representing different concerns and goals,
the business and technical decisions that articulate the architecture
tend to exhibit tradeoffs and need to be negotiated and resolved. To
avoid intuitive choice of architectural solutions, we propose to
extend the qualitative method and strengthen its tradeoff analysis
with explicit and quantitative treatment of stakeholders’
prioritization of evolvability subcharacteristics and their preferences
on design solutions. Finally, an example is used to illustrate the
concept and applicability of the proposed approach.

My contribution: I was the main author, and contributed with the
idea and definition of the proposed quantitative software
evolvability analysis method.

Usage in thesis: This paper is the basis for Chapter 4 in this thesis,
and describes the quantitative evolvability analysis method.

 Analysis of Software Evolvability in Quality Models, Hongyu Pei
Breivold, Ivica Crnkovic, 35th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Software Process
and Product Improvement (SPPI) Track, IEEE, Patras, Greece,
August, 2009.

Abstract: For long-lived systems, there is a need to address
evolvability explicitly. For this purpose, we have in our earlier work
developed a software evolvability framework based on industrial
case studies. With this as input in this paper we analyze several
existing quality models for the purpose of evaluating how software
evolvability is addressed in these models. The goal of the analysis is
to investigate if the elements of the evolvability framework can be
systematically managed or integrated into different existing quality
models. Our conclusion is that although none of the existing quality
models is dedicated to the analysis of software evolvability, we can
enrich respective quality model through integrating the missing
elements, and adapt each quality model for software evolvability
analysis purpose.

Introduction 14

Examples of specific software development paradigms include
component-based software engineering, service-oriented software
engineering, and product line software engineering.

Conferences and workshops

 A Systematic Review of Studies of Open Source Software
Evolution, Hongyu Pei Breivold, Muhammad Aufeef Chauhan,
Muhammad Ali Babar, 17th Asia Pacific Software Engineering
Conference (APSEC), IEEE, Sydney, Australia, November, 2010.

Abstract: Software evolution relates to how software systems
evolve over time. With the emergence of the open source paradigm,
researchers are provided with a wealth of data for open source
software evolution analysis. In this paper, we present a systematic
review of open source software (OSS) evolution. The objective of
this review is to obtain an overview of the existing studies in open
source software evolution, with the intention of achieving an
understanding of how software evolvability (i.e., a software system’s
ability to easily accommodate changes) is addressed during
development and evolution of open source software. The primary
studies for this review were identified based on a pre-defined search
strategy and a multi-step selection process. Based on their research
topics, we have identified four main categories of themes: software
trends and patterns, evolution process support, evolvability
characteristics addressed in OSS evolution, and examining OSS at
software architecture level. A comprehensive overview and
synthesis of these categories and related studies is presented as well.

My contribution: I was the main author, and contributed with
classification and analysis of the studies included in the systematic
literature review.

Usage in thesis: This paper is the basis for Chapter 6 in this thesis,
and describes a systematic literature review of the studies in open
source software evolution.

 An Extended Quantitative Analysis Approach for Architecting
Evolvable Software Systems, Hongyu Pei Breivold, Ivica Crnkovic,
Computing Professionals Conference Workshop on Industrial
Software Evolution and Maintenance Processes (WISEMP), IEEE,
Montréal, Québec, Canada, April, 2010.

Abstract: For long-lived systems, there is a need to address
evolvability, i.e., a system’s ability to easily accommodate changes,

Introduction 15

explicitly during the entire lifecycle. To improve the capability of
being able to understand and analyze systematically software
architecture evolution, we introduced in our earlier work a software
evolvability model and a structured qualitative method for analyzing
evolvability at the architectural level. As architecture is influenced
by system stakeholders representing different concerns and goals,
the business and technical decisions that articulate the architecture
tend to exhibit tradeoffs and need to be negotiated and resolved. To
avoid intuitive choice of architectural solutions, we propose to
extend the qualitative method and strengthen its tradeoff analysis
with explicit and quantitative treatment of stakeholders’
prioritization of evolvability subcharacteristics and their preferences
on design solutions. Finally, an example is used to illustrate the
concept and applicability of the proposed approach.

My contribution: I was the main author, and contributed with the
idea and definition of the proposed quantitative software
evolvability analysis method.

Usage in thesis: This paper is the basis for Chapter 4 in this thesis,
and describes the quantitative evolvability analysis method.

 Analysis of Software Evolvability in Quality Models, Hongyu Pei
Breivold, Ivica Crnkovic, 35th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Software Process
and Product Improvement (SPPI) Track, IEEE, Patras, Greece,
August, 2009.

Abstract: For long-lived systems, there is a need to address
evolvability explicitly. For this purpose, we have in our earlier work
developed a software evolvability framework based on industrial
case studies. With this as input in this paper we analyze several
existing quality models for the purpose of evaluating how software
evolvability is addressed in these models. The goal of the analysis is
to investigate if the elements of the evolvability framework can be
systematically managed or integrated into different existing quality
models. Our conclusion is that although none of the existing quality
models is dedicated to the analysis of software evolvability, we can
enrich respective quality model through integrating the missing
elements, and adapt each quality model for software evolvability
analysis purpose.

Introduction 16

My contribution: I was the main author, and contributed with the
analysis of existing quality models and investigation on how
software evolvability is addressed in these quality models.

Usage in thesis: This paper is the basis for Chapter 2 in this thesis,
and describes how software evolvability is addressed in several
existing quality models.

 Analyzing Software Evolvability, Hongyu Pei Breivold, Ivica
Crnkovic, Peter Eriksson, 32nd IEEE International Computer
Software and Applications Conference (COMPSAC), Turku,
Finland, July, 2008.

Abstract: Software evolution is characterized by inevitable changes
of software and increasing software complexities, which in turn may
lead to huge costs unless rigorously taking into account change
accommodations. This is in particular true for long-lived systems in
which changes go beyond maintainability. For such systems, there is
a need to address evolvability explicitly during the entire lifecycle.
Nevertheless, there is a lack of a model that can be used for
analyzing, evaluating and comparing software systems in terms of
evolvability. In this paper, we describe the initial establishment of an
evolvability model as a framework for analysis of software
evolvability. We motivate and exemplify the model through an
industrial case study of a software-intensive automation system.

My contribution: I was the main author, and contributed with the
proposed evolvability model and the case study in applying the
evolvability model.

Usage in thesis: This paper is the basis for Chapter 4 in this thesis,
and describes the software evolvability model.

 Analyzing Software Evolvability of an Industrial Automation
Control System: A Case Study, Hongyu Pei Breivold, Ivica
Crnkovic, Rikard Land, Magnus Larsson, 3rd International
Conference on Software Engineering Advances (ICSEA), IEEE,
Sliema, Malta, October, 2008.

Abstract: Evolution of software systems is characterized by
inevitable changes of software and increasing software complexity,
which in turn may lead to huge maintenance and development costs.
For long-lived systems, there is a need to address evolvability (i.e., a
system’s ability to easily accommodate changes) explicitly in the
requirements and early design phases, and maintain it during the

Introduction 17

entire lifecycle. This paper describes our work in analyzing and
improving the evolvability of an industrial automation control
system, and presents 1) evolvability subcharacteristics based on the
problems in the case and available literature; 2) a structured method
for analyzing evolvability at the architectural level. This paper
includes also the main analysis results and our observations during
the evolvability analysis process in the case study.

My contribution: I was the main author, and contributed with the
description of the proposed qualitative software evolvability analysis
method, the case study in applying the method, the analysis results
and conclusions.

Usage in thesis: This paper is the basis for Chapter 4 and 5 in this
thesis, and describes the qualitative software evolvability analysis
method along with its application in an industrial setting.

1.4.2 Other Related Publications

The following publications are related to the thesis.

Conferences and workshops

 What Does Research Say About Agile and Architecture?, Hongyu
Pei Breivold, Daniel Sundmark, Peter Wallin, Stig Larsson, 5th
International Conference on Software Engineering Advances
(ICSEA), IEEE, Nice, France, August, 2010.

 A Systematic Review on Architecting for Software Evolvability,
Hongyu Pei Breivold, Ivica Crnkovic, 21st Australian Software
Engineering Conference (ASWEC), IEEE, Auckland, New Zealand,
April, 2010.

 Software Architecture Evolution – An Integrated Approach in
Industry (Extended Abstract), Hongyu Pei Breivold, Ivica Crnkovic,
21st Australian Software Engineering Conference (ASWEC), IEEE,
Auckland, New Zealand, April, 2010.

 A Systematic Review of Software Evolvability, Hongyu Pei
Breivold, Mälardalen University Workshop on Software
Engineering, Västerås, Sweden, November, 2009.

 Migrating Industrial Systems towards Software Product Lines:
Experiences and Observations through Case Studies, Hongyu Pei
Breivold, Stig Larsson, Rikard Land, 34th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA),

Introduction 16

My contribution: I was the main author, and contributed with the
analysis of existing quality models and investigation on how
software evolvability is addressed in these quality models.

Usage in thesis: This paper is the basis for Chapter 2 in this thesis,
and describes how software evolvability is addressed in several
existing quality models.

 Analyzing Software Evolvability, Hongyu Pei Breivold, Ivica
Crnkovic, Peter Eriksson, 32nd IEEE International Computer
Software and Applications Conference (COMPSAC), Turku,
Finland, July, 2008.

Abstract: Software evolution is characterized by inevitable changes
of software and increasing software complexities, which in turn may
lead to huge costs unless rigorously taking into account change
accommodations. This is in particular true for long-lived systems in
which changes go beyond maintainability. For such systems, there is
a need to address evolvability explicitly during the entire lifecycle.
Nevertheless, there is a lack of a model that can be used for
analyzing, evaluating and comparing software systems in terms of
evolvability. In this paper, we describe the initial establishment of an
evolvability model as a framework for analysis of software
evolvability. We motivate and exemplify the model through an
industrial case study of a software-intensive automation system.

My contribution: I was the main author, and contributed with the
proposed evolvability model and the case study in applying the
evolvability model.

Usage in thesis: This paper is the basis for Chapter 4 in this thesis,
and describes the software evolvability model.

 Analyzing Software Evolvability of an Industrial Automation
Control System: A Case Study, Hongyu Pei Breivold, Ivica
Crnkovic, Rikard Land, Magnus Larsson, 3rd International
Conference on Software Engineering Advances (ICSEA), IEEE,
Sliema, Malta, October, 2008.

Abstract: Evolution of software systems is characterized by
inevitable changes of software and increasing software complexity,
which in turn may lead to huge maintenance and development costs.
For long-lived systems, there is a need to address evolvability (i.e., a
system’s ability to easily accommodate changes) explicitly in the
requirements and early design phases, and maintain it during the

Introduction 17

entire lifecycle. This paper describes our work in analyzing and
improving the evolvability of an industrial automation control
system, and presents 1) evolvability subcharacteristics based on the
problems in the case and available literature; 2) a structured method
for analyzing evolvability at the architectural level. This paper
includes also the main analysis results and our observations during
the evolvability analysis process in the case study.

My contribution: I was the main author, and contributed with the
description of the proposed qualitative software evolvability analysis
method, the case study in applying the method, the analysis results
and conclusions.

Usage in thesis: This paper is the basis for Chapter 4 and 5 in this
thesis, and describes the qualitative software evolvability analysis
method along with its application in an industrial setting.

1.4.2 Other Related Publications

The following publications are related to the thesis.

Conferences and workshops

 What Does Research Say About Agile and Architecture?, Hongyu
Pei Breivold, Daniel Sundmark, Peter Wallin, Stig Larsson, 5th
International Conference on Software Engineering Advances
(ICSEA), IEEE, Nice, France, August, 2010.

 A Systematic Review on Architecting for Software Evolvability,
Hongyu Pei Breivold, Ivica Crnkovic, 21st Australian Software
Engineering Conference (ASWEC), IEEE, Auckland, New Zealand,
April, 2010.

 Software Architecture Evolution – An Integrated Approach in
Industry (Extended Abstract), Hongyu Pei Breivold, Ivica Crnkovic,
21st Australian Software Engineering Conference (ASWEC), IEEE,
Auckland, New Zealand, April, 2010.

 A Systematic Review of Software Evolvability, Hongyu Pei
Breivold, Mälardalen University Workshop on Software
Engineering, Västerås, Sweden, November, 2009.

 Migrating Industrial Systems towards Software Product Lines:
Experiences and Observations through Case Studies, Hongyu Pei
Breivold, Stig Larsson, Rikard Land, 34th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA),

Introduction 18

Software Process and Product Improvement (SPPI) Track, IEEE,
Parma, Italy, September, 2008.

 Using Dependency Model to Support Software Architecture
Evolution, Hongyu Pei Breivold, Ivica Crnkovic, Rikard Land, Stig
Larsson, 4th International ERCIM Workshop on Software Evolution
and Evolvability (Evol’08), IEEE, L’Aquila, Italy, September, 2008.

 Component-Based and Service-Oriented Software Engineering: Key
Concepts and Principles, Hongyu Pei Breivold, Magnus Larsson,
33rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Component-Based Software Engineering
(CBSE) Track, IEEE, Lübeck, Germany, August, 2007.

 Evaluating Software Evolvability, Hongyu Pei Breivold, Ivica
Crnkovic, Peter Eriksson, 7th Conference on Software Engineering
and Practice in Sweden (SERPS), Göteborg, Sweden, October, 2007.

Tutorial

 Emerging Technologies in Industrial Context – Component-Based
and Service-Oriented Software Engineering, Ivica Crnkovic,
Hongyu Pei Breivold, 31st IEEE International computer Software
and Applications Conference (COMPSAC), Beijing, China, July,
2007.

Technical Reports

 A Survey of Software Architecture Evolvability, Hongyu Pei
Breivold, Ivica Crnkovic, MRTC report ISSN 1404-3041 ISRN
MDH-MRTC-239/2009-1-SE, Mälardalen Real-Time Research
Center, Mälardalen University, September, 2009

 Using Software Evolvability Model for Evolvability Analysis,
Hongyu Pei Breivold, Ivica Crnkovic, MRTC report ISSN 1404-
3041 ISRN MDH-MRTC-222/2008-1-SE, Mälardalen Real-Time
Research Center, Mälardalen University, February, 2008

1.5 Research Methodology
The research process and research methods as well as the general validity of
the research results are discussed in the following subsections. The detailed
validity discussions that are concerned with the research results (e.g.,
software evolvability model, the qualitative and quantitative evolvability

Introduction 19

analysis processes, and systematic review process [100]) in various domains
will be described later in Chapter 7.

1.5.1 Research Process

The research process conducted in this thesis is illustrated in Figure 1-2.

Figure 1-2: Research process

The above research phases are not strictly sequential or separated. Firstly,
the software evolvability model laid a ground for the subsequent two phases,
as both the qualitative and quantitative evolvability analysis methods are
based on the software evolvability model. Consequently, the case studies for
validating the qualitative and quantitative evolvability analysis methods

Introduction 18

Software Process and Product Improvement (SPPI) Track, IEEE,
Parma, Italy, September, 2008.

 Using Dependency Model to Support Software Architecture
Evolution, Hongyu Pei Breivold, Ivica Crnkovic, Rikard Land, Stig
Larsson, 4th International ERCIM Workshop on Software Evolution
and Evolvability (Evol’08), IEEE, L’Aquila, Italy, September, 2008.

 Component-Based and Service-Oriented Software Engineering: Key
Concepts and Principles, Hongyu Pei Breivold, Magnus Larsson,
33rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Component-Based Software Engineering
(CBSE) Track, IEEE, Lübeck, Germany, August, 2007.

 Evaluating Software Evolvability, Hongyu Pei Breivold, Ivica
Crnkovic, Peter Eriksson, 7th Conference on Software Engineering
and Practice in Sweden (SERPS), Göteborg, Sweden, October, 2007.

Tutorial

 Emerging Technologies in Industrial Context – Component-Based
and Service-Oriented Software Engineering, Ivica Crnkovic,
Hongyu Pei Breivold, 31st IEEE International computer Software
and Applications Conference (COMPSAC), Beijing, China, July,
2007.

Technical Reports

 A Survey of Software Architecture Evolvability, Hongyu Pei
Breivold, Ivica Crnkovic, MRTC report ISSN 1404-3041 ISRN
MDH-MRTC-239/2009-1-SE, Mälardalen Real-Time Research
Center, Mälardalen University, September, 2009

 Using Software Evolvability Model for Evolvability Analysis,
Hongyu Pei Breivold, Ivica Crnkovic, MRTC report ISSN 1404-
3041 ISRN MDH-MRTC-222/2008-1-SE, Mälardalen Real-Time
Research Center, Mälardalen University, February, 2008

1.5 Research Methodology
The research process and research methods as well as the general validity of
the research results are discussed in the following subsections. The detailed
validity discussions that are concerned with the research results (e.g.,
software evolvability model, the qualitative and quantitative evolvability

Introduction 19

analysis processes, and systematic review process [100]) in various domains
will be described later in Chapter 7.

1.5.1 Research Process

The research process conducted in this thesis is illustrated in Figure 1-2.

Figure 1-2: Research process

The above research phases are not strictly sequential or separated. Firstly,
the software evolvability model laid a ground for the subsequent two phases,
as both the qualitative and quantitative evolvability analysis methods are
based on the software evolvability model. Consequently, the case studies for
validating the qualitative and quantitative evolvability analysis methods

Introduction 20

provided feedbacks to, and further validated the evolvability model.
Secondly, the feedbacks and experiences from the case study for qualitative
analysis method provided feedbacks to its refinement, and led to the
proposed quantitative analysis method.

The different phases of the research process are explained below:

Formulate a problem: The research questions are defined in Chapter 1.3.

Perform literature review: We performed a thorough investigation and
analysis of the state-of-the-art and state-of-the-practice of the existing well-
known software quality models as well as the existing process models for
software evolution. In addition, a systematic literature review on architecting
for software evolvability was performed with the intention to critically
analyze the existing approaches in evaluating and improving software
evolvability at architectural level, and to identify implications for practice
and future research.

Propose and validate software evolvability model: Based on the
knowledge from the quality models and process models, the idea of a
characterization of software architecture evolution was outlined. In addition,
a software evolvability model was created, including also case studies with
two development organizations from two different domains to address the
issues with software architecture evolution.

Propose and validate qualitative evolvability analysis method: The
qualitative evolvability analysis method was defined and validated in an
industrial setting, and we obtained valuable experiences and feedbacks
which were the basis for the formulation of quantitative analysis method.

Propose and validate quantitative evolvability analysis method: The
quantitative evolvability analysis method was shaped based on the validation
results from the qualitative analysis method. Accordingly, a quantitative
method complementary to the qualitative evolvability analysis method was
proposed. The validation of the quantitative evolvability analysis method
was performed in a different industrial domain than for the qualitative
analysis method.

Analyze open source software evolution research: A systematic literature
review was performed with the intention to critically analyze the existing
studies in open source software evolution, to describe how software
evolvability is addressed during the development and evolution of open
source software, and to identify challenges and future research directions in
OSS evolution.

Introduction 21

Draw conclusion: We summarized the findings in our software architecture
evolution research with respect to proprietary system and open source
software respectively, and discussed how to address their specific challenges
in software evolution through evolvability analysis.

1.5.2 Research Methods

This section presents an overview of the research methods used in the
research presented in this thesis.

A summary of the computing research methods can be found in [87]. Among
them, a collection of specific research methods are used in this thesis for
data collection, and are classified into two categories: methods related to
case study process, and methods related to literature survey process.

Case Study [66] is a research technique in which key factors that may affect
the outcome of an activity are identified and the activities are documented,
including its inputs, constraints, resources and outputs. Two types of case
study are described by Yin [183]. They are:

- Single Case: It examines a single organization, group, or system in
detail; involves no variable manipulation, experimental design or
controls.

In this research, the idea of the software evolvability model was
based on our earlier industrial experiences in working with software
systems of different domains. The initial establishment of the
evolvability model was validated with a single case.

- Multiple Case Studies: They are as for single case studies, but
carried out in a small number of organizations or context.

The results presented in Chapter 5 (regarding the application of
software evolvability model, and evolvability analysis processes) are
derived from two different organizations in two different domains,
and belong to the multiple case studies category.

From case study process perspective, the following research methods were
used for data collection:

- Interview [23]: This is a research method for gathering information.
People are posed questions by an interviewer. The interviews may
be structured or unstructured both in the questions asked by the
interviewer, as well as the answers available to the interview subject.
The structured interview has a formalized, limited set of questions,
whereas the unstructured interview can pose questions that can be

Introduction 20

provided feedbacks to, and further validated the evolvability model.
Secondly, the feedbacks and experiences from the case study for qualitative
analysis method provided feedbacks to its refinement, and led to the
proposed quantitative analysis method.

The different phases of the research process are explained below:

Formulate a problem: The research questions are defined in Chapter 1.3.

Perform literature review: We performed a thorough investigation and
analysis of the state-of-the-art and state-of-the-practice of the existing well-
known software quality models as well as the existing process models for
software evolution. In addition, a systematic literature review on architecting
for software evolvability was performed with the intention to critically
analyze the existing approaches in evaluating and improving software
evolvability at architectural level, and to identify implications for practice
and future research.

Propose and validate software evolvability model: Based on the
knowledge from the quality models and process models, the idea of a
characterization of software architecture evolution was outlined. In addition,
a software evolvability model was created, including also case studies with
two development organizations from two different domains to address the
issues with software architecture evolution.

Propose and validate qualitative evolvability analysis method: The
qualitative evolvability analysis method was defined and validated in an
industrial setting, and we obtained valuable experiences and feedbacks
which were the basis for the formulation of quantitative analysis method.

Propose and validate quantitative evolvability analysis method: The
quantitative evolvability analysis method was shaped based on the validation
results from the qualitative analysis method. Accordingly, a quantitative
method complementary to the qualitative evolvability analysis method was
proposed. The validation of the quantitative evolvability analysis method
was performed in a different industrial domain than for the qualitative
analysis method.

Analyze open source software evolution research: A systematic literature
review was performed with the intention to critically analyze the existing
studies in open source software evolution, to describe how software
evolvability is addressed during the development and evolution of open
source software, and to identify challenges and future research directions in
OSS evolution.

Introduction 21

Draw conclusion: We summarized the findings in our software architecture
evolution research with respect to proprietary system and open source
software respectively, and discussed how to address their specific challenges
in software evolution through evolvability analysis.

1.5.2 Research Methods

This section presents an overview of the research methods used in the
research presented in this thesis.

A summary of the computing research methods can be found in [87]. Among
them, a collection of specific research methods are used in this thesis for
data collection, and are classified into two categories: methods related to
case study process, and methods related to literature survey process.

Case Study [66] is a research technique in which key factors that may affect
the outcome of an activity are identified and the activities are documented,
including its inputs, constraints, resources and outputs. Two types of case
study are described by Yin [183]. They are:

- Single Case: It examines a single organization, group, or system in
detail; involves no variable manipulation, experimental design or
controls.

In this research, the idea of the software evolvability model was
based on our earlier industrial experiences in working with software
systems of different domains. The initial establishment of the
evolvability model was validated with a single case.

- Multiple Case Studies: They are as for single case studies, but
carried out in a small number of organizations or context.

The results presented in Chapter 5 (regarding the application of
software evolvability model, and evolvability analysis processes) are
derived from two different organizations in two different domains,
and belong to the multiple case studies category.

From case study process perspective, the following research methods were
used for data collection:

- Interview [23]: This is a research method for gathering information.
People are posed questions by an interviewer. The interviews may
be structured or unstructured both in the questions asked by the
interviewer, as well as the answers available to the interview subject.
The structured interview has a formalized, limited set of questions,
whereas the unstructured interview can pose questions that can be

Introduction 22

changed or adapted to meet the interviewee’s intelligence and
understanding.

In the research presented in this thesis (regarding the case studies in
applying the qualitative and quantitative analysis of software
evolvability), we performed semi-structured interviews, because we
had already defined a framework of themes to be explored, and
meanwhile, we wanted to allow new questions to be brought up
during the interviews as a result of what the interviewees say.

- Lessons-learned [186]: Lessons-learned documents are often
produced after a large industrial project is completed, whether data
is collected or not. A study of these documents often reveals
qualitative aspects which can be used to improve future
developments.

Some of the results reported in Chapter 5 (regarding the experiences
and lessons learned through the application of the qualitative
evolvability analysis process in the first industrial case study) are
reflections throughout the case study execution. These reflections
were then taken into consideration to further extend the qualitative
method with the flexibility in making quantitative evolvability
analysis. Thus, the development of the quantitative software
evolvability analysis method (as described in Chapter 4) is based on
the lessons learned in the first case study. Similarly, the results
reported in Chapter 5 (regarding the experiences and lessons learned
through the application of the quantitative evolvability analysis
process in the second industrial case study) are reflections
throughout the second case study execution.

From literature survey process perspective, the following research methods
were used for data collection:

- Critical Analysis of the Literature [186]: This research method is
used to collect and analyze data from published material. Literature
search requires the investigator to analyze the results of papers and
other documents that are publicly available. Another related research
method is systematic literature review [100] which is a formalized
and repeatable process to document relevant knowledge on a
specific subject area for assessing and interpreting all available
research related to a research question.

The research context and background description in Chapter 2
(regarding the analysis of existing software quality models) are
originated from the Critical Analysis of the Literature method. The

Introduction 23

research contents in Chapter 3 (regarding the research studies in
architecting for software evolvability) and Chapter 6 (regarding the
research studies in open source software evolution) in this thesis are
based on the systematic literature review method.

Based on the research output we have obtained, there are basically two
categories of research methods:

- Qualitative Research [76]: This method is the collection of extensive
narrative data on many variables over an extended period of time, in
a naturalistic setting, in order to gain insights not possible using
other types of research.

The results presented in Chapter 5 (regarding the stakeholders’
views on software evolvability subcharacteristics as well as the
impact analysis of potential architectural solutions on evolvability
subcharacteristics in the first case study) belong to this category.

- Quantitative Research [76]: This method is the collection of
numerical data in order to explain, predict and/or control phenomena
of interest.

The results presented in Chapter 5 (regarding the quantification of
stakeholders’ prioritization and preferences on evolvability
subcharacteristics, as well as the quantitative impact analysis of
potential architectural solutions on evolvability subcharacteristics in
the second case study) belong to this category.

1.5.3 Validity

Based on Yin [183], four types of validity are considered: construct validity,
internal validity, external validity, and reliability. In general, our software
architecture evolution research in this thesis is based on empirical studies.
As the ways for the data collection and research design vary for each
research result we achieved, we will present detailed validity discussions in
Chapter 7, in which we go through each research result and describe
respective type of the validation used. Below is a brief summary of the four
types of validity along with a short description of how our research results
were validated.

- Construct validity relates to the collected data and how well the data
represent the investigated phenomenon, i.e., it is about ensuring that
the construction of the study actually relates to the research problem

Introduction 22

changed or adapted to meet the interviewee’s intelligence and
understanding.

In the research presented in this thesis (regarding the case studies in
applying the qualitative and quantitative analysis of software
evolvability), we performed semi-structured interviews, because we
had already defined a framework of themes to be explored, and
meanwhile, we wanted to allow new questions to be brought up
during the interviews as a result of what the interviewees say.

- Lessons-learned [186]: Lessons-learned documents are often
produced after a large industrial project is completed, whether data
is collected or not. A study of these documents often reveals
qualitative aspects which can be used to improve future
developments.

Some of the results reported in Chapter 5 (regarding the experiences
and lessons learned through the application of the qualitative
evolvability analysis process in the first industrial case study) are
reflections throughout the case study execution. These reflections
were then taken into consideration to further extend the qualitative
method with the flexibility in making quantitative evolvability
analysis. Thus, the development of the quantitative software
evolvability analysis method (as described in Chapter 4) is based on
the lessons learned in the first case study. Similarly, the results
reported in Chapter 5 (regarding the experiences and lessons learned
through the application of the quantitative evolvability analysis
process in the second industrial case study) are reflections
throughout the second case study execution.

From literature survey process perspective, the following research methods
were used for data collection:

- Critical Analysis of the Literature [186]: This research method is
used to collect and analyze data from published material. Literature
search requires the investigator to analyze the results of papers and
other documents that are publicly available. Another related research
method is systematic literature review [100] which is a formalized
and repeatable process to document relevant knowledge on a
specific subject area for assessing and interpreting all available
research related to a research question.

The research context and background description in Chapter 2
(regarding the analysis of existing software quality models) are
originated from the Critical Analysis of the Literature method. The

Introduction 23

research contents in Chapter 3 (regarding the research studies in
architecting for software evolvability) and Chapter 6 (regarding the
research studies in open source software evolution) in this thesis are
based on the systematic literature review method.

Based on the research output we have obtained, there are basically two
categories of research methods:

- Qualitative Research [76]: This method is the collection of extensive
narrative data on many variables over an extended period of time, in
a naturalistic setting, in order to gain insights not possible using
other types of research.

The results presented in Chapter 5 (regarding the stakeholders’
views on software evolvability subcharacteristics as well as the
impact analysis of potential architectural solutions on evolvability
subcharacteristics in the first case study) belong to this category.

- Quantitative Research [76]: This method is the collection of
numerical data in order to explain, predict and/or control phenomena
of interest.

The results presented in Chapter 5 (regarding the quantification of
stakeholders’ prioritization and preferences on evolvability
subcharacteristics, as well as the quantitative impact analysis of
potential architectural solutions on evolvability subcharacteristics in
the second case study) belong to this category.

1.5.3 Validity

Based on Yin [183], four types of validity are considered: construct validity,
internal validity, external validity, and reliability. In general, our software
architecture evolution research in this thesis is based on empirical studies.
As the ways for the data collection and research design vary for each
research result we achieved, we will present detailed validity discussions in
Chapter 7, in which we go through each research result and describe
respective type of the validation used. Below is a brief summary of the four
types of validity along with a short description of how our research results
were validated.

- Construct validity relates to the collected data and how well the data
represent the investigated phenomenon, i.e., it is about ensuring that
the construction of the study actually relates to the research problem

Introduction 24

and the chosen sources of information are relevant. The construct

validity can be increased through the following tactics [183]:

- Use multiple sources of evidence;

- Establish chain of evidence;

- Have key informants review draft of case study report.

In this thesis, the systematic reviews of architecting for software
evolvability and open source software evolution were validated by
using multiple literature databases as sources of information, as well
as well-specified research protocols.

- Internal validity concerns the connection between the observed
behavior and the proposed explanation for the behavior, i.e., it is
about ensuring that the actual conclusions are true. The internal

validity is “only a concern for causal (or explanatory) case studies”
[183]. It can be increased through the following tactics:

- Do pattern-matching;

- Do explanation-building;

- Address rival explanations;

- Use logic models.

In this thesis, the systematic reviews of architecting for software
evolvability and open source software evolution were validated
based on thorough selection process which comprised of multiple
stages to retrieve relevant quality papers. The AREA process faces
some threats to internal validity, such as different valuation of
evolvability subcharacteristics due to different previous working
experiences. More details on this and how it was handled are
described in Chapter 7.

- External validity concerns the possibilities to generalize the results
from a study. It can be increased through the following tactics [183]:

- Use theory in single-case studies;

- Use replication logic in multiple-case studies.

In this thesis, the AREA process was validated in two case studies in
two different domains. There was no threat in the selection of
participants, and the evolvability analysis methods seemed to be
generally applicable. However, one threat to external validity is that
there are some similarities between the two cases in terms of

Introduction 25

properties of software systems (e.g., large, complex, long-lived, and
software-intensive) as well as culture perspective.

- Reliability concerns the possibilities to reach the same conclusions if
the study is repeated by another researcher. It can be increased
through the following tactics [183]:

- Use case study protocol;

- Develop case study database.

In this thesis, the AREA process consists of repeatable techniques
that comprise of well-defined phases and steps for conducting
software evolvability analysis. Thus, any researcher can repeat the
same research procedure. The systematic reviews have detailed
research protocols that describe the search keywords, inclusion and
exclusion criteria, as well as databases for retrieving information. It
is therefore also repeatable for other researchers to perform the same
procedure to reach similar conclusions.

1.6 Thesis Overview
The thesis consists of the following chapters:

Chapter 1 – Introduction describes the background and motivation to the
research, including problem statement and research questions. A general
discussion on research methodology is also included, along with a more
thorough description of the specific methods used for the different parts of
the research.

Chapter 2 – Software Architecture and Evolution presents relevant fields
of research and practice in software architecture and its evolution.

Chapter 3 – Architecting for Software Evolvability presents the results
from a systematic literature review in software architecture evolution
research. The objective of this chapter is to analyze important research
themes in software architecture evolution, especially in analyzing and
improving software evolvability at architectural level. Some of the most
important challenges and future research directions in software architecture
evolution are presented as well.

Chapter 4 – Analyzing Software Evolvability describes the software
architecture evolution characterization, and proposes a software architecture
evolvability analysis (AREA) process that provides repeatable techniques for
performing the activities to understand and support software architecture

Introduction 24

and the chosen sources of information are relevant. The construct

validity can be increased through the following tactics [183]:

- Use multiple sources of evidence;

- Establish chain of evidence;

- Have key informants review draft of case study report.

In this thesis, the systematic reviews of architecting for software
evolvability and open source software evolution were validated by
using multiple literature databases as sources of information, as well
as well-specified research protocols.

- Internal validity concerns the connection between the observed
behavior and the proposed explanation for the behavior, i.e., it is
about ensuring that the actual conclusions are true. The internal

validity is “only a concern for causal (or explanatory) case studies”
[183]. It can be increased through the following tactics:

- Do pattern-matching;

- Do explanation-building;

- Address rival explanations;

- Use logic models.

In this thesis, the systematic reviews of architecting for software
evolvability and open source software evolution were validated
based on thorough selection process which comprised of multiple
stages to retrieve relevant quality papers. The AREA process faces
some threats to internal validity, such as different valuation of
evolvability subcharacteristics due to different previous working
experiences. More details on this and how it was handled are
described in Chapter 7.

- External validity concerns the possibilities to generalize the results
from a study. It can be increased through the following tactics [183]:

- Use theory in single-case studies;

- Use replication logic in multiple-case studies.

In this thesis, the AREA process was validated in two case studies in
two different domains. There was no threat in the selection of
participants, and the evolvability analysis methods seemed to be
generally applicable. However, one threat to external validity is that
there are some similarities between the two cases in terms of

Introduction 25

properties of software systems (e.g., large, complex, long-lived, and
software-intensive) as well as culture perspective.

- Reliability concerns the possibilities to reach the same conclusions if
the study is repeated by another researcher. It can be increased
through the following tactics [183]:

- Use case study protocol;

- Develop case study database.

In this thesis, the AREA process consists of repeatable techniques
that comprise of well-defined phases and steps for conducting
software evolvability analysis. Thus, any researcher can repeat the
same research procedure. The systematic reviews have detailed
research protocols that describe the search keywords, inclusion and
exclusion criteria, as well as databases for retrieving information. It
is therefore also repeatable for other researchers to perform the same
procedure to reach similar conclusions.

1.6 Thesis Overview
The thesis consists of the following chapters:

Chapter 1 – Introduction describes the background and motivation to the
research, including problem statement and research questions. A general
discussion on research methodology is also included, along with a more
thorough description of the specific methods used for the different parts of
the research.

Chapter 2 – Software Architecture and Evolution presents relevant fields
of research and practice in software architecture and its evolution.

Chapter 3 – Architecting for Software Evolvability presents the results
from a systematic literature review in software architecture evolution
research. The objective of this chapter is to analyze important research
themes in software architecture evolution, especially in analyzing and
improving software evolvability at architectural level. Some of the most
important challenges and future research directions in software architecture
evolution are presented as well.

Chapter 4 – Analyzing Software Evolvability describes the software
architecture evolution characterization, and proposes a software architecture
evolvability analysis (AREA) process that provides repeatable techniques for
performing the activities to understand and support software architecture

Introduction 26

evolution. The activities are embedded in: (i) the definition of a software
evolvability model; (ii) a structured qualitative method for analyzing
evolvability at the architectural level; and (iii) a quantitative evolvability
analysis method with explicit and quantitative treatment of stakeholders’
evolvability concerns and potential architectural solutions’ impacts on
evolvability.

Chapter 5 – Analyzing Proprietary Systems describes the industrial case
studies at ABB and Ericsson where the software evolvability model, the
qualitative and quantitative software evolvability analysis methods were
applied.

Chapter 6 – Open Source Software Evolution presents the results from a
systematic literature review of open source software (OSS) evolution. The
objective of this chapter is to describe an overview of the existing studies in
open source software evolution, and to analyze how software evolvability is
addressed during the development and evolution of open source software.
Some of the most important challenges and future research directions in
open source software evolution are presented as well.

Chapter 7 – Validity Discussions discusses in details the validity aspects of
the research results.

Chapter 8 – Conclusions and Future Work concludes the thesis, and
outlines future work that formulates potential tracks for future studies.

Appendix A – Primary Studies in Chapter 3 lists the primary studies that
were included in the systematic literature review (SLR) in software
architecture evolution research, which is reported in Chapter 3.

Appendix B – Primary Studies in Chapter 6 lists the primary studies that
were included in the systematic literature review (SLR) in open source
software evolution research, which is reported in Chapter 6.

Chapter 2. Software Architecture and
Evolution

Software evolution is characterized by inevitable changes of software and
increasing software complexities. Some of the observed properties of large
software systems noted by Brooks [38] further confirm this:

- Complexity is an essential property of large software systems, leading to
the following problems:

- Difficulty of communication among development team
members, leading to product flaws, cost overruns and schedule
delays;

- Difficulty of understanding all the possible states of the
program;

- Difficulty of extending programs to new functions without
creating side effects;

- Difficulty of getting an overview of the system, thus impeding
conceptual integrity.

- Changeability The software entity is constantly subject to pressures for
change.

- Invisibility In software, there is no geometric representation. Instead,
there are several distinct but interacting graphs of links that represent
different aspects of the system. The invisibility in terms of software
structure representation reflects the fact that large amount of tacit
architectural knowledge and design decisions are not explicitly
represented in the architecture. Consequently, during the evolution of a
system, designers can easily violate design rules and constraints arising
from design decisions taken previously, leading to architectural drifts
and erosion [139] that jeopardizes software evolvability.

All this exhibits the intensified need in having evolvable software systems
that accommodate changes in a cost-effective way while maintaining the
architectural integrity. Having long-lived proprietary systems in focus, it is

Introduction 26

evolution. The activities are embedded in: (i) the definition of a software
evolvability model; (ii) a structured qualitative method for analyzing
evolvability at the architectural level; and (iii) a quantitative evolvability
analysis method with explicit and quantitative treatment of stakeholders’
evolvability concerns and potential architectural solutions’ impacts on
evolvability.

Chapter 5 – Analyzing Proprietary Systems describes the industrial case
studies at ABB and Ericsson where the software evolvability model, the
qualitative and quantitative software evolvability analysis methods were
applied.

Chapter 6 – Open Source Software Evolution presents the results from a
systematic literature review of open source software (OSS) evolution. The
objective of this chapter is to describe an overview of the existing studies in
open source software evolution, and to analyze how software evolvability is
addressed during the development and evolution of open source software.
Some of the most important challenges and future research directions in
open source software evolution are presented as well.

Chapter 7 – Validity Discussions discusses in details the validity aspects of
the research results.

Chapter 8 – Conclusions and Future Work concludes the thesis, and
outlines future work that formulates potential tracks for future studies.

Appendix A – Primary Studies in Chapter 3 lists the primary studies that
were included in the systematic literature review (SLR) in software
architecture evolution research, which is reported in Chapter 3.

Appendix B – Primary Studies in Chapter 6 lists the primary studies that
were included in the systematic literature review (SLR) in open source
software evolution research, which is reported in Chapter 6.

Chapter 2. Software Architecture and
Evolution

Software evolution is characterized by inevitable changes of software and
increasing software complexities. Some of the observed properties of large
software systems noted by Brooks [38] further confirm this:

- Complexity is an essential property of large software systems, leading to
the following problems:

- Difficulty of communication among development team
members, leading to product flaws, cost overruns and schedule
delays;

- Difficulty of understanding all the possible states of the
program;

- Difficulty of extending programs to new functions without
creating side effects;

- Difficulty of getting an overview of the system, thus impeding
conceptual integrity.

- Changeability The software entity is constantly subject to pressures for
change.

- Invisibility In software, there is no geometric representation. Instead,
there are several distinct but interacting graphs of links that represent
different aspects of the system. The invisibility in terms of software
structure representation reflects the fact that large amount of tacit
architectural knowledge and design decisions are not explicitly
represented in the architecture. Consequently, during the evolution of a
system, designers can easily violate design rules and constraints arising
from design decisions taken previously, leading to architectural drifts
and erosion [139] that jeopardizes software evolvability.

All this exhibits the intensified need in having evolvable software systems
that accommodate changes in a cost-effective way while maintaining the
architectural integrity. Having long-lived proprietary systems in focus, it is

Software Architecture and Evolution 28

therefore of particular interest in this thesis to seek active measures to ensure
the long-term success of software architectures so that the quality of a
software system will not gradually degrade as the system evolves. For such
long-lived systems, software evolvability needs to be explicitly addressed
during the entire lifecycle in order to prolong the productive lifetime of
software systems. In line with this, there are research and practice areas to
which we relate the work in this thesis:

Chapter 2.1 presents the observed behavior of software systems and
challenges of software aging to motivate the thesis.

Software architecture plays the central role in this dissertation to address
software evolution challenge, because a software architectures has the
potential to provide a foundation for managing software evolution, and is
inevitably subject to evolution as well. Therefore, we discuss software
architecture evolution in Chapter 2.2.

Recognizing that there are several quality models, which have software
quality in focus, we discuss these quality models, and analyze how
evolvability is addressed in these models in Chapter 2.3.

Software architecture evolution is inseparably bound to a process context,
e.g., the need to cost-effectively carry out software evolution during the
software system’s lifecycle. Moreover, a software process model represents
activities and practices that embody strategies for accomplishing software
evolution. Among the existing process models, Chapter 2.4 focuses on
staged model [21], and discusses the idea of software architecture evolution
assessment process.

A topic closely related to our research is concerned with migrating or
reengineering legacy software systems by applying a specific software
development paradigm or technique to facilitate software evolution. Chapter
2.5 presents briefly an overview of these techniques, and discusses how they
are related to evolvability. The techniques include component-based
software engineering, service-oriented software engineering, product line
engineering, aspect-oriented software development, and model-driven
engineering.

2.1 Software Evolution
This section presents a brief overview of the observed behavior of software
systems and challenges encountered during software evolution.

Software Architecture and Evolution 29

2.1.1 Laws of Software Evolution

The laws of software evolution is formulated by Lehman et al. [111, 114],
based on the observations of the IBM OS/360 operating system and the
FEAST project. The term software evolution is deliberately used in
Lehman’s work to address the difference with the post-deployment activity
of software maintenance. He uses the term E-type software to denote
programs that must be evolved because they operate in or address a problem
or activity of the real world. Accordingly, changes in the real world will
affect the software and require subsequent adaptations. The laws of software
evolution encapsulate observed behavior of a number of evolving systems
over the years, and are summarized as follows:

- Continuing change An E-type system that is used must be continually
adapted else it becomes progressively less satisfactory.

- Increasing complexity As an E-type system evolves, its complexity
increases unless work is done to maintain or reduce it.

- Self regulation Global E-type system evolution processes are self
regulating.

- Conservation of organizational stability Average global activity rate in
an E-type process tends to remain constant over periods or segments of
system evolution.

- Conservation of familiarity The average growth rate of E-type systems
tends to remain constant or to decline.

- Continuing growth The functional capability of an E-type system must
be continually increased to maintain user satisfaction over its lifetime.

- Declining quality Unless rigorously adapted to take into account changes
in the operational environment, the quality of E-type systems will appear
to be declining.

- Feedback system E-type software processes are multilevel, multi-loop,
multi-agent feedback systems.

The laws concerning continuing change, increasing complexity, continuing
growth, and declining quality are of particular interest for this thesis. In
order to keep the system as useful as it was, we must continually develop
new features, improve its quality, and adapt it to the ever-changing
requirements. Changes imply increasing complexity, which poses a difficult
problem, i.e., a successful system needs to be evolved in order to stay
successful, but while being evolved, it typically deteriorates and becomes
increasingly difficult for humans to understand and modify further unless

Software Architecture and Evolution 28

therefore of particular interest in this thesis to seek active measures to ensure
the long-term success of software architectures so that the quality of a
software system will not gradually degrade as the system evolves. For such
long-lived systems, software evolvability needs to be explicitly addressed
during the entire lifecycle in order to prolong the productive lifetime of
software systems. In line with this, there are research and practice areas to
which we relate the work in this thesis:

Chapter 2.1 presents the observed behavior of software systems and
challenges of software aging to motivate the thesis.

Software architecture plays the central role in this dissertation to address
software evolution challenge, because a software architectures has the
potential to provide a foundation for managing software evolution, and is
inevitably subject to evolution as well. Therefore, we discuss software
architecture evolution in Chapter 2.2.

Recognizing that there are several quality models, which have software
quality in focus, we discuss these quality models, and analyze how
evolvability is addressed in these models in Chapter 2.3.

Software architecture evolution is inseparably bound to a process context,
e.g., the need to cost-effectively carry out software evolution during the
software system’s lifecycle. Moreover, a software process model represents
activities and practices that embody strategies for accomplishing software
evolution. Among the existing process models, Chapter 2.4 focuses on
staged model [21], and discusses the idea of software architecture evolution
assessment process.

A topic closely related to our research is concerned with migrating or
reengineering legacy software systems by applying a specific software
development paradigm or technique to facilitate software evolution. Chapter
2.5 presents briefly an overview of these techniques, and discusses how they
are related to evolvability. The techniques include component-based
software engineering, service-oriented software engineering, product line
engineering, aspect-oriented software development, and model-driven
engineering.

2.1 Software Evolution
This section presents a brief overview of the observed behavior of software
systems and challenges encountered during software evolution.

Software Architecture and Evolution 29

2.1.1 Laws of Software Evolution

The laws of software evolution is formulated by Lehman et al. [111, 114],
based on the observations of the IBM OS/360 operating system and the
FEAST project. The term software evolution is deliberately used in
Lehman’s work to address the difference with the post-deployment activity
of software maintenance. He uses the term E-type software to denote
programs that must be evolved because they operate in or address a problem
or activity of the real world. Accordingly, changes in the real world will
affect the software and require subsequent adaptations. The laws of software
evolution encapsulate observed behavior of a number of evolving systems
over the years, and are summarized as follows:

- Continuing change An E-type system that is used must be continually
adapted else it becomes progressively less satisfactory.

- Increasing complexity As an E-type system evolves, its complexity
increases unless work is done to maintain or reduce it.

- Self regulation Global E-type system evolution processes are self
regulating.

- Conservation of organizational stability Average global activity rate in
an E-type process tends to remain constant over periods or segments of
system evolution.

- Conservation of familiarity The average growth rate of E-type systems
tends to remain constant or to decline.

- Continuing growth The functional capability of an E-type system must
be continually increased to maintain user satisfaction over its lifetime.

- Declining quality Unless rigorously adapted to take into account changes
in the operational environment, the quality of E-type systems will appear
to be declining.

- Feedback system E-type software processes are multilevel, multi-loop,
multi-agent feedback systems.

The laws concerning continuing change, increasing complexity, continuing
growth, and declining quality are of particular interest for this thesis. In
order to keep the system as useful as it was, we must continually develop
new features, improve its quality, and adapt it to the ever-changing
requirements. Changes imply increasing complexity, which poses a difficult
problem, i.e., a successful system needs to be evolved in order to stay
successful, but while being evolved, it typically deteriorates and becomes
increasingly difficult for humans to understand and modify further unless

Software Architecture and Evolution 30

this is proactively managed [173]. All these motivate the reasons for this
thesis, i.e., when evolving a system, it is a viable strategy to seek methods
for systematically analyzing the potential impacts of a change on software
evolvability and software architecture evolution. We describe this in Chapter
4 and Chapter 5 of this thesis.

2.1.2 Software Aging

Software aging is inevitable. Parnas [137] states that, “Software, like people,

gets old. We can’t prevent aging, but we can understand its causes, take

steps to limit its effects, temporarily reverse some of the damage it has

caused, and prepare for the day when the software is no longer viable.”

Parnas uses the metaphor of decay to describe how and why software
becomes increasingly brittle over time [137]. There are two types of
software aging which can lead to rapid decline in the value of a software
product. The first is caused by the failure of the product’s owners to modify
it to meet changing needs; the second is the result of the changes that are
made. Both types of software aging in turn lead to inadequate evolvability.
Following problems are associated with software aging [137]:

- Inability to keep up with the market due to increasing size and
complexity;

- Reduced performance due to the gradually deteriorating structure;

- Decreased reliability because of errors introduced when changes are
made.

A challenge with evolution is that software systems suffer from software
aging while they are adapted to changing requirements due to e.g.,
architectural erosion, or architectural drift. Architectural erosion is defined
by Perry and Wolf [139] as “violations in the architecture that lead to

increased system problems and brittleness”. In [139], architectural drift is
defined as “a lack of coherence and clarity of form which may lead to

architectural violation and increased inadaptability of architecture”. Causes
for software aging are, for instance, poor design decisions and changes that
damage the architecture, or the lack of conformance between
implementation and intended architecture.

The proprietary systems in the focus of this thesis are often based on existing
legacy implementations; as legacy systems represent substantial corporate
knowledge and investment. These legacy systems are usually critical to the
business in which they operate. Therefore, they have been maintained and

Software Architecture and Evolution 31

evolved to fit existing and expanding markets and customer needs. However,
any individual software system will eventually reach an old age when it is no
longer cost-effective to modify it. It is therefore of particular interest in this
thesis to extend the evolution stage that allows for any kind of modification
to the software while remaining architectural integrity preserved, and we
suggest guiding software architecture evolution through evolvability
analysis.

2.2 Software Architecture Evolution
The IEEE 1471-2000 standard [88] definition for software architecture is
“The fundamental organization of a system embodied in its components,

their relationships to each other, and to the environment, and the principles

guiding its design and evolution”. Software architectures are created and
evolved in a complex environment. The architecture business cycle proposed
by Bass et al. [18] defines different factors which influence a software
architecture, i.e., stakeholders, developing organization, technical
environment, and architect’s experience. According to Jansen [93], a
software architecture is used for the following purposes:

- Blue-print outlines a design for the software of a system.

- Roadmap allows planning ahead the evolution of the software of a
system, and supports a software architect to align the software with a
company’s long-term business strategy.

- Communication vehicle enables different stakeholders to
communicate about the major decisions in order to steer and
influence the software of a system.

- Quality predictor provides an early indicator of the quality of a
software system.

Software architectures have the potential to provide a foundation for
managing software evolution, as there are correlations between the described
purposes of software architecture and software evolution. From blue-print
perspective, a software architecture models the structure and behavior of a
system. It is therefore the basis of the design process, and a guide for the
software development process. In the meanwhile, an architecture needs to be
evolved in response to changing requirements of diverse stakeholders.
Therefore, an architecture cannot be viewed as simply a description of a
static software structure, but as a roadmap describing its potential evolution
paths. From communication vehicle perspective, stakeholders usually come

Software Architecture and Evolution 30

this is proactively managed [173]. All these motivate the reasons for this
thesis, i.e., when evolving a system, it is a viable strategy to seek methods
for systematically analyzing the potential impacts of a change on software
evolvability and software architecture evolution. We describe this in Chapter
4 and Chapter 5 of this thesis.

2.1.2 Software Aging

Software aging is inevitable. Parnas [137] states that, “Software, like people,

gets old. We can’t prevent aging, but we can understand its causes, take

steps to limit its effects, temporarily reverse some of the damage it has

caused, and prepare for the day when the software is no longer viable.”

Parnas uses the metaphor of decay to describe how and why software
becomes increasingly brittle over time [137]. There are two types of
software aging which can lead to rapid decline in the value of a software
product. The first is caused by the failure of the product’s owners to modify
it to meet changing needs; the second is the result of the changes that are
made. Both types of software aging in turn lead to inadequate evolvability.
Following problems are associated with software aging [137]:

- Inability to keep up with the market due to increasing size and
complexity;

- Reduced performance due to the gradually deteriorating structure;

- Decreased reliability because of errors introduced when changes are
made.

A challenge with evolution is that software systems suffer from software
aging while they are adapted to changing requirements due to e.g.,
architectural erosion, or architectural drift. Architectural erosion is defined
by Perry and Wolf [139] as “violations in the architecture that lead to

increased system problems and brittleness”. In [139], architectural drift is
defined as “a lack of coherence and clarity of form which may lead to

architectural violation and increased inadaptability of architecture”. Causes
for software aging are, for instance, poor design decisions and changes that
damage the architecture, or the lack of conformance between
implementation and intended architecture.

The proprietary systems in the focus of this thesis are often based on existing
legacy implementations; as legacy systems represent substantial corporate
knowledge and investment. These legacy systems are usually critical to the
business in which they operate. Therefore, they have been maintained and

Software Architecture and Evolution 31

evolved to fit existing and expanding markets and customer needs. However,
any individual software system will eventually reach an old age when it is no
longer cost-effective to modify it. It is therefore of particular interest in this
thesis to extend the evolution stage that allows for any kind of modification
to the software while remaining architectural integrity preserved, and we
suggest guiding software architecture evolution through evolvability
analysis.

2.2 Software Architecture Evolution
The IEEE 1471-2000 standard [88] definition for software architecture is
“The fundamental organization of a system embodied in its components,

their relationships to each other, and to the environment, and the principles

guiding its design and evolution”. Software architectures are created and
evolved in a complex environment. The architecture business cycle proposed
by Bass et al. [18] defines different factors which influence a software
architecture, i.e., stakeholders, developing organization, technical
environment, and architect’s experience. According to Jansen [93], a
software architecture is used for the following purposes:

- Blue-print outlines a design for the software of a system.

- Roadmap allows planning ahead the evolution of the software of a
system, and supports a software architect to align the software with a
company’s long-term business strategy.

- Communication vehicle enables different stakeholders to
communicate about the major decisions in order to steer and
influence the software of a system.

- Quality predictor provides an early indicator of the quality of a
software system.

Software architectures have the potential to provide a foundation for
managing software evolution, as there are correlations between the described
purposes of software architecture and software evolution. From blue-print
perspective, a software architecture models the structure and behavior of a
system. It is therefore the basis of the design process, and a guide for the
software development process. In the meanwhile, an architecture needs to be
evolved in response to changing requirements of diverse stakeholders.
Therefore, an architecture cannot be viewed as simply a description of a
static software structure, but as a roadmap describing its potential evolution
paths. From communication vehicle perspective, stakeholders usually come

Software Architecture and Evolution 32

from different backgrounds, and have different or conflicting concerns that
the architecture must address. If architectural decisions are not shared among
the stakeholders, it would be difficult to resolve conflicts and set common
goals among them, and to agree upon principles and decisions that determine
the system’s development and its evolution, and thus, resulting in high
evolution costs. From quality predictor perspective, software architectures
can be analyzed, which makes it possible to evaluate alternative architectures
before a system is built or an evolution path is chosen. Thus, the architecture
evolution permits planning and system restructuring at a high level of
abstraction where quality and business tradeoffs can be analyzed.

The quality predictor purpose of software architectures brings also a strong
motivation for software architecture analysis to assess software evolution.
As stated by Clements et al. [55], the foundation of any software system is
its architecture, which allows or precludes nearly all of the quality attributes
of the system. Therefore, software architectures provide a basis for explicitly
documenting quality concerns in order to cope with the challenges in
constructing and evolving software systems. Accordingly, apart from the
analysis results in terms of specific quality concerns in focus, software
architecture analysis serves as frameworks for comparing and identifying the
strengths and weaknesses in different architecture alternatives, identifying
potential architectural drift and erosion, as well as understanding the
underlying architectural tradeoffs during software evolution

A software architecture models the structure and behavior of a system; and
presents a high level view of a system, including the software elements and
the relationships between them. A software architecture is inevitably subject
to evolution. It exposes the dimensions along which a system is expected to
evolve [74], and provides basis for software evolution [126]. There exist
several approaches in describing and evolving software architecture.
Aoyama [6] proposes cost metrics of change operation for software
architecture evolution, and discusses the proposed metrics in continuous and
discontinuous software evolution, which are the evolution patterns observed
from the evolution of several software systems. It was noticed that
discontinuous evolution emerges between certain periods of successive
continuous evolution.

The software architecture of an evolvable software system should allow
changes in the software and evolve in a controlled way without
compromising system integrity and invariants [21]. However, software
architecture evolution often implies integrating crosscutting concerns.
Therefore, architectural integrity is one aspect that needs to be taken into
consideration. Otherwise, these crosscutting concerns might, if not handled

Software Architecture and Evolution 33

with care, introduce inconsistencies and lead to evolvability degradation in
the long run. To address this inconsistency issue, Barais et al. [17] describes
a framework named TranSAT. The framework uses architectural aspect to
describe new concerns and their integration into the existing architecture.
The framework allows the software architect to design software architecture
stepwise in terms of aspects at the design stage.

According to Jansen and Bosch [92], an architectural design decision is a
key concept in software architecture evolution. Capturing design decisions is
therefore essential to address architectural knowledge [109] vaporization
issue. Otherwise, the knowledge of the design decisions that lead to the
architecture is lost. Moreover, changes to the software architecture might
cause violation of earlier design decisions, resulting in increased design
erosion [174].

Lung et al. [116] describe a scenario-based approach, which captures and
assesses software architectures for evolution and reuse. The approach
consists of a framework for modeling various types of relevant information
as well as a set of architectural views for reengineering, analyzing, and
comparing software architectures. This framework is used to model several
types of information:

- Stakeholder information describes stakeholders’ objectives, which
provide boundaries for analysis;

- Architecture information refers to design principles or architectural
objectives;

- Quality information refers to non-functional attributes;

- Scenarios describe the use cases of the system to capture the
system’s functionality. Scenarios that are not directly supported by
the current system are used to detect possible flaws or to assess the
architecture’s support for potential enhancements. Scenarios are
derived from the stakeholder objectives, architectural objectives, and
desired system quality attributes or objectives.

A detailed study on the software architecture evolution area is described in
Chapter 3.

2.3 Software Quality Models
A quality model provides a framework for quality assessment. It aims at
describing complex quality criteria through breaking them down into
concrete subcharacteristics. A general description of different quality models

Software Architecture and Evolution 32

from different backgrounds, and have different or conflicting concerns that
the architecture must address. If architectural decisions are not shared among
the stakeholders, it would be difficult to resolve conflicts and set common
goals among them, and to agree upon principles and decisions that determine
the system’s development and its evolution, and thus, resulting in high
evolution costs. From quality predictor perspective, software architectures
can be analyzed, which makes it possible to evaluate alternative architectures
before a system is built or an evolution path is chosen. Thus, the architecture
evolution permits planning and system restructuring at a high level of
abstraction where quality and business tradeoffs can be analyzed.

The quality predictor purpose of software architectures brings also a strong
motivation for software architecture analysis to assess software evolution.
As stated by Clements et al. [55], the foundation of any software system is
its architecture, which allows or precludes nearly all of the quality attributes
of the system. Therefore, software architectures provide a basis for explicitly
documenting quality concerns in order to cope with the challenges in
constructing and evolving software systems. Accordingly, apart from the
analysis results in terms of specific quality concerns in focus, software
architecture analysis serves as frameworks for comparing and identifying the
strengths and weaknesses in different architecture alternatives, identifying
potential architectural drift and erosion, as well as understanding the
underlying architectural tradeoffs during software evolution

A software architecture models the structure and behavior of a system; and
presents a high level view of a system, including the software elements and
the relationships between them. A software architecture is inevitably subject
to evolution. It exposes the dimensions along which a system is expected to
evolve [74], and provides basis for software evolution [126]. There exist
several approaches in describing and evolving software architecture.
Aoyama [6] proposes cost metrics of change operation for software
architecture evolution, and discusses the proposed metrics in continuous and
discontinuous software evolution, which are the evolution patterns observed
from the evolution of several software systems. It was noticed that
discontinuous evolution emerges between certain periods of successive
continuous evolution.

The software architecture of an evolvable software system should allow
changes in the software and evolve in a controlled way without
compromising system integrity and invariants [21]. However, software
architecture evolution often implies integrating crosscutting concerns.
Therefore, architectural integrity is one aspect that needs to be taken into
consideration. Otherwise, these crosscutting concerns might, if not handled

Software Architecture and Evolution 33

with care, introduce inconsistencies and lead to evolvability degradation in
the long run. To address this inconsistency issue, Barais et al. [17] describes
a framework named TranSAT. The framework uses architectural aspect to
describe new concerns and their integration into the existing architecture.
The framework allows the software architect to design software architecture
stepwise in terms of aspects at the design stage.

According to Jansen and Bosch [92], an architectural design decision is a
key concept in software architecture evolution. Capturing design decisions is
therefore essential to address architectural knowledge [109] vaporization
issue. Otherwise, the knowledge of the design decisions that lead to the
architecture is lost. Moreover, changes to the software architecture might
cause violation of earlier design decisions, resulting in increased design
erosion [174].

Lung et al. [116] describe a scenario-based approach, which captures and
assesses software architectures for evolution and reuse. The approach
consists of a framework for modeling various types of relevant information
as well as a set of architectural views for reengineering, analyzing, and
comparing software architectures. This framework is used to model several
types of information:

- Stakeholder information describes stakeholders’ objectives, which
provide boundaries for analysis;

- Architecture information refers to design principles or architectural
objectives;

- Quality information refers to non-functional attributes;

- Scenarios describe the use cases of the system to capture the
system’s functionality. Scenarios that are not directly supported by
the current system are used to detect possible flaws or to assess the
architecture’s support for potential enhancements. Scenarios are
derived from the stakeholder objectives, architectural objectives, and
desired system quality attributes or objectives.

A detailed study on the software architecture evolution area is described in
Chapter 3.

2.3 Software Quality Models
A quality model provides a framework for quality assessment. It aims at
describing complex quality criteria through breaking them down into
concrete subcharacteristics. A general description of different quality models

Software Architecture and Evolution 34

can be found in [135]. In quality models, quality attributes are decomposed
into various factors, leading to various quality factor hierarchies. In the
following subsections, we provide a brief survey of the well-known software
quality models, which form the basis for the establishment of our software
evolvability model (to be described in Chapter 4), as well as an analysis of
how evolvability is addressed in these models.

2.3.1 Overview of Quality Models

Some well-known quality models are McCall’s quality model [125],
Dromey’s quality model [62], Boehm’s quality model [25], ISO 9126 [89]
and FURPS quality model [83].

McCall’s quality model [125] addresses three perspectives for defining and
identifying the quality of a software product:

- Product operation is the product’s ability to be quickly understood,
operated and capable of providing the results required by the user. It
covers modifiability, reliability, efficiency, integrity (i.e., protection
of the program from unauthorized access), and usability.

- Product revision is the ability to undergo changes. It covers
maintainability, flexibility and testability.

- Product transition is the adaptability to new environments. It covers
portability, reusability and interoperability.

This model further refines the above three perspectives into a hierarchy of
factors, criteria and metrics.

Boehm’s quality model [25] begins with the software’s general utility, i.e.,
the high-level characteristics that represent basic high-level requirements of
actual use. The general utility is refined into:

- Portability which describes the ability of a product to transit into
another hardware-software environment.

- Utility which is further refined into reliability, efficiency and human
engineering.

- Maintainability which is further refined into testability,
understandability (i.e., the purpose of the code is clear to the
inspector), and modifiability (i.e., the code facilitates the
incorporation of changes, once the nature of the desired change has
been determined).

Software Architecture and Evolution 35

Boehm’s quality model is similar to McCall’s quality model in that it
represents a hierarchical structure of characteristics, each of which
contributes to the total quality.

FURPS quality model [83] takes into consideration the following
characteristics:

- Functionality which includes feature sets, capabilities and security.

- Usability which includes human factors, consistency in the user
interface, online and context-sensitive help, wizards, user
documentation, and training materials.

- Reliability which includes frequency and severity of failure,
recoverability, predictability, accuracy, and mean time between
failures (MTBF).

- Performance which prescribes conditions on functional
requirements such as speed, efficiency, availability, accuracy,
throughput, response time, recovery time, and resource usage.

- Supportability which includes testability, extensibility, adaptability,
maintainability, compatibility, configurability, serviceability, install-
ability, and localizability/internationalization.

Two steps are considered in this model: setting priorities and defining
quality attributes that can be measured. According to Ortega et al. [135], one
disadvantage of this model is that it fails to take into account software
portability.

ISO 9126 quality model [89] specifies and evaluates the quality of a
software product from different perspectives. Product quality is defined as a
set of product characteristics. The characteristics that are observed by the
end-user on the final software product are called external quality
characteristics. The characteristics that relate to software development
process and environment or context are called internal quality
characteristics. An external characteristic can be measured internally, and is
determined or influenced by the internal characteristics. The model
categorizes software quality attributes into six characteristics: functionality,
reliability, usability, efficiency, maintainability and portability. One
advantage of this quality model is that it defines the internal and external
quality characteristics of a software product.

Dromey quality model [62] proposes a working framework for evaluating
requirement determination, design and implementation phases.
Corresponding to the products resulted from each stage of the development
process; the framework consists of three models, i.e., requirement quality

Software Architecture and Evolution 34

can be found in [135]. In quality models, quality attributes are decomposed
into various factors, leading to various quality factor hierarchies. In the
following subsections, we provide a brief survey of the well-known software
quality models, which form the basis for the establishment of our software
evolvability model (to be described in Chapter 4), as well as an analysis of
how evolvability is addressed in these models.

2.3.1 Overview of Quality Models

Some well-known quality models are McCall’s quality model [125],
Dromey’s quality model [62], Boehm’s quality model [25], ISO 9126 [89]
and FURPS quality model [83].

McCall’s quality model [125] addresses three perspectives for defining and
identifying the quality of a software product:

- Product operation is the product’s ability to be quickly understood,
operated and capable of providing the results required by the user. It
covers modifiability, reliability, efficiency, integrity (i.e., protection
of the program from unauthorized access), and usability.

- Product revision is the ability to undergo changes. It covers
maintainability, flexibility and testability.

- Product transition is the adaptability to new environments. It covers
portability, reusability and interoperability.

This model further refines the above three perspectives into a hierarchy of
factors, criteria and metrics.

Boehm’s quality model [25] begins with the software’s general utility, i.e.,
the high-level characteristics that represent basic high-level requirements of
actual use. The general utility is refined into:

- Portability which describes the ability of a product to transit into
another hardware-software environment.

- Utility which is further refined into reliability, efficiency and human
engineering.

- Maintainability which is further refined into testability,
understandability (i.e., the purpose of the code is clear to the
inspector), and modifiability (i.e., the code facilitates the
incorporation of changes, once the nature of the desired change has
been determined).

Software Architecture and Evolution 35

Boehm’s quality model is similar to McCall’s quality model in that it
represents a hierarchical structure of characteristics, each of which
contributes to the total quality.

FURPS quality model [83] takes into consideration the following
characteristics:

- Functionality which includes feature sets, capabilities and security.

- Usability which includes human factors, consistency in the user
interface, online and context-sensitive help, wizards, user
documentation, and training materials.

- Reliability which includes frequency and severity of failure,
recoverability, predictability, accuracy, and mean time between
failures (MTBF).

- Performance which prescribes conditions on functional
requirements such as speed, efficiency, availability, accuracy,
throughput, response time, recovery time, and resource usage.

- Supportability which includes testability, extensibility, adaptability,
maintainability, compatibility, configurability, serviceability, install-
ability, and localizability/internationalization.

Two steps are considered in this model: setting priorities and defining
quality attributes that can be measured. According to Ortega et al. [135], one
disadvantage of this model is that it fails to take into account software
portability.

ISO 9126 quality model [89] specifies and evaluates the quality of a
software product from different perspectives. Product quality is defined as a
set of product characteristics. The characteristics that are observed by the
end-user on the final software product are called external quality
characteristics. The characteristics that relate to software development
process and environment or context are called internal quality
characteristics. An external characteristic can be measured internally, and is
determined or influenced by the internal characteristics. The model
categorizes software quality attributes into six characteristics: functionality,
reliability, usability, efficiency, maintainability and portability. One
advantage of this quality model is that it defines the internal and external
quality characteristics of a software product.

Dromey quality model [62] proposes a working framework for evaluating
requirement determination, design and implementation phases.
Corresponding to the products resulted from each stage of the development
process; the framework consists of three models, i.e., requirement quality

Software Architecture and Evolution 36

model, design quality model and implementation quality model. The design

quality model takes into account explicitly the early stages (analysis and
design) of the development process. The focus of the design quality model is
that a design must accurately satisfy the requirements and be
understandable, adaptable in terms of supporting changes, and is developed
using a mature process.

The high-level product properties for the implementation quality model
include:

- Correctness evaluates if some basic principles are violated, with
functionality and reliability as software quality attributes.

- Internal measures how well a component has been deployed
according to its intended use, with maintainability, efficiency and
reliability as software quality attributes.

- Contextual deals with the external influences on the use of a
component, with software quality attributes in maintainability,
reusability, portability and reliability.

- Descriptive measures the descriptiveness of a component, with
software quality attributes in maintainability, reusability, portability
and usability.

The information extracted from each model can be used to build, compare
and evaluate the quality of a software product. In this model, characteristics
with regard to process maturity and reusability are more explicit in
comparison with the other quality models. According to Rawashdeh and
Matalkah [146], one disadvantage of the Dromey model is associated with
reliability and maintainability, as it is not feasible to judge them before the
software system is actually operational in the production area.

2.3.2 Analysis of Software Evolvability in Quality Models

The quality characteristics that are addressed in the above quality models are
summarized in Table 2-1, which provides useful inputs to our idea about
evolvability subcharacteristics.

Software Architecture and Evolution 37

Table 2-1: Quality characteristics addressed in quality models

Quality

Characteristics M
cC

a
ll

B
o

eh
m

F
U

R
P

S

IS
O

 9
1

2
6

D
ro

m
ey

Adaptability x x

Compatibility x

Correctness x

Efficiency x x x x

Extensibility x

Flexibility x

Human Engineering x

Integrity x

Interoperability x x

Maintainability x x x x x

Modifiability x x

Performance x

Portability x x x x

Reliability x x x x x

Reusability x x

Supportability x

Testability x x x

Understandability x x

Usability x x x x

Software Architecture and Evolution 36

model, design quality model and implementation quality model. The design

quality model takes into account explicitly the early stages (analysis and
design) of the development process. The focus of the design quality model is
that a design must accurately satisfy the requirements and be
understandable, adaptable in terms of supporting changes, and is developed
using a mature process.

The high-level product properties for the implementation quality model
include:

- Correctness evaluates if some basic principles are violated, with
functionality and reliability as software quality attributes.

- Internal measures how well a component has been deployed
according to its intended use, with maintainability, efficiency and
reliability as software quality attributes.

- Contextual deals with the external influences on the use of a
component, with software quality attributes in maintainability,
reusability, portability and reliability.

- Descriptive measures the descriptiveness of a component, with
software quality attributes in maintainability, reusability, portability
and usability.

The information extracted from each model can be used to build, compare
and evaluate the quality of a software product. In this model, characteristics
with regard to process maturity and reusability are more explicit in
comparison with the other quality models. According to Rawashdeh and
Matalkah [146], one disadvantage of the Dromey model is associated with
reliability and maintainability, as it is not feasible to judge them before the
software system is actually operational in the production area.

2.3.2 Analysis of Software Evolvability in Quality Models

The quality characteristics that are addressed in the above quality models are
summarized in Table 2-1, which provides useful inputs to our idea about
evolvability subcharacteristics.

Software Architecture and Evolution 37

Table 2-1: Quality characteristics addressed in quality models

Quality

Characteristics M
cC

a
ll

B
o

eh
m

F
U

R
P

S

IS
O

 9
1

2
6

D
ro

m
ey

Adaptability x x

Compatibility x

Correctness x

Efficiency x x x x

Extensibility x

Flexibility x

Human Engineering x

Integrity x

Interoperability x x

Maintainability x x x x x

Modifiability x x

Performance x

Portability x x x x

Reliability x x x x x

Reusability x x

Supportability x

Testability x x x

Understandability x x

Usability x x x x

Software Architecture and Evolution 38

As shown in Table 2-1, although software evolvability is one of the most
important quality attributes or characteristics of software, the term
evolvability or similar is not explicitly used in either of the quality models.
Nevertheless, several quality attributes are correlated to software
evolvability, e.g., adaptability, extensibility and maintainability. However,
based on the definition of software evolvability by Rowe et al. [154], the
multi-faceted quality attribute evolvability covers more aspects than
adaptability, extensibility, or maintainability. As maintainability is covered
in most of the well-known quality models and it is generally considered as
most related to evolvability, we study the definitions of maintainability in
various quality models, as summarized in Table 2-2.

Table 2-2: Definitions of maintainability in quality models

Quality Models Maintainability Definition Focus

McCall The effort required to locate and
fix a fault in the program within
its operating environment

Corrective maintenance

Boehm It is concerned with how easy it
is to understand, modify and test.

Understandability, modifiability
and testability

FURPS Implicit Adaptability, extensibility

ISO 9126 The capability of the software
product to be modified.
Modifications may include
corrections, improvements or
adaptation of the software to
changes in environment, and in
requirements and functional
specifications.

Analyzability, changeability,
stability, testability

In this dissertation, we distinguish evolvability from maintainability, because
they both exhibit their own specific focus, as summarized in Table 2-3.
Considering these differences, we have found out that only having a
collection of the subcharacteristics of maintainability as defined in the ISO
software quality standard [89] is not sufficient to characterize software
evolvability (i.e., a system’s ability to easily accommodate changes) . This
poses one of the goals of our research, i.e., to investigate characteristics that
are of primary importance for the evolvability of a software system, and to
outline a software evolvability model that provides a basis for analyzing
software evolvability.

Software Architecture and Evolution 39

Table 2-3: Comparisons between evolvability and maintainability

Characteristics Evolvability Maintainability

Software

Change

Stimuli

Business model, business
objectives, functional and quality
requirement, environment,
underlying and emerging
technologies, new standards, new
versions of infrastructure

Defects, functional requirement,
revised requirements from
customers

Type of

Change

Coarse-grained, long term,
higher level, radical functional or
structural enhancements or
adaptations [177]

Fine-grained, short term,
localized change [177]

Focus Activity Cope with changes Keep the system perform
functions

Software

Structure

Structural change Relatively constant

Analysis

Scenarios

Growth scenarios (change
scenarios)

Existing use case scenarios

Development

Process

May require corresponding
process changes

Relatively constant

Architecture

Integrity

Conformance is required Conformance is preserved

2.4 Software Process Models
The primary functions of a software process model are to determine the
stages involved in software development and evolution, and to establish the
transition criteria for progressing from one stage to the next [24]. A software
process model represents activities and practices that embody strategies for
accomplishing software evolution. Several process models have been
proposed and gained widespread acceptance since the late seventies as the
term software evolution was deliberately used and recognized by the
research community. Some examples are the waterfall model [155], change
mini-cycle process model [182], evolutionary development model [78, 79],
spiral model [24], Agile software development [57, 121], and staged model
[21].

Our research is in line with the idea in staged model [21], which explicitly
takes into account the issue of software aging [137], and represents the
software lifecycle as a sequence of the following stages:

Software Architecture and Evolution 38

As shown in Table 2-1, although software evolvability is one of the most
important quality attributes or characteristics of software, the term
evolvability or similar is not explicitly used in either of the quality models.
Nevertheless, several quality attributes are correlated to software
evolvability, e.g., adaptability, extensibility and maintainability. However,
based on the definition of software evolvability by Rowe et al. [154], the
multi-faceted quality attribute evolvability covers more aspects than
adaptability, extensibility, or maintainability. As maintainability is covered
in most of the well-known quality models and it is generally considered as
most related to evolvability, we study the definitions of maintainability in
various quality models, as summarized in Table 2-2.

Table 2-2: Definitions of maintainability in quality models

Quality Models Maintainability Definition Focus

McCall The effort required to locate and
fix a fault in the program within
its operating environment

Corrective maintenance

Boehm It is concerned with how easy it
is to understand, modify and test.

Understandability, modifiability
and testability

FURPS Implicit Adaptability, extensibility

ISO 9126 The capability of the software
product to be modified.
Modifications may include
corrections, improvements or
adaptation of the software to
changes in environment, and in
requirements and functional
specifications.

Analyzability, changeability,
stability, testability

In this dissertation, we distinguish evolvability from maintainability, because
they both exhibit their own specific focus, as summarized in Table 2-3.
Considering these differences, we have found out that only having a
collection of the subcharacteristics of maintainability as defined in the ISO
software quality standard [89] is not sufficient to characterize software
evolvability (i.e., a system’s ability to easily accommodate changes) . This
poses one of the goals of our research, i.e., to investigate characteristics that
are of primary importance for the evolvability of a software system, and to
outline a software evolvability model that provides a basis for analyzing
software evolvability.

Software Architecture and Evolution 39

Table 2-3: Comparisons between evolvability and maintainability

Characteristics Evolvability Maintainability

Software

Change

Stimuli

Business model, business
objectives, functional and quality
requirement, environment,
underlying and emerging
technologies, new standards, new
versions of infrastructure

Defects, functional requirement,
revised requirements from
customers

Type of

Change

Coarse-grained, long term,
higher level, radical functional or
structural enhancements or
adaptations [177]

Fine-grained, short term,
localized change [177]

Focus Activity Cope with changes Keep the system perform
functions

Software

Structure

Structural change Relatively constant

Analysis

Scenarios

Growth scenarios (change
scenarios)

Existing use case scenarios

Development

Process

May require corresponding
process changes

Relatively constant

Architecture

Integrity

Conformance is required Conformance is preserved

2.4 Software Process Models
The primary functions of a software process model are to determine the
stages involved in software development and evolution, and to establish the
transition criteria for progressing from one stage to the next [24]. A software
process model represents activities and practices that embody strategies for
accomplishing software evolution. Several process models have been
proposed and gained widespread acceptance since the late seventies as the
term software evolution was deliberately used and recognized by the
research community. Some examples are the waterfall model [155], change
mini-cycle process model [182], evolutionary development model [78, 79],
spiral model [24], Agile software development [57, 121], and staged model
[21].

Our research is in line with the idea in staged model [21], which explicitly
takes into account the issue of software aging [137], and represents the
software lifecycle as a sequence of the following stages:

Software Architecture and Evolution 40

- Initial development develops the first version of the software system
to ensure that subsequent evolution can be achieved easily;

- Evolution stage implements any kind of modification to the software
system;

- Servicing stage implements and tests tactical changes to the software
through applying small patches to keep the software up and running;

- Phase out and close down stages manage the software towards the
end of its life.

In this model, during the initial development, the main need is to ensure that
the subsequent evolution can be achieved easily. During the evolution stage,
the software architecture evolution is essential to respond to unexpected new
user requirements. Meanwhile, we need to extend and adapt functional and
nonfunctional behavior without destroying the integrity of the architecture.
In this thesis, we focus on seeking viable method to extend the evolution
stage.

Software evolution represents the cycle of activities involved in the
development, use, and maintenance of software systems. From inception, a
software system goes through initial development, productive operation, and
retirement from one generation to another. Accordingly, software
architecture evolution is inseparably bound to a process context. Scacchi
[158] states that, one activity that is critical to the overall evolution of
software systems is architecture evaluation, which helps improve the quality
of the software systems being evolved and identify potential opportunities
and impacts of upcoming changes. In this thesis, we suggest software
architecture evolution assessment processes (see Chapter 4 and Chapter 5)
that can be performed at many points during a system’s life cycle, e.g.,
during the design phase to evaluate prospective candidate designs, validating
the architecture before further commencement of development, or evaluating
architecture of a legacy system that is undergoing modification, extension, or
other significant upgrades. It can be used to prompt stakeholders to
systematically analyze potential impacts of a change on evolvability so as to
avoid an ad hoc architecture evolution. The proposed software architecture
evolution assessment process focuses on existing software, and engages
stakeholders to examine the emerging changes, to discover the driving
architectural requirements, stakeholders’ evolvability concerns, and potential
architectural solutions’ impact on evolvability of a software system. The
architecture evolution assessment process is stakeholder focused; it is
therefore dependent on the participation of involved stakeholders of various

Software Architecture and Evolution 41

roles, such as architects, development team, research team, project leader,
and product managers.

2.5 Techniques and Methods Facilitating
Architecture Evolution
This thesis focuses mainly on architectural aspects concerned with software
architecture analysis and software quality improvement related to software
evolvability. Therefore, the topic of migrating or reengineering legacy
software systems by applying a specific software development paradigm or
technique to facilitate software evolution is not within the scope of this
thesis. However, as it is a topic closely related to our research, we present
briefly, in the following subsections, an overview of the studies in the
techniques that facilitate software architecture evolution along with a brief
summary of how respective technologies are related to evolvability. The
techniques include component-based software engineering, service-oriented
software engineering, product line engineering, aspect-oriented software
development, and model-driven engineering. Detailed descriptions of the
techniques and case studies that are related to product line engineering,
component-based and service-oriented software engineering are presented in
my licentiate thesis [30], and are therefore not in focus of this dissertation.
Nevertheless, the AREA process (see Chapter 4) proposed in this
dissertation is not constrained by any specific techniques. On the contrary,
with frequent advances in software engineering, the first phase of the AREA
process ensures a thorough analysis of the impact on software architecture
evolvability when introducing any new technologies. This impact analysis
phase applies to all techniques to be introduced.

2.5.1 Component-Based and Service-Oriented Engineering

Component-based software engineering (CBSE) provides support for
building systems through the composition and assembly of software
components. It is an established approach in many engineering domains,
such as distributed and web based systems, desktop and graphical
applications, and in embedded systems domains. CBSE technologies
facilitate effective management of complexity, significantly increase
reusability, and shorten time-to-market.

Software Architecture and Evolution 40

- Initial development develops the first version of the software system
to ensure that subsequent evolution can be achieved easily;

- Evolution stage implements any kind of modification to the software
system;

- Servicing stage implements and tests tactical changes to the software
through applying small patches to keep the software up and running;

- Phase out and close down stages manage the software towards the
end of its life.

In this model, during the initial development, the main need is to ensure that
the subsequent evolution can be achieved easily. During the evolution stage,
the software architecture evolution is essential to respond to unexpected new
user requirements. Meanwhile, we need to extend and adapt functional and
nonfunctional behavior without destroying the integrity of the architecture.
In this thesis, we focus on seeking viable method to extend the evolution
stage.

Software evolution represents the cycle of activities involved in the
development, use, and maintenance of software systems. From inception, a
software system goes through initial development, productive operation, and
retirement from one generation to another. Accordingly, software
architecture evolution is inseparably bound to a process context. Scacchi
[158] states that, one activity that is critical to the overall evolution of
software systems is architecture evaluation, which helps improve the quality
of the software systems being evolved and identify potential opportunities
and impacts of upcoming changes. In this thesis, we suggest software
architecture evolution assessment processes (see Chapter 4 and Chapter 5)
that can be performed at many points during a system’s life cycle, e.g.,
during the design phase to evaluate prospective candidate designs, validating
the architecture before further commencement of development, or evaluating
architecture of a legacy system that is undergoing modification, extension, or
other significant upgrades. It can be used to prompt stakeholders to
systematically analyze potential impacts of a change on evolvability so as to
avoid an ad hoc architecture evolution. The proposed software architecture
evolution assessment process focuses on existing software, and engages
stakeholders to examine the emerging changes, to discover the driving
architectural requirements, stakeholders’ evolvability concerns, and potential
architectural solutions’ impact on evolvability of a software system. The
architecture evolution assessment process is stakeholder focused; it is
therefore dependent on the participation of involved stakeholders of various

Software Architecture and Evolution 41

roles, such as architects, development team, research team, project leader,
and product managers.

2.5 Techniques and Methods Facilitating
Architecture Evolution
This thesis focuses mainly on architectural aspects concerned with software
architecture analysis and software quality improvement related to software
evolvability. Therefore, the topic of migrating or reengineering legacy
software systems by applying a specific software development paradigm or
technique to facilitate software evolution is not within the scope of this
thesis. However, as it is a topic closely related to our research, we present
briefly, in the following subsections, an overview of the studies in the
techniques that facilitate software architecture evolution along with a brief
summary of how respective technologies are related to evolvability. The
techniques include component-based software engineering, service-oriented
software engineering, product line engineering, aspect-oriented software
development, and model-driven engineering. Detailed descriptions of the
techniques and case studies that are related to product line engineering,
component-based and service-oriented software engineering are presented in
my licentiate thesis [30], and are therefore not in focus of this dissertation.
Nevertheless, the AREA process (see Chapter 4) proposed in this
dissertation is not constrained by any specific techniques. On the contrary,
with frequent advances in software engineering, the first phase of the AREA
process ensures a thorough analysis of the impact on software architecture
evolvability when introducing any new technologies. This impact analysis
phase applies to all techniques to be introduced.

2.5.1 Component-Based and Service-Oriented Engineering

Component-based software engineering (CBSE) provides support for
building systems through the composition and assembly of software
components. It is an established approach in many engineering domains,
such as distributed and web based systems, desktop and graphical
applications, and in embedded systems domains. CBSE technologies
facilitate effective management of complexity, significantly increase
reusability, and shorten time-to-market.

Software Architecture and Evolution 42

While CBSE is an established approach in many engineering domains, the
growing demands for Internet computing and emerging network-based
business applications and systems are the driving forces for the emergence of
service-oriented software engineering (SOSE). SOSE has evolved from
CBSE frameworks and object oriented computing to face the challenges of
open environments. SOSE utilizes services as fundamental elements for
developing applications and software solutions. SOSE technologies offer
feasibility in integrating distributed systems that are built on various
platforms and technologies, and further push focus on reusability and
development efficiency.

Because of the diverse nature of software systems, it is unlikely that systems
will be developed using a purely service-oriented or component-based
approach [105]. Therefore, the ability to combine the strengths of CBSE and
SOSE, and use them in a complementary manner becomes essential. Some
research has been done in combining the strengths of CBSE and SOSE for
improved quality attributes of software solutions. Jian and Willey [94]
propose a multi-tiered architecture that offers flexible and scalable solutions
to the design and integration of large and distributed systems. The
architecture makes use of both services and components as architectural
elements, offering flexibility and scalability in large distributed systems and
meanwhile remaining the system performance. Wang and Fung [175]
propose an idea of organizing enterprise functions as services and
implementing them as component-based systems in order to offer flexible,
extensible and value-added services. Cervantes and Hall [49] introduce
service-oriented concepts into component models to provide support for late
binding and dynamic component availability in the component models.
O’Brien et al. [133] explore how service-oriented architecture impacts a
number of quality attributes, and identify issues and tradeoffs related to these
quality attributes. The investigated quality attributes are interoperability,
performance, security, reliability, availability, modifiability, testability,
usability and scalability.

From evolvability perspective, according to Breivold and Larsson [36],
CBSE supports a variety of encapsulation types, ranging from white box
exposing all the implementation, or gray box exposing parts of component
implementation to black box. In the case of white box and gray box, the
component clients have the flexibility to make modifications to the
components in order to meet specific needs in their solutions. According to
the same study, SOSE provides the feasibility for services to be implemented
in diverse technologies and for multiple applications running on different
platforms to communicate with each other.

Software Architecture and Evolution 43

2.5.2 Software Product Line Methods

A software product line is defined by Clements and Northrop [56] as “a set

of software-intensive systems sharing a common, managed set of features

that satisfy the specific needs of a particular market segment or mission and

that are developed from a common set of core assets in a prescribed way”.
According to Pohl et al. [141], product line software engineering aims to
reduce cost, time-to-market, increase productivity and quality through
leveraging reuse of artifacts and processes for similar products in a particular
domain. It has become one of the most established strategies for achieving
large-scale software reuse [63].

Within the area of software product line evolution, Bosch [28] proposes
methods for designing software architecture, in particular product line
architecture. Two key principles behind software product line engineering
are elaborated by Pohl et al. [141]:

- Separation of software development in domain and application
engineering;

- Explicit definition and management of variability of the product line
across all development artifacts.

Van der Linden et al. [172] describe a four-dimensional software product
family engineering evaluation model to determine the status of software
family engineering, concerning business, architecture, organization and
process.

Faust and Verhoef [65] present metrics for genericity relayering, and
migrates multiple instances of a single information system to a product line.
Bayer et al. [19] propose the RE_MODEL method to integrate reengineering
and product line activities in order to achieve a transition into product line
architecture. A key element in the method is the blackboard, a work space
which is shared for both activities that are done in parallel. Schmid et al.
[160] propose the PuLSETM method to address the different phases of
product line development, to systematically analyze a component, and to
improve its reusability as well as maintainability. The focus is on one
component enabling reuse of that component.

In order to evaluate the potential of creating a product line from existing
products, Stoermer and O’Brien [166] propose MAP (Mining Architectures
for Product Lines), which focuses on the feasibility evaluation process of the
organization’s decision to move towards a product line. Options Analysis for
Reengineering [163] is another method for mining existing components for a
product line. Maccari and Riva [118] propose to combine reference

Software Architecture and Evolution 42

While CBSE is an established approach in many engineering domains, the
growing demands for Internet computing and emerging network-based
business applications and systems are the driving forces for the emergence of
service-oriented software engineering (SOSE). SOSE has evolved from
CBSE frameworks and object oriented computing to face the challenges of
open environments. SOSE utilizes services as fundamental elements for
developing applications and software solutions. SOSE technologies offer
feasibility in integrating distributed systems that are built on various
platforms and technologies, and further push focus on reusability and
development efficiency.

Because of the diverse nature of software systems, it is unlikely that systems
will be developed using a purely service-oriented or component-based
approach [105]. Therefore, the ability to combine the strengths of CBSE and
SOSE, and use them in a complementary manner becomes essential. Some
research has been done in combining the strengths of CBSE and SOSE for
improved quality attributes of software solutions. Jian and Willey [94]
propose a multi-tiered architecture that offers flexible and scalable solutions
to the design and integration of large and distributed systems. The
architecture makes use of both services and components as architectural
elements, offering flexibility and scalability in large distributed systems and
meanwhile remaining the system performance. Wang and Fung [175]
propose an idea of organizing enterprise functions as services and
implementing them as component-based systems in order to offer flexible,
extensible and value-added services. Cervantes and Hall [49] introduce
service-oriented concepts into component models to provide support for late
binding and dynamic component availability in the component models.
O’Brien et al. [133] explore how service-oriented architecture impacts a
number of quality attributes, and identify issues and tradeoffs related to these
quality attributes. The investigated quality attributes are interoperability,
performance, security, reliability, availability, modifiability, testability,
usability and scalability.

From evolvability perspective, according to Breivold and Larsson [36],
CBSE supports a variety of encapsulation types, ranging from white box
exposing all the implementation, or gray box exposing parts of component
implementation to black box. In the case of white box and gray box, the
component clients have the flexibility to make modifications to the
components in order to meet specific needs in their solutions. According to
the same study, SOSE provides the feasibility for services to be implemented
in diverse technologies and for multiple applications running on different
platforms to communicate with each other.

Software Architecture and Evolution 43

2.5.2 Software Product Line Methods

A software product line is defined by Clements and Northrop [56] as “a set

of software-intensive systems sharing a common, managed set of features

that satisfy the specific needs of a particular market segment or mission and

that are developed from a common set of core assets in a prescribed way”.
According to Pohl et al. [141], product line software engineering aims to
reduce cost, time-to-market, increase productivity and quality through
leveraging reuse of artifacts and processes for similar products in a particular
domain. It has become one of the most established strategies for achieving
large-scale software reuse [63].

Within the area of software product line evolution, Bosch [28] proposes
methods for designing software architecture, in particular product line
architecture. Two key principles behind software product line engineering
are elaborated by Pohl et al. [141]:

- Separation of software development in domain and application
engineering;

- Explicit definition and management of variability of the product line
across all development artifacts.

Van der Linden et al. [172] describe a four-dimensional software product
family engineering evaluation model to determine the status of software
family engineering, concerning business, architecture, organization and
process.

Faust and Verhoef [65] present metrics for genericity relayering, and
migrates multiple instances of a single information system to a product line.
Bayer et al. [19] propose the RE_MODEL method to integrate reengineering
and product line activities in order to achieve a transition into product line
architecture. A key element in the method is the blackboard, a work space
which is shared for both activities that are done in parallel. Schmid et al.
[160] propose the PuLSETM method to address the different phases of
product line development, to systematically analyze a component, and to
improve its reusability as well as maintainability. The focus is on one
component enabling reuse of that component.

In order to evaluate the potential of creating a product line from existing
products, Stoermer and O’Brien [166] propose MAP (Mining Architectures
for Product Lines), which focuses on the feasibility evaluation process of the
organization’s decision to move towards a product line. Options Analysis for
Reengineering [163] is another method for mining existing components for a
product line. Maccari and Riva [118] propose to combine reference

Software Architecture and Evolution 44

architecture and configuration architecture in order to describe legacy
product family architecture and manage its evolution.

Research is also done in domain analysis methods. Some examples of the
widely used domain analysis techniques are Feature-Oriented Domain
Analysis (FODA) [95] and Feature-Oriented Reuse Method (FORM) [96],
which use feature models to organize system features into trees of nodes that
represent the commonality and variability within a software product line.
Another notation is the orthogonal variability model [14, 141], which is a
graph of variation points and variants.

The ever-changing customer requirements, technology advances and internal
enhancements lead to the continuous evolution of a product line’s reusable
assets. According to Dhungana et al. [61], product line evolution occurs in
two dimensions because both the meta-model and the variability models can
evolve independently:

- Meta-models evolve due to changes in the scope of the product line;
e.g., new asset types are introduced or the product line itself is
extended to support new business units.

- Variability models are subject to change whenever the product line
changes, e.g., as a result of improving or extending functionality,
changing technology or reorganization.

According to Pohl et al. [141], the product line engineering process is
composed of two sub-processes:

- Domain engineering

The goals of domain engineering are to define the commonality and the
variability of the software product line, to define the scope of the
software product line, define and construct reusable artefacts that
accomplish the desired variability. The domain engineering process
consists of the following five activities:

- Product management defines the scope of the product line, i.e., a
product roadmap that determines the major common and
variable features of future products, as well as a schedule with
their planned release dates. A list of the existing products and
the development artefacts that can be reused for establishing the
common platform is also defined;

- Domain requirement engineering elicits and documents the
common and variable requirements for all foreseeable
applications of the product line;

Software Architecture and Evolution 45

- Domain design defines the reference architecture and a refined
variability model of the product line;

- Domain realization produces the detailed design and the
implementation of reusable software components;

- Domain testing aims to validate and verify the reusable
components.

- Application engineering

The goals of application engineering are to achieve reuse of the domain
assets, to exploit the commonality and variability of the software product
line during the development of a product line application, and to
document the application artefacts. The application engineering process
consists of the following four activities:

- Application requirements engineering develops requirements
specification for the particular application;

- Application design produces a specialization of reference
architecture for the particular application;

- Application realization creates a running application with
detailed design artefacts;

- Application testing aims to validate and verify an application
against its specification.

From evolvability perspective, Kolb et al. [103] state that, having pre-
determined variation points as introduced in product line engineering makes
it relatively easy to introduce changes during software evolution. This is
because variation points help to keep the impact of changes small by
enforcing separation of concerns among variants. On the other hand, we
need to consider the impact with respect to the software system’s behavior,
quality and any possible tradeoffs when we introduce any variation point and
realization mechanism. For instance, according to Coplien [59], the choice of
binding mechanisms and binding time has consequences for flexibility and
other concerns.

2.5.3 Aspect-Oriented Software Development

Aspect-oriented software development (AOSD) aims to offer an added layer
of abstraction that can modularize system-level concerns [128], which are
usually crosscutting as they cut across the dominant decomposition of the
software. According to Mens and Demeyer [128], these crosscutting

Software Architecture and Evolution 44

architecture and configuration architecture in order to describe legacy
product family architecture and manage its evolution.

Research is also done in domain analysis methods. Some examples of the
widely used domain analysis techniques are Feature-Oriented Domain
Analysis (FODA) [95] and Feature-Oriented Reuse Method (FORM) [96],
which use feature models to organize system features into trees of nodes that
represent the commonality and variability within a software product line.
Another notation is the orthogonal variability model [14, 141], which is a
graph of variation points and variants.

The ever-changing customer requirements, technology advances and internal
enhancements lead to the continuous evolution of a product line’s reusable
assets. According to Dhungana et al. [61], product line evolution occurs in
two dimensions because both the meta-model and the variability models can
evolve independently:

- Meta-models evolve due to changes in the scope of the product line;
e.g., new asset types are introduced or the product line itself is
extended to support new business units.

- Variability models are subject to change whenever the product line
changes, e.g., as a result of improving or extending functionality,
changing technology or reorganization.

According to Pohl et al. [141], the product line engineering process is
composed of two sub-processes:

- Domain engineering

The goals of domain engineering are to define the commonality and the
variability of the software product line, to define the scope of the
software product line, define and construct reusable artefacts that
accomplish the desired variability. The domain engineering process
consists of the following five activities:

- Product management defines the scope of the product line, i.e., a
product roadmap that determines the major common and
variable features of future products, as well as a schedule with
their planned release dates. A list of the existing products and
the development artefacts that can be reused for establishing the
common platform is also defined;

- Domain requirement engineering elicits and documents the
common and variable requirements for all foreseeable
applications of the product line;

Software Architecture and Evolution 45

- Domain design defines the reference architecture and a refined
variability model of the product line;

- Domain realization produces the detailed design and the
implementation of reusable software components;

- Domain testing aims to validate and verify the reusable
components.

- Application engineering

The goals of application engineering are to achieve reuse of the domain
assets, to exploit the commonality and variability of the software product
line during the development of a product line application, and to
document the application artefacts. The application engineering process
consists of the following four activities:

- Application requirements engineering develops requirements
specification for the particular application;

- Application design produces a specialization of reference
architecture for the particular application;

- Application realization creates a running application with
detailed design artefacts;

- Application testing aims to validate and verify an application
against its specification.

From evolvability perspective, Kolb et al. [103] state that, having pre-
determined variation points as introduced in product line engineering makes
it relatively easy to introduce changes during software evolution. This is
because variation points help to keep the impact of changes small by
enforcing separation of concerns among variants. On the other hand, we
need to consider the impact with respect to the software system’s behavior,
quality and any possible tradeoffs when we introduce any variation point and
realization mechanism. For instance, according to Coplien [59], the choice of
binding mechanisms and binding time has consequences for flexibility and
other concerns.

2.5.3 Aspect-Oriented Software Development

Aspect-oriented software development (AOSD) aims to offer an added layer
of abstraction that can modularize system-level concerns [128], which are
usually crosscutting as they cut across the dominant decomposition of the
software. According to Mens and Demeyer [128], these crosscutting

Software Architecture and Evolution 46

concerns are believed to have negative impact on software quality such as
evolvability, maintainability and understandability because understanding
and changing crosscutting concerns requires touching many different places
in the source code.

Brichau et al. [37] state that, AOSD techniques offer abstraction, modularity,
and composition support to reason about crosscutting concerns throughout
the software life cycle, i.e., from requirements engineering to architecture
and detailed design to implementation, and evolution.

From requirement perspective, crosscutting concerns manifest themselves
during requirement engineering [144]. The Early Aspect Mining Tool [157]
supports identifying aspects across various requirement documents and
searching for known candidates for aspects. After identifying the
requirements-level aspects, an XML-based composition language [145] is
used to represent and specify the requirements-level aspects’ impact on other
requirements in the system.

From architecture design perspective, aspect-oriented software architecture
includes the explicit definition of aspectual components (or architectural
aspects) for modularizing crosscutting concerns at the architectural level
[108]. The representation of an aspect-oriented architecture involves the
explicit representation of the relations and connectors between the
architectural components, as well as the specification of normal and
crosscutting interfaces [51], which specify when and how an architectural
aspect affects other architectural components. In order to trace the aspectual
components to their detailed design and implementation, Chavez et al. [51]
propose a modeling language that supports the specification of internal
elements of design aspects such as internal methods and attributes. To assist
the evaluation of the aspect-oriented design, Garcia et al. [73] propose a
framework for assessing reusability and maintainability of aspect-oriented
design. Studies [72] and [140] integrate the principles of AOSD into
architecture description languages.

From implementation perspective, a concern at implementation level is
usually considered as a particular behavior or functionality in a program [3].
A concern’s implementation can be scattered over various system modules,
or a particular module’s implementation is tangled with different concerns.
To cope with these crosscutting concerns, aspect-oriented programming
(AOP) has emerged to localize a concern’s implementation in order to
improve modularity, understandability, maintainability and evolvability of
the code. According to Mens and Demeyer [128], there are three phases

Software Architecture and Evolution 47

involved when adopting aspect-oriented programming from software
evolution perspective:

- Aspect exploration is the activity of identifying and analyzing the
crosscutting concerns in a non aspect-oriented system, such as what
the crosscutting concerns are, where and how they are implemented,
and what their impact on the software quality is.

- Aspect extraction is the activity of separating the crosscutting
concern code from the original code.

- Aspect evolution concerns the evolution of aspect-oriented software.

From evolvability perspective, Mens and Tourwé [127] state that the notion
of aspects allow a developer to localize a concern’s implementation, and
thus improve modularity, understandability, maintainability and evolvability
of code. Some studies explore the relation between crosscutting concerns
and software quality. For instance, Kulesza [107] computed metrics for both
object-oriented and aspect-oriented versions of a medium-scale software
system, and observed that the aspect-oriented versions resulted in fewer lines
of code, improved separation of concerns, weaker coupling and lower intra-
component complexity. However, the study also indicated an increased
number of operations and components in the aspect-oriented version as well
as a lower cohesion for the aspect-oriented components. Gibbs et al. [77]
conducted a case study to compare the maintainability and evolvability of a
version of a software system that was restructured with traditional
abstraction mechanisms against a version of the same system which was
restructured by means of aspects. They found that the aspect-oriented
version performed either better or not worse than the non aspect-oriented
version when dealing with changes.

2.5.4 Model-Driven Development

Model-driven development (MDD) encompasses the use of models and
model technologies to increase the level of abstraction of the software
development process. As a result, MDD is seen as a way to handle the
growing complexity of software development as the development process
becomes formal enough to be automated. Thus MDD positively influences
software maintenance and evolution.

Some studies focus on MDD in large scale, industrial projects, and describe
processes in which legacy systems are reverse engineered to model-driven
architecture (MDA). For instance, Mansurov and Campara [120] argue that a

Software Architecture and Evolution 46

concerns are believed to have negative impact on software quality such as
evolvability, maintainability and understandability because understanding
and changing crosscutting concerns requires touching many different places
in the source code.

Brichau et al. [37] state that, AOSD techniques offer abstraction, modularity,
and composition support to reason about crosscutting concerns throughout
the software life cycle, i.e., from requirements engineering to architecture
and detailed design to implementation, and evolution.

From requirement perspective, crosscutting concerns manifest themselves
during requirement engineering [144]. The Early Aspect Mining Tool [157]
supports identifying aspects across various requirement documents and
searching for known candidates for aspects. After identifying the
requirements-level aspects, an XML-based composition language [145] is
used to represent and specify the requirements-level aspects’ impact on other
requirements in the system.

From architecture design perspective, aspect-oriented software architecture
includes the explicit definition of aspectual components (or architectural
aspects) for modularizing crosscutting concerns at the architectural level
[108]. The representation of an aspect-oriented architecture involves the
explicit representation of the relations and connectors between the
architectural components, as well as the specification of normal and
crosscutting interfaces [51], which specify when and how an architectural
aspect affects other architectural components. In order to trace the aspectual
components to their detailed design and implementation, Chavez et al. [51]
propose a modeling language that supports the specification of internal
elements of design aspects such as internal methods and attributes. To assist
the evaluation of the aspect-oriented design, Garcia et al. [73] propose a
framework for assessing reusability and maintainability of aspect-oriented
design. Studies [72] and [140] integrate the principles of AOSD into
architecture description languages.

From implementation perspective, a concern at implementation level is
usually considered as a particular behavior or functionality in a program [3].
A concern’s implementation can be scattered over various system modules,
or a particular module’s implementation is tangled with different concerns.
To cope with these crosscutting concerns, aspect-oriented programming
(AOP) has emerged to localize a concern’s implementation in order to
improve modularity, understandability, maintainability and evolvability of
the code. According to Mens and Demeyer [128], there are three phases

Software Architecture and Evolution 47

involved when adopting aspect-oriented programming from software
evolution perspective:

- Aspect exploration is the activity of identifying and analyzing the
crosscutting concerns in a non aspect-oriented system, such as what
the crosscutting concerns are, where and how they are implemented,
and what their impact on the software quality is.

- Aspect extraction is the activity of separating the crosscutting
concern code from the original code.

- Aspect evolution concerns the evolution of aspect-oriented software.

From evolvability perspective, Mens and Tourwé [127] state that the notion
of aspects allow a developer to localize a concern’s implementation, and
thus improve modularity, understandability, maintainability and evolvability
of code. Some studies explore the relation between crosscutting concerns
and software quality. For instance, Kulesza [107] computed metrics for both
object-oriented and aspect-oriented versions of a medium-scale software
system, and observed that the aspect-oriented versions resulted in fewer lines
of code, improved separation of concerns, weaker coupling and lower intra-
component complexity. However, the study also indicated an increased
number of operations and components in the aspect-oriented version as well
as a lower cohesion for the aspect-oriented components. Gibbs et al. [77]
conducted a case study to compare the maintainability and evolvability of a
version of a software system that was restructured with traditional
abstraction mechanisms against a version of the same system which was
restructured by means of aspects. They found that the aspect-oriented
version performed either better or not worse than the non aspect-oriented
version when dealing with changes.

2.5.4 Model-Driven Development

Model-driven development (MDD) encompasses the use of models and
model technologies to increase the level of abstraction of the software
development process. As a result, MDD is seen as a way to handle the
growing complexity of software development as the development process
becomes formal enough to be automated. Thus MDD positively influences
software maintenance and evolution.

Some studies focus on MDD in large scale, industrial projects, and describe
processes in which legacy systems are reverse engineered to model-driven
architecture (MDA). For instance, Mansurov and Campara [120] argue that a

Software Architecture and Evolution 48

first step in the migration towards MDA is the introduction of modeling in
the software development process. They propose an approach to raise the
maturity of software architectures to a level where software maintenance and
evolution are driven by the architecture instead of by the code. Anda and
Hansen [5] conduct a case study to investigate the ease of constructing, the
use and the utility of use cases, sequence diagrams and class diagrams in
modeling and enhancing legacy software compared with development from
scratch. The case was a large development project applying UML in the
development of a new version of existing systems, with most of the software
being embedded. Boronat [27] presents a framework for automatic legacy
system migration in MDA, using rewriting logic as their transformation
engine. Reus et al. [148] report a feasibility study in reengineering legacy
systems towards a model-driven architecture. Fleurey et al. [69] introduce a
model-driven process, which describes software migration in large industrial
context. The process includes automatic analysis of the existing code,
reverse engineering of abstract high-level models, model transformation to
target platform models and code generation.

Some studies focus on the implementation of MDD techniques in software
engineering processes. Raistrick [142] describes how MDA and UML are
used to model new software functionality in the form of an executable UML
model and specify the capabilities of existing key components. Staron [165]
examines the factors determining the decision upon adoption of MDD
principles as well as the conditions that should be fulfilled in order to
increase the chances of succeeding in adopting MDD. Baker et al. [15]
describe the industrial experiences in creating rigorous models throughout
the development process, thereby enabling the introduction of automation.

From evolvability perspective, some studies focus on quantification and
baseline of productivity and quality in industrial MDD projects. Shirtz et al.
[161] describe the process of adopting MDD from inception to successful
maturation. Based on the industrial experiences in adopting model-driven
engineering, it was demonstrated by Weigert et al. [178] that model-driven
engineering significantly improves the development process for embedded
and distributed systems. In the same study, it was experienced that model-
driven engineering has dramatically increased both the quality and the
reliability of software developed in the organization, as well as the
productivity of systems and software engineers.

Software Architecture and Evolution 49

2.5.5 Reverse Engineering and Reengineering

Reverse engineering [52] is an important activity within software evolution.
It aims at understanding the architecture or behavior of a software system
through recovering and recording high-level information of a software
system. The information represents abstractions that include the system
structure in terms of its components and their interrelationships, the dynamic
behavior of the system, functionality, modules, documentation and test
suites. According to Arnold [10], reverse engineering is a key to software
reengineering because it ensures recovering an abstract representation that
can be used for subsequent reengineering of an existing software system.

The goal of reengineering is to reconstitute a software system in a new form
that is more evolvable and possibly has more functionality than the original
software system. The reengineering process is usually composed of three
activities: reverse engineering [52], software restructuring [9] and forward
engineering.

- Reverse engineering is necessary due to incomplete documentation and
relevant references, unavailability of personnel with relevant knowledge,
inconsistency between documentation and implementation, outdated
technological platforms of a software system, e.g., programming
languages, tools and operating systems.

- Software restructuring aims to improve certain aspects of a software
system, and it is “the transformation from one representation form to

another at the same relative abstraction level, while preserving the

software system’s external behavior, i.e., functionality and semantics”
[181].

- Forward engineering implements and builds a software system from the
restructured model.

This reengineering process is captured in the horseshoe process model for
reengineering [98], which consists of three related processes:

- Code and architecture recovery, and conformance evaluation;

- Architecture transformation;

- Architecture-based development in which the new architecture is
instantiated.

From evolvability perspective, reverse engineering helps to understand the
architecture or behavior of a large software system when the source code is
the main information. One approach that assists in software reengineering is
refactoring [70], which is a technique for restructuring an existing body of

Software Architecture and Evolution 48

first step in the migration towards MDA is the introduction of modeling in
the software development process. They propose an approach to raise the
maturity of software architectures to a level where software maintenance and
evolution are driven by the architecture instead of by the code. Anda and
Hansen [5] conduct a case study to investigate the ease of constructing, the
use and the utility of use cases, sequence diagrams and class diagrams in
modeling and enhancing legacy software compared with development from
scratch. The case was a large development project applying UML in the
development of a new version of existing systems, with most of the software
being embedded. Boronat [27] presents a framework for automatic legacy
system migration in MDA, using rewriting logic as their transformation
engine. Reus et al. [148] report a feasibility study in reengineering legacy
systems towards a model-driven architecture. Fleurey et al. [69] introduce a
model-driven process, which describes software migration in large industrial
context. The process includes automatic analysis of the existing code,
reverse engineering of abstract high-level models, model transformation to
target platform models and code generation.

Some studies focus on the implementation of MDD techniques in software
engineering processes. Raistrick [142] describes how MDA and UML are
used to model new software functionality in the form of an executable UML
model and specify the capabilities of existing key components. Staron [165]
examines the factors determining the decision upon adoption of MDD
principles as well as the conditions that should be fulfilled in order to
increase the chances of succeeding in adopting MDD. Baker et al. [15]
describe the industrial experiences in creating rigorous models throughout
the development process, thereby enabling the introduction of automation.

From evolvability perspective, some studies focus on quantification and
baseline of productivity and quality in industrial MDD projects. Shirtz et al.
[161] describe the process of adopting MDD from inception to successful
maturation. Based on the industrial experiences in adopting model-driven
engineering, it was demonstrated by Weigert et al. [178] that model-driven
engineering significantly improves the development process for embedded
and distributed systems. In the same study, it was experienced that model-
driven engineering has dramatically increased both the quality and the
reliability of software developed in the organization, as well as the
productivity of systems and software engineers.

Software Architecture and Evolution 49

2.5.5 Reverse Engineering and Reengineering

Reverse engineering [52] is an important activity within software evolution.
It aims at understanding the architecture or behavior of a software system
through recovering and recording high-level information of a software
system. The information represents abstractions that include the system
structure in terms of its components and their interrelationships, the dynamic
behavior of the system, functionality, modules, documentation and test
suites. According to Arnold [10], reverse engineering is a key to software
reengineering because it ensures recovering an abstract representation that
can be used for subsequent reengineering of an existing software system.

The goal of reengineering is to reconstitute a software system in a new form
that is more evolvable and possibly has more functionality than the original
software system. The reengineering process is usually composed of three
activities: reverse engineering [52], software restructuring [9] and forward
engineering.

- Reverse engineering is necessary due to incomplete documentation and
relevant references, unavailability of personnel with relevant knowledge,
inconsistency between documentation and implementation, outdated
technological platforms of a software system, e.g., programming
languages, tools and operating systems.

- Software restructuring aims to improve certain aspects of a software
system, and it is “the transformation from one representation form to

another at the same relative abstraction level, while preserving the

software system’s external behavior, i.e., functionality and semantics”
[181].

- Forward engineering implements and builds a software system from the
restructured model.

This reengineering process is captured in the horseshoe process model for
reengineering [98], which consists of three related processes:

- Code and architecture recovery, and conformance evaluation;

- Architecture transformation;

- Architecture-based development in which the new architecture is
instantiated.

From evolvability perspective, reverse engineering helps to understand the
architecture or behavior of a large software system when the source code is
the main information. One approach that assists in software reengineering is
refactoring [70], which is a technique for restructuring an existing body of

 50

code, altering and improving its internal structure without changing its
external behavior. The refactoring process consists of a series of small
behavior-preserving transformations. The system is kept fully working after
each small refactoring, reducing the chances that a system becomes broken
during the restructuring. Refactoring is one way to improve software quality
as it helps to improve the design of software, to make software easier to
understand, and help to find bugs [70]. As stated by Opdyke [134], while a
refactoring does not change the behavior of a program, it can support
software design and evolution by restructuring a program in a way that
allows other changes to be made more easily.

2.6 Summary
In this chapter, we have provided an overview of relevant research areas to
ensure a good understanding of the research context of the thesis.

The software evolution retraces motivate the reasons for the thesis, i.e., we
need to investigate means to analyze, characterize and measure software
evolvability. In the meantime, we have discovered the insufficiency in the
existing software quality models to explicitly address evolvability. For
instance, only having a collection of the subcharacteristics of maintainability
as defined in the ISO software quality standard [89] is not sufficient for a
software system to be evolvable. This poses one of the goals for our
research, i.e., to investigate characteristics that are of primary importance for
the evolvability of a software system, and to outline a software evolvability
model and process for analyzing and evaluating software evolvability. This
will be described in Chapter 4.

According to Mens and Demeyer [128], the objective of a software process
model is to reduce cost, effort and time-to-market, to increase productivity
and reliability, and to support better quality and more evolvable software. A
good understanding of the existing software process models is necessary for
us to obtain insights in how software changes are integrated in the software
development lifecycle.

Knowledge about software architecture, challenges encountered during
software evolution, as well as techniques and methods that facilitate software
architecture evolution, provides a basic background to architecture
evolution. Next chapter will further describe the software architecture
evolution research with focus on architecting for software evolvability.

Chapter 3. Architecting for Software
Evolvability

As business and technology evolve and software becomes more complex,
software development copes with not only how to create new software
systems of the desired quality attributes, but also, following the initial
development, how to evolve the systems in their operationally changing
contexts. Given that in most cases it is not desirable to develop everything
from scratch [128], researchers are constantly challenged to come up with
approaches to effectively support the evolution of software systems. For this
reason, many research studies have been proposed in this area both by
researchers and industry practitioners. These studies focus on how to analyze
and improve software evolvability, using a particular technique or practice.
However, no systematic review of software architecture evolvability
research has been conducted previously to describe the wide spectrum of
results in these studies.

The main objective of this chapter is therefore to systematically select and
review published literature, and present a holistic overview of the existing
studies in analyzing and achieving software evolvability at architectural
level.

Secondary objectives are:

- To bring practitioners up to date with respect to the state of research
themes that have been actively pursued by the research community
in architecting for software evolvability, and quickly identifying
relevant studies that suit their own needs;

- To help the research community to identify challenges and research
gaps for further exploration.

Concretely, we have stated the following research questions:

- What approaches have been reported regarding the analysis and
achievement of software evolvability at the architectural level?

 50

code, altering and improving its internal structure without changing its
external behavior. The refactoring process consists of a series of small
behavior-preserving transformations. The system is kept fully working after
each small refactoring, reducing the chances that a system becomes broken
during the restructuring. Refactoring is one way to improve software quality
as it helps to improve the design of software, to make software easier to
understand, and help to find bugs [70]. As stated by Opdyke [134], while a
refactoring does not change the behavior of a program, it can support
software design and evolution by restructuring a program in a way that
allows other changes to be made more easily.

2.6 Summary
In this chapter, we have provided an overview of relevant research areas to
ensure a good understanding of the research context of the thesis.

The software evolution retraces motivate the reasons for the thesis, i.e., we
need to investigate means to analyze, characterize and measure software
evolvability. In the meantime, we have discovered the insufficiency in the
existing software quality models to explicitly address evolvability. For
instance, only having a collection of the subcharacteristics of maintainability
as defined in the ISO software quality standard [89] is not sufficient for a
software system to be evolvable. This poses one of the goals for our
research, i.e., to investigate characteristics that are of primary importance for
the evolvability of a software system, and to outline a software evolvability
model and process for analyzing and evaluating software evolvability. This
will be described in Chapter 4.

According to Mens and Demeyer [128], the objective of a software process
model is to reduce cost, effort and time-to-market, to increase productivity
and reliability, and to support better quality and more evolvable software. A
good understanding of the existing software process models is necessary for
us to obtain insights in how software changes are integrated in the software
development lifecycle.

Knowledge about software architecture, challenges encountered during
software evolution, as well as techniques and methods that facilitate software
architecture evolution, provides a basic background to architecture
evolution. Next chapter will further describe the software architecture
evolution research with focus on architecting for software evolvability.

Chapter 3. Architecting for Software
Evolvability

As business and technology evolve and software becomes more complex,
software development copes with not only how to create new software
systems of the desired quality attributes, but also, following the initial
development, how to evolve the systems in their operationally changing
contexts. Given that in most cases it is not desirable to develop everything
from scratch [128], researchers are constantly challenged to come up with
approaches to effectively support the evolution of software systems. For this
reason, many research studies have been proposed in this area both by
researchers and industry practitioners. These studies focus on how to analyze
and improve software evolvability, using a particular technique or practice.
However, no systematic review of software architecture evolvability
research has been conducted previously to describe the wide spectrum of
results in these studies.

The main objective of this chapter is therefore to systematically select and
review published literature, and present a holistic overview of the existing
studies in analyzing and achieving software evolvability at architectural
level.

Secondary objectives are:

- To bring practitioners up to date with respect to the state of research
themes that have been actively pursued by the research community
in architecting for software evolvability, and quickly identifying
relevant studies that suit their own needs;

- To help the research community to identify challenges and research
gaps for further exploration.

Concretely, we have stated the following research questions:

- What approaches have been reported regarding the analysis and
achievement of software evolvability at the architectural level?

Architecting for Software Evolvability 52

- What are the main research themes covered in the scientific
literature regarding analysis and achievement of evolvability-related
quality attributes?

- What are the main focus and application contexts of proposed
approaches, along with their relevance to software evolvability?

- What is the impact of the studies to research community and
practice?

The remainder of this chapter is structured as follows. Chapter 3.1 describes
the research method used in this review. Chapter 3.2 presents overview
information of the primary studies included in our systematic literature
review (SLR). Chapter 3.3 to Chapter 3.7 presents the results of the review
in five main categories of themes respectively, with detailed description of
relevant studies and analysis of their relevance to software evolvability.
Chapter 3.8 discusses the scope of the systematic literature review and
validity threats of the review. Chapter 3.9 describes the impacts on research
and practice.

3.1 Systematic Literature Review Process
This research was undertaken as a systematic review [100] which is a
formalized and repeatable process to document relevant knowledge on a
specific subject area for assessing and interpreting all available research
related to a research question. The research includes several stages:

- Development of a review protocol

- Identification of inclusion and exclusion criteria

- Search process for relevant publications

- Quality assessment

- Data extraction and synthesis

These stages are detailed in the following subsections.

3.1.1 Review Protocol

We formulated a review protocol based on the systematic literature review
guidelines and procedures proposed by Kitchenham [100]. This protocol
specifies the background for the review, research questions, search strategy,
study selection criteria, data extraction, and synthesis of the extracted data.

Architecting for Software Evolvability 53

The protocol was mainly developed by me, and was then reviewed by two
other senior researchers to reduce bias. The background to the review and
the research questions have been described in the beginning of this chapter,
while other elements will be explained in the following subsections.

3.1.2 Inclusion and Exclusion Criteria

The goal of setting up criteria is to find all relevant studies in our research.
We considered full-text papers in English from peer-reviewed journals,
conferences and workshops published up to and including the first two
quarters of 2010. We did not set a lower boundary on the year of publication
because we intended to include all relevant studies that are stored in
databases over the years. We excluded studies that do not explicitly relate to
software evolution, analysis of software architecture, and software quality
that concerns software evolution. We also excluded prefaces, editorials, and
summaries of tutorials, panels and poster sessions. Furthermore, when
several duplicated articles of a study exist in different versions that appear as
books, journal papers, conference and workshop papers, we included only
the most complete version of the study, and excluded the others.

A summary of the inclusion and exclusion criteria for this review is
presented in Table 3-1. Note that a study must satisfy all inclusion criteria,
and not satisfy any of the exclusion criteria.

Table 3-1: Inclusion and exclusion criteria

Inclusion Criteria

English peer-reviewed studies that provide answers to the research questions.

Studies that focus on software evolution.

Studies that focus on software architecture analysis and/or software quality analysis related
to software evolvability.

Studies are published up to and including the first two quarters of 2010.

Exclusion Criteria

Studies are not in English.

Studies that are not related to the research questions.

Studies in which claims are non-justified or ad-hoc statements instead of based on evidence.

Duplicated studies.

Architecting for Software Evolvability 52

- What are the main research themes covered in the scientific
literature regarding analysis and achievement of evolvability-related
quality attributes?

- What are the main focus and application contexts of proposed
approaches, along with their relevance to software evolvability?

- What is the impact of the studies to research community and
practice?

The remainder of this chapter is structured as follows. Chapter 3.1 describes
the research method used in this review. Chapter 3.2 presents overview
information of the primary studies included in our systematic literature
review (SLR). Chapter 3.3 to Chapter 3.7 presents the results of the review
in five main categories of themes respectively, with detailed description of
relevant studies and analysis of their relevance to software evolvability.
Chapter 3.8 discusses the scope of the systematic literature review and
validity threats of the review. Chapter 3.9 describes the impacts on research
and practice.

3.1 Systematic Literature Review Process
This research was undertaken as a systematic review [100] which is a
formalized and repeatable process to document relevant knowledge on a
specific subject area for assessing and interpreting all available research
related to a research question. The research includes several stages:

- Development of a review protocol

- Identification of inclusion and exclusion criteria

- Search process for relevant publications

- Quality assessment

- Data extraction and synthesis

These stages are detailed in the following subsections.

3.1.1 Review Protocol

We formulated a review protocol based on the systematic literature review
guidelines and procedures proposed by Kitchenham [100]. This protocol
specifies the background for the review, research questions, search strategy,
study selection criteria, data extraction, and synthesis of the extracted data.

Architecting for Software Evolvability 53

The protocol was mainly developed by me, and was then reviewed by two
other senior researchers to reduce bias. The background to the review and
the research questions have been described in the beginning of this chapter,
while other elements will be explained in the following subsections.

3.1.2 Inclusion and Exclusion Criteria

The goal of setting up criteria is to find all relevant studies in our research.
We considered full-text papers in English from peer-reviewed journals,
conferences and workshops published up to and including the first two
quarters of 2010. We did not set a lower boundary on the year of publication
because we intended to include all relevant studies that are stored in
databases over the years. We excluded studies that do not explicitly relate to
software evolution, analysis of software architecture, and software quality
that concerns software evolution. We also excluded prefaces, editorials, and
summaries of tutorials, panels and poster sessions. Furthermore, when
several duplicated articles of a study exist in different versions that appear as
books, journal papers, conference and workshop papers, we included only
the most complete version of the study, and excluded the others.

A summary of the inclusion and exclusion criteria for this review is
presented in Table 3-1. Note that a study must satisfy all inclusion criteria,
and not satisfy any of the exclusion criteria.

Table 3-1: Inclusion and exclusion criteria

Inclusion Criteria

English peer-reviewed studies that provide answers to the research questions.

Studies that focus on software evolution.

Studies that focus on software architecture analysis and/or software quality analysis related
to software evolvability.

Studies are published up to and including the first two quarters of 2010.

Exclusion Criteria

Studies are not in English.

Studies that are not related to the research questions.

Studies in which claims are non-justified or ad-hoc statements instead of based on evidence.

Duplicated studies.

Architecting for Software Evolvability 54

3.1.3 Search Process

We concentrated on searching in scientific databases rather than in specific
books or technical reports, as we assume that the major research results in
books and reports are also usually described or referenced in scientific
papers. However, this does not prevent us from including a book as an
identified primary study if the book gives comprehensive descriptions of a
certain relevant topic. For instance, the Architecture Tradeoff Analysis
Method (ATAM) was described in a conference paper [97], and it was also
thoroughly explained in a book [S30]1. We have therefore included the book
as a selected study.

The searched electronic databases include:

- ACM Digital Library (http://portal.acm.org)

- Compendex (http://www.engineeringvillage.com)

- IEEE Xplore (http://www.ieee.org/web/publications/xplore/)

- ScienceDirect – Elsevier (http://www.elsevier.com)

- SpringerLink (http://www.springerlink.com)

- Wiley InterScience (http://www3.interscience.wiley.com)

- ISI Web of Science (http://www.isiknowledge.com).

These databases were chosen as they provide the most important and with
highest impact full-text journals and conference proceedings, covering the
fields of software quality, software architecture and software engineering in
general. After an initial search in these databases, we did an additional
reference scanning and analysis in order to find out whether we have missed
anything, thus to guarantee that we have selected a representative set of
studies. The searched results were also checked against a core set of studies
within software architecture evolution and software quality analysis to
ensure confidence in the comprehensiveness of search results.

The notion of evolvability is used in many different ways in the context of
software engineering with many other closely-related alternative words such
as flexibility, maintainability, adaptability and modifiability. Therefore, we
consider these words in the list of search terms. In addition, a software
evolvability model outlined in [33] identified subcharacteristics that are of

1 The references starting with S are the studies that were identified in the systematic

review. A complete list of these studies can be found in Appendix A.

Architecting for Software Evolvability 55

primary importance for a software system to be evolvable (to be described in
Chapter 4). The identified subcharacteristics are a union of quality
characteristics that are relevant for characterization of evolution of long-
lived software-intensive systems during their lifecycle, comprising
analyzability, architectural integrity, changeability, extensibility, portability,
testability and domain-specific attributes. Thus, these evolvability
subcharacteristics also provided input and motivated the search terms that
we used in this research when searching for relevant studies.

Among evolvability subcharacteristics, portability and testability are not
explicitly considered as search terms for the review, as we have in the
preliminary search found that they are quite often pertained to
maintainability, adaptability and flexibility. Domain-specific attribute
comprises quality characteristics that are specific for a particular domain,
and is considered too general to be used as a search term. The remaining
subcharacteristics such as analyzability, changeability and extensibility are
included as search terms. In the end, the following search terms were used to
find relevant studies, and all these search terms were combined by using the
Boolean OR operator:

- S1: software architecture AND evolvability

- S2: software architecture AND maintainability

- S3: software architecture AND extensibility

- S4: software architecture AND adaptability

- S5: software architecture AND flexibility

- S6: software architecture AND changeability

- S7: software architecture AND modifiability

- S8: software architecture AND analyzability

The selection of studies was performed through a multi-step process:

- Search in databases to identify relevant studies by using the search
terms;

- Exclude studies based on the exclusion criteria;

- Exclude irrelevant studies based on analysis of their titles and
abstracts;

- Obtain primary studies based on full-text read.

Figure 3-1 shows the search process and the number of publications
identified at each stage.

Architecting for Software Evolvability 54

3.1.3 Search Process

We concentrated on searching in scientific databases rather than in specific
books or technical reports, as we assume that the major research results in
books and reports are also usually described or referenced in scientific
papers. However, this does not prevent us from including a book as an
identified primary study if the book gives comprehensive descriptions of a
certain relevant topic. For instance, the Architecture Tradeoff Analysis
Method (ATAM) was described in a conference paper [97], and it was also
thoroughly explained in a book [S30]1. We have therefore included the book
as a selected study.

The searched electronic databases include:

- ACM Digital Library (http://portal.acm.org)

- Compendex (http://www.engineeringvillage.com)

- IEEE Xplore (http://www.ieee.org/web/publications/xplore/)

- ScienceDirect – Elsevier (http://www.elsevier.com)

- SpringerLink (http://www.springerlink.com)

- Wiley InterScience (http://www3.interscience.wiley.com)

- ISI Web of Science (http://www.isiknowledge.com).

These databases were chosen as they provide the most important and with
highest impact full-text journals and conference proceedings, covering the
fields of software quality, software architecture and software engineering in
general. After an initial search in these databases, we did an additional
reference scanning and analysis in order to find out whether we have missed
anything, thus to guarantee that we have selected a representative set of
studies. The searched results were also checked against a core set of studies
within software architecture evolution and software quality analysis to
ensure confidence in the comprehensiveness of search results.

The notion of evolvability is used in many different ways in the context of
software engineering with many other closely-related alternative words such
as flexibility, maintainability, adaptability and modifiability. Therefore, we
consider these words in the list of search terms. In addition, a software
evolvability model outlined in [33] identified subcharacteristics that are of

1 The references starting with S are the studies that were identified in the systematic

review. A complete list of these studies can be found in Appendix A.

Architecting for Software Evolvability 55

primary importance for a software system to be evolvable (to be described in
Chapter 4). The identified subcharacteristics are a union of quality
characteristics that are relevant for characterization of evolution of long-
lived software-intensive systems during their lifecycle, comprising
analyzability, architectural integrity, changeability, extensibility, portability,
testability and domain-specific attributes. Thus, these evolvability
subcharacteristics also provided input and motivated the search terms that
we used in this research when searching for relevant studies.

Among evolvability subcharacteristics, portability and testability are not
explicitly considered as search terms for the review, as we have in the
preliminary search found that they are quite often pertained to
maintainability, adaptability and flexibility. Domain-specific attribute
comprises quality characteristics that are specific for a particular domain,
and is considered too general to be used as a search term. The remaining
subcharacteristics such as analyzability, changeability and extensibility are
included as search terms. In the end, the following search terms were used to
find relevant studies, and all these search terms were combined by using the
Boolean OR operator:

- S1: software architecture AND evolvability

- S2: software architecture AND maintainability

- S3: software architecture AND extensibility

- S4: software architecture AND adaptability

- S5: software architecture AND flexibility

- S6: software architecture AND changeability

- S7: software architecture AND modifiability

- S8: software architecture AND analyzability

The selection of studies was performed through a multi-step process:

- Search in databases to identify relevant studies by using the search
terms;

- Exclude studies based on the exclusion criteria;

- Exclude irrelevant studies based on analysis of their titles and
abstracts;

- Obtain primary studies based on full-text read.

Figure 3-1 shows the search process and the number of publications
identified at each stage.

Architecting for Software Evolvability 56

Figure 3-1: Stages of the search process

Duplicate publications were removed. We performed the search process at
two points in time, i.e., one in August 2009, and the other one in the end of
August 2010, with the intention to cover the latest results of publications in
2009 and 2010. In the first search process, the search strategy identified a
total of 3036 publications that we entered into the tool EndNote2, which was
also used in the subsequent steps for reference storage and sorting. These
publications were checked against the inclusion and exclusion criteria.
Irrelevant publications were removed, and this resulted in 731 remaining
publications. After further filtering by reading titles and abstracts, 306
publications were left for full text screening to ensure that the contents
indeed relate to the topic of software architecture evolution. In the end, 58
studies were identified as primary studies after the first search process. After
we had performed a complementary search in the end of August, 2010,
following the same entire search process, 24 new papers were added. This
resulted in a total of 82 studies in the final list, covering the publications up
to and including the first two quarters of 2010. We explain the relative high
increase of the studies as: (1) inclusion of studies from 2009 and 2010 (since
several studies from 2009 were not available in the database in the first
search), and (2) the increased interest in the topic.

3.1.4 Quality Assessment

To guide the interpretation of findings in the included studies and determine
the strength of inferences, we used the following quality criteria for

2 www.endnote.com

Architecting for Software Evolvability 57

appraising the selected studies. These criteria indicate the credibility of an
individual study when synthesizing results:

- The data analysis of the study is rigorous and based on evidence or
theoretical reasoning instead of non-justified or ad hoc statements;

- The study has a description of the context in which the research was
carried out;

- The aims of the study are supported by the design and execution of
research;

- The study has a description of the research method used for data
collection;

To ascertain our confidence in the credibility of a particular identified study
and its relevance for data synthesis in the review, all the included studies met
each of the four criteria.

3.1.5 Data Extraction and Synthesis

The data extraction and synthesis process was carried out by reading each of
the 82 papers thoroughly and extracting relevant data, which were managed
through bibliographical management tool EndNote and Excel spreadsheets.
In order to keep information consistent, the data extraction for the 82 studies
was driven by a form shown in Table 3-2.

For data synthesis, we inspected the extracted data for similarities in order to
define how results could be encapsulated. The results of the synthesis will be
described later in this chapter.

Architecting for Software Evolvability 56

Figure 3-1: Stages of the search process

Duplicate publications were removed. We performed the search process at
two points in time, i.e., one in August 2009, and the other one in the end of
August 2010, with the intention to cover the latest results of publications in
2009 and 2010. In the first search process, the search strategy identified a
total of 3036 publications that we entered into the tool EndNote2, which was
also used in the subsequent steps for reference storage and sorting. These
publications were checked against the inclusion and exclusion criteria.
Irrelevant publications were removed, and this resulted in 731 remaining
publications. After further filtering by reading titles and abstracts, 306
publications were left for full text screening to ensure that the contents
indeed relate to the topic of software architecture evolution. In the end, 58
studies were identified as primary studies after the first search process. After
we had performed a complementary search in the end of August, 2010,
following the same entire search process, 24 new papers were added. This
resulted in a total of 82 studies in the final list, covering the publications up
to and including the first two quarters of 2010. We explain the relative high
increase of the studies as: (1) inclusion of studies from 2009 and 2010 (since
several studies from 2009 were not available in the database in the first
search), and (2) the increased interest in the topic.

3.1.4 Quality Assessment

To guide the interpretation of findings in the included studies and determine
the strength of inferences, we used the following quality criteria for

2 www.endnote.com

Architecting for Software Evolvability 57

appraising the selected studies. These criteria indicate the credibility of an
individual study when synthesizing results:

- The data analysis of the study is rigorous and based on evidence or
theoretical reasoning instead of non-justified or ad hoc statements;

- The study has a description of the context in which the research was
carried out;

- The aims of the study are supported by the design and execution of
research;

- The study has a description of the research method used for data
collection;

To ascertain our confidence in the credibility of a particular identified study
and its relevance for data synthesis in the review, all the included studies met
each of the four criteria.

3.1.5 Data Extraction and Synthesis

The data extraction and synthesis process was carried out by reading each of
the 82 papers thoroughly and extracting relevant data, which were managed
through bibliographical management tool EndNote and Excel spreadsheets.
In order to keep information consistent, the data extraction for the 82 studies
was driven by a form shown in Table 3-2.

For data synthesis, we inspected the extracted data for similarities in order to
define how results could be encapsulated. The results of the synthesis will be
described later in this chapter.

Architecting for Software Evolvability 58

Table 3-2: Data extraction for each study

Extracted Data Description

Identity of study Unique identity for the study

Bibliographic references Author, year of publication, title and source of publication

Type of study Book, journal paper, conference paper, workshop paper

Focus of the study Main topic area, concepts, motivation and objective of the
study

Research method used for data
collection

Included technique for the design of the study, e.g., case
study, survey, experiment, interview to obtain data,
observation

Data analysis Qualitative or quantitative analysis of data

Application context Description of the context and application settings of the
study, e.g., domain, academic or industrial settings

Constraints and limitations Identified constraints and limitations in the application of
an approach as well as the identified areas for future
research

Architecture-centric activity Indicating the architecture-centric activity on which the
study is focused, e.g., business case, creating architecture,
documenting architecture, analyzing architecture, etc.

Software lifecycle The phase of software lifecycle covered in the study

3.2 Scope of the Systematic Review
This systematic review focuses mainly on the studies that describe
architectural approaches concerned with software architecture analysis and
software quality improvement related to software evolvability. Nevertheless,
software evolution spawns also research disciplines that are devoted to the
topic of migrating or reengineering legacy software systems by applying a
specific software development paradigm or technique to facilitate software
evolution, e.g., product line engineering, component-based software
engineering, and service-oriented software engineering.

Within the area of software product line engineering, basic principles are
elaborated in [28] and [141]. A software product family engineering
evaluation model is described by van der Linden et al. [172] to determine the
status of software family engineering, concerning dimensions in business,
architecture, organization and process. The RE_MODEL method [19]
integrates reengineering and product line activities to achieve a transition
into product line architecture. The PuLSE method [160] addresses the

Architecting for Software Evolvability 59

different phases of product line development, and is used to systematically
analyze a component and improve its reusability as well as maintainability.
In order to evaluate the potential of creating a product line from existing
products, MAP (Mining Architectures for Product Lines) [166] focuses on
the feasibility evaluation process of an organization’s decision to move
towards a product line. Options Analysis for Reengineering [163] is another
method for mining existing components for a product line. Maccari and Riva
[118] describe combining reference architecture and configuration
architecture to describe legacy product family architecture. Research is also
done in domain analysis methods. Some examples of the widely used
domain analysis techniques are Feature-Oriented Domain Analysis (FODA)
[95] and Feature-Oriented Reuse Method (FORM) [96], which use feature
models to organize system features into trees of nodes that represent the
commonality and variability within a software product line. Another notation
is the orthogonal variability model [14, 141], which is a graph of variation
points and variants.

Within the area of component-based and service-oriented software
engineering, Jiang and Willey [94] propose a multi-tiered architecture that
uses both services and components as architectural elements to offer flexible
solutions to the design and integration of large and distributed systems.
Wang and Fung [175] propose to organize enterprise functions as services
and implement them as component-based systems in order to offer flexible,
extensible and value-added services. Cervantes and Hall [49] introduce
service-oriented concepts into component models to provide support for late
binding and dynamic component availability in the component models.
O´Brien et al. [133] explore how service oriented architecture impacts
quality attributes. An industrial application of applying these techniques is
presented in a white paper [1].

As we see from the above, there are numerous reengineering techniques that
help transform software architectures for evolution. However, due to the
variety of software development paradigms and the many sub-disciplines
concerned in each paradigm, we have chosen to constrain the scope of our
systematic review to architectural methods that help analyze and improve
software evolvability in general. A survey of the studies that are concerned
with the “what” perspective [113] of software evolution and various
software development paradigms and reengineering techniques that facilitate
software evolution remains to be a future work.

Architecting for Software Evolvability 58

Table 3-2: Data extraction for each study

Extracted Data Description

Identity of study Unique identity for the study

Bibliographic references Author, year of publication, title and source of publication

Type of study Book, journal paper, conference paper, workshop paper

Focus of the study Main topic area, concepts, motivation and objective of the
study

Research method used for data
collection

Included technique for the design of the study, e.g., case
study, survey, experiment, interview to obtain data,
observation

Data analysis Qualitative or quantitative analysis of data

Application context Description of the context and application settings of the
study, e.g., domain, academic or industrial settings

Constraints and limitations Identified constraints and limitations in the application of
an approach as well as the identified areas for future
research

Architecture-centric activity Indicating the architecture-centric activity on which the
study is focused, e.g., business case, creating architecture,
documenting architecture, analyzing architecture, etc.

Software lifecycle The phase of software lifecycle covered in the study

3.2 Scope of the Systematic Review
This systematic review focuses mainly on the studies that describe
architectural approaches concerned with software architecture analysis and
software quality improvement related to software evolvability. Nevertheless,
software evolution spawns also research disciplines that are devoted to the
topic of migrating or reengineering legacy software systems by applying a
specific software development paradigm or technique to facilitate software
evolution, e.g., product line engineering, component-based software
engineering, and service-oriented software engineering.

Within the area of software product line engineering, basic principles are
elaborated in [28] and [141]. A software product family engineering
evaluation model is described by van der Linden et al. [172] to determine the
status of software family engineering, concerning dimensions in business,
architecture, organization and process. The RE_MODEL method [19]
integrates reengineering and product line activities to achieve a transition
into product line architecture. The PuLSE method [160] addresses the

Architecting for Software Evolvability 59

different phases of product line development, and is used to systematically
analyze a component and improve its reusability as well as maintainability.
In order to evaluate the potential of creating a product line from existing
products, MAP (Mining Architectures for Product Lines) [166] focuses on
the feasibility evaluation process of an organization’s decision to move
towards a product line. Options Analysis for Reengineering [163] is another
method for mining existing components for a product line. Maccari and Riva
[118] describe combining reference architecture and configuration
architecture to describe legacy product family architecture. Research is also
done in domain analysis methods. Some examples of the widely used
domain analysis techniques are Feature-Oriented Domain Analysis (FODA)
[95] and Feature-Oriented Reuse Method (FORM) [96], which use feature
models to organize system features into trees of nodes that represent the
commonality and variability within a software product line. Another notation
is the orthogonal variability model [14, 141], which is a graph of variation
points and variants.

Within the area of component-based and service-oriented software
engineering, Jiang and Willey [94] propose a multi-tiered architecture that
uses both services and components as architectural elements to offer flexible
solutions to the design and integration of large and distributed systems.
Wang and Fung [175] propose to organize enterprise functions as services
and implement them as component-based systems in order to offer flexible,
extensible and value-added services. Cervantes and Hall [49] introduce
service-oriented concepts into component models to provide support for late
binding and dynamic component availability in the component models.
O´Brien et al. [133] explore how service oriented architecture impacts
quality attributes. An industrial application of applying these techniques is
presented in a white paper [1].

As we see from the above, there are numerous reengineering techniques that
help transform software architectures for evolution. However, due to the
variety of software development paradigms and the many sub-disciplines
concerned in each paradigm, we have chosen to constrain the scope of our
systematic review to architectural methods that help analyze and improve
software evolvability in general. A survey of the studies that are concerned
with the “what” perspective [113] of software evolution and various
software development paradigms and reengineering techniques that facilitate
software evolution remains to be a future work.

Architecting for Software Evolvability 60

3.3 Overview of the Primary Studies
A list of all the selected primary studies is provided in Appendix A. This
section describes these studies with respect to their sources of publication
and citation status which are also indicators on the quality and their impact.
A temporal view and research communities that are active in the field of
software architecture evolution are presented as well.

3.3.1 Data Sources

Most of these 82 studies were published in leading journals, conferences or
seminal books that belong to the most cited publication sources in software
engineering community. Table 3-3 gives an overview of the distribution of
the studies based on their publication channels, along with the number of
studies from each source. All the studies fulfill the criteria for quality
assessment as described in Chapter 3.1.4. In addition, the impact factor3 of
the publication sources represents also the degree of high quality and
potential impact of these studies, and provides confidence in the overall
quality assessment of the systematic review. This is also indicated in the
citation status described in Chapter 3.3.2.

3 For instance, based on the search results (performed on 22nd of September, 2010) in

respective journal web sites, JSS has impact factor of value 1.34, JST with value of
1.82, Journal of Advanced Engineering Informatics of value 1.73.

Architecting for Software Evolvability 61

Table 3-3: Study distribution per publication sources

Source Count

Journal of Systems and Software (JSS) 14

Working IEEE/IFIP Conference on Software Architecture (WICSA) 8

Books 5

International Conference on Software Engineering (ICSE) 5

Workshop on Sharing and Reusing Architectural Knowledge-Architecture,
Rationale, and Design Intent (SHARK)

5

IEEE International Conference on Software Maintenance (ICSM) 4

Journal of Information and Software Technology (IST) 4

Journal of Systems Engineering 4

International Conference on Quality Software (QSIC) 3

International Workshop on Principles of Software Evolution (IWPSE) 2

IEEE/ACM International Conference on Automated Software Engineering (ASE) 2

European Conference on Software Maintenance and Reengineering 2

IEEE International Conference on Engineering of Complex Computer Systems 2

Journal of Software Maintenance and Evolution 1

Journal of Systems Architecture 1

Journal of Computer Standards & Interfaces 1

Journal of Advanced Engineering Informatics 1

Journal of Software: Practice and Experience 1

IEEE International Computer Software and Applications Conference 1

IEEE International Symposium on Requirements Engineering 1

IEEE Software 1

International Conference on Software Engineering Advances 1

International Conference on Information Science and Applications (ICISA) 1

International Conference on Research Challenges in Information Science 1

International Conference on Software Reuse 1

International Software Metrics Symposium 1

ACM SIGSOFT software engineering notes 1

Conference of the Centre for Advanced Studies on Collaborative research 1

International Conference and Workshops on Engineering of Computer-Based
Systems (ECBS)

1

International Computer Software and Applications Conference 1

Architecting for Software Evolvability 60

3.3 Overview of the Primary Studies
A list of all the selected primary studies is provided in Appendix A. This
section describes these studies with respect to their sources of publication
and citation status which are also indicators on the quality and their impact.
A temporal view and research communities that are active in the field of
software architecture evolution are presented as well.

3.3.1 Data Sources

Most of these 82 studies were published in leading journals, conferences or
seminal books that belong to the most cited publication sources in software
engineering community. Table 3-3 gives an overview of the distribution of
the studies based on their publication channels, along with the number of
studies from each source. All the studies fulfill the criteria for quality
assessment as described in Chapter 3.1.4. In addition, the impact factor3 of
the publication sources represents also the degree of high quality and
potential impact of these studies, and provides confidence in the overall
quality assessment of the systematic review. This is also indicated in the
citation status described in Chapter 3.3.2.

3 For instance, based on the search results (performed on 22nd of September, 2010) in

respective journal web sites, JSS has impact factor of value 1.34, JST with value of
1.82, Journal of Advanced Engineering Informatics of value 1.73.

Architecting for Software Evolvability 61

Table 3-3: Study distribution per publication sources

Source Count

Journal of Systems and Software (JSS) 14

Working IEEE/IFIP Conference on Software Architecture (WICSA) 8

Books 5

International Conference on Software Engineering (ICSE) 5

Workshop on Sharing and Reusing Architectural Knowledge-Architecture,
Rationale, and Design Intent (SHARK)

5

IEEE International Conference on Software Maintenance (ICSM) 4

Journal of Information and Software Technology (IST) 4

Journal of Systems Engineering 4

International Conference on Quality Software (QSIC) 3

International Workshop on Principles of Software Evolution (IWPSE) 2

IEEE/ACM International Conference on Automated Software Engineering (ASE) 2

European Conference on Software Maintenance and Reengineering 2

IEEE International Conference on Engineering of Complex Computer Systems 2

Journal of Software Maintenance and Evolution 1

Journal of Systems Architecture 1

Journal of Computer Standards & Interfaces 1

Journal of Advanced Engineering Informatics 1

Journal of Software: Practice and Experience 1

IEEE International Computer Software and Applications Conference 1

IEEE International Symposium on Requirements Engineering 1

IEEE Software 1

International Conference on Software Engineering Advances 1

International Conference on Information Science and Applications (ICISA) 1

International Conference on Research Challenges in Information Science 1

International Conference on Software Reuse 1

International Software Metrics Symposium 1

ACM SIGSOFT software engineering notes 1

Conference of the Centre for Advanced Studies on Collaborative research 1

International Conference and Workshops on Engineering of Computer-Based
Systems (ECBS)

1

International Computer Software and Applications Conference 1

Architecting for Software Evolvability 62

Source Count

ACIS International Conference on Software Engineering, Artificial Intelligences,
Networking and Parallel/Distributed Computing

1

International Workshop on Economic-Driven Software Engineering Research 1

International Workshop on the Economics of Software and Computation 1

European software engineering conference held jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering

1

World Congress on Computer Science and Information Engineering (CSIE) 1

Total 82

3.3.2 Citation Status

Table 3-4 provides an overview of the citation rates of the included studies.
These numbers are obtained from Google Scholar4. The data presented here
only gives a rough indication of citation rates, and are not meant for
comparison among studies. As shown in the table, 35 studies have been cited
by less than 10 other sources. Among these 35 studies, 22 are published in
2009 and 2010, so it is not expected that they can reach a higher citation
number in such a short period. Almost half of the studies (38 studies) have
been cited by more than 20 other sources. Thirteen studies have very high
citation rates with more than 80 other sources.

Table 3-4: Status of citation rate in detail

Cited by < 10
10 -
20

20 -
30

30 -
40

40 -
50

50 -
60

60 -
70

70 -
80

> 80

No. of

Studies

(Total 82)
35 9 10 1 6 4 2 2 13

We can see that in general, the citation rates of the studies are quite high,
which is also an indicator on the high quality and impact of the studies. We
expect that the number of citations will grow since most of the papers have
been published in the last six years (see Chapter 3.3.3). The most cited
studies (cited by more than 60 other sources) are summarized in Table 3-5.

4 http://scholar.google.se/ accessed on 4th of September, 2010

Architecting for Software Evolvability 63

The first five studies are books, and the rest are papers in journals and
conferences.

Table 3-5: Most cited studies

Ranking Study Titles

1 S8 L, Bass, P. Clements, R. Kazman, Software architecture in practice,
Addison-Wesley Professional, 2003.

2 S27 L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, Non-functional
requirements in software engineering: Springer, 2000.

3 S13 J. Bosch, Design and use of software architectures: adopting and
evolving a product-line approach, Addison-Wesley Professional, 2000.

4 S30 P. Clements, R. Kazman, M. Klein, Evaluating software architectures:
methods and case studies, Addison-Wesley, 2006.

5 S42 C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture: A
Practical Guide for Software Designers, Addison-Wesley Professional,
2000.

6 S47 R. Kazman, L. Bass, G. Abowd, M. Webb, SAAM: a method for
analyzing the properties of software architectures, International
Conference on Software Engineering, pp. 81-90, 1994.

7 S48 R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J.
Carriere, The architecture tradeoff analysis method, 4th IEEE
International Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 68-78, 1998.

8 S56 M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, W. M. Turski,
Metrics and laws of software evolution-the nineties view, 4th
International Software Metrics Symposium 1997.

9 S50 M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, H. Lipson,
Attribute-based architecture styles, Working IEEE/IFIP Conference on
Software Architecture (WICSA) 1999.

10 S72 K. J. Sullivan, W. G. Griswold, Y. Cai, B. Hallen, The structure and
value of modularity in software design, 8th European Software
Engineering Conference held jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
2001.

11 S11 P. Bengtsson, N. Lassing, J. Bosch, H. van Vliet, Architecture-level
modifiability analysis (ALMA), Journal of Systems and Software, vol.
69, pp. 129-147, 2004.

12 S46 R. Kazman., J. Asundi, M. Klein, Quantifying the costs and benefits of
architectural decisions, 23rd International Conference on Software
Engineering, 2001.

13 S9 P. Bengtsson, J. Bosch, Architecture level prediction of software
maintenance, 3rd European Conference on Software Maintenance and
Reengineering (CSMR), pp. 139-147, 1999.

Architecting for Software Evolvability 62

Source Count

ACIS International Conference on Software Engineering, Artificial Intelligences,
Networking and Parallel/Distributed Computing

1

International Workshop on Economic-Driven Software Engineering Research 1

International Workshop on the Economics of Software and Computation 1

European software engineering conference held jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering

1

World Congress on Computer Science and Information Engineering (CSIE) 1

Total 82

3.3.2 Citation Status

Table 3-4 provides an overview of the citation rates of the included studies.
These numbers are obtained from Google Scholar4. The data presented here
only gives a rough indication of citation rates, and are not meant for
comparison among studies. As shown in the table, 35 studies have been cited
by less than 10 other sources. Among these 35 studies, 22 are published in
2009 and 2010, so it is not expected that they can reach a higher citation
number in such a short period. Almost half of the studies (38 studies) have
been cited by more than 20 other sources. Thirteen studies have very high
citation rates with more than 80 other sources.

Table 3-4: Status of citation rate in detail

Cited by < 10
10 -
20

20 -
30

30 -
40

40 -
50

50 -
60

60 -
70

70 -
80

> 80

No. of

Studies

(Total 82)
35 9 10 1 6 4 2 2 13

We can see that in general, the citation rates of the studies are quite high,
which is also an indicator on the high quality and impact of the studies. We
expect that the number of citations will grow since most of the papers have
been published in the last six years (see Chapter 3.3.3). The most cited
studies (cited by more than 60 other sources) are summarized in Table 3-5.

4 http://scholar.google.se/ accessed on 4th of September, 2010

Architecting for Software Evolvability 63

The first five studies are books, and the rest are papers in journals and
conferences.

Table 3-5: Most cited studies

Ranking Study Titles

1 S8 L, Bass, P. Clements, R. Kazman, Software architecture in practice,
Addison-Wesley Professional, 2003.

2 S27 L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, Non-functional
requirements in software engineering: Springer, 2000.

3 S13 J. Bosch, Design and use of software architectures: adopting and
evolving a product-line approach, Addison-Wesley Professional, 2000.

4 S30 P. Clements, R. Kazman, M. Klein, Evaluating software architectures:
methods and case studies, Addison-Wesley, 2006.

5 S42 C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture: A
Practical Guide for Software Designers, Addison-Wesley Professional,
2000.

6 S47 R. Kazman, L. Bass, G. Abowd, M. Webb, SAAM: a method for
analyzing the properties of software architectures, International
Conference on Software Engineering, pp. 81-90, 1994.

7 S48 R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J.
Carriere, The architecture tradeoff analysis method, 4th IEEE
International Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 68-78, 1998.

8 S56 M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, W. M. Turski,
Metrics and laws of software evolution-the nineties view, 4th
International Software Metrics Symposium 1997.

9 S50 M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, H. Lipson,
Attribute-based architecture styles, Working IEEE/IFIP Conference on
Software Architecture (WICSA) 1999.

10 S72 K. J. Sullivan, W. G. Griswold, Y. Cai, B. Hallen, The structure and
value of modularity in software design, 8th European Software
Engineering Conference held jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
2001.

11 S11 P. Bengtsson, N. Lassing, J. Bosch, H. van Vliet, Architecture-level
modifiability analysis (ALMA), Journal of Systems and Software, vol.
69, pp. 129-147, 2004.

12 S46 R. Kazman., J. Asundi, M. Klein, Quantifying the costs and benefits of
architectural decisions, 23rd International Conference on Software
Engineering, 2001.

13 S9 P. Bengtsson, J. Bosch, Architecture level prediction of software
maintenance, 3rd European Conference on Software Maintenance and
Reengineering (CSMR), pp. 139-147, 1999.

Architecting for Software Evolvability 64

Ranking Study Titles

14 S10 P. Bengtsson, J. Bosch, Scenario-based software architecture
reengineering, International Conference on Software Reuse, pp. 308-
317, 1998.

15 S81 W. M. N. Wan-Kadir, P. Loucopoulos, Relating evolving business
rules to software design, Journal of Systems Architecture, vol. 50, pp.
367-382, 2004.

16 S53 N. Lassing, P. Bengtsson, H. van Vliet, J. Bosch, Experiences with
ALMA: Architecture-Level Modifiability Analysis, Journal of Systems
and Software, vol. 61, pp. 47-57, 2002.

17 S45 A. Jansen, J. Van der Ven, P. Avgeriou, D. K. Hammer, Tool support
for architectural decisions, Working IEEE/IFIP Conference on
Software Architecture (WICSA) 2007.

3.3.3 Temporal View

Looking at the studies by year of publication as shown in Figure 3-2, we
notice in the trend curve an increasing number of publications in the area of
software architecture evolution since 1999. (Note that for year 2010, the
review only covers the registered publications in the databases until the first
two quarters.) We also notice that all of the included studies were published
in 1992 or later. As described in Chapter 3.1.2, we did not set a lower
boundary for the year of publication in the search process, yet the time frame
of identified studies reflects also the time frame of the evolution and
maturation of software architecture area. The significant increase of
publications in software architecture evolution area, especially during the
last two years, indicates that, as more and more systems become legacy over
the years, the crucial role of software architecture evolution is being
recognized. The recent boost in research also reflects that the ability to
evolve software rapidly and reliably has become a major challenge and
research focus for software engineering.

Architecting for Software Evolvability 65

0

2

4

6

8

10

12

14

16

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 3-2: Number of papers by year of publication

3.3.4 Active Research Communities

In terms of the active research communities within the area of software
architecture evolution and software evolvability, we look at the affiliation
details5 of the identified set of studies. The assignment of contributed studies
of each active research community is based on the affiliations that appeared
in the publications. Table 3-6 summarizes the active research communities
(with at least two publications within software architecture evolution) along
with their corresponding contributed studies. Overall, the set of studies are
dominated by Software Engineering Institute (SEI)/Carnegie Mellon
University, Vrije University, and University of Groningen.

5 Please note that during the search process of relevant studies, we did not use any

information on authors or research centers for identifying studies because the
result of identified studies would be otherwise limited and biased.

Architecting for Software Evolvability 64

Ranking Study Titles

14 S10 P. Bengtsson, J. Bosch, Scenario-based software architecture
reengineering, International Conference on Software Reuse, pp. 308-
317, 1998.

15 S81 W. M. N. Wan-Kadir, P. Loucopoulos, Relating evolving business
rules to software design, Journal of Systems Architecture, vol. 50, pp.
367-382, 2004.

16 S53 N. Lassing, P. Bengtsson, H. van Vliet, J. Bosch, Experiences with
ALMA: Architecture-Level Modifiability Analysis, Journal of Systems
and Software, vol. 61, pp. 47-57, 2002.

17 S45 A. Jansen, J. Van der Ven, P. Avgeriou, D. K. Hammer, Tool support
for architectural decisions, Working IEEE/IFIP Conference on
Software Architecture (WICSA) 2007.

3.3.3 Temporal View

Looking at the studies by year of publication as shown in Figure 3-2, we
notice in the trend curve an increasing number of publications in the area of
software architecture evolution since 1999. (Note that for year 2010, the
review only covers the registered publications in the databases until the first
two quarters.) We also notice that all of the included studies were published
in 1992 or later. As described in Chapter 3.1.2, we did not set a lower
boundary for the year of publication in the search process, yet the time frame
of identified studies reflects also the time frame of the evolution and
maturation of software architecture area. The significant increase of
publications in software architecture evolution area, especially during the
last two years, indicates that, as more and more systems become legacy over
the years, the crucial role of software architecture evolution is being
recognized. The recent boost in research also reflects that the ability to
evolve software rapidly and reliably has become a major challenge and
research focus for software engineering.

Architecting for Software Evolvability 65

0

2

4

6

8

10

12

14

16

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 3-2: Number of papers by year of publication

3.3.4 Active Research Communities

In terms of the active research communities within the area of software
architecture evolution and software evolvability, we look at the affiliation
details5 of the identified set of studies. The assignment of contributed studies
of each active research community is based on the affiliations that appeared
in the publications. Table 3-6 summarizes the active research communities
(with at least two publications within software architecture evolution) along
with their corresponding contributed studies. Overall, the set of studies are
dominated by Software Engineering Institute (SEI)/Carnegie Mellon
University, Vrije University, and University of Groningen.

5 Please note that during the search process of relevant studies, we did not use any

information on authors or research centers for identifying studies because the
result of identified studies would be otherwise limited and biased.

Architecting for Software Evolvability 66

Table 3-6: Active research communities within architecture evolution

Affiliations Contributed Studies Number

of Studies

Software Engineering Institute, Carnegie
Mellon University, USA

[S8, S23, S24, S29, S30, S39,
S46, S47, S48, S50, S64]

11

Vrije University, the Netherlands [S11, S32, S36, S51, S52, S53,
S54, S68, S80]

9

University of Groningen, the Netherlands [S13, S32, S43, S44, S45, S53,
S78]

7

University of Texas, USA [S12, S26, S27, S28, S71] 5

Blekinge Institute of Technology/
University of Karlskrona/Ronneby, Sweden

[S9, S10, S11, S53, S73] 5

University Rey Juan Carlos, Spain [S3, S21, S22, S78] 4

Swinburne University of Technology,
Australia

[S19, S77, S78, S80] 4

National ICT Australia, Australia [S1, S77, S82] 3

University of Limerick, Ireland [S2, S3, S78] 3

University of New South Wales, Australia [S1, S3, S82] 3

University of Waterloo, Canada [S47, S58, S74] 3

Imperial College of Science, England [S56, S67] 2

Mälardalen University, Sweden [S15, S16] 2

ABB Corporate Research, Sweden [S15, S16] 2

Nokia Research Center, Finland [S33, S34] 2

Technical University Ilmenau, Germany [S17, S40] 2

Texas Christian University, USA [S18, S35] 2

University College London, England [S6, S7] 2

3.3.5 Classification of the Primary Studies

As described in Chapter 3.1.5, during the data synthesis phase, we examined
the identified studies based on their similarities in terms of research topics
and contents in order to categorize the included primary studies of
architecture evolution and software evolvability. Besides classifying the
included studies, we also examined the research method used for data
collection in each study, and application context for each approach described
in the studies. The research method used for data collection in the included
study is the techniques used for the design of the study, such as case study,

Architecting for Software Evolvability 67

survey, experiment, interview or observation to obtain data. This information
is the input to the “Included Technique” columns in Table 3-7 to Table 3-15,
explaining the specific techniques used in each approach. The application
context of each approach refers to the description of the context and
application settings of the study described in the included studies, e.g.,
domain, academic or industrial settings. This information is the input to the
“Validation” columns in Table 3-7 to Table 3-15, explaining the context
(academic/industrial setting and in which domain) of the application of each
approach.

After examining the research topics addressed in each study, we identified,
from the included studies, five main categories of themes, two of which are
further refined into sub-categories to group primary studies that share similar
characteristics in terms of specific research focus, research concepts and
contexts. The categories and sub-categories are:

- Quality considerations during software architecture design

This category focuses on how software quality can be introduced and
explicitly considered during software architecture design phase. Three
sub-categories are:

- Quality attribute requirement focused [S8, S10, S13, S25,
S26, S27, S79]

- Quality attribute scenario focused [S24, S30]

- Influencing factor focused [S1, S29, S31, S38, S42, S80]

- Architectural quality evaluation

This category focuses on the subsequent iteration when the architecture
starts to take form, with emphasis on architectural quality evaluation
methods that help elicit and refine additional quality attribute
requirements and scenarios. Three sub-categories are:

- Experience based [S14, S34, S37, S50, S73]

- Scenario based [S11, S33, S47, S48, S53, S54, S62]

- Metric based [S5, S15, S16, S28, S55, S56, S57, S67, S71,
S75]

- Economic valuation

This category focuses on consideration of cost, effort, value and
alignment with business goals, when determining an appropriate degree
of architectural flexibility. [S4, S6, S7, S9, S18, S23, S35, S46, S64,
S66, S72]

Architecting for Software Evolvability 66

Table 3-6: Active research communities within architecture evolution

Affiliations Contributed Studies Number

of Studies

Software Engineering Institute, Carnegie
Mellon University, USA

[S8, S23, S24, S29, S30, S39,
S46, S47, S48, S50, S64]

11

Vrije University, the Netherlands [S11, S32, S36, S51, S52, S53,
S54, S68, S80]

9

University of Groningen, the Netherlands [S13, S32, S43, S44, S45, S53,
S78]

7

University of Texas, USA [S12, S26, S27, S28, S71] 5

Blekinge Institute of Technology/
University of Karlskrona/Ronneby, Sweden

[S9, S10, S11, S53, S73] 5

University Rey Juan Carlos, Spain [S3, S21, S22, S78] 4

Swinburne University of Technology,
Australia

[S19, S77, S78, S80] 4

National ICT Australia, Australia [S1, S77, S82] 3

University of Limerick, Ireland [S2, S3, S78] 3

University of New South Wales, Australia [S1, S3, S82] 3

University of Waterloo, Canada [S47, S58, S74] 3

Imperial College of Science, England [S56, S67] 2

Mälardalen University, Sweden [S15, S16] 2

ABB Corporate Research, Sweden [S15, S16] 2

Nokia Research Center, Finland [S33, S34] 2

Technical University Ilmenau, Germany [S17, S40] 2

Texas Christian University, USA [S18, S35] 2

University College London, England [S6, S7] 2

3.3.5 Classification of the Primary Studies

As described in Chapter 3.1.5, during the data synthesis phase, we examined
the identified studies based on their similarities in terms of research topics
and contents in order to categorize the included primary studies of
architecture evolution and software evolvability. Besides classifying the
included studies, we also examined the research method used for data
collection in each study, and application context for each approach described
in the studies. The research method used for data collection in the included
study is the techniques used for the design of the study, such as case study,

Architecting for Software Evolvability 67

survey, experiment, interview or observation to obtain data. This information
is the input to the “Included Technique” columns in Table 3-7 to Table 3-15,
explaining the specific techniques used in each approach. The application
context of each approach refers to the description of the context and
application settings of the study described in the included studies, e.g.,
domain, academic or industrial settings. This information is the input to the
“Validation” columns in Table 3-7 to Table 3-15, explaining the context
(academic/industrial setting and in which domain) of the application of each
approach.

After examining the research topics addressed in each study, we identified,
from the included studies, five main categories of themes, two of which are
further refined into sub-categories to group primary studies that share similar
characteristics in terms of specific research focus, research concepts and
contexts. The categories and sub-categories are:

- Quality considerations during software architecture design

This category focuses on how software quality can be introduced and
explicitly considered during software architecture design phase. Three
sub-categories are:

- Quality attribute requirement focused [S8, S10, S13, S25,
S26, S27, S79]

- Quality attribute scenario focused [S24, S30]

- Influencing factor focused [S1, S29, S31, S38, S42, S80]

- Architectural quality evaluation

This category focuses on the subsequent iteration when the architecture
starts to take form, with emphasis on architectural quality evaluation
methods that help elicit and refine additional quality attribute
requirements and scenarios. Three sub-categories are:

- Experience based [S14, S34, S37, S50, S73]

- Scenario based [S11, S33, S47, S48, S53, S54, S62]

- Metric based [S5, S15, S16, S28, S55, S56, S57, S67, S71,
S75]

- Economic valuation

This category focuses on consideration of cost, effort, value and
alignment with business goals, when determining an appropriate degree
of architectural flexibility. [S4, S6, S7, S9, S18, S23, S35, S46, S64,
S66, S72]

Architecting for Software Evolvability 68

- Architectural knowledge management

This category focuses on how architecture documentation can be
enriched through utilizing different information sources to capture
architectural knowledge for quality attributes and their rationale. [S2, S3,
S12, S19, S20, S21, S22, S36, S40, S43, S44, S45, S52, S68, S70, S77,
S78, S82]

- Modeling techniques

This category focuses on modeling traceability and visualizing
corresponding impact of the evolution of software architecture artifacts.
[S17, S32, S39, S41, S49, S51, S58, S59, S60, S61, S63, S65, S69, S74,
S76, S81]

Figure 3-3 illustrates these categories of themes and their corresponding sub-
categories along with an overview of distribution of studies.

Figure 3-3: Classification of included studies

Architecting for Software Evolvability 69

These five categories of themes represent an overview of the main topics of
software architecture evolution research. Each theme stands for a research
direction on its own, with only a subset of its research and application
dedicated to the area of software architecture evolution. As explained, each
theme exhibits its specific research focus. Therefore, taking into
consideration that evolvability needs to be addressed throughout the
complete software lifecycle, the approaches addressed in each category of
theme can be combined to complement each other from different
perspectives in order to achieve software evolvability.

The categories and their corresponding sub-categories will be further
detailed in the rest of this chapter. For each category of theme, we describe
the category and related studies, along with their relevance to software
evolvability. An analysis of the studies is discussed and summarized in
tables. Each table includes the following items:

- The main focus and application context of each approach, including
issues such as constraints and limitations;

- The techniques adopted in each approach;

- Research validation environment.

3.4 Quality Considerations during Software
Architecture Design
This category includes studies that focus on how software quality can be
introduced and explicitly considered during software architecture design
phase. These studies help identify key quality attributes and constraints
early, usually before the software architecture starts to take form. Based on
their focus, the studies are further classified into three sub-categories:

- Quality attribute requirement-focused;

- Quality attribute scenario-focused;

- Influencing factor-focused.

3.4.1 Quality Attribute Requirement-Focused

The studies in this sub-category perceive quality attribute requirements as
the main focus in the software architecture design phase, and consider each
design decision based on its implications on the prioritized quality attributes.

Architecting for Software Evolvability 68

- Architectural knowledge management

This category focuses on how architecture documentation can be
enriched through utilizing different information sources to capture
architectural knowledge for quality attributes and their rationale. [S2, S3,
S12, S19, S20, S21, S22, S36, S40, S43, S44, S45, S52, S68, S70, S77,
S78, S82]

- Modeling techniques

This category focuses on modeling traceability and visualizing
corresponding impact of the evolution of software architecture artifacts.
[S17, S32, S39, S41, S49, S51, S58, S59, S60, S61, S63, S65, S69, S74,
S76, S81]

Figure 3-3 illustrates these categories of themes and their corresponding sub-
categories along with an overview of distribution of studies.

Figure 3-3: Classification of included studies

Architecting for Software Evolvability 69

These five categories of themes represent an overview of the main topics of
software architecture evolution research. Each theme stands for a research
direction on its own, with only a subset of its research and application
dedicated to the area of software architecture evolution. As explained, each
theme exhibits its specific research focus. Therefore, taking into
consideration that evolvability needs to be addressed throughout the
complete software lifecycle, the approaches addressed in each category of
theme can be combined to complement each other from different
perspectives in order to achieve software evolvability.

The categories and their corresponding sub-categories will be further
detailed in the rest of this chapter. For each category of theme, we describe
the category and related studies, along with their relevance to software
evolvability. An analysis of the studies is discussed and summarized in
tables. Each table includes the following items:

- The main focus and application context of each approach, including
issues such as constraints and limitations;

- The techniques adopted in each approach;

- Research validation environment.

3.4 Quality Considerations during Software
Architecture Design
This category includes studies that focus on how software quality can be
introduced and explicitly considered during software architecture design
phase. These studies help identify key quality attributes and constraints
early, usually before the software architecture starts to take form. Based on
their focus, the studies are further classified into three sub-categories:

- Quality attribute requirement-focused;

- Quality attribute scenario-focused;

- Influencing factor-focused.

3.4.1 Quality Attribute Requirement-Focused

The studies in this sub-category perceive quality attribute requirements as
the main focus in the software architecture design phase, and consider each
design decision based on its implications on the prioritized quality attributes.

Architecting for Software Evolvability 70

- Attribute-Driven Design (ADD) [S8] is a recursive top-down method
for architects to hierarchically decompose a system and define
software architecture by applying architectural tactics and patterns.
It is applied after the requirement analysis phase in the lifecycle to
accomplish a software system’s coarse-grained high-level
conceptual architecture. The driving forces in the design process
include functional requirements, quality attribute requirements and
design constraints that are well-formed and prioritized by
stakeholders. ADD centralizes around prioritized requirements. The
secondary requirements are fulfilled within the constraints of the
most important ones.

- Quality Attribute Oriented Software Architecture Design (QASAR)
[S10,S13] describes a software design method that explicitly
considers quality attributes during the design process. The method
consists of three key phases, i.e., functionality-based architecture
design, architecture assessment and architecture transformation. The
design process starts with an application architectural design based
on the functional requirements without explicitly addressing quality
requirements. This design is then evaluated with respect to quality
requirements qualitatively or quantitatively to achieve an estimated
value for each quality attribute. Depending on whether or not the
estimated value satisfies the requirement specification, an
architecture transformation might be required for quality attribute
optimization.

- Architectural prototyping [S25] is an another technique to design
software architectures by using executable code to investigate
architectural quality attributes that are related to stakeholders’
concerns with respect to a system under its development.

- Non-Functional Requirement (NFR) framework [S27] is a process-
oriented and qualitative decomposition approach for eliciting and
analyzing non-functional requirements. It systematically takes into
consideration the conflicts and synergies between NFRs in order to
develop an evolvable architecture. The operation of the framework
is visualized through soft-goal interdependency graphs in which
quality requirements are treated as soft-goals to be achieved. High-
level soft goals are refined into more specific sub-goals. To satisfy
each sub-goal, design decisions are reinforced with a design
rationale. One limitation of the framework is that it treats all NFRs
as soft goals that are to be “satisficed”, i.e., not absolutely achieved
but within acceptable limits. This might lead to ambiguity in

Architecting for Software Evolvability 71

requirement specifications when there is a need to characterize and
quantify hard goals, e.g., requirements in hard real time systems.
One example of using NFR framework along with design patterns
for developing adaptable software architecture is described in [S26].
This approach takes into consideration particular characteristics of
software system domain, and refines quality requirements into
architectural concepts and alternatives, that are subsequently
satisfied with design patterns.

- Adaptability Evaluation Method (AEM) [S79] is an integral part of
the Quality-driven Architecture Design and quality Analysis
(QADA) methodology [122] with specialization in the adaptability
aspect. AEM defines adaptability goals through capturing the
adaptability requirements that will be subsequently considered in the
architecture design. In this study, guidelines on how to model
adaptability in architectural models are provided. The approach is
used to qualitatively/quantitatively analyze candidate architectures
to ensure that adaptability requirements are met before system
implementation.

Relevance to software evolvability

Except [S26] and [S79], the other approaches address software quality
attributes in general, and can be tailored to address evolvability by focusing
on evolvability subcharacteristics and by considering the impacts of a design
decision on these subcharacteristics. Both [S26] and [S79] explicitly address
adaptability, though the definitions of adaptability differ. In [S79],
adaptability is regarded as a qualitative property of software architecture’s
maintainability (which is a superset of flexibility, integrability, testability
and modifiability), and includes runtime requirements of the software system
as well as adaptation to changes in stakeholders’ requirements. In [S26]
adaptability is perceived to be heavily dependent on a particular software
development project’s scope and nature. This approach only focuses on few
design patterns that enhance adaptability of real-time software systems, and
does not address the multifaceted evolvability perspective of long-lived
software systems.

A summary of quality attribute requirement-focused approaches is given in
Table 3-7, describing the main focus and application context of each
approach, along with issues such as constraints and limitations; the
techniques adopted in each approach as well as research validation
environment.

Architecting for Software Evolvability 70

- Attribute-Driven Design (ADD) [S8] is a recursive top-down method
for architects to hierarchically decompose a system and define
software architecture by applying architectural tactics and patterns.
It is applied after the requirement analysis phase in the lifecycle to
accomplish a software system’s coarse-grained high-level
conceptual architecture. The driving forces in the design process
include functional requirements, quality attribute requirements and
design constraints that are well-formed and prioritized by
stakeholders. ADD centralizes around prioritized requirements. The
secondary requirements are fulfilled within the constraints of the
most important ones.

- Quality Attribute Oriented Software Architecture Design (QASAR)
[S10,S13] describes a software design method that explicitly
considers quality attributes during the design process. The method
consists of three key phases, i.e., functionality-based architecture
design, architecture assessment and architecture transformation. The
design process starts with an application architectural design based
on the functional requirements without explicitly addressing quality
requirements. This design is then evaluated with respect to quality
requirements qualitatively or quantitatively to achieve an estimated
value for each quality attribute. Depending on whether or not the
estimated value satisfies the requirement specification, an
architecture transformation might be required for quality attribute
optimization.

- Architectural prototyping [S25] is an another technique to design
software architectures by using executable code to investigate
architectural quality attributes that are related to stakeholders’
concerns with respect to a system under its development.

- Non-Functional Requirement (NFR) framework [S27] is a process-
oriented and qualitative decomposition approach for eliciting and
analyzing non-functional requirements. It systematically takes into
consideration the conflicts and synergies between NFRs in order to
develop an evolvable architecture. The operation of the framework
is visualized through soft-goal interdependency graphs in which
quality requirements are treated as soft-goals to be achieved. High-
level soft goals are refined into more specific sub-goals. To satisfy
each sub-goal, design decisions are reinforced with a design
rationale. One limitation of the framework is that it treats all NFRs
as soft goals that are to be “satisficed”, i.e., not absolutely achieved
but within acceptable limits. This might lead to ambiguity in

Architecting for Software Evolvability 71

requirement specifications when there is a need to characterize and
quantify hard goals, e.g., requirements in hard real time systems.
One example of using NFR framework along with design patterns
for developing adaptable software architecture is described in [S26].
This approach takes into consideration particular characteristics of
software system domain, and refines quality requirements into
architectural concepts and alternatives, that are subsequently
satisfied with design patterns.

- Adaptability Evaluation Method (AEM) [S79] is an integral part of
the Quality-driven Architecture Design and quality Analysis
(QADA) methodology [122] with specialization in the adaptability
aspect. AEM defines adaptability goals through capturing the
adaptability requirements that will be subsequently considered in the
architecture design. In this study, guidelines on how to model
adaptability in architectural models are provided. The approach is
used to qualitatively/quantitatively analyze candidate architectures
to ensure that adaptability requirements are met before system
implementation.

Relevance to software evolvability

Except [S26] and [S79], the other approaches address software quality
attributes in general, and can be tailored to address evolvability by focusing
on evolvability subcharacteristics and by considering the impacts of a design
decision on these subcharacteristics. Both [S26] and [S79] explicitly address
adaptability, though the definitions of adaptability differ. In [S79],
adaptability is regarded as a qualitative property of software architecture’s
maintainability (which is a superset of flexibility, integrability, testability
and modifiability), and includes runtime requirements of the software system
as well as adaptation to changes in stakeholders’ requirements. In [S26]
adaptability is perceived to be heavily dependent on a particular software
development project’s scope and nature. This approach only focuses on few
design patterns that enhance adaptability of real-time software systems, and
does not address the multifaceted evolvability perspective of long-lived
software systems.

A summary of quality attribute requirement-focused approaches is given in
Table 3-7, describing the main focus and application context of each
approach, along with issues such as constraints and limitations; the
techniques adopted in each approach as well as research validation
environment.

Architecting for Software Evolvability 72

Although these approaches focus on quality attribute requirements, they
differ from each other. The NFR framework considers quality attributes as
soft goals, i.e., there is no clear-cut definition and criteria as to whether they
are satisfied or not. This is in contrast with ADD in which quality attribute
requirements are well-formed and prioritized. Besides quality attributes,
ADD also considers functional requirements as primary drivers in the design
process. This is in contrast with QASAR method, which conceives
functional requirements as the primary driver for creating application
architectural design, whereas quality attributes are treated as secondary
drivers, and are not considered a driving force in the first phase of the
architecture development.

Architecting for Software Evolvability 73

Table 3-7. Qualities attribute requirement-focused approaches

Study Focus and Application Context Included

Technique

Validation

S8 Focus on prioritized requirements,
i.e., functional requirements, quality
attribute requirements and design
constraints.

Assist architects in making design
decisions based on their effects on
quality attributes

Recursive top-down
design

Validated in various
domains

S10,
S13

The design process separates
architectural design based on
functional requirements and quality
requirement optimization.

An iterative design process to
optimize architecture.

Several
optimization
techniques are used,
e.g., scenarios,
simulations,
mathematical
modeling

Validated in
embedded systems
domain

S25 Investigate architectural qualities and
stakeholders’ concerns by using
executable code.

Experimental
technique

Validated in various
domains

S26 Require clarifications of the notion of
adaptability in order to refine
adaptability requirements.

Particular domain characteristics are
considered.

NFR – soft goal
interdependency
graph.

Design patterns.

Qualitative tradeoff
analysis of impact

Illustrated by a
home appliance
control system

S27 Treat non-functional requirements as
soft goals.

Considers each design decision based
on its effects on the quality attributes.

Does not provide support to
explicitly perform tradeoff analysis
between competing design decisions.

NFR framework
with soft goal
interdependency
graph

Validated in various
domains

S79 Identify stakeholders and their
concerns.

Qualitative and/or quantitative
analysis of adaptability depending on
the knowledge of components’
behavior.

Strategic
Dependency Model
(SDM).

Objective reasoning
for qualitative
analysis

Validated in an
industrial case
study in wireless
environment
controlling system

Architecting for Software Evolvability 72

Although these approaches focus on quality attribute requirements, they
differ from each other. The NFR framework considers quality attributes as
soft goals, i.e., there is no clear-cut definition and criteria as to whether they
are satisfied or not. This is in contrast with ADD in which quality attribute
requirements are well-formed and prioritized. Besides quality attributes,
ADD also considers functional requirements as primary drivers in the design
process. This is in contrast with QASAR method, which conceives
functional requirements as the primary driver for creating application
architectural design, whereas quality attributes are treated as secondary
drivers, and are not considered a driving force in the first phase of the
architecture development.

Architecting for Software Evolvability 73

Table 3-7. Qualities attribute requirement-focused approaches

Study Focus and Application Context Included

Technique

Validation

S8 Focus on prioritized requirements,
i.e., functional requirements, quality
attribute requirements and design
constraints.

Assist architects in making design
decisions based on their effects on
quality attributes

Recursive top-down
design

Validated in various
domains

S10,
S13

The design process separates
architectural design based on
functional requirements and quality
requirement optimization.

An iterative design process to
optimize architecture.

Several
optimization
techniques are used,
e.g., scenarios,
simulations,
mathematical
modeling

Validated in
embedded systems
domain

S25 Investigate architectural qualities and
stakeholders’ concerns by using
executable code.

Experimental
technique

Validated in various
domains

S26 Require clarifications of the notion of
adaptability in order to refine
adaptability requirements.

Particular domain characteristics are
considered.

NFR – soft goal
interdependency
graph.

Design patterns.

Qualitative tradeoff
analysis of impact

Illustrated by a
home appliance
control system

S27 Treat non-functional requirements as
soft goals.

Considers each design decision based
on its effects on the quality attributes.

Does not provide support to
explicitly perform tradeoff analysis
between competing design decisions.

NFR framework
with soft goal
interdependency
graph

Validated in various
domains

S79 Identify stakeholders and their
concerns.

Qualitative and/or quantitative
analysis of adaptability depending on
the knowledge of components’
behavior.

Strategic
Dependency Model
(SDM).

Objective reasoning
for qualitative
analysis

Validated in an
industrial case
study in wireless
environment
controlling system

Architecting for Software Evolvability 74

3.4.2 Quality Attribute Scenario-Focused

The studies in this sub-category focus on mapping architectural quality goals
into concrete scenarios to characterize stakeholders’ concerns throughout the
software architecture design phase.

- Software architecture analysis method [S24] defines several steps in
the software design process: (i) architectural quality goals are
expressed through scenarios to characterize the generic quality goals
in concern; (ii) mechanisms are tailored to realize the scenarios
within the design constraints; and (iii) analytic models are
instantiated by scenarios that represent quality attributes of interest
or potential risk areas in architecture. The constitution of the analytic
models is an iterative process due to the ever-changing architectural
requirements and design constraints. As the system evolves, the
analytic models can be used to assess the impact of architectural
changes and monitor how architectural evolution affects its
capability to support predicted modifications.

- Active Reviews for Intermediate Designs (ARID) [S30] is a scenario-
based assessment method for evaluating intermediate design or parts
of an architecture for early feedback. It is a lightweight method that
can be used to judge if the design of a partial architecture is
appropriate for its intended purpose before the development of the
complete architecture. The stakeholders involved in ARID
brainstorm and prioritize scenarios that represent foremost problems
that the design is expected to handle, in order to assess the suitability
of a design approach and discover discrepancies.

Relevance to software evolvability

Applying the software architecture analysis approach in [S24] would require
quite a number of evolvability scenarios to address and cover evolvability
subcharacteristics. Another limitation is that while scenarios are anticipated
events in the system life-time, evolvability by nature concerns also
unanticipated events. These limitations apply to all scenario-based methods.
The approach in [S30] focuses more on scenarios that represent foremost
problems the design is expected to handle rather than considering a system’s
long-term evolvability aspect. Therefore, this approach needs to be
complemented with more explicit consideration of scenarios that would
cover evolvability concern and subcharacteristics.

A summary of quality attribute scenario-focused approaches is given in
Table 3-8. All approaches utilize quality attribute scenarios though with

Architecting for Software Evolvability 75

distinct purposes; the scenarios in [S24] are used for concretizing
architectural quality goals, whereas the scenarios in [S30] are used to
identify most important functions, issues and problems that are embedded in
intermediate design.

Table 3-8: Quality attributes scenario-focused approaches

Study Focus and Application Context Included

Technique

Validation

S24 Architectural quality goals are
mapped into scenarios, mechanisms
that realize the scenarios, and analytic
models that measure the results

Scenarios.
Analytic models

Validated with
example scenarios
from two real-life
software systems

S30 Judge the appropriateness of a partial
architecture for its intended purpose
during architecture design

Active design
review.
Scenarios.
Stakeholder-centric

Validated in
various domains

3.4.3 Influencing Factor-Focused

The studies in this sub-category focus on, early in the design phase,
managing factors that are architecturally significant, and constraints that
have influence on the design process, along with inter-dependencies among
these factors and constraints that would affect the choice of design decisions.

- ArchDesigner [S1] is a quantitative quality-driven design approach
for architectural design process. The approach evaluates
stakeholders’ quality preferences and design alternatives.
Meanwhile, a software architecture design problem is considered as
a global optimization problem due to the inter-dependencies among
different design decisions that need to be maintained, as well as
global constraints that influence the selection of any design
alternative, e.g., project constraints. Optimization techniques are
thus used to determine an optimal combination of design
alternatives. The influencing factors that are systematically managed
are factors that influence the design process, including conflicting
stakeholders’ quality goals, various design decisions, design
alternatives and inter-dependencies, architectural concerns and
project constraints.

- Business goal elicitation [S29] empowers architects to articulate
business goals among stakeholders early in the lifecycle, and is used
as prelude to architecture evaluation.

Architecting for Software Evolvability 74

3.4.2 Quality Attribute Scenario-Focused

The studies in this sub-category focus on mapping architectural quality goals
into concrete scenarios to characterize stakeholders’ concerns throughout the
software architecture design phase.

- Software architecture analysis method [S24] defines several steps in
the software design process: (i) architectural quality goals are
expressed through scenarios to characterize the generic quality goals
in concern; (ii) mechanisms are tailored to realize the scenarios
within the design constraints; and (iii) analytic models are
instantiated by scenarios that represent quality attributes of interest
or potential risk areas in architecture. The constitution of the analytic
models is an iterative process due to the ever-changing architectural
requirements and design constraints. As the system evolves, the
analytic models can be used to assess the impact of architectural
changes and monitor how architectural evolution affects its
capability to support predicted modifications.

- Active Reviews for Intermediate Designs (ARID) [S30] is a scenario-
based assessment method for evaluating intermediate design or parts
of an architecture for early feedback. It is a lightweight method that
can be used to judge if the design of a partial architecture is
appropriate for its intended purpose before the development of the
complete architecture. The stakeholders involved in ARID
brainstorm and prioritize scenarios that represent foremost problems
that the design is expected to handle, in order to assess the suitability
of a design approach and discover discrepancies.

Relevance to software evolvability

Applying the software architecture analysis approach in [S24] would require
quite a number of evolvability scenarios to address and cover evolvability
subcharacteristics. Another limitation is that while scenarios are anticipated
events in the system life-time, evolvability by nature concerns also
unanticipated events. These limitations apply to all scenario-based methods.
The approach in [S30] focuses more on scenarios that represent foremost
problems the design is expected to handle rather than considering a system’s
long-term evolvability aspect. Therefore, this approach needs to be
complemented with more explicit consideration of scenarios that would
cover evolvability concern and subcharacteristics.

A summary of quality attribute scenario-focused approaches is given in
Table 3-8. All approaches utilize quality attribute scenarios though with

Architecting for Software Evolvability 75

distinct purposes; the scenarios in [S24] are used for concretizing
architectural quality goals, whereas the scenarios in [S30] are used to
identify most important functions, issues and problems that are embedded in
intermediate design.

Table 3-8: Quality attributes scenario-focused approaches

Study Focus and Application Context Included

Technique

Validation

S24 Architectural quality goals are
mapped into scenarios, mechanisms
that realize the scenarios, and analytic
models that measure the results

Scenarios.
Analytic models

Validated with
example scenarios
from two real-life
software systems

S30 Judge the appropriateness of a partial
architecture for its intended purpose
during architecture design

Active design
review.
Scenarios.
Stakeholder-centric

Validated in
various domains

3.4.3 Influencing Factor-Focused

The studies in this sub-category focus on, early in the design phase,
managing factors that are architecturally significant, and constraints that
have influence on the design process, along with inter-dependencies among
these factors and constraints that would affect the choice of design decisions.

- ArchDesigner [S1] is a quantitative quality-driven design approach
for architectural design process. The approach evaluates
stakeholders’ quality preferences and design alternatives.
Meanwhile, a software architecture design problem is considered as
a global optimization problem due to the inter-dependencies among
different design decisions that need to be maintained, as well as
global constraints that influence the selection of any design
alternative, e.g., project constraints. Optimization techniques are
thus used to determine an optimal combination of design
alternatives. The influencing factors that are systematically managed
are factors that influence the design process, including conflicting
stakeholders’ quality goals, various design decisions, design
alternatives and inter-dependencies, architectural concerns and
project constraints.

- Business goal elicitation [S29] empowers architects to articulate
business goals among stakeholders early in the lifecycle, and is used
as prelude to architecture evaluation.

Architecting for Software Evolvability 76

- Architecture-Based Component composition/Decision-oriented

Design (ABC/DD) [S31] accomplishes architecture design from
design decision perspective, by eliciting architecturally significant
design issues and exploiting corresponding solutions for these
issues.

- Incorporation of changeability within a system architecture is a
concept introduced in [S38]. It proposes four aspects that have
influence on changeability: (i) flexibility that characterizes a
system’s ability to be changed easily; (ii) agility that characterizes a
system’s ability to be changed rapidly; (iii) robustness that
characterizes a system’s ability to be insensitive towards changing
environment; and (iv) adaptability that characterizes a system’s
ability to adapt itself to changing environments. These four aspects
can be implemented depending on the needed type and extent of
changeability.

- Global analysis [S42] provides a systematic way to identify and
describe architecturally significant factors in the design phase to be
able to develop strategies to accommodate these factors, and reflect
future concerns early for making design decisions. The influencing
factors are classified into three categories: (i) organizational factors
that constrain design choices; (ii) technological factors, such as
choices of hardware, software, architecture technology, and
standards; (iii) product factors that cover a product’s functional
features and qualities. All these factors interact with each other.
They need to be aggregated and prioritized. New factors that may
arise during design need to be considered as well. Afterwards, issues
that are influenced by these factors are identified, and specific
strategies that address the issues are developed to reduce the impact
of various factors.

- Design constraint-oriented approach [S80] enhances understanding
of architectural decision making by treating design constraints, i.e.,
external forces that restrict an architect’s choice of solution space, as
central constructs of architecture.

Relevance to software evolvability

The ArchDesigner approach in [S1] addresses quality attributes in general,
and can be tailored to assess stakeholders’ preferences on evolvability
subcharacteristics, and determine preferences of design alternatives based on
the weighting scores of evolvability subcharacteristics. The Business goal
elicitation approach in [S29] is systematic in identifying primary business

Architecting for Software Evolvability 77

drivers for performing an evolvability analysis. Both [S31] and [S80]
provide, respectively, a qualitative indication on how the choice of a design
decision/design constraints would affect evolvability. The concept in [S38]
does not cover the other evolvability subcharacteristics except changeability.
The qualities addressed in [S42] emphasize more on operational-related
qualities rather than development-oriented quality attributes of a software
system such as evolvability. However, identifying organizational factors and
technical constraints is relevant to determining strategies in architecting for
evolvability.

A summary of influencing factor-focused approaches is given in Table 3-9.
All these approaches focus on identifying influencing factors, though with
varying perspectives of influencing factors and presence of strengths and
weakness. For instance, Global analysis uncovers architecturally significant
factors including quality attributes in the early lifecycle of architecture
design. There is a clear traceability between influencing factors and derived
strategies. But the reasoning about quality consequences of each design
decision is not sufficiently supported. This weakness is complemented by
[S1], which performs value score computation on stakeholders’ preferences
on quality attributes and weighting design alternatives’ consequences on
quality attributes. The Business goal elicitation approach focuses on an
organization’s business goals, and ties them to quality attribute requirements,
whereas ABC/DD [S31] focuses on architecturally significant design issues,
and [S80] on design constraints.

Architecting for Software Evolvability 76

- Architecture-Based Component composition/Decision-oriented

Design (ABC/DD) [S31] accomplishes architecture design from
design decision perspective, by eliciting architecturally significant
design issues and exploiting corresponding solutions for these
issues.

- Incorporation of changeability within a system architecture is a
concept introduced in [S38]. It proposes four aspects that have
influence on changeability: (i) flexibility that characterizes a
system’s ability to be changed easily; (ii) agility that characterizes a
system’s ability to be changed rapidly; (iii) robustness that
characterizes a system’s ability to be insensitive towards changing
environment; and (iv) adaptability that characterizes a system’s
ability to adapt itself to changing environments. These four aspects
can be implemented depending on the needed type and extent of
changeability.

- Global analysis [S42] provides a systematic way to identify and
describe architecturally significant factors in the design phase to be
able to develop strategies to accommodate these factors, and reflect
future concerns early for making design decisions. The influencing
factors are classified into three categories: (i) organizational factors
that constrain design choices; (ii) technological factors, such as
choices of hardware, software, architecture technology, and
standards; (iii) product factors that cover a product’s functional
features and qualities. All these factors interact with each other.
They need to be aggregated and prioritized. New factors that may
arise during design need to be considered as well. Afterwards, issues
that are influenced by these factors are identified, and specific
strategies that address the issues are developed to reduce the impact
of various factors.

- Design constraint-oriented approach [S80] enhances understanding
of architectural decision making by treating design constraints, i.e.,
external forces that restrict an architect’s choice of solution space, as
central constructs of architecture.

Relevance to software evolvability

The ArchDesigner approach in [S1] addresses quality attributes in general,
and can be tailored to assess stakeholders’ preferences on evolvability
subcharacteristics, and determine preferences of design alternatives based on
the weighting scores of evolvability subcharacteristics. The Business goal
elicitation approach in [S29] is systematic in identifying primary business

Architecting for Software Evolvability 77

drivers for performing an evolvability analysis. Both [S31] and [S80]
provide, respectively, a qualitative indication on how the choice of a design
decision/design constraints would affect evolvability. The concept in [S38]
does not cover the other evolvability subcharacteristics except changeability.
The qualities addressed in [S42] emphasize more on operational-related
qualities rather than development-oriented quality attributes of a software
system such as evolvability. However, identifying organizational factors and
technical constraints is relevant to determining strategies in architecting for
evolvability.

A summary of influencing factor-focused approaches is given in Table 3-9.
All these approaches focus on identifying influencing factors, though with
varying perspectives of influencing factors and presence of strengths and
weakness. For instance, Global analysis uncovers architecturally significant
factors including quality attributes in the early lifecycle of architecture
design. There is a clear traceability between influencing factors and derived
strategies. But the reasoning about quality consequences of each design
decision is not sufficiently supported. This weakness is complemented by
[S1], which performs value score computation on stakeholders’ preferences
on quality attributes and weighting design alternatives’ consequences on
quality attributes. The Business goal elicitation approach focuses on an
organization’s business goals, and ties them to quality attribute requirements,
whereas ABC/DD [S31] focuses on architecturally significant design issues,
and [S80] on design constraints.

Architecting for Software Evolvability 78

Table 3-9: Influencing factor-focused approaches

Study Focus and Application Context Included

Technique

Validation

S1 Quantitatively determine the optimal
design alternative that best satisfy
stakeholders’ quality goals and
project constraints.

Observed limitations in judgment
uncertainties and judgment
consistency.

Interviews.
Optimization
techniques.
Analytic Hierarchy
Process (AHP)

Validated as a post-
mortem analysis of
a production
software system for
information
analysts.

S29 Capture business goals early in the
lifecycle.

Business goal
scenarios

Validated in Boeing
system

S31 Provides an iterative process to
implement the architecture design.

Issue relationship at different levels is
not handled.

Decision
abstraction.
Issue
decomposition
principle.

Validated in two
large scale projects

S38 Changeability incorporates four
aspects, i.e. robustness, flexibility,
agility and adaptability.

Theoretical
reasoning

Illustrated by
examples from
varying industries

S42 Identify architecturally significant
factors early in the design phase and
develop strategies.

Global analysis Validated in various
domains

S80 Identify design constraints and
analyze their impact on architecture.

Design constraint
properties.

Validated in
industrial systems

3.5 Quality Evaluation at Software Architecture
Level
An architecture assessment is triggered by various business goals [117], such
as evaluating and improving architecture and its qualitative attributes,
identifying architectural drift and erosion, identifying risks related to a
particular architecture. From an evolution perspective, architecture
evaluation is a preventive activity to delay architectural decay and to limit
the effect of software aging [170]. The studies in this category focus on
quality evaluation at the architecture level when the software architecture
starts to take form after the initial design phase. Based on their focus, the
studies are further classified into three sub-categories:

- Experience-based evaluation

Architecting for Software Evolvability 79

- Scenario-based evaluation

- Metric-based evaluation.

3.5.1 Experience-based

Experience-based architecture evaluation means that evaluations are based
on previous experiences and domain knowledge of developers or consultants
[12]. The studies in this sub-category focus on extracting experiences of
stakeholders and making use of their tacit knowledge. The evaluation
process is mostly based on subjective factors such as intuition and
experience.

- Lightweight sanity check for implemented architectures (LiSCIA)

method [S14] focuses on maintainability and reveals potential
problems as a software system evolves. This method detects erosion
by interviewing system developers using five categories of
questions: current grouping of units in modules and future modules,
decomposition of functionality over modules, module size, module
dependencies, and technologies. The limitations of LiSCIA are: (i) it
depends heavily on the evaluator’s opinion; (ii) it only aims to
discover potential risks related to maintainability; (iii) the use of
only a single viewpoint (module viewtype) sets a limit to covering
all potential risks.

- Knowledge-based assessment approach [S34] evaluates the
evolutionary path of software architecture during its lifecycle based
on the knowledge of the stakeholders involved in the software
development organizations. The extraction of knowledge and
factual evidence of claims requires representativeness and
completeness in the selection of stakeholders. The drivers for using
this method include lack of formal and complete architecture
documentation, wide scope of assessment, large number of
stakeholders, and geographical distribution of development teams.
The outcomes of the assessment are current architecture overview,
main issues found, and optionally, recommendations for their
resolutions.

- The concept of identifying causes for changes and strategies to cope

with changes during a system’s lifecycle is described in [S37]. This
concept is based on analyzing projects that are already finished and
extracting experiences on the most frequent changes in terms of
sources of stimuli and cost of each change.

Architecting for Software Evolvability 78

Table 3-9: Influencing factor-focused approaches

Study Focus and Application Context Included

Technique

Validation

S1 Quantitatively determine the optimal
design alternative that best satisfy
stakeholders’ quality goals and
project constraints.

Observed limitations in judgment
uncertainties and judgment
consistency.

Interviews.
Optimization
techniques.
Analytic Hierarchy
Process (AHP)

Validated as a post-
mortem analysis of
a production
software system for
information
analysts.

S29 Capture business goals early in the
lifecycle.

Business goal
scenarios

Validated in Boeing
system

S31 Provides an iterative process to
implement the architecture design.

Issue relationship at different levels is
not handled.

Decision
abstraction.
Issue
decomposition
principle.

Validated in two
large scale projects

S38 Changeability incorporates four
aspects, i.e. robustness, flexibility,
agility and adaptability.

Theoretical
reasoning

Illustrated by
examples from
varying industries

S42 Identify architecturally significant
factors early in the design phase and
develop strategies.

Global analysis Validated in various
domains

S80 Identify design constraints and
analyze their impact on architecture.

Design constraint
properties.

Validated in
industrial systems

3.5 Quality Evaluation at Software Architecture
Level
An architecture assessment is triggered by various business goals [117], such
as evaluating and improving architecture and its qualitative attributes,
identifying architectural drift and erosion, identifying risks related to a
particular architecture. From an evolution perspective, architecture
evaluation is a preventive activity to delay architectural decay and to limit
the effect of software aging [170]. The studies in this category focus on
quality evaluation at the architecture level when the software architecture
starts to take form after the initial design phase. Based on their focus, the
studies are further classified into three sub-categories:

- Experience-based evaluation

Architecting for Software Evolvability 79

- Scenario-based evaluation

- Metric-based evaluation.

3.5.1 Experience-based

Experience-based architecture evaluation means that evaluations are based
on previous experiences and domain knowledge of developers or consultants
[12]. The studies in this sub-category focus on extracting experiences of
stakeholders and making use of their tacit knowledge. The evaluation
process is mostly based on subjective factors such as intuition and
experience.

- Lightweight sanity check for implemented architectures (LiSCIA)

method [S14] focuses on maintainability and reveals potential
problems as a software system evolves. This method detects erosion
by interviewing system developers using five categories of
questions: current grouping of units in modules and future modules,
decomposition of functionality over modules, module size, module
dependencies, and technologies. The limitations of LiSCIA are: (i) it
depends heavily on the evaluator’s opinion; (ii) it only aims to
discover potential risks related to maintainability; (iii) the use of
only a single viewpoint (module viewtype) sets a limit to covering
all potential risks.

- Knowledge-based assessment approach [S34] evaluates the
evolutionary path of software architecture during its lifecycle based
on the knowledge of the stakeholders involved in the software
development organizations. The extraction of knowledge and
factual evidence of claims requires representativeness and
completeness in the selection of stakeholders. The drivers for using
this method include lack of formal and complete architecture
documentation, wide scope of assessment, large number of
stakeholders, and geographical distribution of development teams.
The outcomes of the assessment are current architecture overview,
main issues found, and optionally, recommendations for their
resolutions.

- The concept of identifying causes for changes and strategies to cope

with changes during a system’s lifecycle is described in [S37]. This
concept is based on analyzing projects that are already finished and
extracting experiences on the most frequent changes in terms of
sources of stimuli and cost of each change.

Architecting for Software Evolvability 80

- Attribute-Based Architectural Style (ABAS) [S50] explicitly
associates architectural styles with reasoning frameworks based on
quality-attribute-specific models for particular quality attributes.
ABAS consists of four parts: (i) problem description that explains
the problem being solved by the software structure; (ii) stimuli and
response that correspond to the condition affecting the system and
measurement of the activity as a result of the stimuli; (iii)
architectural styles that are descriptions of component interaction
patterns; and (iv) analysis that constitutes a quality-attribute-specific
model for reasoning about the behavior of interacting components in
the pattern. A specific attribute-based architectural style is
accompanied with a set of questions. These questions and answers to
the questions are accumulated as a knowledge base that can be
exploited during architectural reviews.

- Decision support method [S73] quantitatively measures
stakeholders’ views of the benefits and liabilities of software
architecture candidates and relevant quality attributes. The method is
used to understand and choose optimal candidate architecture among
software architecture alternatives. Although the primary data
collection is comprised of subjective judgments, influenced by the
knowledge, experiences and opinions of stakeholders, the data
collection of stakeholders’ subjective opinions is quantifiable. Thus,
any disagreements between the participating stakeholders can be
highlighted for further discussions.

Relevance to software evolvability

The LiSCIA approach [S14] focuses only on maintainability from module
viewpoint with respect to dependencies in order to detect erosions, i.e.,
decreases in architectural structural integrity. Although the knowledge-based
assessment approach [S34] addresses evolvability, there is no definition of
the authors’ perception of evolvability. Lacking explicit consideration of the
multifaceted feature of software evolvability, this approach might miss some
key aspects that are critical for software evolution. Heavily dependent on
stakeholders’ subjective interpretation of quality attributes, the decision
support method [S73] faces a similar issue. The ABAS reasoning framework
[S50] is based on quality-attribute-specific models for particular quality
attributes. It does not take into account the tradeoff relationships among
quality attributes. Though, in order to determine potential evolutionary paths
of an architecture, the preferences and tradeoffs among evolvability
subcharacteristics must be considered.

Architecting for Software Evolvability 81

A summary of experience-based quality evaluation approaches is given in
Table 3-10. These approaches differ from each other mainly in two aspects:

- Method for data collection

In [S50, S73], the method for primary data collection is a questionnaire
that individual participating domain expert fills out. One possible
drawback with a questionnaire is that ambiguous questions might lead to
problematic interpretations by participants due to their differing
experiences. For instance, [S73] purposely planned to provide less
detailed descriptions of architecture candidates in order to provide more
room for participants, though with the risk of problematic interpretations
of the architecture candidates and relevant quality attributes by
participants. As a countermeasure, interviews as in [S14], [S34] and
[S37], can be used to complement questionnaires, clarify questions for
respondents, capture additional information to the answers from
questionnaires, as well as unexpected responses.

- Delivered output of quality evaluation

The knowledge-based assessment approach in [S34] focuses on
identification of key issues that are critical for software evolution.
Resolutions to these issues are optional, whereas the decision support
method [S73] aims to reach a shared view of resolutions in terms of the
choice of architecture candidate by allowing stakeholders to discuss
identified disagreements. An accumulated knowledge base for future
exploitation is the main output for [S37] and [S50].

Architecting for Software Evolvability 80

- Attribute-Based Architectural Style (ABAS) [S50] explicitly
associates architectural styles with reasoning frameworks based on
quality-attribute-specific models for particular quality attributes.
ABAS consists of four parts: (i) problem description that explains
the problem being solved by the software structure; (ii) stimuli and
response that correspond to the condition affecting the system and
measurement of the activity as a result of the stimuli; (iii)
architectural styles that are descriptions of component interaction
patterns; and (iv) analysis that constitutes a quality-attribute-specific
model for reasoning about the behavior of interacting components in
the pattern. A specific attribute-based architectural style is
accompanied with a set of questions. These questions and answers to
the questions are accumulated as a knowledge base that can be
exploited during architectural reviews.

- Decision support method [S73] quantitatively measures
stakeholders’ views of the benefits and liabilities of software
architecture candidates and relevant quality attributes. The method is
used to understand and choose optimal candidate architecture among
software architecture alternatives. Although the primary data
collection is comprised of subjective judgments, influenced by the
knowledge, experiences and opinions of stakeholders, the data
collection of stakeholders’ subjective opinions is quantifiable. Thus,
any disagreements between the participating stakeholders can be
highlighted for further discussions.

Relevance to software evolvability

The LiSCIA approach [S14] focuses only on maintainability from module
viewpoint with respect to dependencies in order to detect erosions, i.e.,
decreases in architectural structural integrity. Although the knowledge-based
assessment approach [S34] addresses evolvability, there is no definition of
the authors’ perception of evolvability. Lacking explicit consideration of the
multifaceted feature of software evolvability, this approach might miss some
key aspects that are critical for software evolution. Heavily dependent on
stakeholders’ subjective interpretation of quality attributes, the decision
support method [S73] faces a similar issue. The ABAS reasoning framework
[S50] is based on quality-attribute-specific models for particular quality
attributes. It does not take into account the tradeoff relationships among
quality attributes. Though, in order to determine potential evolutionary paths
of an architecture, the preferences and tradeoffs among evolvability
subcharacteristics must be considered.

Architecting for Software Evolvability 81

A summary of experience-based quality evaluation approaches is given in
Table 3-10. These approaches differ from each other mainly in two aspects:

- Method for data collection

In [S50, S73], the method for primary data collection is a questionnaire
that individual participating domain expert fills out. One possible
drawback with a questionnaire is that ambiguous questions might lead to
problematic interpretations by participants due to their differing
experiences. For instance, [S73] purposely planned to provide less
detailed descriptions of architecture candidates in order to provide more
room for participants, though with the risk of problematic interpretations
of the architecture candidates and relevant quality attributes by
participants. As a countermeasure, interviews as in [S14], [S34] and
[S37], can be used to complement questionnaires, clarify questions for
respondents, capture additional information to the answers from
questionnaires, as well as unexpected responses.

- Delivered output of quality evaluation

The knowledge-based assessment approach in [S34] focuses on
identification of key issues that are critical for software evolution.
Resolutions to these issues are optional, whereas the decision support
method [S73] aims to reach a shared view of resolutions in terms of the
choice of architecture candidate by allowing stakeholders to discuss
identified disagreements. An accumulated knowledge base for future
exploitation is the main output for [S37] and [S50].

Architecting for Software Evolvability 82

Table 3-10: Experience-based quality evaluation approaches

Study Focus and Application Context Included

Technique

Validation

S14 Detect erosion when it has happened. Interview.

List of questions
and actions.

Validated in various
industrial domains.

S34 Knowledge-based assessment.

Stakeholder-centric: rely on
experiences of stakeholders.

Implicit iteration in the process.

Requires well-focused assessment
scope and careful selection of
stakeholders.

Semi-structured
interviews.

Validated in an
industrial mobile
terminal product
family

S37 Five strategies to cope with change.

Prevention and front-loading strategy
needs to be complemented with
building changeability into system
architecture.

Questioning
through
questionnaire and
interviews.

Validated as an
exploratory case
study in
telecommunication
domain

S50 Associate a qualitative or
quantitative reasoning framework
with an architectural style

Questionnaire/chec
klist.

Validated in various
domains

S73 A quantified decision support
method that creates increased joint
understanding on the choice of
software architecture candidates and
quality attributes.

Risk in problematic interpretation of
questionnaire questions, architecture
candidates and quality attributes.

Rely on experiences of stakeholders.

Require sufficient participants to
achieve reliable measures.

Questionnaire.

Analytic Hierarchy
Process (AHP).

Discussion
meetings.

Validated as an
industrial
experiment on a
software system in
automatic guided
vehicles system
domain with
experienced
practitioners.

3.5.2 Scenario-based

Scenario-based architecture evaluation means that quality attributes are
evaluated by creating scenario profiles for a concrete description of a quality
requirement [123]. The studies in this sub-category use scenarios to avoid
terminological ambiguities and conflicting interpretation of quality
attributes.

Architecting for Software Evolvability 83

- Software Architecture Analysis Method (SAAM) [S47, S30] was
originally created for evaluating modifiability of software
architecture although it has been used for other quality attributes as
well, such as portability and extensibility. The primary inputs to the
evaluation include system architecture descriptions and scenarios
that describe a stakeholder’s interaction with the system. Based on
these, SAAM establishes a mapping between architecture and the
scenarios that represent possible future changes to the system. This
mapping provides indications of potential future complexity parts in
the software and estimated amount of work related to changes.

- Architecture Tradeoff Analysis Method (ATAM) [S48, S30] evolves
from SAAM, and evaluates multiple quality attributes for
understanding the tradeoffs inherent in the software architecture. It
is used to uncover implicit requirements, and reveal how well an
architecture satisfies particular quality attributes. It provides insight
into how these quality attributes interact with each other by exposing
risks, non-risks, sensitivity points and tradeoff points in the software
architecture.

- Holistic Product Line Architecture Assessment (HoPLAA) method
[S62] is an extension to ATAM for assessing product line
architecture. This method is performed in two stages to identify risks
at two architecture levels: core architecture evaluation, and
individual product architecture evaluation. During core architecture
evaluation, evolvability points are identified and evolvability
guidelines are defined. The notion of evolvability points designates a
sensitivity point or a tradeoff point that contains at least one
variation point. The identification of evolvability points ensures that
quality attributes at individual product architecture level do not
conflict with core architecture quality attributes. Evolvability
guidelines are used to inform designers about potential conflicts, and
guide them to make appropriate design decisions in subsequent
product architecture design phase.

- Architecture Level Modifiability Analysis (ALMA) [S11, S53, S54]
analyzes modifiability based on scenarios that capture future events
a system needs to adapt to in its lifecycle. The method consists of
five steps: setting analysis goal, software architecture description,
change scenarios elicitation, change scenarios evaluation, and
interpretation of the results. Depending on the goal of analysis, the
output from an ALMA evaluation varies among: (i) maintenance
prediction to estimate required effort for system modification to

Architecting for Software Evolvability 82

Table 3-10: Experience-based quality evaluation approaches

Study Focus and Application Context Included

Technique

Validation

S14 Detect erosion when it has happened. Interview.

List of questions
and actions.

Validated in various
industrial domains.

S34 Knowledge-based assessment.

Stakeholder-centric: rely on
experiences of stakeholders.

Implicit iteration in the process.

Requires well-focused assessment
scope and careful selection of
stakeholders.

Semi-structured
interviews.

Validated in an
industrial mobile
terminal product
family

S37 Five strategies to cope with change.

Prevention and front-loading strategy
needs to be complemented with
building changeability into system
architecture.

Questioning
through
questionnaire and
interviews.

Validated as an
exploratory case
study in
telecommunication
domain

S50 Associate a qualitative or
quantitative reasoning framework
with an architectural style

Questionnaire/chec
klist.

Validated in various
domains

S73 A quantified decision support
method that creates increased joint
understanding on the choice of
software architecture candidates and
quality attributes.

Risk in problematic interpretation of
questionnaire questions, architecture
candidates and quality attributes.

Rely on experiences of stakeholders.

Require sufficient participants to
achieve reliable measures.

Questionnaire.

Analytic Hierarchy
Process (AHP).

Discussion
meetings.

Validated as an
industrial
experiment on a
software system in
automatic guided
vehicles system
domain with
experienced
practitioners.

3.5.2 Scenario-based

Scenario-based architecture evaluation means that quality attributes are
evaluated by creating scenario profiles for a concrete description of a quality
requirement [123]. The studies in this sub-category use scenarios to avoid
terminological ambiguities and conflicting interpretation of quality
attributes.

Architecting for Software Evolvability 83

- Software Architecture Analysis Method (SAAM) [S47, S30] was
originally created for evaluating modifiability of software
architecture although it has been used for other quality attributes as
well, such as portability and extensibility. The primary inputs to the
evaluation include system architecture descriptions and scenarios
that describe a stakeholder’s interaction with the system. Based on
these, SAAM establishes a mapping between architecture and the
scenarios that represent possible future changes to the system. This
mapping provides indications of potential future complexity parts in
the software and estimated amount of work related to changes.

- Architecture Tradeoff Analysis Method (ATAM) [S48, S30] evolves
from SAAM, and evaluates multiple quality attributes for
understanding the tradeoffs inherent in the software architecture. It
is used to uncover implicit requirements, and reveal how well an
architecture satisfies particular quality attributes. It provides insight
into how these quality attributes interact with each other by exposing
risks, non-risks, sensitivity points and tradeoff points in the software
architecture.

- Holistic Product Line Architecture Assessment (HoPLAA) method
[S62] is an extension to ATAM for assessing product line
architecture. This method is performed in two stages to identify risks
at two architecture levels: core architecture evaluation, and
individual product architecture evaluation. During core architecture
evaluation, evolvability points are identified and evolvability
guidelines are defined. The notion of evolvability points designates a
sensitivity point or a tradeoff point that contains at least one
variation point. The identification of evolvability points ensures that
quality attributes at individual product architecture level do not
conflict with core architecture quality attributes. Evolvability
guidelines are used to inform designers about potential conflicts, and
guide them to make appropriate design decisions in subsequent
product architecture design phase.

- Architecture Level Modifiability Analysis (ALMA) [S11, S53, S54]
analyzes modifiability based on scenarios that capture future events
a system needs to adapt to in its lifecycle. The method consists of
five steps: setting analysis goal, software architecture description,
change scenarios elicitation, change scenarios evaluation, and
interpretation of the results. Depending on the goal of analysis, the
output from an ALMA evaluation varies among: (i) maintenance
prediction to estimate required effort for system modification to

Architecting for Software Evolvability 84

accommodate future changes; (ii) architecture comparison for
optimal candidate architecture; and (iii) risk assessment to expose
the boundaries of software architecture by explicitly considering
environment and using complex change scenarios that the system
shows inability to adapt to.

- A scenario-based assessment method [S33] evaluates evolvability of
software product line architecture towards forthcoming
requirements. The method consists of three phases: (i) scenario
collection, classification and prioritization; (ii) architecture
evaluation based on the chosen scenarios; and (iii) assessment result
compilation. The output includes potential flaws and evolutionary
path of the software architecture.

Relevance to software evolvability

Both SAAM and ATAM would require quite a number of evolvability
scenarios to address all evolvability subcharacteristics. The approaches in
[S11], [S53] and [S54] do not cover the other evolvability subcharacteristics
except changeability, and thus need to be complemented with other methods
to address all evolvability subcharacteristics. In [S33], evolvability of
software product line architecture is evaluated towards forthcoming
requirements without providing a definition of evolvability. Moreover, this
approach provides little guidance in scenario selection, which makes it
difficult to develop scenarios that would cover all software evolvability
subcharacteristics. The approach in [S62] assesses only product line
architecture, and does not focus on the evolution of other types of
architecture.

A summary of scenario-based quality evaluation approaches is given in
Table 3-11.

Architecting for Software Evolvability 85

Table 3-11: Scenario-based quality evaluation approaches

Study Focus and Application Context Included

Technique

Validation

S11,
S53,
S54

Pursue maintenance prediction, risk
assessment and software architecture
comparison, and focus on modifiability.

Goal of the analysis determines techniques
for the analysis process, e.g. scenario
elicitation technique and scenario
evaluation technique.

Interview and
brainstormed
change scenarios.

Scenario
classification
scheme.

Scenario weight
estimation.

Validated in
various
domains

S33 Lightweight analysis method tuned to
software product line architecture.

Iterative stakeholder-centric process with
focus on evolvability.

Little guidance to scenario selection and
ranking process.

Scenarios.

Interviews.

Brainstorming
session.

Validated in
Nokia
multimedia
software
domain

S47 Qualitative assessment.

Iterative scenario development.

Provide few explicit techniques for the
analysis process and relies much on the
assessor's experiences.

Brainstormed
scenarios.

Voting for scenario
prioritization.

Rank by assigning
weights.

Validated in
various
domains

S48 Identify architectural risks in light of
business goals.

Consider multiple quality attributes and
identify tradeoffs between quality
attributes.

Explicitly consider both business and
technical perspectives.

Assess consequences of architectural
decisions in light of quality attributes.

Utility tree.

Brainstormed
scenarios.

Voting for scenario
prioritization.

Validated in
various
domains

S62 Focus on risks and quality attributes for
both common product line architecture
and individual product architecture.

Identification of evolvability points and
evolvability guidelines.

Need further validation and refinement
through applying to real life product line
architectures.

Utility tree.

Brainstormed
scenarios.

Voting for scenario
prioritization.

Demonstrated
as an
industrial trial

Architecting for Software Evolvability 84

accommodate future changes; (ii) architecture comparison for
optimal candidate architecture; and (iii) risk assessment to expose
the boundaries of software architecture by explicitly considering
environment and using complex change scenarios that the system
shows inability to adapt to.

- A scenario-based assessment method [S33] evaluates evolvability of
software product line architecture towards forthcoming
requirements. The method consists of three phases: (i) scenario
collection, classification and prioritization; (ii) architecture
evaluation based on the chosen scenarios; and (iii) assessment result
compilation. The output includes potential flaws and evolutionary
path of the software architecture.

Relevance to software evolvability

Both SAAM and ATAM would require quite a number of evolvability
scenarios to address all evolvability subcharacteristics. The approaches in
[S11], [S53] and [S54] do not cover the other evolvability subcharacteristics
except changeability, and thus need to be complemented with other methods
to address all evolvability subcharacteristics. In [S33], evolvability of
software product line architecture is evaluated towards forthcoming
requirements without providing a definition of evolvability. Moreover, this
approach provides little guidance in scenario selection, which makes it
difficult to develop scenarios that would cover all software evolvability
subcharacteristics. The approach in [S62] assesses only product line
architecture, and does not focus on the evolution of other types of
architecture.

A summary of scenario-based quality evaluation approaches is given in
Table 3-11.

Architecting for Software Evolvability 85

Table 3-11: Scenario-based quality evaluation approaches

Study Focus and Application Context Included

Technique

Validation

S11,
S53,
S54

Pursue maintenance prediction, risk
assessment and software architecture
comparison, and focus on modifiability.

Goal of the analysis determines techniques
for the analysis process, e.g. scenario
elicitation technique and scenario
evaluation technique.

Interview and
brainstormed
change scenarios.

Scenario
classification
scheme.

Scenario weight
estimation.

Validated in
various
domains

S33 Lightweight analysis method tuned to
software product line architecture.

Iterative stakeholder-centric process with
focus on evolvability.

Little guidance to scenario selection and
ranking process.

Scenarios.

Interviews.

Brainstorming
session.

Validated in
Nokia
multimedia
software
domain

S47 Qualitative assessment.

Iterative scenario development.

Provide few explicit techniques for the
analysis process and relies much on the
assessor's experiences.

Brainstormed
scenarios.

Voting for scenario
prioritization.

Rank by assigning
weights.

Validated in
various
domains

S48 Identify architectural risks in light of
business goals.

Consider multiple quality attributes and
identify tradeoffs between quality
attributes.

Explicitly consider both business and
technical perspectives.

Assess consequences of architectural
decisions in light of quality attributes.

Utility tree.

Brainstormed
scenarios.

Voting for scenario
prioritization.

Validated in
various
domains

S62 Focus on risks and quality attributes for
both common product line architecture
and individual product architecture.

Identification of evolvability points and
evolvability guidelines.

Need further validation and refinement
through applying to real life product line
architectures.

Utility tree.

Brainstormed
scenarios.

Voting for scenario
prioritization.

Demonstrated
as an
industrial trial

Architecting for Software Evolvability 86

These approaches exhibit a variety of characteristics. In [S47], the scenarios
proposed by stakeholders determine the quality attributes for analysis,
whereas in [S48], the quality attributes for analysis are synthesized through
explicitly considering both business and technical perspectives. ALMA
focuses only on modifiability, and has distinguished analysis goals which
determine the choice of change scenarios and techniques used in the analysis
process. For instance, for risk assessment, complex scenarios, guided
interview and system environment modeling techniques are used; for
maintenance cost prediction, scenarios that are likely to occur during the
operational lifecycle are used; for architecture comparison purpose,
scenarios that are handled differently in architecture alternatives are used.
One limitation of the method is that the evaluation of change scenario with
respect to its ripple effects on other components relies much on architects’
experiences.

3.5.3 Metric-based

The studies in this sub-category assess quality impact qualitatively or
quantitatively through specific quality metrics.

- Besides implementation change logs [S67] and computation of

metrics using the number of modules in a software system [S56],
another set of metrics is based on software life span and software

size [S75]. Software evolution can also be quantitatively analyzed by
using evolution ratio which is the amount of evolution in terms of
software size, and evolution speed which is an indicator of an
organization’s capability for software system’s evolution [S5].

- A framework of process-oriented metrics for software evolvability
[S71] develops intuitively architectural evolvability metrics, and
traces the metrics back to the evolvability requirements based on the
NFR framework [54]. Similarly, process-oriented metric for

software architecture adaptability [S28] analyzes the degree of
adaptability through intuitive decomposition of goals and intuitive
scoring of goal-satisfying level of software architecture. As the
method depends much on intuition and expert expertise, [S57]
proposes a quantitative metric-based approach to evaluate software

architecture adaptability. This approach supports decision-making
in choosing architecture candidates that meet stakeholders’
adaptability goals that are expressed in scenario profiles. The impact
of each scenario profile is measured through IOSA (impact on the

Architecting for Software Evolvability 87

software architecture) and ADSA (adaptability degree of software
architecture).

- A software evolvability model is outlined in [S15], in which
subcharacteristics of software evolvability and corresponding
measuring attributes are identified. The subcharacteristics that are of
primary importance for long-lived software-intensive systems’
evolvability include analyzability, architectural integrity,
changeability, extensibility, portability, testability and domain-
specific attributes. Measuring attributes for each subcharacteristic
are identified as well. The idea with this model is to further refine
the identified subcharacteristics to the extent when it is possible to
quantify them and/or make appropriate reasoning about the quality
of the attributes. Based on this evolvability model, [S16] presents an
evolvability analysis method which ensures that the implications of
potential improvement strategies and evolution path of a software
architecture are analyzed with respect to the evolvability
subcharacteristics.

- A tradeoff analysis method of architecture using architecture

analysis and design language [S55] acquires quantitative values
from an architecture model by establishing and measuring metrics of
quality attributes.

Relevance to software evolvability

Both [S15] and [S16] explicitly address software evolvability, and provides a
base and check point for evolvability evaluation and improvement. Both
[S28] and [S57] explicitly address software adaptability, i.e., “the system’s

ability to make adaptation, which involves environment change detection,

system change recognition and system change enactment” [S28]. The focus
of these studies is around changeability subcharacteristic, and does not cover
other evolvability subcharacteristics, e.g., analyzability, testability and
architectural integrity. Although [S71] focuses on software evolvability, it
does not provide any precise definition of evolvability. Instead, the study
advocates that the definition and decomposition of evolvability is determined
by the domain. This is in conformance to the domain-specific attributes
defined in evolvability subcharacteristics.

A summary of metric-based quality evaluation approaches is given in Table
3-12.

Architecting for Software Evolvability 86

These approaches exhibit a variety of characteristics. In [S47], the scenarios
proposed by stakeholders determine the quality attributes for analysis,
whereas in [S48], the quality attributes for analysis are synthesized through
explicitly considering both business and technical perspectives. ALMA
focuses only on modifiability, and has distinguished analysis goals which
determine the choice of change scenarios and techniques used in the analysis
process. For instance, for risk assessment, complex scenarios, guided
interview and system environment modeling techniques are used; for
maintenance cost prediction, scenarios that are likely to occur during the
operational lifecycle are used; for architecture comparison purpose,
scenarios that are handled differently in architecture alternatives are used.
One limitation of the method is that the evaluation of change scenario with
respect to its ripple effects on other components relies much on architects’
experiences.

3.5.3 Metric-based

The studies in this sub-category assess quality impact qualitatively or
quantitatively through specific quality metrics.

- Besides implementation change logs [S67] and computation of

metrics using the number of modules in a software system [S56],
another set of metrics is based on software life span and software

size [S75]. Software evolution can also be quantitatively analyzed by
using evolution ratio which is the amount of evolution in terms of
software size, and evolution speed which is an indicator of an
organization’s capability for software system’s evolution [S5].

- A framework of process-oriented metrics for software evolvability
[S71] develops intuitively architectural evolvability metrics, and
traces the metrics back to the evolvability requirements based on the
NFR framework [54]. Similarly, process-oriented metric for

software architecture adaptability [S28] analyzes the degree of
adaptability through intuitive decomposition of goals and intuitive
scoring of goal-satisfying level of software architecture. As the
method depends much on intuition and expert expertise, [S57]
proposes a quantitative metric-based approach to evaluate software

architecture adaptability. This approach supports decision-making
in choosing architecture candidates that meet stakeholders’
adaptability goals that are expressed in scenario profiles. The impact
of each scenario profile is measured through IOSA (impact on the

Architecting for Software Evolvability 87

software architecture) and ADSA (adaptability degree of software
architecture).

- A software evolvability model is outlined in [S15], in which
subcharacteristics of software evolvability and corresponding
measuring attributes are identified. The subcharacteristics that are of
primary importance for long-lived software-intensive systems’
evolvability include analyzability, architectural integrity,
changeability, extensibility, portability, testability and domain-
specific attributes. Measuring attributes for each subcharacteristic
are identified as well. The idea with this model is to further refine
the identified subcharacteristics to the extent when it is possible to
quantify them and/or make appropriate reasoning about the quality
of the attributes. Based on this evolvability model, [S16] presents an
evolvability analysis method which ensures that the implications of
potential improvement strategies and evolution path of a software
architecture are analyzed with respect to the evolvability
subcharacteristics.

- A tradeoff analysis method of architecture using architecture

analysis and design language [S55] acquires quantitative values
from an architecture model by establishing and measuring metrics of
quality attributes.

Relevance to software evolvability

Both [S15] and [S16] explicitly address software evolvability, and provides a
base and check point for evolvability evaluation and improvement. Both
[S28] and [S57] explicitly address software adaptability, i.e., “the system’s

ability to make adaptation, which involves environment change detection,

system change recognition and system change enactment” [S28]. The focus
of these studies is around changeability subcharacteristic, and does not cover
other evolvability subcharacteristics, e.g., analyzability, testability and
architectural integrity. Although [S71] focuses on software evolvability, it
does not provide any precise definition of evolvability. Instead, the study
advocates that the definition and decomposition of evolvability is determined
by the domain. This is in conformance to the domain-specific attributes
defined in evolvability subcharacteristics.

A summary of metric-based quality evaluation approaches is given in Table
3-12.

Architecting for Software Evolvability 88

Table 3-12: Metric-based quality evaluation approaches

Study Focus and Application Context Included

Technique

Validation

S5 Base on evolution ratio and evolution
speed.

Metrics. Empirical study in
mobile phone
software systems

S15,
S16

Refine evolvability into seven
subcharacteristics that are measured
through measuring attributes.

Subcharacteristics
and measuring
attributes.

Validated in
industrial
automation domain

S28 Process-oriented qualitative
framework for representing and
reasoning about adaptability.

Depend much on intuition and expert
expertise which leads to uncertainty.

NFR framework. Academic
experiment

S55 Quantitatively measure quality
attributes for analyzing architecture.

Quality attributes
and metrics.

Architecture
analysis and design
language.

Validated in
automotive industry

S56 Computation of metrics using the
number of modules.

Metrics. Validated in a
financial
transaction system

S57 Quantitatively measure and evaluate
adaptability through adaptability
scenario profile and impact analysis.

Scenario profile.

Metrics.

Theoretical
reasoning

S67 Base on implementation change logs.

More applicable for evaluating
maintenance activities instead of
evolvability.

Metrics. Validated with the
evolution of kernel
of a mainframe
operating system

S71 Process-oriented, capture design
rationale.

Even experienced software engineers
need training to do evolvability-
related NFR decompositions.

NFR framework. Two industrial-
scale systems, with
more than 50000
lines of code

S75 Base on software life span and
software size.

Metrics. Theoretical
reasoning

Architecting for Software Evolvability 89

3.6 Economic Valuation in Determining Level of
Uncertainty
The uncertainties in software architecture evolution arise from, to a certain
extent, understanding how architectural decisions map onto quality attribute
responses in terms of costs and benefits. The studies in this category cope
with uncertainty in determining an appropriate degree of architectural
flexibility and balance with economic valuation to mitigate risks in
investment.

- One way to address economic valuation is to estimate the required
effort for system modification to accommodate future changes. For
instance, maintenance cost prediction [S9] calculates the expected
effort for each change scenario based on the analysis of how the
change could be implemented and the amount of required changed
code. The underlying prediction model is based on the estimated
change volume and productivity ratios. Maintenance effort

prediction during architecture design is another method [S4], which
takes requirements, domain knowledge and general software
engineering knowledge as input to prescribe application architecture,
and to quantify maintenance effort by classifying weighted scenarios
in terms of complexity.

- Instead of only focusing on cost/effort analysis, Cost Benefit

Analysis Method (CBAM) [S46] is an architecture-centric economic
modeling approach that can address long-term benefits of a change
along with its implications in complete product lifecycle. This
method quantifies design decisions in terms of cost and benefits
analysis, and prioritizes changes to architecture based on perceived
difficulty and utility. Another cost-benefit framework for making

architectural decisions is proposed in [S23]. This approach
correlates the change in developer effort to the change in coupling
by analyzing a categorized set of modifications to specific software
components both before and after an architectural refactoring.
Architecture Improvement Workshop (AIW)6 is another method for

6 There is no publication on this topic yet. Therefore, it is not included in the systematic

review. Details on this topic can be found at
http://www.sei.cmu.edu/architecture/consulting/aiw/index.cfm (visited on 7th of September,
2010)

Architecting for Software Evolvability 88

Table 3-12: Metric-based quality evaluation approaches

Study Focus and Application Context Included

Technique

Validation

S5 Base on evolution ratio and evolution
speed.

Metrics. Empirical study in
mobile phone
software systems

S15,
S16

Refine evolvability into seven
subcharacteristics that are measured
through measuring attributes.

Subcharacteristics
and measuring
attributes.

Validated in
industrial
automation domain

S28 Process-oriented qualitative
framework for representing and
reasoning about adaptability.

Depend much on intuition and expert
expertise which leads to uncertainty.

NFR framework. Academic
experiment

S55 Quantitatively measure quality
attributes for analyzing architecture.

Quality attributes
and metrics.

Architecture
analysis and design
language.

Validated in
automotive industry

S56 Computation of metrics using the
number of modules.

Metrics. Validated in a
financial
transaction system

S57 Quantitatively measure and evaluate
adaptability through adaptability
scenario profile and impact analysis.

Scenario profile.

Metrics.

Theoretical
reasoning

S67 Base on implementation change logs.

More applicable for evaluating
maintenance activities instead of
evolvability.

Metrics. Validated with the
evolution of kernel
of a mainframe
operating system

S71 Process-oriented, capture design
rationale.

Even experienced software engineers
need training to do evolvability-
related NFR decompositions.

NFR framework. Two industrial-
scale systems, with
more than 50000
lines of code

S75 Base on software life span and
software size.

Metrics. Theoretical
reasoning

Architecting for Software Evolvability 89

3.6 Economic Valuation in Determining Level of
Uncertainty
The uncertainties in software architecture evolution arise from, to a certain
extent, understanding how architectural decisions map onto quality attribute
responses in terms of costs and benefits. The studies in this category cope
with uncertainty in determining an appropriate degree of architectural
flexibility and balance with economic valuation to mitigate risks in
investment.

- One way to address economic valuation is to estimate the required
effort for system modification to accommodate future changes. For
instance, maintenance cost prediction [S9] calculates the expected
effort for each change scenario based on the analysis of how the
change could be implemented and the amount of required changed
code. The underlying prediction model is based on the estimated
change volume and productivity ratios. Maintenance effort

prediction during architecture design is another method [S4], which
takes requirements, domain knowledge and general software
engineering knowledge as input to prescribe application architecture,
and to quantify maintenance effort by classifying weighted scenarios
in terms of complexity.

- Instead of only focusing on cost/effort analysis, Cost Benefit

Analysis Method (CBAM) [S46] is an architecture-centric economic
modeling approach that can address long-term benefits of a change
along with its implications in complete product lifecycle. This
method quantifies design decisions in terms of cost and benefits
analysis, and prioritizes changes to architecture based on perceived
difficulty and utility. Another cost-benefit framework for making

architectural decisions is proposed in [S23]. This approach
correlates the change in developer effort to the change in coupling
by analyzing a categorized set of modifications to specific software
components both before and after an architectural refactoring.
Architecture Improvement Workshop (AIW)6 is another method for

6 There is no publication on this topic yet. Therefore, it is not included in the systematic

review. Details on this topic can be found at
http://www.sei.cmu.edu/architecture/consulting/aiw/index.cfm (visited on 7th of September,
2010)

Architecting for Software Evolvability 90

taking economic considerations – cost, benefits, and uncertainty,
into account by setting values on architectural decisions in relation
to quality attributes.

- Software architecture decisions carry economic value in form of real

options [16, 168]. Options offer flexibility, and allow architectural
evolution over time [S6, S35]. A model for predicting the stability of

software architectures using real options is exploited in [S6], which
advocates that the flexibility of an architecture to endure changes in
stakeholders’ requirements and environment has a value in
predicting stability of the software architecture. To maximize the
lifetime value of a software architecture, [S35] incorporates the
concept of architecture options into design in order to exploit
quantitatively an optimal degree of design flexibility. In [S64] the
authors hypothesize that architectural patterns carry economic value
in the form of real options, and propose to consider cost, value and
alignment with business goals to support architectural evolution.
This approach guides the selection of design patterns, elicitation of
architecturally significant requirements, and valuation of
architecture in terms of design decisions with multiple quality-
attribute viewpoints. The approach in [S7] provides insights into
architectural flexibility and investment decisions related to the
evolution of software systems by examining probable changes along
with their added value, such as accumulated savings through
enduring the change without violating architectural integrity,
supporting future growth, and capability of responding to
competitive forces and changing market conditions. The approach in
[S72] uses design structure matrices to model designs and real
options technique to value designs.

- Given particular schedule constraints, an appropriate degree of

architectural flexibility [S66] can be determined through four
strategic elements: feature prioritization, schedule range estimation,
core capability determination and architecture flexibility
determination. The intention is to mitigate the risk of violating
schedule, cost and quality constraints.

- Based on several key parameters that have perceived value to a
system’s stakeholders, [S18] proposes a conceptual approach to

quantify a system’s life cycle value to facilitate adaptability to
changes in circumstances and stakeholder preferences.

Architecting for Software Evolvability 91

Relevance to software evolvability

Software evolvability concerns both business and technical perspectives as
the choice of design decisions when architecting for evolvability needs to be
balanced with economic valuation to mitigate risks. Several studies focus on
a single quality attribute, e.g., stability in [S6, S7], flexibility in [S35, S66]
and modularity in [S72], and do not explicitly consider the multifaceted
aspects of evolvability. Both [S46] and [S64] cover multiple quality
attributes. However, CBAM relies on the output from ATAM which might
not be an appropriate method for extracting scenarios to cover all
evolvability subcharacteristics (as explained in Chapter 3.4.2). The approach
in [S64] focuses only on the value of architectural patterns for quality
attributes that are of interest to stakeholders, and fails to take into account
the preferences and tradeoffs among evolvability subcharacteristics. A
summary of economic valuation approaches is given in Table 3-13.

Table 3-13: Economic valuation approaches

Study Focus and Application Context Included

Technique

Validation

S4 Predict maintenance efforts at
architectural level.

Growth scenario
profile.
Scenario
classification with
respect to
complexity.

Validated with a
web content
extraction
application
architecture

S6 Value flexibility and view stability as
a strategic architectural quality that
adds values in form of growth options.

Real options theory Theoretical
reasoning

S7 Provide insight into architectural
stability and software evolution
investment decisions.

Real options theory Validated in an
academic
experiment of a
refactoring case
study

S9 Augment architecture description with
size estimates.

Prediction of maintenance efforts.

Dependency on domain experts and
architects.

Lack of validation the
representativeness of a maintenance
profile.

Change scenarios.

Prediction model.

Exemplified in the
medical equipment
domain

Architecting for Software Evolvability 90

taking economic considerations – cost, benefits, and uncertainty,
into account by setting values on architectural decisions in relation
to quality attributes.

- Software architecture decisions carry economic value in form of real

options [16, 168]. Options offer flexibility, and allow architectural
evolution over time [S6, S35]. A model for predicting the stability of

software architectures using real options is exploited in [S6], which
advocates that the flexibility of an architecture to endure changes in
stakeholders’ requirements and environment has a value in
predicting stability of the software architecture. To maximize the
lifetime value of a software architecture, [S35] incorporates the
concept of architecture options into design in order to exploit
quantitatively an optimal degree of design flexibility. In [S64] the
authors hypothesize that architectural patterns carry economic value
in the form of real options, and propose to consider cost, value and
alignment with business goals to support architectural evolution.
This approach guides the selection of design patterns, elicitation of
architecturally significant requirements, and valuation of
architecture in terms of design decisions with multiple quality-
attribute viewpoints. The approach in [S7] provides insights into
architectural flexibility and investment decisions related to the
evolution of software systems by examining probable changes along
with their added value, such as accumulated savings through
enduring the change without violating architectural integrity,
supporting future growth, and capability of responding to
competitive forces and changing market conditions. The approach in
[S72] uses design structure matrices to model designs and real
options technique to value designs.

- Given particular schedule constraints, an appropriate degree of

architectural flexibility [S66] can be determined through four
strategic elements: feature prioritization, schedule range estimation,
core capability determination and architecture flexibility
determination. The intention is to mitigate the risk of violating
schedule, cost and quality constraints.

- Based on several key parameters that have perceived value to a
system’s stakeholders, [S18] proposes a conceptual approach to

quantify a system’s life cycle value to facilitate adaptability to
changes in circumstances and stakeholder preferences.

Architecting for Software Evolvability 91

Relevance to software evolvability

Software evolvability concerns both business and technical perspectives as
the choice of design decisions when architecting for evolvability needs to be
balanced with economic valuation to mitigate risks. Several studies focus on
a single quality attribute, e.g., stability in [S6, S7], flexibility in [S35, S66]
and modularity in [S72], and do not explicitly consider the multifaceted
aspects of evolvability. Both [S46] and [S64] cover multiple quality
attributes. However, CBAM relies on the output from ATAM which might
not be an appropriate method for extracting scenarios to cover all
evolvability subcharacteristics (as explained in Chapter 3.4.2). The approach
in [S64] focuses only on the value of architectural patterns for quality
attributes that are of interest to stakeholders, and fails to take into account
the preferences and tradeoffs among evolvability subcharacteristics. A
summary of economic valuation approaches is given in Table 3-13.

Table 3-13: Economic valuation approaches

Study Focus and Application Context Included

Technique

Validation

S4 Predict maintenance efforts at
architectural level.

Growth scenario
profile.
Scenario
classification with
respect to
complexity.

Validated with a
web content
extraction
application
architecture

S6 Value flexibility and view stability as
a strategic architectural quality that
adds values in form of growth options.

Real options theory Theoretical
reasoning

S7 Provide insight into architectural
stability and software evolution
investment decisions.

Real options theory Validated in an
academic
experiment of a
refactoring case
study

S9 Augment architecture description with
size estimates.

Prediction of maintenance efforts.

Dependency on domain experts and
architects.

Lack of validation the
representativeness of a maintenance
profile.

Change scenarios.

Prediction model.

Exemplified in the
medical equipment
domain

Architecting for Software Evolvability 92

Study Focus and Application Context Included

Technique

Validation

S18 Quantify lifecycle value of enduring
systems.

Surveys and
interaction with
stakeholders.

Market surveys and
user group
assessment.

Exemplified with a
cellular telephone
system

S23 Correlate change in developer effort
to the change in coupling.

Compute predicted savings in effort.

Compute average
change in coupling
and effort

Validated in a
marketing services
company

S35 Static and dynamic evaluation of
architecture flexibility.

Real options
theory.

Metrics.

Optimization
techniques.

Illustrated with
quantitative
examples

S46 Analyze cost and benefits of
architectural strategies.

Sensitivity to uncertainty in cost and
benefit values.

Rely on ATAM to identify
architecture strategies.

Quality attributes
scores.

Benefit and cost
quantification.

Validated in
various domains

S64 Consider cost, value and alignment
with business goals when exploiting
option values of an architectural
pattern.

Real options theory Theoretical
reasoning

S66 Model-based approach to assist in
determining an appropriate degree of
architectural flexibility within
constraints.

Need further calibration and
validation of architecture flexibility
determination model.

Expert judgment.

Parametric cost
modeling.

Academic
experiment in a full
text system

S72 Modularity in design creates value in
the form of real options.

Model design and value the design.

Data structure
matrices.

Real options
theory.

Illustrated with
Parnas’ KWIC
example

Architecting for Software Evolvability 93

All these approaches consider at least one of the following, i.e., cost, effort,
value and alignment with business goals, when determining an appropriate
degree of architectural flexibility.

3.7 Architectural Knowledge Management
The studies in this category focus on utilizing various information sources to
capture architectural knowledge, which is comprised of architecture design,
design decisions, assumptions, context, and other factors that together shape
a software architecture. In spite of the exhibited properties of large software
systems as described in Brooks’ study [38], e.g., software complexity,
inevitable changes of software systems and invisibility of software structure
representation, architectural integrity needs to be maintained. An explicit
representation of architectural knowledge is therefore necessary for evolving
systems and assessing future evolutionary capabilities of a system [106].

- Apart from using change scenarios and change cases to model
variability and describe future evolutionary capabilities, it is also
useful to explicitly model invariability assumptions, i.e., things that
are assumed will not change [S52]. Assumptions are design
decisions and rationale that are made out of personal experience and
background, domain knowledge, budget constraints and available
expertise. There are three types of assumptions: technical

assumptions that concern the technical environment a system is
running in, organizational assumptions that concern the
organizational aspects in a company, and managerial assumptions
that reflect the decisions taken to achieve business objectives. The
discovery and recovery of architectural knowledge in terms of
assumptions help assess the evolutionary capabilities of system
architecture. These assumptions can also be used to provide
additional what-if scenarios for software architecture assessment,
i.e., what if a certain assumption proves to be invalid. In addition,
explicit representation of traceability between architecture evolution
and early-made assumptions would supplement design decisions to
confront uncertainties when predicting future user requirement
changes. A relevant method is Recovering Architectural

Assumptions Method (RAAM) [S68] that makes assumptions explicit
by recapitulating historical information of software system
evolution.

Architecting for Software Evolvability 92

Study Focus and Application Context Included

Technique

Validation

S18 Quantify lifecycle value of enduring
systems.

Surveys and
interaction with
stakeholders.

Market surveys and
user group
assessment.

Exemplified with a
cellular telephone
system

S23 Correlate change in developer effort
to the change in coupling.

Compute predicted savings in effort.

Compute average
change in coupling
and effort

Validated in a
marketing services
company

S35 Static and dynamic evaluation of
architecture flexibility.

Real options
theory.

Metrics.

Optimization
techniques.

Illustrated with
quantitative
examples

S46 Analyze cost and benefits of
architectural strategies.

Sensitivity to uncertainty in cost and
benefit values.

Rely on ATAM to identify
architecture strategies.

Quality attributes
scores.

Benefit and cost
quantification.

Validated in
various domains

S64 Consider cost, value and alignment
with business goals when exploiting
option values of an architectural
pattern.

Real options theory Theoretical
reasoning

S66 Model-based approach to assist in
determining an appropriate degree of
architectural flexibility within
constraints.

Need further calibration and
validation of architecture flexibility
determination model.

Expert judgment.

Parametric cost
modeling.

Academic
experiment in a full
text system

S72 Modularity in design creates value in
the form of real options.

Model design and value the design.

Data structure
matrices.

Real options
theory.

Illustrated with
Parnas’ KWIC
example

Architecting for Software Evolvability 93

All these approaches consider at least one of the following, i.e., cost, effort,
value and alignment with business goals, when determining an appropriate
degree of architectural flexibility.

3.7 Architectural Knowledge Management
The studies in this category focus on utilizing various information sources to
capture architectural knowledge, which is comprised of architecture design,
design decisions, assumptions, context, and other factors that together shape
a software architecture. In spite of the exhibited properties of large software
systems as described in Brooks’ study [38], e.g., software complexity,
inevitable changes of software systems and invisibility of software structure
representation, architectural integrity needs to be maintained. An explicit
representation of architectural knowledge is therefore necessary for evolving
systems and assessing future evolutionary capabilities of a system [106].

- Apart from using change scenarios and change cases to model
variability and describe future evolutionary capabilities, it is also
useful to explicitly model invariability assumptions, i.e., things that
are assumed will not change [S52]. Assumptions are design
decisions and rationale that are made out of personal experience and
background, domain knowledge, budget constraints and available
expertise. There are three types of assumptions: technical

assumptions that concern the technical environment a system is
running in, organizational assumptions that concern the
organizational aspects in a company, and managerial assumptions
that reflect the decisions taken to achieve business objectives. The
discovery and recovery of architectural knowledge in terms of
assumptions help assess the evolutionary capabilities of system
architecture. These assumptions can also be used to provide
additional what-if scenarios for software architecture assessment,
i.e., what if a certain assumption proves to be invalid. In addition,
explicit representation of traceability between architecture evolution
and early-made assumptions would supplement design decisions to
confront uncertainties when predicting future user requirement
changes. A relevant method is Recovering Architectural

Assumptions Method (RAAM) [S68] that makes assumptions explicit
by recapitulating historical information of software system
evolution.

Architecting for Software Evolvability 94

- To assess architectural design erosion [174], an architecture

assessment model measures the extent of deviation in terms of
functional and structural divergence [S12]. In order to track software
evolution, the loss of system functionality and architectural structure
are represented using functional and structural erosion indicators
respectively, indicating whether changes that are incorporated into a
system would violate integrity of architectural design.

- As architectural constraints influence the quality of architectural
design process and improvement of software quality, the concept of

classifying architectural constraints [S40] is used to generalize
architectural styles and patterns.

- Documenting architectural design decisions (ADD) is another
approach to maintain architectural artifacts in order to evolve
software in a controlled way without compromising software
integrity [21]. [S77] reports on practitioners’ perception of the value,
usage and documentation of design rationale, and argues for the
need of tool support for capturing and using design rationale to
avoid knowledge vaporization and dependency on domain experts.
In line with this reclamation, several tools have been developed [S2,
S3, S20, S21, S22, S36, S43, S44, and S45] for sharing design
decisions along with rationale. [S19, S70, S78] provide comparative
studies of these architecture knowledge management tools. [S70]
suggests another tool for visualization of design decisions and
rationale, in order to overcome the deficiencies in the existing tools,
e.g., visualization support for dependency relationship between
ADDs, support for collaborate decision-making, and rationale
visualization support.

- Mining patterns to systematically extract and document
architecturally significant information [S82] improves architecture
evaluation activities for pattern-oriented systems. General scenarios
and architectural tactics are extracted from software patterns, and are
used as input to architecture evaluation, and vice versa, the
architecture evaluation results provide input to pattern validation.

Relevance to software evolvability

The studies in this sub-category focus on capturing architectural knowledge,
and therefore are useful in improving architectural integrity which is one of
the evolvability subcharacteristics.

A summary of architectural knowledge management approaches is given in
Table 3-14.

Architecting for Software Evolvability 95

Table 3-14: Architectural knowledge management approaches

Study Focus and Application Context Included

Technique

Validation

S2, S3 Capture design decisions and
rationale for quality attributes, and
provide knowledge repository.

Explicitly augment quality attribute
utility tree with design decisions.

No support on diagrammatic
modeling of design decisions.

Need to be integrated with
requirement management tool to
avoid work duplication.

Open source
groupware
platform, i.e.,
Hipergate.

Data model.

Validated as an
industrial trial in
architecture
evaluation process

S12 Objectively measure the extent of
architectural deviation in the system.

Might have limitations in handling
large scale legacy system.

Abstract
architectural model
representation.

Architectural
erosion measures.

Validated in a
sample university
registration system

S20 Capture design decisions and
rationale for functional
requirements.

Less attention is paid for recording
quality attribute knowledge.

Argumentation
representation.

Argument ontology.

Validated in a set of
experiments

S21,
S22

Provide support for capturing design
decisions for quality attributes and
their rationale.

Describe and document explicitly
tacit knowledge.

Selection of mandatory and optional
attributes for capturing design
decisions.

Mandatory and
optional attributes.

Validated in a
virtual reality
system

S36 Integrated functionality of
architectural knowledge sharing
supports architects in decision-
making process.

Less attention is paid for recording
quality attribute knowledge.

Architectural
knowledge sharing
portal.

Validated as an
experiment in a
software
development
organization

S40 Capture high level architectural
design knowledge.

Cover only a subset usage of
architectural styles.

Taxonomy based on
ANSI/IEEE 1471
standard.

Theoretical meta
study based on
empirical research
results

Architecting for Software Evolvability 94

- To assess architectural design erosion [174], an architecture

assessment model measures the extent of deviation in terms of
functional and structural divergence [S12]. In order to track software
evolution, the loss of system functionality and architectural structure
are represented using functional and structural erosion indicators
respectively, indicating whether changes that are incorporated into a
system would violate integrity of architectural design.

- As architectural constraints influence the quality of architectural
design process and improvement of software quality, the concept of

classifying architectural constraints [S40] is used to generalize
architectural styles and patterns.

- Documenting architectural design decisions (ADD) is another
approach to maintain architectural artifacts in order to evolve
software in a controlled way without compromising software
integrity [21]. [S77] reports on practitioners’ perception of the value,
usage and documentation of design rationale, and argues for the
need of tool support for capturing and using design rationale to
avoid knowledge vaporization and dependency on domain experts.
In line with this reclamation, several tools have been developed [S2,
S3, S20, S21, S22, S36, S43, S44, and S45] for sharing design
decisions along with rationale. [S19, S70, S78] provide comparative
studies of these architecture knowledge management tools. [S70]
suggests another tool for visualization of design decisions and
rationale, in order to overcome the deficiencies in the existing tools,
e.g., visualization support for dependency relationship between
ADDs, support for collaborate decision-making, and rationale
visualization support.

- Mining patterns to systematically extract and document
architecturally significant information [S82] improves architecture
evaluation activities for pattern-oriented systems. General scenarios
and architectural tactics are extracted from software patterns, and are
used as input to architecture evaluation, and vice versa, the
architecture evaluation results provide input to pattern validation.

Relevance to software evolvability

The studies in this sub-category focus on capturing architectural knowledge,
and therefore are useful in improving architectural integrity which is one of
the evolvability subcharacteristics.

A summary of architectural knowledge management approaches is given in
Table 3-14.

Architecting for Software Evolvability 95

Table 3-14: Architectural knowledge management approaches

Study Focus and Application Context Included

Technique

Validation

S2, S3 Capture design decisions and
rationale for quality attributes, and
provide knowledge repository.

Explicitly augment quality attribute
utility tree with design decisions.

No support on diagrammatic
modeling of design decisions.

Need to be integrated with
requirement management tool to
avoid work duplication.

Open source
groupware
platform, i.e.,
Hipergate.

Data model.

Validated as an
industrial trial in
architecture
evaluation process

S12 Objectively measure the extent of
architectural deviation in the system.

Might have limitations in handling
large scale legacy system.

Abstract
architectural model
representation.

Architectural
erosion measures.

Validated in a
sample university
registration system

S20 Capture design decisions and
rationale for functional
requirements.

Less attention is paid for recording
quality attribute knowledge.

Argumentation
representation.

Argument ontology.

Validated in a set of
experiments

S21,
S22

Provide support for capturing design
decisions for quality attributes and
their rationale.

Describe and document explicitly
tacit knowledge.

Selection of mandatory and optional
attributes for capturing design
decisions.

Mandatory and
optional attributes.

Validated in a
virtual reality
system

S36 Integrated functionality of
architectural knowledge sharing
supports architects in decision-
making process.

Less attention is paid for recording
quality attribute knowledge.

Architectural
knowledge sharing
portal.

Validated as an
experiment in a
software
development
organization

S40 Capture high level architectural
design knowledge.

Cover only a subset usage of
architectural styles.

Taxonomy based on
ANSI/IEEE 1471
standard.

Theoretical meta
study based on
empirical research
results

Architecting for Software Evolvability 96

Study Focus and Application Context Included

Technique

Validation

S43 Add formal architectural knowledge
(AK) through annotating the existing
documented AK sources based on a
formal meta model.

Domain model.

Formal meta-model.

Plug-ins.

Validated through a
large industrial
example

S44 Iterative process of recovering
architectural design decisions.

High dependency on architects for
the recovery process.

Tool support. Validated in an
academic
experiment

S45 Tool support at the later stages
within design to bind architectural
decisions, models and system
implementation.

Less attention is paid for recording
quality attribute knowledge.

Not explicitly address design
decision evolution perspective.

Architectural
description
language integrated
with Java.

Validated in an
academic
experiment

S52,
S68

Utilize different information sources
to capture assumptions in order to
assess the architecture’s
evolutionary capabilities.

Evolutionary aspects of assumptions
are not addressed.

Source code access.

Historical
information.

Interviews.

Documentation.

Validated in an e-
commerce software
product

S70 Support explicit rationale
visualization of an architectural
design decision.

Argumentation-
based approach.

Not validated yet

S77 Empirical investigation of use and
documentation of design rationale.

Surveys. A survey of
practitioners

S19,
S78

Comparative study of architectural
knowledge tool support.

Comparison
framework of 10
criteria.

Not applicable

S82 Improve software architecture
design and evaluation through
mining patterns.

Initial work on improving
architecture evaluation activities for
pattern oriented systems.

Scenarios.

Tactics.

Validated in an
academic
demonstration by
using EJB
architecture usage
patterns

To achieve a good understanding of decisions that sustain an architecture,
[S52, S68] capture assumptions that architectural decisions are often based
on. [S20, S36, S44, S45] focus specifically on capturing and managing

Architecting for Software Evolvability 97

design decisions and rationale for functional requirements, whereas [S2, S3,
S21, S22] pay more attention to capturing quality attributes knowledge, i.e.,
design decisions and rationale for quality attributes. [S20, S22] further
distinguishes from other studies with its explicit emphasis on architecture
views. [S44, S45] consider software architecture as a composition of a set of
architectural design decisions. [S44] focuses on recovering architectural
design decision for the purpose of reverse engineering, whereas [S45]
maintains the relationships between design decisions for the purpose of
forward engineering. Both approaches have a similar architectural design
decision model, though [S45] extends the decision model by combining it
with a meta-model that is comprised of an architectural model, a requirement
model and a composition model. This allows architects to document
architectural design decisions with traceability to related requirements and
part of the implementations. However, the evolution perspective is not
explicitly addressed in [S45]. Besides codifying architectural knowledge that
concerns an architecture, [S36] distinguishes from the above mentioned
studies with one supplementary feature, i.e., architectural knowledge sharing
using personalization techniques.

3.8 Modeling Techniques
Due to the fact that all artefacts produced and used during the entire software
lifecycle are subject to change, the studies in this category mainly focus on
modeling artifacts to support software architecture evolution.

- Modeling traceability links between requirements, features,
architectural elements and implementation is described in [S17] to
improve evolvability. A formal definition of indicators that concern
evolvability deficiency and corresponding resolution actions is
provided as well.

- To assess software architectures for evolution and reuse, a
framework in modeling relevant information and architectural views
[S58] is proposed for reengineering, analyzing, and comparing
software architectures. The types of information for traceability
modeling include: (i) stakeholder information that describes
stakeholders’ objectives, and provide boundaries for analysis; (ii)
architecture information such as design principles or architectural
objectives; (iii) quality information; and (iv) scenarios that describe
the use cases of the system to capture the system’s functionality.
Scenarios that are not directly supported by the current system can

Architecting for Software Evolvability 96

Study Focus and Application Context Included

Technique

Validation

S43 Add formal architectural knowledge
(AK) through annotating the existing
documented AK sources based on a
formal meta model.

Domain model.

Formal meta-model.

Plug-ins.

Validated through a
large industrial
example

S44 Iterative process of recovering
architectural design decisions.

High dependency on architects for
the recovery process.

Tool support. Validated in an
academic
experiment

S45 Tool support at the later stages
within design to bind architectural
decisions, models and system
implementation.

Less attention is paid for recording
quality attribute knowledge.

Not explicitly address design
decision evolution perspective.

Architectural
description
language integrated
with Java.

Validated in an
academic
experiment

S52,
S68

Utilize different information sources
to capture assumptions in order to
assess the architecture’s
evolutionary capabilities.

Evolutionary aspects of assumptions
are not addressed.

Source code access.

Historical
information.

Interviews.

Documentation.

Validated in an e-
commerce software
product

S70 Support explicit rationale
visualization of an architectural
design decision.

Argumentation-
based approach.

Not validated yet

S77 Empirical investigation of use and
documentation of design rationale.

Surveys. A survey of
practitioners

S19,
S78

Comparative study of architectural
knowledge tool support.

Comparison
framework of 10
criteria.

Not applicable

S82 Improve software architecture
design and evaluation through
mining patterns.

Initial work on improving
architecture evaluation activities for
pattern oriented systems.

Scenarios.

Tactics.

Validated in an
academic
demonstration by
using EJB
architecture usage
patterns

To achieve a good understanding of decisions that sustain an architecture,
[S52, S68] capture assumptions that architectural decisions are often based
on. [S20, S36, S44, S45] focus specifically on capturing and managing

Architecting for Software Evolvability 97

design decisions and rationale for functional requirements, whereas [S2, S3,
S21, S22] pay more attention to capturing quality attributes knowledge, i.e.,
design decisions and rationale for quality attributes. [S20, S22] further
distinguishes from other studies with its explicit emphasis on architecture
views. [S44, S45] consider software architecture as a composition of a set of
architectural design decisions. [S44] focuses on recovering architectural
design decision for the purpose of reverse engineering, whereas [S45]
maintains the relationships between design decisions for the purpose of
forward engineering. Both approaches have a similar architectural design
decision model, though [S45] extends the decision model by combining it
with a meta-model that is comprised of an architectural model, a requirement
model and a composition model. This allows architects to document
architectural design decisions with traceability to related requirements and
part of the implementations. However, the evolution perspective is not
explicitly addressed in [S45]. Besides codifying architectural knowledge that
concerns an architecture, [S36] distinguishes from the above mentioned
studies with one supplementary feature, i.e., architectural knowledge sharing
using personalization techniques.

3.8 Modeling Techniques
Due to the fact that all artefacts produced and used during the entire software
lifecycle are subject to change, the studies in this category mainly focus on
modeling artifacts to support software architecture evolution.

- Modeling traceability links between requirements, features,
architectural elements and implementation is described in [S17] to
improve evolvability. A formal definition of indicators that concern
evolvability deficiency and corresponding resolution actions is
provided as well.

- To assess software architectures for evolution and reuse, a
framework in modeling relevant information and architectural views
[S58] is proposed for reengineering, analyzing, and comparing
software architectures. The types of information for traceability
modeling include: (i) stakeholder information that describes
stakeholders’ objectives, and provide boundaries for analysis; (ii)
architecture information such as design principles or architectural
objectives; (iii) quality information; and (iv) scenarios that describe
the use cases of the system to capture the system’s functionality.
Scenarios that are not directly supported by the current system can

Architecting for Software Evolvability 98

be used to detect possible flaws or assess the architecture’s support
for potential enhancements. In this way, sensitivity points of a
system are revealed. A lightweight traceability management concept
[S51] proposes to customize traceability by scoping the traces that
need to be maintained to only activities stakeholders must carry out.

- The approach in [S63] focuses on managing quality properties

during the whole lifecycle of model-driven development. Besides
using model and quality-driven architecture design/evaluation, this
approach is extended with knowledge engineering, and involves
three main phases: modeling reusable quality requirements,
representing quality in architectural models, and model-based
quality evaluation on whether the desired quality goals are met in
models and code.

- Using architectural tactics to embody non-functional requirements

(NFRs) into software architecture is described in [S49]. These
tactics are reusable architectural building blocks that provide generic
solutions to quality attribute issues. The tactics along with their
relationships are represented in Feature models, whereas the
structure and behavior of tactics are described using the Role-Based

Modeling Language (RBML) [99]. Another tactic-based modeling is
tactic-based non-functional requirement (NFR) modeling approach
[S59], which incorporates NFRs into software analysis and design
phase. Based on a classification framework of tactics types, the
approach focuses on tactics of NFRs rather than the NFRs
themselves, and manages tradeoffs among competing NFRs by
considering prioritization and impact of tactics on NFRs.

- A concern-driven software development approach [S61] supports
developers in understanding and evolving software systems. A
concern is a concept that relates a group of software fragments. The
approach consists of three main elements: (i) a fine-grained concern
model that associates each concern to the set of artifacts that
implement the concern; (ii) visualization of concerns at both code
level and architectural level; and (iii) automated support in
maintaining concern model over time.

- Formalizing and modeling architectural knowledge is essential for
understanding the resulting impact on architectures and software
systems. One way to model architectural knowledge is based on
ontology, as ontology can be used to formally define and capture
architectural knowledge, e.g., architectural design decisions, and

Architecting for Software Evolvability 99

architectural styles. Thus, ontology mechanisms provide a
conceptual modeling and reasoning support for architectural
knowledge modeling, which helps to determine essential aspects in
managing architecture evolution. The approach in [S32] uses

ontology to visualize architectural design decisions by means of
scenarios such as quality attribute tradeoff analysis, impact analysis
and if-then scenarios. Another ontological approach for

architectural style modeling [S65] is based on description logic.
Instead of using ontology to model architectural style, [S76]
proposes to evolve software architecture by using graph

transformations to provide a formal specification of evolution
patterns.

- Modeling an evolvable system by building a wrapper-system [S60]
coordinates three stages of iteration: capturing system behavior,
updating system state, and applying new changes. By using a
clustering algorithm, [S69] identifies software layers for
understanding and evolution of object-oriented software systems. To
allow architects to precisely express and reason about architecture
evolution with the goal of choosing an optimal evolution path for an
architecture, [S39] focuses on (i) evolution path, which is a first-
class entity for representation and analysis; and (ii) evolution style,
which defines a family of domain-specific architecture evolution
paths that share common properties and satisfy a common set of
constraints.

- Modeling change impact [S41] between software architecture and its
related source code is performed by using (i) Architectural Software
Component Model (ASCM) which represents software architecture
descriptions; (ii) typology of change operations; (iii) formalized
change propagation mechanism; and (iv) defined change
propagation process.

- To address evolution of system requirements and software
architecture, quality-driven software reengineering model [S74]
adopts NFR Framework [54] and the concept of soft goals to support
modeling of design rationale with soft-goal interdependency graphs.

- The approach in [S81] focuses on business rules, which represent an
important source of requirement changes due to their high impact on
software and business process. Business rules are considered as an
integral part of system evolution, and are specified in Business Rule
Model, which is then related to meta-model level of software design

Architecting for Software Evolvability 98

be used to detect possible flaws or assess the architecture’s support
for potential enhancements. In this way, sensitivity points of a
system are revealed. A lightweight traceability management concept
[S51] proposes to customize traceability by scoping the traces that
need to be maintained to only activities stakeholders must carry out.

- The approach in [S63] focuses on managing quality properties

during the whole lifecycle of model-driven development. Besides
using model and quality-driven architecture design/evaluation, this
approach is extended with knowledge engineering, and involves
three main phases: modeling reusable quality requirements,
representing quality in architectural models, and model-based
quality evaluation on whether the desired quality goals are met in
models and code.

- Using architectural tactics to embody non-functional requirements

(NFRs) into software architecture is described in [S49]. These
tactics are reusable architectural building blocks that provide generic
solutions to quality attribute issues. The tactics along with their
relationships are represented in Feature models, whereas the
structure and behavior of tactics are described using the Role-Based

Modeling Language (RBML) [99]. Another tactic-based modeling is
tactic-based non-functional requirement (NFR) modeling approach
[S59], which incorporates NFRs into software analysis and design
phase. Based on a classification framework of tactics types, the
approach focuses on tactics of NFRs rather than the NFRs
themselves, and manages tradeoffs among competing NFRs by
considering prioritization and impact of tactics on NFRs.

- A concern-driven software development approach [S61] supports
developers in understanding and evolving software systems. A
concern is a concept that relates a group of software fragments. The
approach consists of three main elements: (i) a fine-grained concern
model that associates each concern to the set of artifacts that
implement the concern; (ii) visualization of concerns at both code
level and architectural level; and (iii) automated support in
maintaining concern model over time.

- Formalizing and modeling architectural knowledge is essential for
understanding the resulting impact on architectures and software
systems. One way to model architectural knowledge is based on
ontology, as ontology can be used to formally define and capture
architectural knowledge, e.g., architectural design decisions, and

Architecting for Software Evolvability 99

architectural styles. Thus, ontology mechanisms provide a
conceptual modeling and reasoning support for architectural
knowledge modeling, which helps to determine essential aspects in
managing architecture evolution. The approach in [S32] uses

ontology to visualize architectural design decisions by means of
scenarios such as quality attribute tradeoff analysis, impact analysis
and if-then scenarios. Another ontological approach for

architectural style modeling [S65] is based on description logic.
Instead of using ontology to model architectural style, [S76]
proposes to evolve software architecture by using graph

transformations to provide a formal specification of evolution
patterns.

- Modeling an evolvable system by building a wrapper-system [S60]
coordinates three stages of iteration: capturing system behavior,
updating system state, and applying new changes. By using a
clustering algorithm, [S69] identifies software layers for
understanding and evolution of object-oriented software systems. To
allow architects to precisely express and reason about architecture
evolution with the goal of choosing an optimal evolution path for an
architecture, [S39] focuses on (i) evolution path, which is a first-
class entity for representation and analysis; and (ii) evolution style,
which defines a family of domain-specific architecture evolution
paths that share common properties and satisfy a common set of
constraints.

- Modeling change impact [S41] between software architecture and its
related source code is performed by using (i) Architectural Software
Component Model (ASCM) which represents software architecture
descriptions; (ii) typology of change operations; (iii) formalized
change propagation mechanism; and (iv) defined change
propagation process.

- To address evolution of system requirements and software
architecture, quality-driven software reengineering model [S74]
adopts NFR Framework [54] and the concept of soft goals to support
modeling of design rationale with soft-goal interdependency graphs.

- The approach in [S81] focuses on business rules, which represent an
important source of requirement changes due to their high impact on
software and business process. Business rules are considered as an
integral part of system evolution, and are specified in Business Rule
Model, which is then related to meta-model level of software design

Architecting for Software Evolvability 100

elements through a Link Model. Modeling business rules improves
requirement traceability in software design, and helps in localizing
impacts of changing business rules.

Relevance to software evolvability

The modeling-techniques help improve architecture evolution by modeling
the relationships among inter-dependent software artefacts, which if not
handled with care, would introduce inconsistencies and lead to evolvability
degradation in the long run.

A summary of modeling techniques is given in Table 3-15.

Architecting for Software Evolvability 101

Table 3-15: Modeling techniques

Study Focus and Application

Context

Included

Technique

Validation

S17 Model relations between
requirements, features, architectural
elements and implementation for
evaluating and improving
evolvability.

Traceability
modeling.

Features.

Validated in an
industrial IT
infrastructure domain

S32 Model architectural design
decisions using ontology-driven
visualization.

Ontology instances. Validated in a
product audit
organization

S39 Model evolution paths with the goal
of choosing an optimal path to
achieve business objectives.

Characterize recurring patterns as a
set of evolution styles.

Utility-theoretic
approach.

Theoretical.

S41 Model change impact on the
structure of software architecture.

Rule-based
approach.

Implementation
based on Eclipse
Development
Environment.

S49 Model architectural tactics in
feature models, and define
semantics for these tactics.

Feature modeling.

Role-based meta-
modeling language

Demonstrated with a
stock trading system.

S51 Scope for a minimum set of links to
model traceability.

Traceability path Illustrated with
examples in product
line engineering and
process management

S58 Model information of stakeholder,
architecture, quality and scenarios.

Risk level indication through
estimating the required effort (low,
medium, or high) to make the
changes.

Analysis is based on stakeholder
objectives, and requires upfront
modeling and compilation of
various stakeholders’ perspectives.

Traceability
modeling.

Scenarios.

Architecture views.

Quality function
deployment.

Empirical study in a
large scale
telecommunication
switching system

S59 Model tactics as opposed to
focusing on NFRs themselves.

NFR framework.

Qualitative and
quantitative
analysis.

Illustrated with a
case study of
Automatic Teller
Machine (ATM)
application

Architecting for Software Evolvability 100

elements through a Link Model. Modeling business rules improves
requirement traceability in software design, and helps in localizing
impacts of changing business rules.

Relevance to software evolvability

The modeling-techniques help improve architecture evolution by modeling
the relationships among inter-dependent software artefacts, which if not
handled with care, would introduce inconsistencies and lead to evolvability
degradation in the long run.

A summary of modeling techniques is given in Table 3-15.

Architecting for Software Evolvability 101

Table 3-15: Modeling techniques

Study Focus and Application

Context

Included

Technique

Validation

S17 Model relations between
requirements, features, architectural
elements and implementation for
evaluating and improving
evolvability.

Traceability
modeling.

Features.

Validated in an
industrial IT
infrastructure domain

S32 Model architectural design
decisions using ontology-driven
visualization.

Ontology instances. Validated in a
product audit
organization

S39 Model evolution paths with the goal
of choosing an optimal path to
achieve business objectives.

Characterize recurring patterns as a
set of evolution styles.

Utility-theoretic
approach.

Theoretical.

S41 Model change impact on the
structure of software architecture.

Rule-based
approach.

Implementation
based on Eclipse
Development
Environment.

S49 Model architectural tactics in
feature models, and define
semantics for these tactics.

Feature modeling.

Role-based meta-
modeling language

Demonstrated with a
stock trading system.

S51 Scope for a minimum set of links to
model traceability.

Traceability path Illustrated with
examples in product
line engineering and
process management

S58 Model information of stakeholder,
architecture, quality and scenarios.

Risk level indication through
estimating the required effort (low,
medium, or high) to make the
changes.

Analysis is based on stakeholder
objectives, and requires upfront
modeling and compilation of
various stakeholders’ perspectives.

Traceability
modeling.

Scenarios.

Architecture views.

Quality function
deployment.

Empirical study in a
large scale
telecommunication
switching system

S59 Model tactics as opposed to
focusing on NFRs themselves.

NFR framework.

Qualitative and
quantitative
analysis.

Illustrated with a
case study of
Automatic Teller
Machine (ATM)
application

Architecting for Software Evolvability 102

Study Focus and Application

Context

Included

Technique

Validation

S60 Construct a wrapper system which
generates feedback data, and detects
the need for evolutionary changes.

Object-process
modeling.

Validated by
analyzing system
usage activity logs
and update request
history of projects

S61 Model concerns and map them
towards software artifacts.

Concern model. Three small
evaluations assessing
different aspects

S63 Model quality requirements to
create quality attribute ontology and
requirements models.

Quality driven model selection from
architectural knowledge base.

Model based quality evaluation
(qualitative and quantitative)

Ontology. Model-
driven engineering.
Domain specific
modeling.

Scenarios.

Quantitative
measuring
techniques,
prediction methods,
measurement based
methods.

Validated in a secure
middleware project

S65 Conceptual modeling of
architectural styles.

Ontology.

Description logic.

Illustrated with an
example.

S69 Identify software layers for the
understanding and evolution of
existing object-oriented software
systems.

Clustering
algorithm.

Empirical
investigation

S74 Model NFR requirements to guide
software transformation.

Not explicitly address the
estimation of transformation impact.

NFR framework.

Soft-goal inter-
dependency graphs.

Design patterns.

Validated with two
medium-size
software systems
(less than 9 KLOC)

S76 Use sequences of architectural
restructurings to specify
architecture evolution.

Graph
transformations.

Validated with an
Internet shop
application

S81 Model business rules as an integral
part of a software system evolution.

Improved traceability between
requirements and design.

Model.

Typology.

Validated in a
healthcare
information system

Architecting for Software Evolvability 103

3.9 Impacts on Research and Practice
The identified categories of themes provide an overview of software
architecture evolvability research as well as a basis for discovering
possibilities for improvement in research and practice. This section
summarizes a number of implications for research and practice.

3.9.1 Technology Maturation

This systematic literature review provides us a perspective of where the field
of architecture evolution and software evolvability stands today. To get
better understanding of the development of the field, we examined the
maturity phase of the approaches described in the primary studies by
mapping them against Redwine-Riddle model [147], which identifies six
typical phases for technology maturation, typically taking 15-20 years for a
technology to enter widespread use.

- Basic research

This is a phase of investigation of ideas and concepts, and articulation of
research questions;

- Concept formulation

This is a phase of informal circulation of ideas and convergence on a
compatible set of ideas;

- Development and extension

This is a phase of exploration of preliminary use of the technology,
clarification of underlying ideas, and generalization of the approach;

- Internal enhancement and exploration

This is a phase of extension of the general approach to other domains,
usage of the technology to solve real problems, and stabilization of the
technology;

- External enhancement and exploration

This is a phase of involvement of a broader group outside the
development group to show substantial evidence of value and
applicability of the technology;

- Popularization

This is a phase of appearance of production-quality, supported versions
and commercialization of the technology.

Architecting for Software Evolvability 102

Study Focus and Application

Context

Included

Technique

Validation

S60 Construct a wrapper system which
generates feedback data, and detects
the need for evolutionary changes.

Object-process
modeling.

Validated by
analyzing system
usage activity logs
and update request
history of projects

S61 Model concerns and map them
towards software artifacts.

Concern model. Three small
evaluations assessing
different aspects

S63 Model quality requirements to
create quality attribute ontology and
requirements models.

Quality driven model selection from
architectural knowledge base.

Model based quality evaluation
(qualitative and quantitative)

Ontology. Model-
driven engineering.
Domain specific
modeling.

Scenarios.

Quantitative
measuring
techniques,
prediction methods,
measurement based
methods.

Validated in a secure
middleware project

S65 Conceptual modeling of
architectural styles.

Ontology.

Description logic.

Illustrated with an
example.

S69 Identify software layers for the
understanding and evolution of
existing object-oriented software
systems.

Clustering
algorithm.

Empirical
investigation

S74 Model NFR requirements to guide
software transformation.

Not explicitly address the
estimation of transformation impact.

NFR framework.

Soft-goal inter-
dependency graphs.

Design patterns.

Validated with two
medium-size
software systems
(less than 9 KLOC)

S76 Use sequences of architectural
restructurings to specify
architecture evolution.

Graph
transformations.

Validated with an
Internet shop
application

S81 Model business rules as an integral
part of a software system evolution.

Improved traceability between
requirements and design.

Model.

Typology.

Validated in a
healthcare
information system

Architecting for Software Evolvability 103

3.9 Impacts on Research and Practice
The identified categories of themes provide an overview of software
architecture evolvability research as well as a basis for discovering
possibilities for improvement in research and practice. This section
summarizes a number of implications for research and practice.

3.9.1 Technology Maturation

This systematic literature review provides us a perspective of where the field
of architecture evolution and software evolvability stands today. To get
better understanding of the development of the field, we examined the
maturity phase of the approaches described in the primary studies by
mapping them against Redwine-Riddle model [147], which identifies six
typical phases for technology maturation, typically taking 15-20 years for a
technology to enter widespread use.

- Basic research

This is a phase of investigation of ideas and concepts, and articulation of
research questions;

- Concept formulation

This is a phase of informal circulation of ideas and convergence on a
compatible set of ideas;

- Development and extension

This is a phase of exploration of preliminary use of the technology,
clarification of underlying ideas, and generalization of the approach;

- Internal enhancement and exploration

This is a phase of extension of the general approach to other domains,
usage of the technology to solve real problems, and stabilization of the
technology;

- External enhancement and exploration

This is a phase of involvement of a broader group outside the
development group to show substantial evidence of value and
applicability of the technology;

- Popularization

This is a phase of appearance of production-quality, supported versions
and commercialization of the technology.

Architecting for Software Evolvability 104

I and two other senior researchers (the same researchers participating in the
whole systematic literature review process) reviewed the 82 primary studies,
and cataloged independently the maturation classification of the technology
presented in each study. When there were any discrepancies in the judgment
on maturation level of any studies, discussions were then initiated in order to
reach an agreement. Figure 3-4 summarizes the classification results7
(number of studies indicated in parenthesis for each maturation phase and
maturation distribution in percentage) according to the technology
maturation model.

7

42

25

1
2

5

0

5

10

15

20

25

30

35

40

45

Basic research

(8.5%)

Concept formulation

(51.2%)

Development and
extension
(30.5%)

Internal

(1.2%)

External

(2.4%)

Popularization

(6.2%)

Figure 3-4: Technology maturation classification of primary studies

We can see from the classification result that a large majority of the 82
primary studies belong to early maturity stages; almost 60% of studies
belong to early stages (basic research and concept formulation), while

7 Figure 3-4 is based on the data collected from peer-reviewed journals, conferences and

workshops, which are the sources in focus in our research. Considering that some of the
later elements of the model would be perhaps found in white papers, industry conferences,
and company technical reports, there might be some variation if we expand the scope of
data sources.

Architecting for Software Evolvability 105

around 30% of studies come to the development and extension phase. This
implies that most methods and tools are still not widely established in
industrial practices, indicating that the value and applicability of many novel
research ideas still need to be further extended on industrial projects of
various scales and in different industrial domains.

3.9.2 Theoretical Foundation and Formalization

The 82 primary studies concern two main aspects:

- Development of new, or modification of existing approaches to
support architecture evolution and software evolvability;

- Evaluation of the effect of applying an approach.

To get a good understanding of how the approaches have been assessed, we
examine the primary studies by looking into the empirical method they use,
e.g., theoretical reasoning, single-case validation in industry, etc.

A distribution of the studies per validation status is shown in Table 3-16.

Table 3-16: Study distribution per empirical method used

Empirical

Method

Categ.

1

Categ.

2

Categ.

3

Categ.

4

Categ.

5
Number %

Single-case in
Industry

3 12 5 6 8 34 41.5

Single-case in
Academia

1 1 2 6 5 15 18.3

Multiple-case 9 7 1 0 1 18 21.9

Theoretical
Reasoning

1 0 3 4 2 10 12.2

Survey 1 2 0 2 0 5 6.1

Total 15 22 11 18 16 82 100%

Note:

Categ. 1 Quality consideration during design. Categ. 2 Quality evaluation at architectural level. Categ. 3
Economic valuation. Categ. 4 Architectural knowledge management. Categ. 5 Modeling techniques.

About one-fifth (21.9%) of the studies have extended their approaches for
solving industrial problems in multiple domains. Two out of the five surveys
were conducted on practitioners in companies. Most of the case studies are
single-case, with 34 studies done in projects in industry and 15 studies in
academic settings. Moreover, 8 studies are on theoretical level, indicating

Architecting for Software Evolvability 104

I and two other senior researchers (the same researchers participating in the
whole systematic literature review process) reviewed the 82 primary studies,
and cataloged independently the maturation classification of the technology
presented in each study. When there were any discrepancies in the judgment
on maturation level of any studies, discussions were then initiated in order to
reach an agreement. Figure 3-4 summarizes the classification results7
(number of studies indicated in parenthesis for each maturation phase and
maturation distribution in percentage) according to the technology
maturation model.

7

42

25

1
2

5

0

5

10

15

20

25

30

35

40

45

Basic research

(8.5%)

Concept formulation

(51.2%)

Development and
extension
(30.5%)

Internal

(1.2%)

External

(2.4%)

Popularization

(6.2%)

Figure 3-4: Technology maturation classification of primary studies

We can see from the classification result that a large majority of the 82
primary studies belong to early maturity stages; almost 60% of studies
belong to early stages (basic research and concept formulation), while

7 Figure 3-4 is based on the data collected from peer-reviewed journals, conferences and

workshops, which are the sources in focus in our research. Considering that some of the
later elements of the model would be perhaps found in white papers, industry conferences,
and company technical reports, there might be some variation if we expand the scope of
data sources.

Architecting for Software Evolvability 105

around 30% of studies come to the development and extension phase. This
implies that most methods and tools are still not widely established in
industrial practices, indicating that the value and applicability of many novel
research ideas still need to be further extended on industrial projects of
various scales and in different industrial domains.

3.9.2 Theoretical Foundation and Formalization

The 82 primary studies concern two main aspects:

- Development of new, or modification of existing approaches to
support architecture evolution and software evolvability;

- Evaluation of the effect of applying an approach.

To get a good understanding of how the approaches have been assessed, we
examine the primary studies by looking into the empirical method they use,
e.g., theoretical reasoning, single-case validation in industry, etc.

A distribution of the studies per validation status is shown in Table 3-16.

Table 3-16: Study distribution per empirical method used

Empirical

Method

Categ.

1

Categ.

2

Categ.

3

Categ.

4

Categ.

5
Number %

Single-case in
Industry

3 12 5 6 8 34 41.5

Single-case in
Academia

1 1 2 6 5 15 18.3

Multiple-case 9 7 1 0 1 18 21.9

Theoretical
Reasoning

1 0 3 4 2 10 12.2

Survey 1 2 0 2 0 5 6.1

Total 15 22 11 18 16 82 100%

Note:

Categ. 1 Quality consideration during design. Categ. 2 Quality evaluation at architectural level. Categ. 3
Economic valuation. Categ. 4 Architectural knowledge management. Categ. 5 Modeling techniques.

About one-fifth (21.9%) of the studies have extended their approaches for
solving industrial problems in multiple domains. Two out of the five surveys
were conducted on practitioners in companies. Most of the case studies are
single-case, with 34 studies done in projects in industry and 15 studies in
academic settings. Moreover, 8 studies are on theoretical level, indicating

Architecting for Software Evolvability 106

also the challenge in collecting empirical data due to the complex and
longitudinal nature of software evolution. As we see from the table, 63.4%
(i.e., 41.5% + 21.9%) of the studies include industrial case studies, and
71.7% (i.e., 41.5% + 18.3% + 21.9%) include case studies. This large
percentage of case studies implies:

- Software evolution research studies real-world phenomena, and the
knowledge is acquired on the basis of case studies rather than
deductive logic, mathematics, or generalized knowledge, as
generalizing the results from case studies to settings beyond the
studied organizations is a challenge;

- Architecture evolution and software evolvability is less expressive in
formalized ways (foundation theories, quantitative methods, formal
languages);

- Software evolution research area, by its nature, due to its
complexity, is more difficult to be explained by theoretical
principles than by practical experiences; thus, a theoretical
foundation with practical value for software evolution is necessary.

3.9.3 Combination of Approaches

Each of the approaches identified in the review has its specific focus and
context that it is appropriate for. For instance, the Attribute Driven Design
(ADD) [S8] assists in making design decisions based on their effects on
quality attributes. The input to its commencement depends on some analysis
results from other methods, e.g., Quality Attribute Workshop (QAW) 8 which
helps in understanding the problem by eliciting quality attribute
requirements in the form of quality attribute scenarios. Moreover, ADD uses
prioritization of quality attributes when the choice of architectural patterns
and tactics cannot support all the desired quality attributes. In this context,
ADD depends on some kind of architecture evaluation method, e.g., ATAM
[S30, S48], in order to analyze how each design alternative would influence
the tradeoffs among all desired quality attributes. Therefore, considering the
architectural design activities in the software lifecycle, ADD needs to be

8 There is no publication on this topic in the electronic databases. Details on this

topic can be found at
http://www.sei.cmu.edu/architecture/consulting/qaw/index.cfm (visited on 22nd of
September, 2010)

Architecting for Software Evolvability 107

complemented with approaches that support elicitation of quality
requirements as well as approaches that support reasoning about choice of
design alternatives.

Another example is related to scenario-based analysis methods. Most
scenario-based software architecture analysis methods have the strength of
being able to concretize driving quality attribute requirements, but they also
have a weakness of being optimistic in change scenario elicitation due to the
unpredictable nature of changes as well as stakeholders’ short horizon in
foreseeing future changes [110]. Therefore, some architectural knowledge
management approaches can be used to complement scenario-based methods
and address this weakness through explicit representation of invariabilities to
provide additional what-if scenarios. Economic valuation methods can also
be used to complement with details on business consequences of
architectural decisions. Another weakness of most scenario-based analysis
methods is their lack of a more fine-grained analysis [S58] although most of
these approaches are effective for high-level evaluation of an architecture.
Modeling techniques can thus be used to complement with traceability
information and visualization of impact analysis.

We have observed an initiative in research community to combine
appropriate techniques for software architecture evolution [64, 131]. As
evolvability needs to be addressed over the complete software lifecycle, it is
necessary to combine appropriate approaches to manage this multifaceted
attribute [S15].

3.9.4 Tailoring Approaches for Specific Contexts

For practitioners, this review presents a wide spectrum of approaches that
analyze and improve software evolvability from specific perspectives. As
described in Chapter 3.9.3, each approach identified in the review has its
specific application context that it is appropriate for, such as the required
input for commencement when using an approach, the phase in the software
lifecycle when an approach is suitable, scope of analysis and output, etc.
Thus, this review can be used by practitioners as a source in searching for
relevant approaches. We suggest that the main consideration for practitioners
is to carefully examine the context and characteristics of their own project,
and compare with the application context and constraints of a certain
approach before adopting and tailoring the approach into their own software
development.

Architecting for Software Evolvability 106

also the challenge in collecting empirical data due to the complex and
longitudinal nature of software evolution. As we see from the table, 63.4%
(i.e., 41.5% + 21.9%) of the studies include industrial case studies, and
71.7% (i.e., 41.5% + 18.3% + 21.9%) include case studies. This large
percentage of case studies implies:

- Software evolution research studies real-world phenomena, and the
knowledge is acquired on the basis of case studies rather than
deductive logic, mathematics, or generalized knowledge, as
generalizing the results from case studies to settings beyond the
studied organizations is a challenge;

- Architecture evolution and software evolvability is less expressive in
formalized ways (foundation theories, quantitative methods, formal
languages);

- Software evolution research area, by its nature, due to its
complexity, is more difficult to be explained by theoretical
principles than by practical experiences; thus, a theoretical
foundation with practical value for software evolution is necessary.

3.9.3 Combination of Approaches

Each of the approaches identified in the review has its specific focus and
context that it is appropriate for. For instance, the Attribute Driven Design
(ADD) [S8] assists in making design decisions based on their effects on
quality attributes. The input to its commencement depends on some analysis
results from other methods, e.g., Quality Attribute Workshop (QAW) 8 which
helps in understanding the problem by eliciting quality attribute
requirements in the form of quality attribute scenarios. Moreover, ADD uses
prioritization of quality attributes when the choice of architectural patterns
and tactics cannot support all the desired quality attributes. In this context,
ADD depends on some kind of architecture evaluation method, e.g., ATAM
[S30, S48], in order to analyze how each design alternative would influence
the tradeoffs among all desired quality attributes. Therefore, considering the
architectural design activities in the software lifecycle, ADD needs to be

8 There is no publication on this topic in the electronic databases. Details on this

topic can be found at
http://www.sei.cmu.edu/architecture/consulting/qaw/index.cfm (visited on 22nd of
September, 2010)

Architecting for Software Evolvability 107

complemented with approaches that support elicitation of quality
requirements as well as approaches that support reasoning about choice of
design alternatives.

Another example is related to scenario-based analysis methods. Most
scenario-based software architecture analysis methods have the strength of
being able to concretize driving quality attribute requirements, but they also
have a weakness of being optimistic in change scenario elicitation due to the
unpredictable nature of changes as well as stakeholders’ short horizon in
foreseeing future changes [110]. Therefore, some architectural knowledge
management approaches can be used to complement scenario-based methods
and address this weakness through explicit representation of invariabilities to
provide additional what-if scenarios. Economic valuation methods can also
be used to complement with details on business consequences of
architectural decisions. Another weakness of most scenario-based analysis
methods is their lack of a more fine-grained analysis [S58] although most of
these approaches are effective for high-level evaluation of an architecture.
Modeling techniques can thus be used to complement with traceability
information and visualization of impact analysis.

We have observed an initiative in research community to combine
appropriate techniques for software architecture evolution [64, 131]. As
evolvability needs to be addressed over the complete software lifecycle, it is
necessary to combine appropriate approaches to manage this multifaceted
attribute [S15].

3.9.4 Tailoring Approaches for Specific Contexts

For practitioners, this review presents a wide spectrum of approaches that
analyze and improve software evolvability from specific perspectives. As
described in Chapter 3.9.3, each approach identified in the review has its
specific application context that it is appropriate for, such as the required
input for commencement when using an approach, the phase in the software
lifecycle when an approach is suitable, scope of analysis and output, etc.
Thus, this review can be used by practitioners as a source in searching for
relevant approaches. We suggest that the main consideration for practitioners
is to carefully examine the context and characteristics of their own project,
and compare with the application context and constraints of a certain
approach before adopting and tailoring the approach into their own software
development.

Architecting for Software Evolvability 108

3.10 Summary
The main objective of this chapter is to obtain a holistic view of and
critically analyze the existing studies in analyzing and achieving software
evolvability at architectural level. Based on a pre-defined search strategy and
a multi-step selection process, we have identified 82 primary studies,
covering a spectrum of approaches with specific perspective or focus on a
particular architecture-centric activity in software lifecycle. These
approaches vary in terminology, descriptions, artifacts and involved
activities, yet beyond these differences, we find approaches that share a lot
in common, e.g., focus, goal and application context. We extract these
commonalities and summarize the studies into five main categories of
themes:

- Quality considerations during design

The approaches in this category are further refined into three sub-
categories:

- Quality attribute requirement focused

- Quality attribute scenario focused

- Influencing factor focused

Most of the techniques that support quality considerations during
software architecture design help identify key quality attribute
requirements early in the software design phase. Most studies address
quality attributes in general and not evolvability in particular.

- Architectural quality evaluation

In the subsequent iteration when an architecture starts to take form,
architectural quality evaluations help elicit and refine additional quality
attribute requirements and scenarios. The approaches in this category are
further refined into three sub-categories:

- Experienced-based

- Scenario-based

- Metric-based

A reflection on how these studies are related to software evolvability is
that most studies focus on particular quality attributes such as
adaptability, and do not cover the wide spectrum of evolvability
subcharacteristics. Few studies explicitly address software evolvability.
Even if the term evolvability is used in some studies, there is a lack of

Architecting for Software Evolvability 109

precise definition or explanation of authors’ perception on software
evolvability.

- Economic valuation

Economic valuation approaches provide more details on architectural
decisions’ business consequences, and assist development teams in
choosing among architectural options. Most studies focus on a single
quality attribute, e.g., stability, flexibility or modularity, and may exhibit
a drawback in architectural design decision-making process when
multiple evolvability subcharacteristics are involved, requiring explicit
management of preferences and tradeoffs among evolvability
subcharacteristics.

- Architectural knowledge management

Architectural knowledge management approaches improve architectural
integrity by enriching architecture documentation with architectural
knowledge captured from different information sources.

- Modeling techniques

Modeling techniques add value by modeling software artefacts along
with their traceability, and visualizing corresponding impact of the
evolution of software architecture artifacts. They do not explicitly focus
on evolvability in particular, but they help control and improve software
architecture evolution by modeling the relationships among inter-
dependent software artefacts.

This systematic review has implications for both research and practitioners.
For researchers, the analysis of the primary studies indicates a number of
challenges and topics for future research:

- There is a space to develop new foundation theories beyond to
Lehman’s law (for example quantitative expression of evolvability,
along with its measurement, monitoring, prediction, impact analysis,
and similar), with practical value to software architecture evolution;
In future we can expect more research work in this area – in addition
to case studies, we could expect more basic foundation research and
standardization of designing, and assessing evolvability, probably
enriched by different tools.

- It is necessary to address the multifaceted perspectives of software
evolvability through combining appropriate approaches to
complement each other, as each approach has its specific focus and
context that it is appropriate for in a software lifecycle;

Architecting for Software Evolvability 108

3.10 Summary
The main objective of this chapter is to obtain a holistic view of and
critically analyze the existing studies in analyzing and achieving software
evolvability at architectural level. Based on a pre-defined search strategy and
a multi-step selection process, we have identified 82 primary studies,
covering a spectrum of approaches with specific perspective or focus on a
particular architecture-centric activity in software lifecycle. These
approaches vary in terminology, descriptions, artifacts and involved
activities, yet beyond these differences, we find approaches that share a lot
in common, e.g., focus, goal and application context. We extract these
commonalities and summarize the studies into five main categories of
themes:

- Quality considerations during design

The approaches in this category are further refined into three sub-
categories:

- Quality attribute requirement focused

- Quality attribute scenario focused

- Influencing factor focused

Most of the techniques that support quality considerations during
software architecture design help identify key quality attribute
requirements early in the software design phase. Most studies address
quality attributes in general and not evolvability in particular.

- Architectural quality evaluation

In the subsequent iteration when an architecture starts to take form,
architectural quality evaluations help elicit and refine additional quality
attribute requirements and scenarios. The approaches in this category are
further refined into three sub-categories:

- Experienced-based

- Scenario-based

- Metric-based

A reflection on how these studies are related to software evolvability is
that most studies focus on particular quality attributes such as
adaptability, and do not cover the wide spectrum of evolvability
subcharacteristics. Few studies explicitly address software evolvability.
Even if the term evolvability is used in some studies, there is a lack of

Architecting for Software Evolvability 109

precise definition or explanation of authors’ perception on software
evolvability.

- Economic valuation

Economic valuation approaches provide more details on architectural
decisions’ business consequences, and assist development teams in
choosing among architectural options. Most studies focus on a single
quality attribute, e.g., stability, flexibility or modularity, and may exhibit
a drawback in architectural design decision-making process when
multiple evolvability subcharacteristics are involved, requiring explicit
management of preferences and tradeoffs among evolvability
subcharacteristics.

- Architectural knowledge management

Architectural knowledge management approaches improve architectural
integrity by enriching architecture documentation with architectural
knowledge captured from different information sources.

- Modeling techniques

Modeling techniques add value by modeling software artefacts along
with their traceability, and visualizing corresponding impact of the
evolution of software architecture artifacts. They do not explicitly focus
on evolvability in particular, but they help control and improve software
architecture evolution by modeling the relationships among inter-
dependent software artefacts.

This systematic review has implications for both research and practitioners.
For researchers, the analysis of the primary studies indicates a number of
challenges and topics for future research:

- There is a space to develop new foundation theories beyond to
Lehman’s law (for example quantitative expression of evolvability,
along with its measurement, monitoring, prediction, impact analysis,
and similar), with practical value to software architecture evolution;
In future we can expect more research work in this area – in addition
to case studies, we could expect more basic foundation research and
standardization of designing, and assessing evolvability, probably
enriched by different tools.

- It is necessary to address the multifaceted perspectives of software
evolvability through combining appropriate approaches to
complement each other, as each approach has its specific focus and
context that it is appropriate for in a software lifecycle;

Architecting for Software Evolvability 110

- Considering that all artefacts produced and used during the entire
software lifecycle are subject to changes, novel methods and tools
need to be developed to be able to design ultra-large-systems that
integrate and orchestrate the evolution of thousands of platforms,
decision nodes, organizations and processes [132].

For practitioners, they can use this review as a source in searching for
relevant approaches before adopting and tailoring them by examining the
context and characteristics of their own software development, and
comparing with the application context of relevant approaches.

The analysis of the existing studies in analyzing and achieving software
evolvability at architectural level lays a ground for our research in
evolvability analysis; in particular, the multifaceted characteristics of
evolvability as well as the different theme to address evolvability provide us
with valuable input to our evolvability analysis process, which will be
described in the next chapter.

Chapter 4. Analyzing Software
Evolvability

Architecting an evolvable software system is an important and challenging
task. This is mainly due to the following reasons:

- Change is an essential element in software development, as software
systems must respond to evolving requirements, platforms and other
environmental pressures [80].

- Architecting for evolvable systems implies a complex decision-
making process in which multiple aspects need to be taken into
consideration, e.g., stakeholders’ needs and goals, multiple quality
requirements with competing priorities, various architectural
solutions with divergent implications on quality requirements.

As a software system is subject to a substantial amount of evolutionary
changes, e.g. software technology changes, system migration to product line
architecture, an evolvable software system can often reflect these changes to
adequately fulfill its roles and remain relevant to stakeholders. As stated in
Chapter 1, the main objective of our research is to improve the capability to
understand and analyze systematically the evolution of a software
architecture. Concretely, we address the following research questions:

- What software characteristics are necessary to constitute an
evolvable software system?

- How to assess evolvability of a software system in a systematic
manner when evolving the architecture to embrace potential
architectural requirements caused by a certain change, e.g., ever-
changing business requirements, advances of technology?

In Chapter 3, we have presented the wide spectrum of approaches that cover
five main categories of themes and aim to support software architecture
evolution. In this chapter, we will describe software architecture evolution
characterization, and propose an architecture evolvability analysis process
that provides repeatable techniques for performing the activities to
understand and support software architecture evolution. The evolvability

Architecting for Software Evolvability 110

- Considering that all artefacts produced and used during the entire
software lifecycle are subject to changes, novel methods and tools
need to be developed to be able to design ultra-large-systems that
integrate and orchestrate the evolution of thousands of platforms,
decision nodes, organizations and processes [132].

For practitioners, they can use this review as a source in searching for
relevant approaches before adopting and tailoring them by examining the
context and characteristics of their own software development, and
comparing with the application context of relevant approaches.

The analysis of the existing studies in analyzing and achieving software
evolvability at architectural level lays a ground for our research in
evolvability analysis; in particular, the multifaceted characteristics of
evolvability as well as the different theme to address evolvability provide us
with valuable input to our evolvability analysis process, which will be
described in the next chapter.

Chapter 4. Analyzing Software
Evolvability

Architecting an evolvable software system is an important and challenging
task. This is mainly due to the following reasons:

- Change is an essential element in software development, as software
systems must respond to evolving requirements, platforms and other
environmental pressures [80].

- Architecting for evolvable systems implies a complex decision-
making process in which multiple aspects need to be taken into
consideration, e.g., stakeholders’ needs and goals, multiple quality
requirements with competing priorities, various architectural
solutions with divergent implications on quality requirements.

As a software system is subject to a substantial amount of evolutionary
changes, e.g. software technology changes, system migration to product line
architecture, an evolvable software system can often reflect these changes to
adequately fulfill its roles and remain relevant to stakeholders. As stated in
Chapter 1, the main objective of our research is to improve the capability to
understand and analyze systematically the evolution of a software
architecture. Concretely, we address the following research questions:

- What software characteristics are necessary to constitute an
evolvable software system?

- How to assess evolvability of a software system in a systematic
manner when evolving the architecture to embrace potential
architectural requirements caused by a certain change, e.g., ever-
changing business requirements, advances of technology?

In Chapter 3, we have presented the wide spectrum of approaches that cover
five main categories of themes and aim to support software architecture
evolution. In this chapter, we will describe software architecture evolution
characterization, and propose an architecture evolvability analysis process
that provides repeatable techniques for performing the activities to
understand and support software architecture evolution. The evolvability

Analyzing Software Evolvability 112

analysis process addresses various aspects, i.e., quality consideration during
design, architectural quality evaluation, economic valuation, and
architectural knowledge management. The repeatable techniques include:

- A structured qualitative method for analyzing evolvability at the
architectural level;

- A quantitative evolvability analysis method with explicit and
quantitative treatment of stakeholders’ evolvability concerns and
potential architectural solutions’ impacts on evolvability.

These techniques as well as the software evolvability model are inspired
from the comprehensive literature surveys and our experiences in working
with various industrial software systems. They have been refined and
validated in practice (see Chapter 5). This chapter focuses on the
introduction of the software evolvability model and evolvability analysis
processes.

The remainder of the chapter is structured as follows. Chapter 4.1 describes
the software evolvability model which is the basis for evolvability analysis
process. Chapter 4.2 presents the general software evolvability analysis
process along with detailed descriptions of the qualitative and quantitative
architecture evolvability analysis methods.

4.1 Software Evolvability Model
Rowe and Leaney [153] state that software evolvability is a multifaceted
quality attribute. Based on survey of literatures, e.g., the definition by Rowe
and Leaney [153], the analysis of the software quality challenges and
assessment by Fitzpatrick et al. [67], the types of change stimuli and
evolution [50], and the taxonomy of software change based on various
dimensions that characterize or influence the mechanisms of change [39], we
have found that only having a collection of the subcharacteristics of
maintainability as defined in the ISO software quality standard [89] is not
sufficient for a software system to be evolvable. Therefore, we have
complimented and identified subcharacteristics that are of primary
importance for an evolvable software system, and outlined a software
evolvability model that provides a basis for analyzing and evaluating
software evolvability. The proposed model structure is inspired by ISO 9126
quality model [89], which describes complex quality criteria through
breaking them down into concrete subcharacteristics. Besides, we have also
looked into other quality models, and identified subcharacteristics related to
evolvability (see Chapter 2).

Analyzing Software Evolvability 113

The overall model structure and its basic principles are shown on Figure 4-1.
The evolvability model refines software evolvability into a collection of
subcharacteristics that can be measured through a number of corresponding
measuring attributes. The idea with the evolvability model is to further
derive the identified subcharacteristics to the extent when we are able to
quantify them by defining metrics to measure relevant measuring attributes
for each subcharacteristic, and/or make appropriate reasoning about the
quality of service (QoS) for subcharacteristics that are difficult to be
quantified (e.g., architectural integrity, described below).

Figure 4-1: Software evolvability model

The model and its validation are based on industrial requirements of long-
life software-intensive systems within different domains. In particular, they
are the results from case studies [31] [33, 34], and are valid for a class of
long-lived industrial software-intensive systems that often are exposed to
many, and in most cases evolutionary changes. For these types of systems
we have identified the following evolvability subcharacteristics, with
examples of measuring attributes for each subcharacteristic:

- Analyzability describes the capability of the software system to
enable the identification of influenced parts due to change stimuli;
its measuring attributes include modularity, complexity, and
architectural documentation.

- Architectural Integrity describes the non-occurrence of improper
alteration of architectural information; its measuring attributes
include architectural documentation.

- Changeability describes the capability of the software system to
enable a specified modification to be implemented and avoid
unexpected effects; its measuring attributes include complexity,
coupling, change impact, encapsulation, reuse, and modularity.

Analyzing Software Evolvability 112

analysis process addresses various aspects, i.e., quality consideration during
design, architectural quality evaluation, economic valuation, and
architectural knowledge management. The repeatable techniques include:

- A structured qualitative method for analyzing evolvability at the
architectural level;

- A quantitative evolvability analysis method with explicit and
quantitative treatment of stakeholders’ evolvability concerns and
potential architectural solutions’ impacts on evolvability.

These techniques as well as the software evolvability model are inspired
from the comprehensive literature surveys and our experiences in working
with various industrial software systems. They have been refined and
validated in practice (see Chapter 5). This chapter focuses on the
introduction of the software evolvability model and evolvability analysis
processes.

The remainder of the chapter is structured as follows. Chapter 4.1 describes
the software evolvability model which is the basis for evolvability analysis
process. Chapter 4.2 presents the general software evolvability analysis
process along with detailed descriptions of the qualitative and quantitative
architecture evolvability analysis methods.

4.1 Software Evolvability Model
Rowe and Leaney [153] state that software evolvability is a multifaceted
quality attribute. Based on survey of literatures, e.g., the definition by Rowe
and Leaney [153], the analysis of the software quality challenges and
assessment by Fitzpatrick et al. [67], the types of change stimuli and
evolution [50], and the taxonomy of software change based on various
dimensions that characterize or influence the mechanisms of change [39], we
have found that only having a collection of the subcharacteristics of
maintainability as defined in the ISO software quality standard [89] is not
sufficient for a software system to be evolvable. Therefore, we have
complimented and identified subcharacteristics that are of primary
importance for an evolvable software system, and outlined a software
evolvability model that provides a basis for analyzing and evaluating
software evolvability. The proposed model structure is inspired by ISO 9126
quality model [89], which describes complex quality criteria through
breaking them down into concrete subcharacteristics. Besides, we have also
looked into other quality models, and identified subcharacteristics related to
evolvability (see Chapter 2).

Analyzing Software Evolvability 113

The overall model structure and its basic principles are shown on Figure 4-1.
The evolvability model refines software evolvability into a collection of
subcharacteristics that can be measured through a number of corresponding
measuring attributes. The idea with the evolvability model is to further
derive the identified subcharacteristics to the extent when we are able to
quantify them by defining metrics to measure relevant measuring attributes
for each subcharacteristic, and/or make appropriate reasoning about the
quality of service (QoS) for subcharacteristics that are difficult to be
quantified (e.g., architectural integrity, described below).

Figure 4-1: Software evolvability model

The model and its validation are based on industrial requirements of long-
life software-intensive systems within different domains. In particular, they
are the results from case studies [31] [33, 34], and are valid for a class of
long-lived industrial software-intensive systems that often are exposed to
many, and in most cases evolutionary changes. For these types of systems
we have identified the following evolvability subcharacteristics, with
examples of measuring attributes for each subcharacteristic:

- Analyzability describes the capability of the software system to
enable the identification of influenced parts due to change stimuli;
its measuring attributes include modularity, complexity, and
architectural documentation.

- Architectural Integrity describes the non-occurrence of improper
alteration of architectural information; its measuring attributes
include architectural documentation.

- Changeability describes the capability of the software system to
enable a specified modification to be implemented and avoid
unexpected effects; its measuring attributes include complexity,
coupling, change impact, encapsulation, reuse, and modularity.

Analyzing Software Evolvability 114

- Extensibility describes the capability of the software system to
enable the implementations of extensions to expand or enhance the
system with new features; its measuring attributes include
modularity, coupling, encapsulation, and change impact.

- Portability describes the capability of the software system to be
transferred from one environment to another; its measuring
attributes include mechanisms facilitating adaptation to different
environments.

- Testability describes the capability of the software system to validate
the modified software; its measuring attributes include complexity,
and modularity.

- Domain-specific attributes are the additional quality
subcharacteristics that are required by specific domains.

These evolvability subcharacteristics are the main enablers of evolvability.
However, we do not exclude the possibilities that other domains might have
slightly different set of subcharacteristics, in particularly with domain-
specific attributes. For instance, the World Wide Web domain requires
additional quality characteristics such as visibility, intelligibility, credibility,
engagibility and differentiation [67]. Component exchangeability in the
context of service reuse is another example within the distributed domain,
e.g., wireless computing, component-based and service-oriented
applications.

According to Parnas [137], software evolution is very often negatively
influenced by architectural drift, feature creep, and progressive hardware
dependence. However, with the identified evolvability subcharacteristics in
mind, we have a basis upon which different systems can be examined with
respect to evolvability. Any system design and architectural decisions that do
not explicitly address one or more of these subcharacteristics probably will
undermine the system’s ability to be evolved. Therefore, the software
evolvability model is a way to articulate subcharacteristics for an evolvable
system that an architecture must support. It is established as a first step
towards analyzing and quantifying evolvability, a base and checkpoints for
evolvability evaluation and improvement, and is an integral part in
qualitative and quantitative evolvability analysis processes (see Chapter 4.2).

Analyzing Software Evolvability 115

4.2 Software Architecture Evolvability Analysis
Process
The software architecture evolvability analysis process (AREA) engages
stakeholders throughout the system development and evolution lifecycle to
discover the driving architectural requirements, stakeholders’ evolvability
concerns, and potential architectural solutions’ impact on evolvability of a
software system. It can be carried out at many points during a system’s
lifecycle, e.g., during the design phase to evaluate prospective candidate
designs, validating the architecture before further commencement of
development, or evaluating architecture of a legacy system that is
undergoing modification, extension, or other significant upgrades.

The analysis process is stakeholder-focused, and therefore, is dependent on
the participation of involved stakeholders of various roles, such as architects,
development team, research team, project leader, and product managers. All
participants are encouraged to comment and state their opinions during the
workshops and interviews. Consequently, the analysis process provides
increased stakeholder communication.

The evolvability analysis can be conducted by an internal assessment team
or an external evaluation team. Having an internal assessment team requires
discipline as it tends to be subject to more bias and influence, especially if
the team is part of the organization that is responsible for evolving the
architecture. Having an external assessment team is less affected by biased
opinions, though with a weakness of its lack of knowledge of the system in
focus.

The results of the evolvability analysis process include:

- Prioritized architectural requirements;

- Stakeholders’ evolvability concerns;

- Candidate architectural solutions;

- Architectural solutions’ impact on evolvability.

It is a challenging task for an architect to choose among competing candidate
architectural solutions and ensure that the system constructed from the
architecture satisfies its stakeholders’ needs. Nevertheless, the results from
the software evolvability analysis process provide useful input to an architect
to design and evolve the architecture.

As stated in the beginning of this chapter, the techniques embedded in the
software evolvability analysis process include a qualitative evolvability

Analyzing Software Evolvability 114

- Extensibility describes the capability of the software system to
enable the implementations of extensions to expand or enhance the
system with new features; its measuring attributes include
modularity, coupling, encapsulation, and change impact.

- Portability describes the capability of the software system to be
transferred from one environment to another; its measuring
attributes include mechanisms facilitating adaptation to different
environments.

- Testability describes the capability of the software system to validate
the modified software; its measuring attributes include complexity,
and modularity.

- Domain-specific attributes are the additional quality
subcharacteristics that are required by specific domains.

These evolvability subcharacteristics are the main enablers of evolvability.
However, we do not exclude the possibilities that other domains might have
slightly different set of subcharacteristics, in particularly with domain-
specific attributes. For instance, the World Wide Web domain requires
additional quality characteristics such as visibility, intelligibility, credibility,
engagibility and differentiation [67]. Component exchangeability in the
context of service reuse is another example within the distributed domain,
e.g., wireless computing, component-based and service-oriented
applications.

According to Parnas [137], software evolution is very often negatively
influenced by architectural drift, feature creep, and progressive hardware
dependence. However, with the identified evolvability subcharacteristics in
mind, we have a basis upon which different systems can be examined with
respect to evolvability. Any system design and architectural decisions that do
not explicitly address one or more of these subcharacteristics probably will
undermine the system’s ability to be evolved. Therefore, the software
evolvability model is a way to articulate subcharacteristics for an evolvable
system that an architecture must support. It is established as a first step
towards analyzing and quantifying evolvability, a base and checkpoints for
evolvability evaluation and improvement, and is an integral part in
qualitative and quantitative evolvability analysis processes (see Chapter 4.2).

Analyzing Software Evolvability 115

4.2 Software Architecture Evolvability Analysis
Process
The software architecture evolvability analysis process (AREA) engages
stakeholders throughout the system development and evolution lifecycle to
discover the driving architectural requirements, stakeholders’ evolvability
concerns, and potential architectural solutions’ impact on evolvability of a
software system. It can be carried out at many points during a system’s
lifecycle, e.g., during the design phase to evaluate prospective candidate
designs, validating the architecture before further commencement of
development, or evaluating architecture of a legacy system that is
undergoing modification, extension, or other significant upgrades.

The analysis process is stakeholder-focused, and therefore, is dependent on
the participation of involved stakeholders of various roles, such as architects,
development team, research team, project leader, and product managers. All
participants are encouraged to comment and state their opinions during the
workshops and interviews. Consequently, the analysis process provides
increased stakeholder communication.

The evolvability analysis can be conducted by an internal assessment team
or an external evaluation team. Having an internal assessment team requires
discipline as it tends to be subject to more bias and influence, especially if
the team is part of the organization that is responsible for evolving the
architecture. Having an external assessment team is less affected by biased
opinions, though with a weakness of its lack of knowledge of the system in
focus.

The results of the evolvability analysis process include:

- Prioritized architectural requirements;

- Stakeholders’ evolvability concerns;

- Candidate architectural solutions;

- Architectural solutions’ impact on evolvability.

It is a challenging task for an architect to choose among competing candidate
architectural solutions and ensure that the system constructed from the
architecture satisfies its stakeholders’ needs. Nevertheless, the results from
the software evolvability analysis process provide useful input to an architect
to design and evolve the architecture.

As stated in the beginning of this chapter, the techniques embedded in the
software evolvability analysis process include a qualitative evolvability

Analyzing Software Evolvability 116

analysis method which will be introduced in Chapter 4.3, and a quantitative
evolvability analysis method which will be introduced in Chapter 4.4. Both
the qualitative and quantitative evolvability analysis methods that we have
developed share commonalities at the conceptual level. This is reflected in
the general architecture evolvability analysis process (AREA), which is
illustrated in Figure 4-2.

Figure 4-2: Software architecture evolvability analysis process (AREA)

A change stimulus is the event that causes the architecture to respond or
change, and is therefore the driver for an architecture evolvability analysis
process. A change stimulus can be a concrete functional requirement from
customers, a goal for the development organization (e.g., to be more
productive in the numbers of features developed in each product release), or
an adaption to future technology trends. Based on our experiences in
industry, it is often the software architecture core team (system architects),
product manager, and product/system owner who synchronize and reach a
consensus on the choice of change stimulus. Nevertheless, it happens also
that a shifted business goal from the higher management level (e.g., to
enable geographically distributed development) determines the change
stimulus to focus on. Because the analysis on where the change stimuli come
from and which one to opt for is a research topic by itself, we focus in this
dissertation the subsequent evolvability analysis process once a change
stimulus has been decided.

The analysis of the implications of a change stimulus needs to take into
account the architectural concerns among stakeholders before articulating

Analyzing Software Evolvability 117

potential architectural requirements. Based on the identified potential
architectural requirements, a collection of candidate architectural solutions
are proposed to address these requirements, and thereafter, are assessed
against evolvability subcharacteristics. The assessment of candidate
architectural solutions ensures that the choice of an architectural solution is
well analyzed instead of relying on intuition.

The related artifacts in the software evolvability analysis process include:

- Change stimuli

A stimulus is a change condition that needs to be considered from
architectural perspective. Change stimuli trigger an initiation of the
architecture evolvability analysis process. A change stimulus can be a
concrete change, a future change that we know will happen, or a change
that we currently have no idea of, but belonging to a particular class of
change related to environment, organization, process, technology and
stakeholders’ needs. These change stimuli have impact on the software
system in terms of software architecture evolution and embedded quality
attributes. A change stimulus results in a collection of potential
requirements that the software architecture needs to adapt to.

- Stakeholders’ concerns

The IEEE 1471 standard [88] defines architectural concerns as “interests

which pertain to the system’s development, its operation or any other

aspects that are critical or otherwise important to one or more

stakeholders. Concerns include system considerations such as

performance, reliability, and evolvability”. In this dissertation, we focus
on evolvability concerns.

- Potential architectural requirements

Potential architectural requirements are requirements that influence
software architecture and are essential for accommodating change
stimuli.

- Candidate architectural solutions

Candidate architectural solutions are alternative solutions that reflect
design decisions. The description of an architectural solution may
include following information:

- Problem description which describes the problem and
disadvantages of the original design of the architecture or
fragment of the architecture;

Analyzing Software Evolvability 116

analysis method which will be introduced in Chapter 4.3, and a quantitative
evolvability analysis method which will be introduced in Chapter 4.4. Both
the qualitative and quantitative evolvability analysis methods that we have
developed share commonalities at the conceptual level. This is reflected in
the general architecture evolvability analysis process (AREA), which is
illustrated in Figure 4-2.

Figure 4-2: Software architecture evolvability analysis process (AREA)

A change stimulus is the event that causes the architecture to respond or
change, and is therefore the driver for an architecture evolvability analysis
process. A change stimulus can be a concrete functional requirement from
customers, a goal for the development organization (e.g., to be more
productive in the numbers of features developed in each product release), or
an adaption to future technology trends. Based on our experiences in
industry, it is often the software architecture core team (system architects),
product manager, and product/system owner who synchronize and reach a
consensus on the choice of change stimulus. Nevertheless, it happens also
that a shifted business goal from the higher management level (e.g., to
enable geographically distributed development) determines the change
stimulus to focus on. Because the analysis on where the change stimuli come
from and which one to opt for is a research topic by itself, we focus in this
dissertation the subsequent evolvability analysis process once a change
stimulus has been decided.

The analysis of the implications of a change stimulus needs to take into
account the architectural concerns among stakeholders before articulating

Analyzing Software Evolvability 117

potential architectural requirements. Based on the identified potential
architectural requirements, a collection of candidate architectural solutions
are proposed to address these requirements, and thereafter, are assessed
against evolvability subcharacteristics. The assessment of candidate
architectural solutions ensures that the choice of an architectural solution is
well analyzed instead of relying on intuition.

The related artifacts in the software evolvability analysis process include:

- Change stimuli

A stimulus is a change condition that needs to be considered from
architectural perspective. Change stimuli trigger an initiation of the
architecture evolvability analysis process. A change stimulus can be a
concrete change, a future change that we know will happen, or a change
that we currently have no idea of, but belonging to a particular class of
change related to environment, organization, process, technology and
stakeholders’ needs. These change stimuli have impact on the software
system in terms of software architecture evolution and embedded quality
attributes. A change stimulus results in a collection of potential
requirements that the software architecture needs to adapt to.

- Stakeholders’ concerns

The IEEE 1471 standard [88] defines architectural concerns as “interests

which pertain to the system’s development, its operation or any other

aspects that are critical or otherwise important to one or more

stakeholders. Concerns include system considerations such as

performance, reliability, and evolvability”. In this dissertation, we focus
on evolvability concerns.

- Potential architectural requirements

Potential architectural requirements are requirements that influence
software architecture and are essential for accommodating change
stimuli.

- Candidate architectural solutions

Candidate architectural solutions are alternative solutions that reflect
design decisions. The description of an architectural solution may
include following information:

- Problem description which describes the problem and
disadvantages of the original design of the architecture or
fragment of the architecture;

Analyzing Software Evolvability 118

- Requirement which refers to the new requirements that the
architecture needs to fulfill;

- Improvement solution which is the architectural solution to
design problems;

- Rationale and architectural consequence which describes the
rationale of the solution proposal and architectural implications
of the candidate solution on quality attributes;

- Estimated workload for implementation and verification.

The main activities in the software evolvability analysis process include:

- Elicit architectural concerns

This activity extracts architectural concerns with respect to evolvability
subcharacteristics among stakeholders either qualitatively or
quantitatively.

- Qualitative elicitation

Architecture workshops are conducted so that the stakeholders
discuss and identify potential architectural requirements that are
thereof mapped against the evolvability subcharacteristics. Thus
the identified architectural requirements and their prioritization
reflect stakeholders’ architectural concerns with respect to
evolvability subcharacteristics.

- Quantitative elicitation

Individual interviews with respective stakeholders are conducted
so that stakeholders representing different roles provide their
views and preferences on evolvability subcharacteristics by a
pair-wise comparison of subcharacteristics with respect to their
relative importance. Thus the preference weights on evolvability
subcharacteristics from a stakeholder’s perspective are
quantified.

- Analyze implications of change stimuli

This activity analyzes the architecture for evolution, and identifies the
impact of change stimuli on the current architecture. Accordingly, this
activity focuses on defining the problems that the architecture needs to
solve, and examines change stimuli and architectural concerns in order
to obtain a set of potential architectural requirements.

- Propose architectural solutions

Analyzing Software Evolvability 119

This activity focuses on proposing architectural solutions that
accommodate to a set of potential architectural requirements.

- Assess architectural solutions

This activity ensures that the architectural design decisions made are
appropriate for software architecture evolution. The candidate
architectural solutions are assessed against evolvability
subcharacteristics, i.e., the implications of the potential architectural
strategies and evolution path of the software architecture are analyzed
either qualitatively or quantitatively.

- Qualitative assessment in which the determination of potential
architectural solutions is made on a qualitative level in terms of
their impact (i.e., positive or negative) on evolvability
subcharacteristics.

- Quantitative assessment in which the judgment on how well
each candidate architectural solution supports different
evolvability subcharacteristics is quantified.

As we see from the general software evolvability analysis process, the basic
architecting activities such as analyzing implications of change stimuli and
proposing architectural solutions are the same for both the qualitative and
quantitative evolvability analysis. The major variation can be observed in the
different details with respect to stakeholders’ architectural concerns
elicitation and assessment of architectural solutions against evolvability
subcharacteristics. The following two chapters will concretize the steps
performed in the qualitative and quantitative evolvability analysis process
respectively.

4.3 Qualitative Evolvability Analysis Method
The qualitative evolvability analysis method [34] starts with identification of
change stimuli’s implications, guides architects through the analysis of
potential architectural requirements that the software architecture needs to
adapt to, and continues with identification of potential architecture
refactoring solutions along with their implications. Through the analysis
process, the implications of the potential improvement proposals and
evolution path of the software architecture are analyzed with respect to
evolvability subcharacteristics.

The qualitative architecture evolvability analysis method, as shown in Figure
4-3, is divided into three main phases.

Analyzing Software Evolvability 118

- Requirement which refers to the new requirements that the
architecture needs to fulfill;

- Improvement solution which is the architectural solution to
design problems;

- Rationale and architectural consequence which describes the
rationale of the solution proposal and architectural implications
of the candidate solution on quality attributes;

- Estimated workload for implementation and verification.

The main activities in the software evolvability analysis process include:

- Elicit architectural concerns

This activity extracts architectural concerns with respect to evolvability
subcharacteristics among stakeholders either qualitatively or
quantitatively.

- Qualitative elicitation

Architecture workshops are conducted so that the stakeholders
discuss and identify potential architectural requirements that are
thereof mapped against the evolvability subcharacteristics. Thus
the identified architectural requirements and their prioritization
reflect stakeholders’ architectural concerns with respect to
evolvability subcharacteristics.

- Quantitative elicitation

Individual interviews with respective stakeholders are conducted
so that stakeholders representing different roles provide their
views and preferences on evolvability subcharacteristics by a
pair-wise comparison of subcharacteristics with respect to their
relative importance. Thus the preference weights on evolvability
subcharacteristics from a stakeholder’s perspective are
quantified.

- Analyze implications of change stimuli

This activity analyzes the architecture for evolution, and identifies the
impact of change stimuli on the current architecture. Accordingly, this
activity focuses on defining the problems that the architecture needs to
solve, and examines change stimuli and architectural concerns in order
to obtain a set of potential architectural requirements.

- Propose architectural solutions

Analyzing Software Evolvability 119

This activity focuses on proposing architectural solutions that
accommodate to a set of potential architectural requirements.

- Assess architectural solutions

This activity ensures that the architectural design decisions made are
appropriate for software architecture evolution. The candidate
architectural solutions are assessed against evolvability
subcharacteristics, i.e., the implications of the potential architectural
strategies and evolution path of the software architecture are analyzed
either qualitatively or quantitatively.

- Qualitative assessment in which the determination of potential
architectural solutions is made on a qualitative level in terms of
their impact (i.e., positive or negative) on evolvability
subcharacteristics.

- Quantitative assessment in which the judgment on how well
each candidate architectural solution supports different
evolvability subcharacteristics is quantified.

As we see from the general software evolvability analysis process, the basic
architecting activities such as analyzing implications of change stimuli and
proposing architectural solutions are the same for both the qualitative and
quantitative evolvability analysis. The major variation can be observed in the
different details with respect to stakeholders’ architectural concerns
elicitation and assessment of architectural solutions against evolvability
subcharacteristics. The following two chapters will concretize the steps
performed in the qualitative and quantitative evolvability analysis process
respectively.

4.3 Qualitative Evolvability Analysis Method
The qualitative evolvability analysis method [34] starts with identification of
change stimuli’s implications, guides architects through the analysis of
potential architectural requirements that the software architecture needs to
adapt to, and continues with identification of potential architecture
refactoring solutions along with their implications. Through the analysis
process, the implications of the potential improvement proposals and
evolution path of the software architecture are analyzed with respect to
evolvability subcharacteristics.

The qualitative architecture evolvability analysis method, as shown in Figure
4-3, is divided into three main phases.

Analyzing Software Evolvability 120

Figure 4-3: Qualitative architecture evolvability analysis method

Phase 1: Analyze the implications of change stimuli on software
architecture.

This phase analyzes the architecture for evolution, and identifies the impact
of change stimuli on the current architecture. Software evolvability concerns
(1) business, and (2) technical issues [31], since the stimuli of changes come
from both perspectives, e.g., environment, organization, process, technology
and stakeholders’ needs. These change stimuli have impact on the software
system in terms of software structures and/or functionality. This phase
includes two steps:

- Step 1.1: Identify requirements on the software architecture.

Any change stimulus (see Chapter 4.2) results in a collection of
requirements that the software architecture needs to adapt to. The aim of
this step is to extract requirements that are essential for software
architecture enhancement so as to cost-effectively accommodate to
change stimuli. Architecture workshops are conducted, where the
stakeholders discuss and identify architecture requirements. Afterwards,
the identified requirements are checked against the evolvability
subcharacteristics in order to ensure the completeness of the identified
requirements.

- Step 1.2: Prioritize requirements on the software architecture.

In order to establish a basis for common understanding of the
architecture requirements among stakeholders within the organization,

Analyzing Software Evolvability 121

all the requirements identified from the previous step need to be
prioritized.

Phase 2: Analyze and prepare the software architecture to accommodate
change stimuli and potential future changes.

This phase focuses on the identification and improvement of the components
that need to be refactored. It includes four steps:

- Step 2.1: Extract architectural constructs related to the respective
identified issue.

In this step, we mainly focus on identifying architectural constructs (i.e.,
subsystems and components) that are related to each identified
requirement.

- Step 2.2: Identify refactoring architectural components for each
identified issue.

In this step, we identify the components that need refactoring in order to
fulfill the prioritized requirements.

- Step 2.3: Identify and assess potential refactoring solutions from
technical and business perspectives.

Refactoring solutions are identified and design decisions are taken in
order to fulfill the requirements derived from the first phase. The change
propagation of the effect of refactoring need to be considered, and is
used as an input to the business assessment, estimating the cost and
effort on implementing refactoring. In some cases, the refactoring of a
certain component is straightforward if we know how to refactor with
only local impact. When the implementation is uncertain and might
affect several subsystems or modules, prototypes need to be made to
investigate the feasibility of potential solutions as well as the estimation
of implementation workload. As part of this step, an assessment
concerning the compatibility of the refactoring solutions and rationale
with earlier made design decisions is made to ensure architectural
integrity.

- Step 2.4: Define test cases.

New test cases that cover the affected component, modules or
subsystems need to be identified.

Phase 3: Finalize the evaluation.

In this phase, the previous results are incorporated and structured into a
collection of documents. This phase includes one step.

- Step 3.1: Present evaluation results.

Analyzing Software Evolvability 120

Figure 4-3: Qualitative architecture evolvability analysis method

Phase 1: Analyze the implications of change stimuli on software
architecture.

This phase analyzes the architecture for evolution, and identifies the impact
of change stimuli on the current architecture. Software evolvability concerns
(1) business, and (2) technical issues [31], since the stimuli of changes come
from both perspectives, e.g., environment, organization, process, technology
and stakeholders’ needs. These change stimuli have impact on the software
system in terms of software structures and/or functionality. This phase
includes two steps:

- Step 1.1: Identify requirements on the software architecture.

Any change stimulus (see Chapter 4.2) results in a collection of
requirements that the software architecture needs to adapt to. The aim of
this step is to extract requirements that are essential for software
architecture enhancement so as to cost-effectively accommodate to
change stimuli. Architecture workshops are conducted, where the
stakeholders discuss and identify architecture requirements. Afterwards,
the identified requirements are checked against the evolvability
subcharacteristics in order to ensure the completeness of the identified
requirements.

- Step 1.2: Prioritize requirements on the software architecture.

In order to establish a basis for common understanding of the
architecture requirements among stakeholders within the organization,

Analyzing Software Evolvability 121

all the requirements identified from the previous step need to be
prioritized.

Phase 2: Analyze and prepare the software architecture to accommodate
change stimuli and potential future changes.

This phase focuses on the identification and improvement of the components
that need to be refactored. It includes four steps:

- Step 2.1: Extract architectural constructs related to the respective
identified issue.

In this step, we mainly focus on identifying architectural constructs (i.e.,
subsystems and components) that are related to each identified
requirement.

- Step 2.2: Identify refactoring architectural components for each
identified issue.

In this step, we identify the components that need refactoring in order to
fulfill the prioritized requirements.

- Step 2.3: Identify and assess potential refactoring solutions from
technical and business perspectives.

Refactoring solutions are identified and design decisions are taken in
order to fulfill the requirements derived from the first phase. The change
propagation of the effect of refactoring need to be considered, and is
used as an input to the business assessment, estimating the cost and
effort on implementing refactoring. In some cases, the refactoring of a
certain component is straightforward if we know how to refactor with
only local impact. When the implementation is uncertain and might
affect several subsystems or modules, prototypes need to be made to
investigate the feasibility of potential solutions as well as the estimation
of implementation workload. As part of this step, an assessment
concerning the compatibility of the refactoring solutions and rationale
with earlier made design decisions is made to ensure architectural
integrity.

- Step 2.4: Define test cases.

New test cases that cover the affected component, modules or
subsystems need to be identified.

Phase 3: Finalize the evaluation.

In this phase, the previous results are incorporated and structured into a
collection of documents. This phase includes one step.

- Step 3.1: Present evaluation results.

Analyzing Software Evolvability 122

The evaluation results include:

- Identified and prioritized requirements on the software
architecture;

- Identified components/modules that need to be refactored
for enhancement or adaptation;

- Refactoring investigation documentation which describes
the current situation and solutions to each identified
candidate component that need to be refactored, including
estimated workload;

- Test scenarios.

4.4 Quantitative Evolvability Analysis Method
As architecture is influenced by stakeholders representing different concerns
and goals, the business and technical decisions that articulate the architecture
tend to exhibit tradeoffs, and need to be negotiated and resolved. In
circumstances when there is a lack of a common-shared view on
prioritizations of evolvability subcharacteristics among stakeholders, to
avoid intuitive choice of architectural solutions, the quantitative evolvability
analysis method [32] is used to enable explicit and quantitative treatment of
stakeholders’ prioritization of evolvability subcharacteristics and their
preferences on design solutions.

The quantitative approach is based on the qualitative method, and focuses on
two constituent steps of the qualitative evolvability analysis method in which
tradeoff analysis is concerned, i.e., step 1.2 in phase 1 (Prioritize
requirements on the software architecture), and step 2.3 in phase 2 (Identify
and assess potential refactoring solutions). These two steps entail subjective
judgments with regard to stakeholders’ preferences of evolvability
subcharacteristics, as well as their choices of architectural solutions. These
subjective judgments constitute accordingly a multiple-attribute decision
making process when architecting for evolvable software systems, as
illustrated in Figure 4-4. The stakeholders’ preferences on evolvability
subcharacteristics are determined by their different viewpoints, and the
choice of architectural alternatives exhibits their respective impacts on
evolvability. Meanwhile, the choice of architectural solution is constrained
by stakeholders’ preference information on evolvability subcharacteristics.

Analyzing Software Evolvability 123

Analyzability

Architectural Integrity

Domainspecific Attributes
Testability
Portability
Extensibility
Changeability

Alternative 1

Alternative 2
etc.

Goals

Concerns
etc.

Figure 4-4: Multiple-attribute decision making process

The quantitative evolvability analysis method provides a structured way in

- Understanding subjective decision making process by quantitatively
eliciting stakeholders’ preferences for desired evolvability
subcharacteristics;

- Obtaining quantitative understanding of the impacts of architectural
solutions on evolvability.

Through the relative importance measuring process, we gain an explicit view
on how stakeholders prioritize numerous evolvability subcharacteristics, as
well as the rationale behind a choice of an architectural alternative. Thus, the
quantitative approach provides decision support and helps to avoid intuitive
prioritization of evolvability subcharacteristics and intuitive choice of
architectural solutions.

In Chapter 4.4.1, we present briefly the Analytic Hierarchy Process (AHP)
[156] method, upon which the quantitative evolvability analysis method is
based. Then we will describe the steps involved in the quantitative
evolvability analysis method in Chapter 4.4.2.

4.4.1 Analytic Hierarchy Process

To obtain quantitative data with regard to stakeholders’ preferences on
evolvability subcharacteristics and architectural alternatives’ impacts on
evolvability, we use Analytic Hierarchy Process (AHP) [156], because it is a
multiple-attribute decision making method that enables quantification of

Analyzing Software Evolvability 122

The evaluation results include:

- Identified and prioritized requirements on the software
architecture;

- Identified components/modules that need to be refactored
for enhancement or adaptation;

- Refactoring investigation documentation which describes
the current situation and solutions to each identified
candidate component that need to be refactored, including
estimated workload;

- Test scenarios.

4.4 Quantitative Evolvability Analysis Method
As architecture is influenced by stakeholders representing different concerns
and goals, the business and technical decisions that articulate the architecture
tend to exhibit tradeoffs, and need to be negotiated and resolved. In
circumstances when there is a lack of a common-shared view on
prioritizations of evolvability subcharacteristics among stakeholders, to
avoid intuitive choice of architectural solutions, the quantitative evolvability
analysis method [32] is used to enable explicit and quantitative treatment of
stakeholders’ prioritization of evolvability subcharacteristics and their
preferences on design solutions.

The quantitative approach is based on the qualitative method, and focuses on
two constituent steps of the qualitative evolvability analysis method in which
tradeoff analysis is concerned, i.e., step 1.2 in phase 1 (Prioritize
requirements on the software architecture), and step 2.3 in phase 2 (Identify
and assess potential refactoring solutions). These two steps entail subjective
judgments with regard to stakeholders’ preferences of evolvability
subcharacteristics, as well as their choices of architectural solutions. These
subjective judgments constitute accordingly a multiple-attribute decision
making process when architecting for evolvable software systems, as
illustrated in Figure 4-4. The stakeholders’ preferences on evolvability
subcharacteristics are determined by their different viewpoints, and the
choice of architectural alternatives exhibits their respective impacts on
evolvability. Meanwhile, the choice of architectural solution is constrained
by stakeholders’ preference information on evolvability subcharacteristics.

Analyzing Software Evolvability 123

Analyzability

Architectural Integrity

Domainspecific Attributes
Testability
Portability
Extensibility
Changeability

Alternative 1

Alternative 2
etc.

Goals

Concerns
etc.

Figure 4-4: Multiple-attribute decision making process

The quantitative evolvability analysis method provides a structured way in

- Understanding subjective decision making process by quantitatively
eliciting stakeholders’ preferences for desired evolvability
subcharacteristics;

- Obtaining quantitative understanding of the impacts of architectural
solutions on evolvability.

Through the relative importance measuring process, we gain an explicit view
on how stakeholders prioritize numerous evolvability subcharacteristics, as
well as the rationale behind a choice of an architectural alternative. Thus, the
quantitative approach provides decision support and helps to avoid intuitive
prioritization of evolvability subcharacteristics and intuitive choice of
architectural solutions.

In Chapter 4.4.1, we present briefly the Analytic Hierarchy Process (AHP)
[156] method, upon which the quantitative evolvability analysis method is
based. Then we will describe the steps involved in the quantitative
evolvability analysis method in Chapter 4.4.2.

4.4.1 Analytic Hierarchy Process

To obtain quantitative data with regard to stakeholders’ preferences on
evolvability subcharacteristics and architectural alternatives’ impacts on
evolvability, we use Analytic Hierarchy Process (AHP) [156], because it is a
multiple-attribute decision making method that enables quantification of

Analyzing Software Evolvability 124

subjective judgments. It makes relative assessments through pair-wise
variable comparison, and consists of five basic steps:

- Step 1: Create an n x n matrix N, in which n is the number of
variables to be compared.

- Step 2: Perform pair-wise comparison of the variables with respect
to importance. Populate the matrix with the comparison values (nij
for comparison value between i-th and j-th variable). The
interpretation of the scales for comparison is shown in Table 4-1.

Table 4-1: Scale for pair-wise comparison

Scale Explanation

1 Variable i and j are of equal importance

3 Variable i is slightly more important than j

5 Variable i is highly more important than j

7 Variable i is very highly more important than j

9 Variable i is extremely more important than j

2,4,6,8 Intermediate values for compromising between the other numbers

- Step 3: Compute eigenvector of the n x n matrix. We apply the
averaging over normalized columns method [156] which uses the
following equations:

a) Calculate sum of the columns;

 =

=1

b) Divide each element in a column by the sum of the column,
resulting in a new matrix M with elements ; = /

c) Calculate sum of each row in the new matrix;

 =

=1

d) Normalize the sum of rows to obtain priority vector P (with
elements) by dividing by n, which is the number of variables.

 = / (i is an integral and 1 ≤ i ≤ n)

Analyzing Software Evolvability 125

- Step 4: Assign a relative importance to the variables, each accounts
for a certain amount of percentage of the importance of the
variables. The first variable is assigned the first element in the
priority vector; the second variable is assigned the second element in
the priority vector, and so on.

- Step 5: Evaluate consistency of subjective judgment. The
consistency ratio is computed in two steps:

- Consistency index CI is computed as CI = (λmax – n) / (n – 1), in
which λmax is the maximum principle eigen value of the n x n
matrix.

- Consistency ratio CR is computed as CR = CI / RI, in which RI is
the random index. The random index is generated to take into
account randomness, and is used to normalize the consistency
index. The standard RI value can be obtained from [156] as
shown in Table 4-2, in which the first row shows the order of the
matrix (i.e., the value of n), and the second row shows the
corresponding RI value. The smaller CR value is, the more
consistent is the obtained comparison. According to [156], an
approximate size of the expected consistency ratio of 0.10 or
less is considered acceptable, though, in practice, higher values
are often obtained.

Table 4-2: Random index values

Order of

matrix
1 2 3 4 5 6 7 8 9 10

Random

Index
0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.45

4.4.2 Quantitative Evolvability Analysis Method

The quantitative architecture evolvability analysis method extends the
qualitative method with quantitative information that is needed for choosing
among architectural solutions, and is divided into three main phases:

Phase 1: Analyze the implications of change stimuli on software
architecture.

Analyzing Software Evolvability 124

subjective judgments. It makes relative assessments through pair-wise
variable comparison, and consists of five basic steps:

- Step 1: Create an n x n matrix N, in which n is the number of
variables to be compared.

- Step 2: Perform pair-wise comparison of the variables with respect
to importance. Populate the matrix with the comparison values (nij
for comparison value between i-th and j-th variable). The
interpretation of the scales for comparison is shown in Table 4-1.

Table 4-1: Scale for pair-wise comparison

Scale Explanation

1 Variable i and j are of equal importance

3 Variable i is slightly more important than j

5 Variable i is highly more important than j

7 Variable i is very highly more important than j

9 Variable i is extremely more important than j

2,4,6,8 Intermediate values for compromising between the other numbers

- Step 3: Compute eigenvector of the n x n matrix. We apply the
averaging over normalized columns method [156] which uses the
following equations:

a) Calculate sum of the columns;

 =

=1

b) Divide each element in a column by the sum of the column,
resulting in a new matrix M with elements ; = /

c) Calculate sum of each row in the new matrix;

 =

=1

d) Normalize the sum of rows to obtain priority vector P (with
elements) by dividing by n, which is the number of variables.

 = / (i is an integral and 1 ≤ i ≤ n)

Analyzing Software Evolvability 125

- Step 4: Assign a relative importance to the variables, each accounts
for a certain amount of percentage of the importance of the
variables. The first variable is assigned the first element in the
priority vector; the second variable is assigned the second element in
the priority vector, and so on.

- Step 5: Evaluate consistency of subjective judgment. The
consistency ratio is computed in two steps:

- Consistency index CI is computed as CI = (λmax – n) / (n – 1), in
which λmax is the maximum principle eigen value of the n x n
matrix.

- Consistency ratio CR is computed as CR = CI / RI, in which RI is
the random index. The random index is generated to take into
account randomness, and is used to normalize the consistency
index. The standard RI value can be obtained from [156] as
shown in Table 4-2, in which the first row shows the order of the
matrix (i.e., the value of n), and the second row shows the
corresponding RI value. The smaller CR value is, the more
consistent is the obtained comparison. According to [156], an
approximate size of the expected consistency ratio of 0.10 or
less is considered acceptable, though, in practice, higher values
are often obtained.

Table 4-2: Random index values

Order of

matrix
1 2 3 4 5 6 7 8 9 10

Random

Index
0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.45

4.4.2 Quantitative Evolvability Analysis Method

The quantitative architecture evolvability analysis method extends the
qualitative method with quantitative information that is needed for choosing
among architectural solutions, and is divided into three main phases:

Phase 1: Analyze the implications of change stimuli on software
architecture.

Analyzing Software Evolvability 126

This phase elicits the architectural concerns among stakeholders and
analyzes the architecture for evolution in order to accommodate change
stimuli.

- Step 1.1: Elicit stakeholders’ views on evolvability
subcharacteristics.

In this step, individual interviews are conducted with respective
stakeholders in order to elicit their views on evolvability
subcharacteristics. Domain-specific attributes are identified as well. In
addition, the interpretation of evolvability subcharacteristics in the
specific context is discussed.

- Step 1.2: Extract stakeholders’ prioritization and preferences of
evolvability subcharacteristics.

In this step, stakeholders representing different roles provide their
preferences on evolvability subcharacteristics by a pair-wise comparison
of subcharacteristics (,) with respect to their relative importance.

The AHP weighting scale shown in Table 4-1 is used to determine the
relative importance for each evolvability subcharacteristic pair. Note that
the domain-specific attributes might comprise several additional quality
characteristics that are required by a specific domain. Therefore, each of
these domain-specific quality attributes is also included for pair-wise
comparison together with the other evolvability subcharacteristics. The
pair-wise comparison is conducted for all pairs, hence, n(n-1)/2
comparisons are made by each stakeholder. Afterwards, for each
stakeholder, the equations in AHP method (see Chapter 4.4.1) are used
to create a priority vector signifying the relative preference of
evolvability subcharacteristics. As different stakeholder roles might have
diversified preferences on evolvability subcharacteristics, for each
evolvability subcharacteristic, we obtain normalized preference on an
evolvability subcharacteristic by dividing sum of the preference of each
stakeholder role by the number of roles.

The description below concretizes the calculation procedure, describing the
calculation of preferences of subcharacteristics aggregated from
stakeholders’ perspectives.

A matrix of pair-wise comparison is shown below, in which 1 represents
one stakeholder role, 1 , and are evolvability subcharacteristics,
represents pair-wise comparison in terms of relative importance based on
Table 4-1 (Note = 1 if i = j).

Analyzing Software Evolvability 127

 …

…

Then by applying equation a), we get the sum of the columns:

 =

=1

By applying equation b), we get the following new matrix:

 = /
Then by applying equations c) and d), we get normalized preference
weight information of subcharacteristic from stakeholder 1

perspective as shown in equation (1) below:

1 =
=1

 (i is an integral and 1 ≤ i ≤ k) (1)

Likewise, the values indicating the preference weights of
subcharacteristics (1, 2, …) from stakeholder 2 perspective are

calculated. We designate them as 12, 22, …2. The same pattern

applies to all the other stakeholder roles.

Given that the preference consistency is correct, the overall
stakeholders’ preference weight on subcharacteristic is calculated by
aggregating the preferences from n number of stakeholders as shown in
equation (2) below:

 =
=1

 (i is an integral and 1 ≤ i ≤ n) (2)

Analyzing Software Evolvability 126

This phase elicits the architectural concerns among stakeholders and
analyzes the architecture for evolution in order to accommodate change
stimuli.

- Step 1.1: Elicit stakeholders’ views on evolvability
subcharacteristics.

In this step, individual interviews are conducted with respective
stakeholders in order to elicit their views on evolvability
subcharacteristics. Domain-specific attributes are identified as well. In
addition, the interpretation of evolvability subcharacteristics in the
specific context is discussed.

- Step 1.2: Extract stakeholders’ prioritization and preferences of
evolvability subcharacteristics.

In this step, stakeholders representing different roles provide their
preferences on evolvability subcharacteristics by a pair-wise comparison
of subcharacteristics (,) with respect to their relative importance.

The AHP weighting scale shown in Table 4-1 is used to determine the
relative importance for each evolvability subcharacteristic pair. Note that
the domain-specific attributes might comprise several additional quality
characteristics that are required by a specific domain. Therefore, each of
these domain-specific quality attributes is also included for pair-wise
comparison together with the other evolvability subcharacteristics. The
pair-wise comparison is conducted for all pairs, hence, n(n-1)/2
comparisons are made by each stakeholder. Afterwards, for each
stakeholder, the equations in AHP method (see Chapter 4.4.1) are used
to create a priority vector signifying the relative preference of
evolvability subcharacteristics. As different stakeholder roles might have
diversified preferences on evolvability subcharacteristics, for each
evolvability subcharacteristic, we obtain normalized preference on an
evolvability subcharacteristic by dividing sum of the preference of each
stakeholder role by the number of roles.

The description below concretizes the calculation procedure, describing the
calculation of preferences of subcharacteristics aggregated from
stakeholders’ perspectives.

A matrix of pair-wise comparison is shown below, in which 1 represents
one stakeholder role, 1 , and are evolvability subcharacteristics,
represents pair-wise comparison in terms of relative importance based on
Table 4-1 (Note = 1 if i = j).

Analyzing Software Evolvability 127

 …

…

Then by applying equation a), we get the sum of the columns:

 =

=1

By applying equation b), we get the following new matrix:

 = /
Then by applying equations c) and d), we get normalized preference
weight information of subcharacteristic from stakeholder 1

perspective as shown in equation (1) below:

1 =
=1

 (i is an integral and 1 ≤ i ≤ k) (1)

Likewise, the values indicating the preference weights of
subcharacteristics (1, 2, …) from stakeholder 2 perspective are

calculated. We designate them as 12, 22, …2. The same pattern

applies to all the other stakeholder roles.

Given that the preference consistency is correct, the overall
stakeholders’ preference weight on subcharacteristic is calculated by
aggregating the preferences from n number of stakeholders as shown in
equation (2) below:

 =
=1

 (i is an integral and 1 ≤ i ≤ n) (2)

Analyzing Software Evolvability 128

Phase 2: Analyze and prepare the software architecture to accommodate
change stimuli.

This phase focuses on the identification and evaluation of candidate
architectural solutions to accommodate change stimuli. The stakeholders’
preferences of evolvability subcharacteristics from the previous phase are
used in the last step in this phase to calculate the candidate architectural
solutions’ overall impacts on software evolvability.

- Step 2.1: Identify candidate architectural solutions.

In this step, candidate architectural solutions are identified along with
their benefits and drawbacks.

- Step 2.2: Assess candidate architectural solutions’ impacts on
evolvability subcharacteristics.

In this step, system architects or main technical responsible persons
provide their judgment on how well each architectural alternative
supports different evolvability subcharacteristics. This is firstly done by
a pair-wise comparison of the architectural alternatives (,) with
respect to a certain evolvability subcharacteristic, using the weighting
scale in Table 4-1. Next, for each evolvability subcharacteristic, the
aforementioned equations in AHP method (see Chapter 4.4.1) are used
to create a priority vector signifying the relative weight of how well
different architectural alternatives support a specific evolvability
subcharacteristic. Afterwards, recalling the overall weights, i.e.,
stakeholders’ preference weight of evolvability subcharacteristics and
the weight of how well different architectural alternatives support a
specific evolvability subcharacteristic, we can obtain a normalized value,
designating the overall weight for each architectural alternative’s support
on evolvability in general.

The following description concretizes the calculation procedure,
describing the calculation of architectural alternatives’ overall support
on software evolvability.

A matrix of pair-wise comparison is shown below, in which
 1 represents one of the evolvability subcharacteristics, 1, 2 and

 are architectural alternatives, represents pair-wise comparison
(based on Table 4-1, = 1 if i = j) in terms of relative support of each
alternative on a certain subcharacteristic such as 1 as shown below:

Analyzing Software Evolvability 129

 …

1

2

 …

Then by applying equation a), we get the sum of the columns:

 =

=1

By applying equation b), we get the following new matrix:

 = /
Then by applying equations c) and d), we get normalized support rates of
the respective architectural alternative with respect to 1 as shown
below, in which 1 indicates impact of the alternative on
subcharacteristic 1 , i.e., how well each architectural alternative
supports 1 .

1 =
=1

 (i is an integral and 1 ≤ i ≤ k)

Likewise, the values indicating how well the alternatives support other
subcharacteristics (2 …) are calculated in the same pattern.

- Step 2.3: Assess candidate architectural solutions’ overall impacts
on software evolvability

Given that the judgment of architectural alternatives’ support on
subcharacteristics is consistent, the overall weights of an alternative’
support on evolvability is calculated by aggregating the preferences of
subcharacteristics from the previous quantitative analysis (i.e., 1,

…) as expressed in equation (3) below:

Analyzing Software Evolvability 128

Phase 2: Analyze and prepare the software architecture to accommodate
change stimuli.

This phase focuses on the identification and evaluation of candidate
architectural solutions to accommodate change stimuli. The stakeholders’
preferences of evolvability subcharacteristics from the previous phase are
used in the last step in this phase to calculate the candidate architectural
solutions’ overall impacts on software evolvability.

- Step 2.1: Identify candidate architectural solutions.

In this step, candidate architectural solutions are identified along with
their benefits and drawbacks.

- Step 2.2: Assess candidate architectural solutions’ impacts on
evolvability subcharacteristics.

In this step, system architects or main technical responsible persons
provide their judgment on how well each architectural alternative
supports different evolvability subcharacteristics. This is firstly done by
a pair-wise comparison of the architectural alternatives (,) with
respect to a certain evolvability subcharacteristic, using the weighting
scale in Table 4-1. Next, for each evolvability subcharacteristic, the
aforementioned equations in AHP method (see Chapter 4.4.1) are used
to create a priority vector signifying the relative weight of how well
different architectural alternatives support a specific evolvability
subcharacteristic. Afterwards, recalling the overall weights, i.e.,
stakeholders’ preference weight of evolvability subcharacteristics and
the weight of how well different architectural alternatives support a
specific evolvability subcharacteristic, we can obtain a normalized value,
designating the overall weight for each architectural alternative’s support
on evolvability in general.

The following description concretizes the calculation procedure,
describing the calculation of architectural alternatives’ overall support
on software evolvability.

A matrix of pair-wise comparison is shown below, in which
 1 represents one of the evolvability subcharacteristics, 1, 2 and

 are architectural alternatives, represents pair-wise comparison
(based on Table 4-1, = 1 if i = j) in terms of relative support of each
alternative on a certain subcharacteristic such as 1 as shown below:

Analyzing Software Evolvability 129

 …

1

2

 …

Then by applying equation a), we get the sum of the columns:

 =

=1

By applying equation b), we get the following new matrix:

 = /
Then by applying equations c) and d), we get normalized support rates of
the respective architectural alternative with respect to 1 as shown
below, in which 1 indicates impact of the alternative on
subcharacteristic 1 , i.e., how well each architectural alternative
supports 1 .

1 =
=1

 (i is an integral and 1 ≤ i ≤ k)

Likewise, the values indicating how well the alternatives support other
subcharacteristics (2 …) are calculated in the same pattern.

- Step 2.3: Assess candidate architectural solutions’ overall impacts
on software evolvability

Given that the judgment of architectural alternatives’ support on
subcharacteristics is consistent, the overall weights of an alternative’
support on evolvability is calculated by aggregating the preferences of
subcharacteristics from the previous quantitative analysis (i.e., 1,

…) as expressed in equation (3) below:

Analyzing Software Evolvability 130

 = ×
=1 (m is an integral and 1 ≤ m ≤ k)

(3)

Phase 3: Finalize the evaluation.

In this phase, the previous results are incorporated and summarized. This
phase includes one step.

- Step 3.1: Present evaluation results.

The evaluation results include:

- Identified evolvability subcharacteristics including domain-
specific attributes;

- Quantified prioritization of evolvability subcharacteristics by
respective stakeholders involved;

- Common understanding of the contexts of evolvability
subcharacteristics;

- Identified architectural solution candidates to cope with change
stimuli;

- Quantified prioritization of the impacts of each architectural
candidate on evolvability subcharacteristics.

4.5 Characterization of the Qualitative and
Quantitative Methods
Based on our experiences in applying the evolvability analysis processes (to
be described in Chapter 5), both the qualitative and quantitative analysis
methods can be used as an integral part of the software development and
evolution process to assess software architectures for evolution. They share
the common themes of

- Systematically addressing quality requirements driven by change
stimuli; and

- Assisting architects in analyzing the impact of potential architectural
solutions on evolvability subcharacteristics before determining the
potential evolution path for the software architecture.

There are also variations between the two methods as detailed in the
following sections (summarized in Table 4-3).

Analyzing Software Evolvability 131

Table 4-3: Characterizations of the qualitative and quantitative

evolvability analysis methods

 Application Contexts Approaches Used Analysis Output

Q
u

a
li

ta
ti

v
e

A
n

a
ly

si
s

Common perception on
important quality attributes
and their prioritization
within organization.

A preferred architectural
solution can be decided
based on the qualitative
impact data.

Architecture workshops
with all involved
stakeholders to discuss
prioritization of potential
architectural requirements.

Architecture workshops
with architects to discuss
architectural solutions and
qualitative impacts on
evolvability.

Identified and prioritized
potential architectural
requirements.

Qualitative analysis of
architectural solutions’
impact on evolvability
subcharacteristics.

Q
u

a
n

ti
ta

ti
v

e
A

n
a

ly
si

s

Numerous stakeholder
roles representing different
concerns.

Unclear perception and
prioritization of important
quality attributes.

Difficult to decide the
preferred architectural
solution based on
qualitative data.

Interviews with individual
stakeholders to discuss
preferences of evolvability
subcharacteristics.

Architecture workshops
with architects to discuss
architectural solutions and
quantitative impacts on
evolvability.

Analytic Hierarchical
Process method.

Quantified stakeholders’
preferences on evolvability
subcharacteristics.

Quantified prioritization of
candidate architectural
solutions’ impacts on
evolvability.

4.5.1 Application Contexts

The application contexts for using the qualitative and/or quantitative
evolvability analysis methods are concerned with two aspects:

- Stakeholders’ perception on quality attributes

Software architecture is influenced by system stakeholders [18]. In
circumstances when there are numerous roles of stakeholders, representing
different and sometimes contradictory concerns and goals, an explicit
quantitative assessment of stakeholders’ preferences on evolvability
subcharacteristics will strengthen qualitative data, and assist architects in
making architectural design decisions, especially when there is not a clear
view within an organization on important quality attributes and their
prioritization.

- Candidate architectural solutions’ impacts on evolvability

Analyzing Software Evolvability 130

 = ×
=1 (m is an integral and 1 ≤ m ≤ k)

(3)

Phase 3: Finalize the evaluation.

In this phase, the previous results are incorporated and summarized. This
phase includes one step.

- Step 3.1: Present evaluation results.

The evaluation results include:

- Identified evolvability subcharacteristics including domain-
specific attributes;

- Quantified prioritization of evolvability subcharacteristics by
respective stakeholders involved;

- Common understanding of the contexts of evolvability
subcharacteristics;

- Identified architectural solution candidates to cope with change
stimuli;

- Quantified prioritization of the impacts of each architectural
candidate on evolvability subcharacteristics.

4.5 Characterization of the Qualitative and
Quantitative Methods
Based on our experiences in applying the evolvability analysis processes (to
be described in Chapter 5), both the qualitative and quantitative analysis
methods can be used as an integral part of the software development and
evolution process to assess software architectures for evolution. They share
the common themes of

- Systematically addressing quality requirements driven by change
stimuli; and

- Assisting architects in analyzing the impact of potential architectural
solutions on evolvability subcharacteristics before determining the
potential evolution path for the software architecture.

There are also variations between the two methods as detailed in the
following sections (summarized in Table 4-3).

Analyzing Software Evolvability 131

Table 4-3: Characterizations of the qualitative and quantitative

evolvability analysis methods

 Application Contexts Approaches Used Analysis Output

Q
u

a
li

ta
ti

v
e

A
n

a
ly

si
s

Common perception on
important quality attributes
and their prioritization
within organization.

A preferred architectural
solution can be decided
based on the qualitative
impact data.

Architecture workshops
with all involved
stakeholders to discuss
prioritization of potential
architectural requirements.

Architecture workshops
with architects to discuss
architectural solutions and
qualitative impacts on
evolvability.

Identified and prioritized
potential architectural
requirements.

Qualitative analysis of
architectural solutions’
impact on evolvability
subcharacteristics.

Q
u

a
n

ti
ta

ti
v

e
A

n
a

ly
si

s

Numerous stakeholder
roles representing different
concerns.

Unclear perception and
prioritization of important
quality attributes.

Difficult to decide the
preferred architectural
solution based on
qualitative data.

Interviews with individual
stakeholders to discuss
preferences of evolvability
subcharacteristics.

Architecture workshops
with architects to discuss
architectural solutions and
quantitative impacts on
evolvability.

Analytic Hierarchical
Process method.

Quantified stakeholders’
preferences on evolvability
subcharacteristics.

Quantified prioritization of
candidate architectural
solutions’ impacts on
evolvability.

4.5.1 Application Contexts

The application contexts for using the qualitative and/or quantitative
evolvability analysis methods are concerned with two aspects:

- Stakeholders’ perception on quality attributes

Software architecture is influenced by system stakeholders [18]. In
circumstances when there are numerous roles of stakeholders, representing
different and sometimes contradictory concerns and goals, an explicit
quantitative assessment of stakeholders’ preferences on evolvability
subcharacteristics will strengthen qualitative data, and assist architects in
making architectural design decisions, especially when there is not a clear
view within an organization on important quality attributes and their
prioritization.

- Candidate architectural solutions’ impacts on evolvability

Analyzing Software Evolvability 132

Architects must often make architectural design decisions, and give
preference to a certain architectural solution. In circumstances when there
are multiple architectural alternatives to choose among, each of which
exhibiting divergent impacts on evolvability subcharacteristics, a
quantitative assessment of candidate architectural solutions’ impacts on
evolvability subcharacteristics will guide and support architects to avoid
making intuitive decisions in software architecture evolution, especially
when the qualitative data is not sufficient for determining a preferred
candidate architectural solution.

4.5.2 Approaches Used in the Analysis Process

The qualitative evolvability analysis is mainly conducted through:

- Architecture workshops in which all involved stakeholders
participate to identify and prioritize potential architectural
requirements;

- Architecture workshops in which the architects discuss potential
architectural solutions along with their qualitative impacts on
evolvability.

The quantitative evolvability analysis is based on AHP [156], and conducted
through:

- Interviews with respective stakeholder to extract individual
stakeholder’s preference on evolvability subcharacteristics;

- Architecture workshops in which the architects discuss potential
architectural solutions along with their quantitative impacts on
evolvability.

4.5.3 Analysis Output

The main output of the qualitative evolvability analysis method includes the
identified and prioritized potential architectural requirements, identified
components that need to be refactored, candidate architectural solutions
along with their qualitative evolvability impact analysis data, as well as test
scenarios.

The main output of the quantitative evolvability analysis method includes
quantified prioritization of evolvability subcharacteristics among
stakeholders, and identified candidate architectural solutions along with their
quantitative evolvability impact data.

Analyzing Software Evolvability 133

4.5.4 Choosing Between Qualitative and Quantitative
Methods

The choice of which analysis method to use is based on the specific
application contexts and the expected analysis output. The following
questions are related to application contexts, and can be used as checkpoints
(with Yes or No answer) for determining when to use which analysis
method:

- Are there numerous roles of stakeholders with divergent concerns
and goals? (Y/N)

- Is it clear within the software development organization regarding
the prioritizations of the important quality attributes that concern the
evolution of the system in focus? (Y/N)

- Is it difficult to determine a preferred candidate architectural
solution among the multiple architectural alternatives due to their
various impacts on evolvability subcharacteristics? (Y/N)

The decision diagram for choosing appropriate analysis method based on the
answers to the questions is shown in Figure 4-5. The first two checkpoints
concern the stakeholders’ perception on quality attributes, and are related to
the first phase of both qualitative and quantitative analysis. The third
checkpoint concerns selecting a preferred architectural solution, and relates
to the second phase of the two methods. It is therefore possible to combine
the qualitative and quantitative analysis methods, e.g., starting with a
qualitative analysis and complement with quantitative data, or vice versa.
Depending on the answers to the questions, the corresponding phase of
either the qualitative or quantitative analysis can be selected.

Analyzing Software Evolvability 132

Architects must often make architectural design decisions, and give
preference to a certain architectural solution. In circumstances when there
are multiple architectural alternatives to choose among, each of which
exhibiting divergent impacts on evolvability subcharacteristics, a
quantitative assessment of candidate architectural solutions’ impacts on
evolvability subcharacteristics will guide and support architects to avoid
making intuitive decisions in software architecture evolution, especially
when the qualitative data is not sufficient for determining a preferred
candidate architectural solution.

4.5.2 Approaches Used in the Analysis Process

The qualitative evolvability analysis is mainly conducted through:

- Architecture workshops in which all involved stakeholders
participate to identify and prioritize potential architectural
requirements;

- Architecture workshops in which the architects discuss potential
architectural solutions along with their qualitative impacts on
evolvability.

The quantitative evolvability analysis is based on AHP [156], and conducted
through:

- Interviews with respective stakeholder to extract individual
stakeholder’s preference on evolvability subcharacteristics;

- Architecture workshops in which the architects discuss potential
architectural solutions along with their quantitative impacts on
evolvability.

4.5.3 Analysis Output

The main output of the qualitative evolvability analysis method includes the
identified and prioritized potential architectural requirements, identified
components that need to be refactored, candidate architectural solutions
along with their qualitative evolvability impact analysis data, as well as test
scenarios.

The main output of the quantitative evolvability analysis method includes
quantified prioritization of evolvability subcharacteristics among
stakeholders, and identified candidate architectural solutions along with their
quantitative evolvability impact data.

Analyzing Software Evolvability 133

4.5.4 Choosing Between Qualitative and Quantitative
Methods

The choice of which analysis method to use is based on the specific
application contexts and the expected analysis output. The following
questions are related to application contexts, and can be used as checkpoints
(with Yes or No answer) for determining when to use which analysis
method:

- Are there numerous roles of stakeholders with divergent concerns
and goals? (Y/N)

- Is it clear within the software development organization regarding
the prioritizations of the important quality attributes that concern the
evolution of the system in focus? (Y/N)

- Is it difficult to determine a preferred candidate architectural
solution among the multiple architectural alternatives due to their
various impacts on evolvability subcharacteristics? (Y/N)

The decision diagram for choosing appropriate analysis method based on the
answers to the questions is shown in Figure 4-5. The first two checkpoints
concern the stakeholders’ perception on quality attributes, and are related to
the first phase of both qualitative and quantitative analysis. The third
checkpoint concerns selecting a preferred architectural solution, and relates
to the second phase of the two methods. It is therefore possible to combine
the qualitative and quantitative analysis methods, e.g., starting with a
qualitative analysis and complement with quantitative data, or vice versa.
Depending on the answers to the questions, the corresponding phase of
either the qualitative or quantitative analysis can be selected.

Analyzing Software Evolvability 134

Figure 4-5: A decision diagram for choosing between the qualitative and

quantitative methods

4.6 Summary
Motivated by the need to understand software architecture evolution and to
investigate ways to analyze software evolvability to support this evolution,
the central theme of this chapter focuses on two particular aspects:

- Identify software characteristics that are necessary to constitute an
evolvable software system

In this aspect, we have defined a software evolvability model, which
refines evolvability into a collection of subcharacteristics. This model is
established as a first step towards analyzing and quantifying software

Analyzing Software Evolvability 135

evolvability. It provides a basis for analyzing software evolvability, and
a check point for evolvability evaluation and improvement.

- Assess evolvability in a systematic manner

In this aspect, we have proposed and described the software architecture
evolvability analysis process (AREA) which is based on the evolvability
model. The AREA process provides also repeatable techniques for
supporting software architecture evolution:

- Qualitative architecture evolvability analysis method that
focuses on improving the capability of being able to understand
and analyze systematically the impact of change stimuli on
software architecture evolution.

- Quantitative architecture evolvability analysis method that
provides quantifications of stakeholders’ evolvability concerns
and potential architectural solutions’ impacts on evolvability.

We have now introduced the software evolvability model and the
evolvability analysis process, with in-depth description of the steps in both
the qualitative and quantitative evolvability analysis methods. In next
chapter, we will present the industrial case studies of using the evolvability
model and analysis processes as they were realized in real evaluations.

Analyzing Software Evolvability 134

Figure 4-5: A decision diagram for choosing between the qualitative and

quantitative methods

4.6 Summary
Motivated by the need to understand software architecture evolution and to
investigate ways to analyze software evolvability to support this evolution,
the central theme of this chapter focuses on two particular aspects:

- Identify software characteristics that are necessary to constitute an
evolvable software system

In this aspect, we have defined a software evolvability model, which
refines evolvability into a collection of subcharacteristics. This model is
established as a first step towards analyzing and quantifying software

Analyzing Software Evolvability 135

evolvability. It provides a basis for analyzing software evolvability, and
a check point for evolvability evaluation and improvement.

- Assess evolvability in a systematic manner

In this aspect, we have proposed and described the software architecture
evolvability analysis process (AREA) which is based on the evolvability
model. The AREA process provides also repeatable techniques for
supporting software architecture evolution:

- Qualitative architecture evolvability analysis method that
focuses on improving the capability of being able to understand
and analyze systematically the impact of change stimuli on
software architecture evolution.

- Quantitative architecture evolvability analysis method that
provides quantifications of stakeholders’ evolvability concerns
and potential architectural solutions’ impacts on evolvability.

We have now introduced the software evolvability model and the
evolvability analysis process, with in-depth description of the steps in both
the qualitative and quantitative evolvability analysis methods. In next
chapter, we will present the industrial case studies of using the evolvability
model and analysis processes as they were realized in real evaluations.

Chapter 5. Analyzing Proprietary Systems

In Chapter 4 we have introduced the qualitative and quantitative evolvability
assessments manifested in the software evolvability analysis process. This
chapter describes the validations, i.e., their applications in two large-scale
industrial software systems at ABB and Ericsson. The experiences and
reflections in the case studies with respect to managing software architecture
evolution guided by the evolvability analysis at architectural level are
described as well.

5.1 Case Study I. Qualitative Software
Evolvability Analysis
This section describes the case study in which we applied the qualitative
software evolvability analysis method. The system that we investigated is an
automation control system at ABB.

5.1.1 Context of the Case Study

The case study was based on a large automation control system at ABB.
During the long history of product development, several generations of
automation controllers have been developed as well as a family of software
products, ranging from programming tools to varieties of application
software. The case study focused on the latest generation of the robot
controller.

The robot controller software consists of more than three million lines of
code written in C/C++, and uses a complex threading model, with support
for a variety of different applications and devices. It has grown in size and
complexity as new features and solutions have been added to enhance
functionality and to support new hardware, such as devices, I/O boards and
production equipment. Such a complex system is challenging to evolve. Due
to different measures such as organizational and lifecycle process

Chapter 5. Analyzing Proprietary Systems

In Chapter 4 we have introduced the qualitative and quantitative evolvability
assessments manifested in the software evolvability analysis process. This
chapter describes the validations, i.e., their applications in two large-scale
industrial software systems at ABB and Ericsson. The experiences and
reflections in the case studies with respect to managing software architecture
evolution guided by the evolvability analysis at architectural level are
described as well.

5.1 Case Study I. Qualitative Software
Evolvability Analysis
This section describes the case study in which we applied the qualitative
software evolvability analysis method. The system that we investigated is an
automation control system at ABB.

5.1.1 Context of the Case Study

The case study was based on a large automation control system at ABB.
During the long history of product development, several generations of
automation controllers have been developed as well as a family of software
products, ranging from programming tools to varieties of application
software. The case study focused on the latest generation of the robot
controller.

The robot controller software consists of more than three million lines of
code written in C/C++, and uses a complex threading model, with support
for a variety of different applications and devices. It has grown in size and
complexity as new features and solutions have been added to enhance
functionality and to support new hardware, such as devices, I/O boards and
production equipment. Such a complex system is challenging to evolve. Due
to different measures such as organizational and lifecycle process

Analyzing Proprietary Systems 138

improvements, the system keeps maintainability, but the evolvability
becomes more difficult since the increased complexity in turn leads to
decreased flexibility, resulting in problems to add new features.
Consequently, it would become costly to adapt to new market demands and
penetrate new markets.

Our particular system was delivered as a single monolithic software package,
which consists of various software applications developed by distributed
development teams. These applications aim for specific tasks in painting,
welding, gluing, machine tending and palletizing, etc. In order to keep the
integration and delivery process efficient, the initial architectural decision
was to keep the deployment artifact monolithic; The complete set of
functionality and services was present in every product even though not
everything was required in the specific product. As the system grew, it
became more difficult to ensure that the modifications of specific application
software would not affect the quality of other parts of the software system.

The original coarse-grained architecture of the controller is depicted in
Figure 5-1. The lower layer provides an interface to the upper layer, and
allows the source code of the upper layer to be compiled and used on
different hardware platforms and operating systems. The complete set of
interdependencies between subsystems within each layer is not captured in
the figure.

Figure 5-1: A conceptual view of the original software architecture

The main problem with this software architecture was the existence of tight
coupling among some components that reside in different layers. This led to
additional work required at a lower level to modify some existing
functionality and add support for new functionality in various applications.
For instance, the system is required to perform certain tasks during start-up

Analyzing Proprietary Systems 139

and shutdown in the controller. Some routines for handling such tasks had to
be hard-coded, i.e., the application developers had to edit in the source code
of e.g., Support Services subsystem in the lower layer, which was developed
by another group of developers. Accordingly, source code updates had to be
done not only on the application level, but through several layers, several
subsystems and components. Recompilation of the whole code base was
required. This means that application developers need to have thorough
knowledge of the complete source code. It also constituted a bottleneck in
the effort to enable distributed application development. To continue
exploiting the substantial software investment made and to continuously
improve the system for longer productive lifetime, it became essential to
explicitly address evolvability.

We want to emphasize here that the problem raised is not a problem of
maintainability. The major problems arose when brand new (very different)
features or different development paradigms, shifting business and
organizational goals were introduced, so the problems were related to
software evolvability.

5.1.2 Evolvability Subcharacteristics from Case Perspective

We explain below each evolvability subcharacteristic in conjunction with the
case study context:

- Analyzability The release frequency of the controller software was
twice a year, with around 40 various new major requirements that
needed to be implemented in each release. These requirements may have
impact on different attributes of the system, and the possible impact
must be analyzed before the implementation of the requirements.

- Architectural Integrity A strategy for communicating architectural
decisions that we found out from the case study was to appoint members
of the core architecture team as technical leaders in respective
development projects. However, this strategy, although helpful to certain
extent, did not completely prevent developers from insufficient
understanding and/or misunderstanding of the initial architectural
decisions, resulting in unconscious violation of architectural
conformance.

- Changeability Due to the monolithic characteristic of the controller
software, modifications in certain parts of the software package led to
some ripple effects, and required recompiling, reintegrating and retesting
of the whole system. This led to inflexibility of patching, and customers

Analyzing Proprietary Systems 138

improvements, the system keeps maintainability, but the evolvability
becomes more difficult since the increased complexity in turn leads to
decreased flexibility, resulting in problems to add new features.
Consequently, it would become costly to adapt to new market demands and
penetrate new markets.

Our particular system was delivered as a single monolithic software package,
which consists of various software applications developed by distributed
development teams. These applications aim for specific tasks in painting,
welding, gluing, machine tending and palletizing, etc. In order to keep the
integration and delivery process efficient, the initial architectural decision
was to keep the deployment artifact monolithic; The complete set of
functionality and services was present in every product even though not
everything was required in the specific product. As the system grew, it
became more difficult to ensure that the modifications of specific application
software would not affect the quality of other parts of the software system.

The original coarse-grained architecture of the controller is depicted in
Figure 5-1. The lower layer provides an interface to the upper layer, and
allows the source code of the upper layer to be compiled and used on
different hardware platforms and operating systems. The complete set of
interdependencies between subsystems within each layer is not captured in
the figure.

Figure 5-1: A conceptual view of the original software architecture

The main problem with this software architecture was the existence of tight
coupling among some components that reside in different layers. This led to
additional work required at a lower level to modify some existing
functionality and add support for new functionality in various applications.
For instance, the system is required to perform certain tasks during start-up

Analyzing Proprietary Systems 139

and shutdown in the controller. Some routines for handling such tasks had to
be hard-coded, i.e., the application developers had to edit in the source code
of e.g., Support Services subsystem in the lower layer, which was developed
by another group of developers. Accordingly, source code updates had to be
done not only on the application level, but through several layers, several
subsystems and components. Recompilation of the whole code base was
required. This means that application developers need to have thorough
knowledge of the complete source code. It also constituted a bottleneck in
the effort to enable distributed application development. To continue
exploiting the substantial software investment made and to continuously
improve the system for longer productive lifetime, it became essential to
explicitly address evolvability.

We want to emphasize here that the problem raised is not a problem of
maintainability. The major problems arose when brand new (very different)
features or different development paradigms, shifting business and
organizational goals were introduced, so the problems were related to
software evolvability.

5.1.2 Evolvability Subcharacteristics from Case Perspective

We explain below each evolvability subcharacteristic in conjunction with the
case study context:

- Analyzability The release frequency of the controller software was
twice a year, with around 40 various new major requirements that
needed to be implemented in each release. These requirements may have
impact on different attributes of the system, and the possible impact
must be analyzed before the implementation of the requirements.

- Architectural Integrity A strategy for communicating architectural
decisions that we found out from the case study was to appoint members
of the core architecture team as technical leaders in respective
development projects. However, this strategy, although helpful to certain
extent, did not completely prevent developers from insufficient
understanding and/or misunderstanding of the initial architectural
decisions, resulting in unconscious violation of architectural
conformance.

- Changeability Due to the monolithic characteristic of the controller
software, modifications in certain parts of the software package led to
some ripple effects, and required recompiling, reintegrating and retesting
of the whole system. This led to inflexibility of patching, and customers

Analyzing Proprietary Systems 140

had to wait for a new release even in case of corrective maintenance and
configuration changes.

- Portability The current controller software supports VxWorks and
Microsoft Windows NT. In the meantime, there is also a need of
openness for choosing among different operating system (OS) vendors,
e.g., Linux and Windows CE, and possibly new OS in the future.

- Extensibility The current controller software supports around 20
different applications that are developed by several distributed
development centers around the world. To adapt to the increased
customer focus on specific applications and to enable the establishment
of new market segments, it was decided that the controller must
constantly raise the service level through supporting more functionality
and providing more features, while keeping important non-functional
properties.

- Testability The controller software exposed huge number of public
interfaces which resulted in tremendous time merely on interface tests.
Therefore, it was decided to reduce the public interfaces to around 10%
of the original value. Besides, due to the monolithic characteristic, error
corrections in one part of the software required sometimes retesting of
the whole system. One decision was therefore to investigate the
feasibility of testing only modified parts.

- Domain-specific attributes The most important domain-specific
attributes are related to real-time and potential problems with execution
time. The critical real-time calculation demands from the controller
software required reduced code size of the base software and runtime
footprint.

5.1.3 Applying the Qualitative Evolvability Analysis
Method

The main focus in our case study was to assess how well the architecture
would support forthcoming requirements and understand their impact. The
forthcoming requirements emerged due to the change stimuli from business
strategy of the company:

- Time-to-market requirements, such as building new products for
dedicated market within short time;

- Increased ease and flexibility of distributed development of diverse
application variants.

Analyzing Proprietary Systems 141

Through the evolvability analysis process (as shown in Figure 4-3), we
identified potential weakness in the original architecture, and defined an
evolutionary path for the software system. The identification and analysis of
the architectural requirements was performed by the architecture assessment
core team which consisted of seven persons. It was a continuous maturation
process from the first vision to concrete activities that will be described
below. Three persons from the architecture core team identified the
architectural solution proposals for some components in the Base System
subsystem. I worked within the architecture assessment core team, and
proposed potential architectural solutions that would facilitate the
implementation of the identified architectural requirements. These proposals
were discussed with the main technical responsible persons and architects.
The choice of architectural solutions was based on discussions with the
system architects and prototyping through the whole architecture assessment
process. All the architectural decisions and solutions were documented and
transferred further to the implementation teams.

Phase 1 - Step 1.1: Identify requirements on the software architecture

Due to the aforementioned change stimuli, the main requirements on the
software architecture and the refined activities for each requirement were
proposed by the architecture core team, and are listed below:

- R1. Transform the monolithic architecture to modular architecture

- Enable the separation of layers within the controller software: (i)
a kernel which comprises of components that must be included
by all application variants; (ii) common extensions which are
available to and can be selected by all application variants; and
(iii) application extensions which are only available to specific
application variants.

- Investigate dependencies between the existing extensions.

- R2. Reduced architecture complexity

- Define system interfaces between subsystems and reduce the
number of public interface calls.

- Add support for real-time task isolation management.

- Introduce a new scripting language to improve support for
application development, since modern scripting languages are
flexible, productive and reduce the need to recompile.

- R3. Enable distributed development of extensions with minimum
dependency

Analyzing Proprietary Systems 140

had to wait for a new release even in case of corrective maintenance and
configuration changes.

- Portability The current controller software supports VxWorks and
Microsoft Windows NT. In the meantime, there is also a need of
openness for choosing among different operating system (OS) vendors,
e.g., Linux and Windows CE, and possibly new OS in the future.

- Extensibility The current controller software supports around 20
different applications that are developed by several distributed
development centers around the world. To adapt to the increased
customer focus on specific applications and to enable the establishment
of new market segments, it was decided that the controller must
constantly raise the service level through supporting more functionality
and providing more features, while keeping important non-functional
properties.

- Testability The controller software exposed huge number of public
interfaces which resulted in tremendous time merely on interface tests.
Therefore, it was decided to reduce the public interfaces to around 10%
of the original value. Besides, due to the monolithic characteristic, error
corrections in one part of the software required sometimes retesting of
the whole system. One decision was therefore to investigate the
feasibility of testing only modified parts.

- Domain-specific attributes The most important domain-specific
attributes are related to real-time and potential problems with execution
time. The critical real-time calculation demands from the controller
software required reduced code size of the base software and runtime
footprint.

5.1.3 Applying the Qualitative Evolvability Analysis
Method

The main focus in our case study was to assess how well the architecture
would support forthcoming requirements and understand their impact. The
forthcoming requirements emerged due to the change stimuli from business
strategy of the company:

- Time-to-market requirements, such as building new products for
dedicated market within short time;

- Increased ease and flexibility of distributed development of diverse
application variants.

Analyzing Proprietary Systems 141

Through the evolvability analysis process (as shown in Figure 4-3), we
identified potential weakness in the original architecture, and defined an
evolutionary path for the software system. The identification and analysis of
the architectural requirements was performed by the architecture assessment
core team which consisted of seven persons. It was a continuous maturation
process from the first vision to concrete activities that will be described
below. Three persons from the architecture core team identified the
architectural solution proposals for some components in the Base System
subsystem. I worked within the architecture assessment core team, and
proposed potential architectural solutions that would facilitate the
implementation of the identified architectural requirements. These proposals
were discussed with the main technical responsible persons and architects.
The choice of architectural solutions was based on discussions with the
system architects and prototyping through the whole architecture assessment
process. All the architectural decisions and solutions were documented and
transferred further to the implementation teams.

Phase 1 - Step 1.1: Identify requirements on the software architecture

Due to the aforementioned change stimuli, the main requirements on the
software architecture and the refined activities for each requirement were
proposed by the architecture core team, and are listed below:

- R1. Transform the monolithic architecture to modular architecture

- Enable the separation of layers within the controller software: (i)
a kernel which comprises of components that must be included
by all application variants; (ii) common extensions which are
available to and can be selected by all application variants; and
(iii) application extensions which are only available to specific
application variants.

- Investigate dependencies between the existing extensions.

- R2. Reduced architecture complexity

- Define system interfaces between subsystems and reduce the
number of public interface calls.

- Add support for real-time task isolation management.

- Introduce a new scripting language to improve support for
application development, since modern scripting languages are
flexible, productive and reduce the need to recompile.

- R3. Enable distributed development of extensions with minimum
dependency

Analyzing Proprietary Systems 142

- Build the application-specific extensions on top of the base
software (including kernel and common extensions) without the
need of access and modification to the internal base source code.

- Package the base software into Software Development Kit
(SDK), which provides necessary interfaces, tools and
documentation to support distributed application development.

- R4. Portability

- Investigate portability across target operating system platforms.

- Investigate portability across hardware platforms.

- R5. Impact on product development process

- Investigate the implications of restructuring the automation
controller software, with respect to product integration,
verification and testing.

- R6. Minimized software code size and runtime footprint

- Investigate enabling mechanisms, e.g., properly partitioning
functionality.

These requirements were then checked against the evolvability
subcharacteristics to justify whether the realization of each requirement
would lead to an improvement of the subcharacteristics (or possibly a
decrease, which would then require a tradeoff decision). Table 5-1
summarizes how the identified architectural requirements are related to the
evolvability subcharacteristics.

Table 5-1: Mapping between evolvability subcharacteristics and

architecture requirements

Requirements Subcharacteristics

R1. Transform the monolithic architecture to modular architecture.

R2. Reduced architecture complexity.

Analyzability

R1. Transform the monolithic architecture to modular architecture.

R2. Reduced architecture complexity.

Changeability

R3. Enable distributed development of extensions with minimum
dependency.

Extensibility

R4. Portability. Portability

R5. Impact on product development process. Testability

R6. Minimized software code size and runtime footprint. Domain-specific Attribute

Analyzing Proprietary Systems 143

It may be noted that architectural integrity is omitted from this table. This is
because, in the case study, architectural integrity was handled by
documenting the architectural choices for handling potential architectural
requirements, the rationales for the choice of architectural solutions along
with their impacts on evolvability subcharacteristics. This will be detailed
later.

Phase 1 - Step 1.2: Prioritize requirements on the software architecture

With the consideration of not disrupting the ongoing development projects,
the criteria for requirement prioritization were:

- Enable building existing types of extensions after refactoring and
architecture restructuring;

- Enable new extensions, and simplify interfaces that are difficult to
understand and/or may have negative effects on implementing new
extensions.

Based on these criteria, R1, R2 and R3 were prioritized architectural
requirements.

Phase 2 - Step 2.1: Extract architectural constructs related to the

respective identified issues

We demonstrate the use of the analysis method by exemplifying with R3
(i.e., enable distributed development of extensions with minimum
dependency). To enable distributed application development, there is a need
to transform the existing system into components that can form the core of
the product-line infrastructure, and separate application-specific extensions
from the base software. Accordingly, we extracted architectural constructs
that were related to the realization of distributed development. Details on
how we go further with the extracted architectural constructs are described
below in the following two steps.

Phase 2 - Step 2.2: Identify refactoring components for each identified

issue

To enable distributed development of extensions with minimum dependency,
the strategy of separate concerns was applied to isolate the effect of changes
to parts of the system [12], i.e., separate the general system functions from
the hardware, and separate application-specific functions from generic and
basic functions. Based on the extracted cross-cutting concerns, the
refactoring was conducted by merging subsystems/components, re-grouping
of components, breaking down components and re-structuring them into new
subsystems. Thus, the original architecture shown in Figure 5-1 was
proposed to be changed to the architecture shown in Figure 5-2.

Analyzing Proprietary Systems 142

- Build the application-specific extensions on top of the base
software (including kernel and common extensions) without the
need of access and modification to the internal base source code.

- Package the base software into Software Development Kit
(SDK), which provides necessary interfaces, tools and
documentation to support distributed application development.

- R4. Portability

- Investigate portability across target operating system platforms.

- Investigate portability across hardware platforms.

- R5. Impact on product development process

- Investigate the implications of restructuring the automation
controller software, with respect to product integration,
verification and testing.

- R6. Minimized software code size and runtime footprint

- Investigate enabling mechanisms, e.g., properly partitioning
functionality.

These requirements were then checked against the evolvability
subcharacteristics to justify whether the realization of each requirement
would lead to an improvement of the subcharacteristics (or possibly a
decrease, which would then require a tradeoff decision). Table 5-1
summarizes how the identified architectural requirements are related to the
evolvability subcharacteristics.

Table 5-1: Mapping between evolvability subcharacteristics and

architecture requirements

Requirements Subcharacteristics

R1. Transform the monolithic architecture to modular architecture.

R2. Reduced architecture complexity.

Analyzability

R1. Transform the monolithic architecture to modular architecture.

R2. Reduced architecture complexity.

Changeability

R3. Enable distributed development of extensions with minimum
dependency.

Extensibility

R4. Portability. Portability

R5. Impact on product development process. Testability

R6. Minimized software code size and runtime footprint. Domain-specific Attribute

Analyzing Proprietary Systems 143

It may be noted that architectural integrity is omitted from this table. This is
because, in the case study, architectural integrity was handled by
documenting the architectural choices for handling potential architectural
requirements, the rationales for the choice of architectural solutions along
with their impacts on evolvability subcharacteristics. This will be detailed
later.

Phase 1 - Step 1.2: Prioritize requirements on the software architecture

With the consideration of not disrupting the ongoing development projects,
the criteria for requirement prioritization were:

- Enable building existing types of extensions after refactoring and
architecture restructuring;

- Enable new extensions, and simplify interfaces that are difficult to
understand and/or may have negative effects on implementing new
extensions.

Based on these criteria, R1, R2 and R3 were prioritized architectural
requirements.

Phase 2 - Step 2.1: Extract architectural constructs related to the

respective identified issues

We demonstrate the use of the analysis method by exemplifying with R3
(i.e., enable distributed development of extensions with minimum
dependency). To enable distributed application development, there is a need
to transform the existing system into components that can form the core of
the product-line infrastructure, and separate application-specific extensions
from the base software. Accordingly, we extracted architectural constructs
that were related to the realization of distributed development. Details on
how we go further with the extracted architectural constructs are described
below in the following two steps.

Phase 2 - Step 2.2: Identify refactoring components for each identified

issue

To enable distributed development of extensions with minimum dependency,
the strategy of separate concerns was applied to isolate the effect of changes
to parts of the system [12], i.e., separate the general system functions from
the hardware, and separate application-specific functions from generic and
basic functions. Based on the extracted cross-cutting concerns, the
refactoring was conducted by merging subsystems/components, re-grouping
of components, breaking down components and re-structuring them into new
subsystems. Thus, the original architecture shown in Figure 5-1 was
proposed to be changed to the architecture shown in Figure 5-2.

Analyzing Proprietary Systems 144

Figure 5-2: A revised conceptual view of the software architecture

Consequently, some subsystems and components need to be adapted and
reorganized to enable the architecture restructuring. For instance, the PC

Applications and Man Machine Interaction in the original architecture
become Application-Specific Extensions, whereas the OS & Hardware

Abstraction in the original architecture becomes a subsystem in the kernel in
the new architecture. We also identified a collection of components that
needed refactoring. Some of them were the components within the low-level
basic services subsystem for resource allocations, e.g., semaphore ID

management component, memory allocation management component. These
components needed to be adapted because functionality needed to be
separated from resource management in order to achieve the build- and
development-independency between the kernel and extensions.

Phase 2 - Step 2.3: Identify and assess potential refactoring solutions

from technical and business perspectives

The complete assessment of components cannot be presented due to space
limitations and company confidentiality. Therefore, we select a subset, and
exemplify with one component that needed to be refactored. The example is
chosen to be understandable for people outside the automation domain,
while still representative and illustrative for the many various discussions
and solutions that occurred during the analysis. We will focus on technical
perspective, and discuss in terms of the following views:

Analyzing Proprietary Systems 145

- Problem description: the problem and disadvantages of the original
design of the component;

- Requirements: the new requirements that the component needs to
fulfill;

- Improvement solution: the architectural solution to design problems;

- Architectural consequences: the architectural implications of the
deployment of the component on evolvability subcharacteristics.

Component Example: Inter-Process Communication (IPC)

This component belongs to Basic Services subsystem, and it includes
mechanisms that allow communication between processes, such as remote
procedure calls, message passing and shared data.

- Problem Description All the slot names and slot IDs that are used
by the kernel and extensions are defined in a C header file in the
system. The developers have to edit this file to register their slot
name and slot ID, and recompile. Afterwards, both the slot name and
slot ID are specified in the startup command file for thread creation.
There is no dynamic allocation of connection slot.

- Requirements The refactoring of this component is directly related
to R3; It should be possible to define and use IPC slots in common
extensions and application extensions without the need to edit the
source code of the base software and recompile. The mechanism for
using IPC from extensions must be available also in the kernel, to
facilitate move of components from kernel to extensions in the
future.

- Improvement Solution The slot ID for extension clients should not
be booked in the header file. Extensions should not hook a static slot
ID in the startup command file. The command attribute dynamic slot
ID should be used instead. The IPC connection for extension clients
will be established dynamically through the ipc_connect function as
shown in Figure 5-3. It will return a connection slot ID when no
predefined slot ID is given. An internal error will be logged at
startup if a duplicate slot name is used.

Analyzing Proprietary Systems 144

Figure 5-2: A revised conceptual view of the software architecture

Consequently, some subsystems and components need to be adapted and
reorganized to enable the architecture restructuring. For instance, the PC

Applications and Man Machine Interaction in the original architecture
become Application-Specific Extensions, whereas the OS & Hardware

Abstraction in the original architecture becomes a subsystem in the kernel in
the new architecture. We also identified a collection of components that
needed refactoring. Some of them were the components within the low-level
basic services subsystem for resource allocations, e.g., semaphore ID

management component, memory allocation management component. These
components needed to be adapted because functionality needed to be
separated from resource management in order to achieve the build- and
development-independency between the kernel and extensions.

Phase 2 - Step 2.3: Identify and assess potential refactoring solutions

from technical and business perspectives

The complete assessment of components cannot be presented due to space
limitations and company confidentiality. Therefore, we select a subset, and
exemplify with one component that needed to be refactored. The example is
chosen to be understandable for people outside the automation domain,
while still representative and illustrative for the many various discussions
and solutions that occurred during the analysis. We will focus on technical
perspective, and discuss in terms of the following views:

Analyzing Proprietary Systems 145

- Problem description: the problem and disadvantages of the original
design of the component;

- Requirements: the new requirements that the component needs to
fulfill;

- Improvement solution: the architectural solution to design problems;

- Architectural consequences: the architectural implications of the
deployment of the component on evolvability subcharacteristics.

Component Example: Inter-Process Communication (IPC)

This component belongs to Basic Services subsystem, and it includes
mechanisms that allow communication between processes, such as remote
procedure calls, message passing and shared data.

- Problem Description All the slot names and slot IDs that are used
by the kernel and extensions are defined in a C header file in the
system. The developers have to edit this file to register their slot
name and slot ID, and recompile. Afterwards, both the slot name and
slot ID are specified in the startup command file for thread creation.
There is no dynamic allocation of connection slot.

- Requirements The refactoring of this component is directly related
to R3; It should be possible to define and use IPC slots in common
extensions and application extensions without the need to edit the
source code of the base software and recompile. The mechanism for
using IPC from extensions must be available also in the kernel, to
facilitate move of components from kernel to extensions in the
future.

- Improvement Solution The slot ID for extension clients should not
be booked in the header file. Extensions should not hook a static slot
ID in the startup command file. The command attribute dynamic slot
ID should be used instead. The IPC connection for extension clients
will be established dynamically through the ipc_connect function as
shown in Figure 5-3. It will return a connection slot ID when no
predefined slot ID is given. An internal error will be logged at
startup if a duplicate slot name is used.

Analyzing Proprietary Systems 146

Figure 5-3: Inter-process communication component after refactoring

- Architectural consequences The revised IPC component provides
efficient resource booking for inter-process communication, and
enables encapsulation of IPC facilities. Accordingly, distributed
development of extensions utilizing IPC functionality is enabled.
The use of dynamic inter-process communication connections
addressed resource limitations for IPC connection. In this way,
limited IPC resources are used only when the processes are
communicating. However, the use of IPC mechanisms dynamically
requires resources, which are limited due to real-time requirements.
This may require additional analysis including a trade-off analysis of
possible solutions.

Phase 2 - Step 2.4: Define test cases

The corresponding test cases were derived based on the selected
improvement solution to each component that needed refactoring. For
instance, the architectural test cases for the IPC component are given by the
ThreadCreation class creating dynamic slot ID, as shown in Figure 5-4.

Analyzing Proprietary Systems 147

Figure 5-4: Test cases for IPC component

Phase 3 - Step 3.1: Present evaluation results

Until this step, key architectural requirements were identified; components
that needed to be refactored were identified; the stakeholders established a
common understanding of potential improvement strategies and evolution
path for the software architecture. In Table 5-2, we summarize the
implications of the refactored IPC component on evolvability
subcharacteristics.

Table 5-2: Implications of the IPC component refactoring on

evolvability subcharacteristics (+ positive impact, - negative impact)

Subcharacteristics IPC Component Refactoring

Analyzability – due to less possibility of static analysis since definitions are
defined dynamically

Architectural
Integrity

+ due to documentation of specific requirements, architectural
solutions and consequences

Changeability + due to the dynamism which makes it easier to introduce and
deploy new slots

Portability + due to improved abstraction of Application Programming
Interfaces (APIs) for IPC

Extensibility + due to encapsulation of IPC facilities and dynamic deployment

Testability No impact

Domain-specific
attribute

+ resource limitation issue is handled through dynamic IPC
connection

– due to introduced dynamism, the system performance could be
slightly reduced

Analyzing Proprietary Systems 146

Figure 5-3: Inter-process communication component after refactoring

- Architectural consequences The revised IPC component provides
efficient resource booking for inter-process communication, and
enables encapsulation of IPC facilities. Accordingly, distributed
development of extensions utilizing IPC functionality is enabled.
The use of dynamic inter-process communication connections
addressed resource limitations for IPC connection. In this way,
limited IPC resources are used only when the processes are
communicating. However, the use of IPC mechanisms dynamically
requires resources, which are limited due to real-time requirements.
This may require additional analysis including a trade-off analysis of
possible solutions.

Phase 2 - Step 2.4: Define test cases

The corresponding test cases were derived based on the selected
improvement solution to each component that needed refactoring. For
instance, the architectural test cases for the IPC component are given by the
ThreadCreation class creating dynamic slot ID, as shown in Figure 5-4.

Analyzing Proprietary Systems 147

Figure 5-4: Test cases for IPC component

Phase 3 - Step 3.1: Present evaluation results

Until this step, key architectural requirements were identified; components
that needed to be refactored were identified; the stakeholders established a
common understanding of potential improvement strategies and evolution
path for the software architecture. In Table 5-2, we summarize the
implications of the refactored IPC component on evolvability
subcharacteristics.

Table 5-2: Implications of the IPC component refactoring on

evolvability subcharacteristics (+ positive impact, - negative impact)

Subcharacteristics IPC Component Refactoring

Analyzability – due to less possibility of static analysis since definitions are
defined dynamically

Architectural
Integrity

+ due to documentation of specific requirements, architectural
solutions and consequences

Changeability + due to the dynamism which makes it easier to introduce and
deploy new slots

Portability + due to improved abstraction of Application Programming
Interfaces (APIs) for IPC

Extensibility + due to encapsulation of IPC facilities and dynamic deployment

Testability No impact

Domain-specific
attribute

+ resource limitation issue is handled through dynamic IPC
connection

– due to introduced dynamism, the system performance could be
slightly reduced

Analyzing Proprietary Systems 148

The qualitative analysis of the potential architectural solution’s impacts on
evolvability subcharacteristics provided the involved stakeholders with a
good understanding of the corresponding tradeoffs when choosing
architectural solution alternatives. Thus, an ad hoc choice of architectural
solution can be avoided. As shown in Table 5-2, the negative impacts of the
IPC component refactoring on evolvability subcharacteristics are not crucial.

5.1.4 Qualitative Evolvability Analysis: Experiences

Based on our experience in applying the qualitative evolvability analysis
method, the architecture requirements, corresponding architectural decisions,
rationale and potential architecture evolution path became more explicit,
better founded and documented. Consequently, we have improved the
capability of being able to understand and analyze systematically the impact
of a change stimulus. This, in turn, helped us to prolong the evolution stage
[21].

We list below two observations that concern visible improvements in the
organization. They were also perceived and reported by the stakeholders
themselves.

- High-level business goals concretized into architectural

requirements High-level business goals lead to architectural
requirements. In the case study, the potential requirements on the
architecture were derived from the high-level business goals in the
first phase of analysis, in which the potential architectural
requirements were identified based on the change stimuli. Such
derivation provided an understanding on how the intended software
system and its evolving artifacts reflect and contribute to the
strategic goals. Together with the documentation of architecture
evolution path, it helped to enrich architectural models and facilitate
the traceability of software architecture evolution back to the various
business constraints and assumptions [15].

- Improved documentation of architecture The architecture
transformation and suggestions for architectural solutions were part
of the analysis process, which was performed by the architecture
core team. Three persons from the architecture core team identified
the architectural solution proposals for the components in the main
subsystems over a six-month period. As a result of the analysis, the
implementation solution proposals have been approved, and the
documentation of architecture [91] [106] has been improved. The

Analyzing Proprietary Systems 149

final architectural analysis investigation report was distributed for
inspection, and was approved after a few iterations. This document
served as an input and blueprint to the implementation teams. In this
way, the architecture core team and implementation teams shared the
same view on the evolution path of the software architecture.

5.1.5 Qualitative Evolvability Analysis: Lessons Learned

In the qualitative evolvability analysis method, the architecture tradeoff
analysis is reflected in two constituent steps:

- During architecture workshops, the stakeholders prioritize potential
architectural requirements, which are mapped against evolvability
subcharacteristics. By prioritizing the potential architectural
requirements based on pre-defined criteria, evolvability
subcharacteristics are implicitly prioritized by stakeholders;

- After the workshop, the identified architectural choices are
qualitatively analyzed with respect to their impacts and support for
evolvability subcharacteristics.

Therefore, we see two aspects which we can further explore and make more
explicit:

- Explicit stakeholders’ views on prioritization and preferences on

evolvability subcharacteristics

- Rationale:

Depending on their roles that are involved in the development and
evolution of a software system, the stakeholders usually have
different concerns, i.e., interests which pertain to the system’s
development, its operation or evolution. Consequently, architecting
for an evolvable software system implies that an architect needs to
balance numerous stakeholders’ concerns that are reflected in terms
of their prioritization and preferences on evolvability
subcharacteristics. When the prioritization and preferences of
evolvability subcharacteristics are not explicitly expressed by
involved stakeholders, it becomes difficult to determine the
dimensions along which a system is expected to evolve.

- Related activities performed in the qualitative evolvability
analysis method:

This aspect was treated implicitly in step 1.2 in the first phase (i.e.,
prioritize requirements on the software architecture), in which the

Analyzing Proprietary Systems 148

The qualitative analysis of the potential architectural solution’s impacts on
evolvability subcharacteristics provided the involved stakeholders with a
good understanding of the corresponding tradeoffs when choosing
architectural solution alternatives. Thus, an ad hoc choice of architectural
solution can be avoided. As shown in Table 5-2, the negative impacts of the
IPC component refactoring on evolvability subcharacteristics are not crucial.

5.1.4 Qualitative Evolvability Analysis: Experiences

Based on our experience in applying the qualitative evolvability analysis
method, the architecture requirements, corresponding architectural decisions,
rationale and potential architecture evolution path became more explicit,
better founded and documented. Consequently, we have improved the
capability of being able to understand and analyze systematically the impact
of a change stimulus. This, in turn, helped us to prolong the evolution stage
[21].

We list below two observations that concern visible improvements in the
organization. They were also perceived and reported by the stakeholders
themselves.

- High-level business goals concretized into architectural

requirements High-level business goals lead to architectural
requirements. In the case study, the potential requirements on the
architecture were derived from the high-level business goals in the
first phase of analysis, in which the potential architectural
requirements were identified based on the change stimuli. Such
derivation provided an understanding on how the intended software
system and its evolving artifacts reflect and contribute to the
strategic goals. Together with the documentation of architecture
evolution path, it helped to enrich architectural models and facilitate
the traceability of software architecture evolution back to the various
business constraints and assumptions [15].

- Improved documentation of architecture The architecture
transformation and suggestions for architectural solutions were part
of the analysis process, which was performed by the architecture
core team. Three persons from the architecture core team identified
the architectural solution proposals for the components in the main
subsystems over a six-month period. As a result of the analysis, the
implementation solution proposals have been approved, and the
documentation of architecture [91] [106] has been improved. The

Analyzing Proprietary Systems 149

final architectural analysis investigation report was distributed for
inspection, and was approved after a few iterations. This document
served as an input and blueprint to the implementation teams. In this
way, the architecture core team and implementation teams shared the
same view on the evolution path of the software architecture.

5.1.5 Qualitative Evolvability Analysis: Lessons Learned

In the qualitative evolvability analysis method, the architecture tradeoff
analysis is reflected in two constituent steps:

- During architecture workshops, the stakeholders prioritize potential
architectural requirements, which are mapped against evolvability
subcharacteristics. By prioritizing the potential architectural
requirements based on pre-defined criteria, evolvability
subcharacteristics are implicitly prioritized by stakeholders;

- After the workshop, the identified architectural choices are
qualitatively analyzed with respect to their impacts and support for
evolvability subcharacteristics.

Therefore, we see two aspects which we can further explore and make more
explicit:

- Explicit stakeholders’ views on prioritization and preferences on

evolvability subcharacteristics

- Rationale:

Depending on their roles that are involved in the development and
evolution of a software system, the stakeholders usually have
different concerns, i.e., interests which pertain to the system’s
development, its operation or evolution. Consequently, architecting
for an evolvable software system implies that an architect needs to
balance numerous stakeholders’ concerns that are reflected in terms
of their prioritization and preferences on evolvability
subcharacteristics. When the prioritization and preferences of
evolvability subcharacteristics are not explicitly expressed by
involved stakeholders, it becomes difficult to determine the
dimensions along which a system is expected to evolve.

- Related activities performed in the qualitative evolvability
analysis method:

This aspect was treated implicitly in step 1.2 in the first phase (i.e.,
prioritize requirements on the software architecture), in which the

Analyzing Proprietary Systems 150

potential architectural requirements were mapped against
evolvability subcharacteristics, and were then prioritized based on
predefined criteria. As a result, the choice of prioritized architectural
requirements implicitly sets a priority ranking on evolvability
subcharacteristics.

- Quantification of architectural solution alternatives’ impacts on

evolvability subcharacteristics

- Rationale:

Choosing an architectural solution that satisfies evolvability
requirements is vital to the evolution and success of a software
system. Nonetheless, each solution candidate is associated with
multiple attributes, as the choice of any solution alternatives may
probably cause varied tradeoffs among evolvability
subcharacteristics. Hence, it is important to understand how an
architectural alternative supports different evolvability
subcharacteristics, especially when there are several alternatives to
choose among, each of which exhibits varied support for
evolvability subcharacteristics. Consequently, these alternatives
need to be ranked, and meanwhile, reflect stakeholders’ preference
information on evolvability subcharacteristics.

- Related activities performed in the qualitative evolvability
analysis method:

The determination of potential architectural solutions, along with
their impact on evolvability subcharacteristics was qualitatively
handled in step 2.3 in the second phase (i.e., identify and assesses
potential refactoring solutions) by examining the rationale of a
solution proposal along with its architectural implications (positive
or negative impact) of the deployment of the component on
evolvability subcharacteristics.

Based on the above experiences, we further extended the qualitative
evolvability analysis with quantification feasibility, and validated the
quantitative evolvability analysis method in another industrial setting. This
will be described in Chapter 5.2.

Analyzing Proprietary Systems 151

5.2 Case Study II. Quantitative Software
Evolvability Analysis
This section describes the case study in which we applied the quantitative
software evolvability analysis method. The system that we investigated is a
mobile network node software architecture at Ericsson.

5.2.1 Context of the Case Study

The case study was based on an assessment of the mobile network
architecture with respect to the evolvability of a logical node at Ericsson.
The main purpose of the logical node is to handle control signaling for and
keep track of user equipment such as mobiles using a certain type of radio
access. This is a mature system that was introduced about ten years ago, and
has been refined since then. The system is expected to be still on the market
for years ahead, and thus, needs to be easy to maintain and evolve further on.

The system software9 is divided into two levels:

- Platform level which consists of operating systems, a distributed
processing environment and application support;

- Application level that comprises of a control system and a
transmission system. The control system is designed to process high-
level protocols and control user traffic data flow in the transmission
system. The transmission system is responsible for transport, routing
and processing of user traffic.

The case study focused on one of the challenges that the system needs to
meet, i.e., In-Service Software Upgrade (ISSU). The system downtime is
divided into planned and unplanned downtime. The planned downtime is
imposed by maintenance routines, such as correction package loading. The
unplanned downtime is imposed by automatic recovery mechanisms in the
system and manual restarts of the system due to a system failure. The actual
downtime for a network is largely dependent on the frequency of the planned
downtime events. There are two scenarios connected with planned
downtime:

9 For reasons of confidentiality, no more details about the system are presented here.

Analyzing Proprietary Systems 150

potential architectural requirements were mapped against
evolvability subcharacteristics, and were then prioritized based on
predefined criteria. As a result, the choice of prioritized architectural
requirements implicitly sets a priority ranking on evolvability
subcharacteristics.

- Quantification of architectural solution alternatives’ impacts on

evolvability subcharacteristics

- Rationale:

Choosing an architectural solution that satisfies evolvability
requirements is vital to the evolution and success of a software
system. Nonetheless, each solution candidate is associated with
multiple attributes, as the choice of any solution alternatives may
probably cause varied tradeoffs among evolvability
subcharacteristics. Hence, it is important to understand how an
architectural alternative supports different evolvability
subcharacteristics, especially when there are several alternatives to
choose among, each of which exhibits varied support for
evolvability subcharacteristics. Consequently, these alternatives
need to be ranked, and meanwhile, reflect stakeholders’ preference
information on evolvability subcharacteristics.

- Related activities performed in the qualitative evolvability
analysis method:

The determination of potential architectural solutions, along with
their impact on evolvability subcharacteristics was qualitatively
handled in step 2.3 in the second phase (i.e., identify and assesses
potential refactoring solutions) by examining the rationale of a
solution proposal along with its architectural implications (positive
or negative impact) of the deployment of the component on
evolvability subcharacteristics.

Based on the above experiences, we further extended the qualitative
evolvability analysis with quantification feasibility, and validated the
quantitative evolvability analysis method in another industrial setting. This
will be described in Chapter 5.2.

Analyzing Proprietary Systems 151

5.2 Case Study II. Quantitative Software
Evolvability Analysis
This section describes the case study in which we applied the quantitative
software evolvability analysis method. The system that we investigated is a
mobile network node software architecture at Ericsson.

5.2.1 Context of the Case Study

The case study was based on an assessment of the mobile network
architecture with respect to the evolvability of a logical node at Ericsson.
The main purpose of the logical node is to handle control signaling for and
keep track of user equipment such as mobiles using a certain type of radio
access. This is a mature system that was introduced about ten years ago, and
has been refined since then. The system is expected to be still on the market
for years ahead, and thus, needs to be easy to maintain and evolve further on.

The system software9 is divided into two levels:

- Platform level which consists of operating systems, a distributed
processing environment and application support;

- Application level that comprises of a control system and a
transmission system. The control system is designed to process high-
level protocols and control user traffic data flow in the transmission
system. The transmission system is responsible for transport, routing
and processing of user traffic.

The case study focused on one of the challenges that the system needs to
meet, i.e., In-Service Software Upgrade (ISSU). The system downtime is
divided into planned and unplanned downtime. The planned downtime is
imposed by maintenance routines, such as correction package loading. The
unplanned downtime is imposed by automatic recovery mechanisms in the
system and manual restarts of the system due to a system failure. The actual
downtime for a network is largely dependent on the frequency of the planned
downtime events. There are two scenarios connected with planned
downtime:

9 For reasons of confidentiality, no more details about the system are presented here.

Analyzing Proprietary Systems 152

- Update of a release The corrections to a release include either
correction packages that are distributed to all customers, or single
corrections that are made for specific customers only, and may be later
included in the correction packages. These corrections are planned
patches, and can be updated at runtime. During the update of a release,
no configuration data needs to be changed or updated.

- Upgrade of a release A release is upgraded to a new release with
changed characteristics of the network node, e.g., changes in node
configuration parameters, major changes in software and hardware. This
causes downtime of the node today. During an upgrade, when the new
software has been installed, the node is restarted (automatically or
manually), and the local configuration that a customer maintains is
converted to a new format if needed.

A main driver of the design and evolution of the system is the achievement
of non-stop operation with minimum service impact. Therefore the focus of
our study is the second scenario which is the main cause of node downtime,
because the node restart being part of each upgrade means service
interruption for 5 to 10 minutes. The architecture must support this emerging
requirement of In-Service Software Upgrade in order to evolve. The
evolvability analysis in the case study focused on analyzing the impact on
the current architecture and identifying its potential evolution path
considering the emerging software upgrade requirement.

5.2.2 Evolvability Subcharacteristics from Case Perspective

We describe below each evolvability subcharacteristic in conjunction with
the case study context:

- Analyzability The release frequency of the system in the case study is
twice a year, with various new customer requirements, strategic
functionality and characteristics implemented in each release. In
addition, the software development organization is feature-oriented, i.e.,
the software developers are not grouped based on subsystems; instead,
they are grouped to implement a certain feature, and therefore often need
to work across various subsystems. This requires that the software
system needs to be easily understood and have the capability to be
analyzed in terms of the impact to the software by introducing a change.

From ISSU perspective, it was decided that an ISSU solution should be
easy to understand for the development organization.

Analyzing Proprietary Systems 153

- Architectural Integrity In the development of network and node
system, several architectural design patterns, guidelines as well as design
rules with respect to conformity, modeling and style guides have been
articulated in architectural specification document. All these
fundamental principles (including strategies and guidelines) govern the
design and evolution of the system, and therefore are clearly defined and
communicated. In addition to the strategies that guide software
developers in order to fulfill requirements (i.e., features of direct value
for a user), system strategies are also defined to fulfill non-functional
attributes of high priority.

From ISSU perspective, to enable ISSU implementation, it was decided
that ISSU rules should be followed. It was also decided that whether a
potential ISSU architectural design has any violations against these
general design rules needs to be checked. If any ISSU component has to
break the rules, it is essential to record the rationale for such design
decision and strategy.

- Changeability From ISSU perspective, four aspects were concerned:

- How well can other architectural changes fit into the ISSU
solution;

- Many kinds of application changes shall be possible without
special upgrade code, e.g., backward compatible interfaces;

- It shall be as easy as possible to write special upgrade code if
needed;

- How easy is it to change the ISSU solution itself once it is used.

- Extensibility The system must constantly raise the level of service by
extending existing features or adding new ones. From ISSU perspective,
one concern was to identify if there are any limitations when introducing
the ISSU solution.

- Portability The current node software supports VxWorks and Linux on
a number of hardware variants. In the future, a possible scenario could
be to change operating system or support new hardware.

- Testability The system has a number of variants based on the selection
of hardware configuration and capacity level of the node. Therefore, a
main concern is the ease to test and debug parts of the system
individually, and extract test data from the system. From ISSU
perspective, three aspects were concerned:

- Would ISSU influence the number of variants;

Analyzing Proprietary Systems 152

- Update of a release The corrections to a release include either
correction packages that are distributed to all customers, or single
corrections that are made for specific customers only, and may be later
included in the correction packages. These corrections are planned
patches, and can be updated at runtime. During the update of a release,
no configuration data needs to be changed or updated.

- Upgrade of a release A release is upgraded to a new release with
changed characteristics of the network node, e.g., changes in node
configuration parameters, major changes in software and hardware. This
causes downtime of the node today. During an upgrade, when the new
software has been installed, the node is restarted (automatically or
manually), and the local configuration that a customer maintains is
converted to a new format if needed.

A main driver of the design and evolution of the system is the achievement
of non-stop operation with minimum service impact. Therefore the focus of
our study is the second scenario which is the main cause of node downtime,
because the node restart being part of each upgrade means service
interruption for 5 to 10 minutes. The architecture must support this emerging
requirement of In-Service Software Upgrade in order to evolve. The
evolvability analysis in the case study focused on analyzing the impact on
the current architecture and identifying its potential evolution path
considering the emerging software upgrade requirement.

5.2.2 Evolvability Subcharacteristics from Case Perspective

We describe below each evolvability subcharacteristic in conjunction with
the case study context:

- Analyzability The release frequency of the system in the case study is
twice a year, with various new customer requirements, strategic
functionality and characteristics implemented in each release. In
addition, the software development organization is feature-oriented, i.e.,
the software developers are not grouped based on subsystems; instead,
they are grouped to implement a certain feature, and therefore often need
to work across various subsystems. This requires that the software
system needs to be easily understood and have the capability to be
analyzed in terms of the impact to the software by introducing a change.

From ISSU perspective, it was decided that an ISSU solution should be
easy to understand for the development organization.

Analyzing Proprietary Systems 153

- Architectural Integrity In the development of network and node
system, several architectural design patterns, guidelines as well as design
rules with respect to conformity, modeling and style guides have been
articulated in architectural specification document. All these
fundamental principles (including strategies and guidelines) govern the
design and evolution of the system, and therefore are clearly defined and
communicated. In addition to the strategies that guide software
developers in order to fulfill requirements (i.e., features of direct value
for a user), system strategies are also defined to fulfill non-functional
attributes of high priority.

From ISSU perspective, to enable ISSU implementation, it was decided
that ISSU rules should be followed. It was also decided that whether a
potential ISSU architectural design has any violations against these
general design rules needs to be checked. If any ISSU component has to
break the rules, it is essential to record the rationale for such design
decision and strategy.

- Changeability From ISSU perspective, four aspects were concerned:

- How well can other architectural changes fit into the ISSU
solution;

- Many kinds of application changes shall be possible without
special upgrade code, e.g., backward compatible interfaces;

- It shall be as easy as possible to write special upgrade code if
needed;

- How easy is it to change the ISSU solution itself once it is used.

- Extensibility The system must constantly raise the level of service by
extending existing features or adding new ones. From ISSU perspective,
one concern was to identify if there are any limitations when introducing
the ISSU solution.

- Portability The current node software supports VxWorks and Linux on
a number of hardware variants. In the future, a possible scenario could
be to change operating system or support new hardware.

- Testability The system has a number of variants based on the selection
of hardware configuration and capacity level of the node. Therefore, a
main concern is the ease to test and debug parts of the system
individually, and extract test data from the system. From ISSU
perspective, three aspects were concerned:

- Would ISSU influence the number of variants;

Analyzing Proprietary Systems 154

- Would it be possible to conduct component tests;

- Would it be possible to reproduce test cases.

- Domain-specific Attributes In this case study, two domain-specific
attributes were identified:

- Capacity, which is an attribute that describes the subscriber and
throughput capacity with various radio access types. It depends
on the traffic pattern and dimensioning of the operator network.
A logical node is dimensioned for a certain load. The admission
control functions and limits given by capacity licenses would
limit the number of subscribers allowed to enter the node and
the number of resources occupied by these subscribers. Besides,
overload protection mechanisms are implemented in case of
node internal failures, network failure, reconfiguration or wrong
node dimensioning. From ISSU perspective, three aspects were
concerned: (i) ISSU total time; (ii) capacity impact during ISSU;
and (iii) capacity impact during normal execution.

- Availability, which is an attribute that describes the ability to
keep the node in service, i.e., to keep the downtime to a
minimum. It is also called In-Service Performance (ISP) by the
domain experts that we interviewed. The system needs to be
tolerant against both hardware- and software-related failures so
that the services provided by the node are always available. The
recovery functions aim to provide a non-stop mode of operation
of the system, i.e., to recover from both software and hardware
failures with minimal inconvenience to the attached subscribers.
From ISSU perspective, three aspects were concerned: (i)
redundancy of critical components during ISSU; (ii) impact of
ISSU solution’s complexity; (iii) impact of software or hardware
failures during upgrade.

5.2.3 Applying the Quantitative Evolvability Analysis
Method

The main focus in our case study was to identify, with respect to the system
function In-Service Software Upgrade (ISSU), which architecture alternative
has the most potential for fulfilling the quality requirements of the system
among a set of architecture candidates.

Analyzing Proprietary Systems 155

Phase 1 – Step 1.1: Elicit stakeholders’ views on evolvability

subcharacteristics

The change stimuli to the evolution of the node architecture in the case study
came from the ever growing stringent requirement on In-Service-
Performance. Based on the identified change stimuli, the high level
architectural requirements were defined in order to evaluate potential
architectural solution alternatives:

- The atomic component for which an upgrade is performed must
have backward compatible interfaces during the upgrade;

- The old configuration data (including node-internal replicate data)
format must be available during the whole upgrade;

- Replicated subscriber data format must be available on old format
until the upgrade is finished;

- It must be known on which software version each atomic component
executes;

- There must be a component which controls the upgrade and is aware
of the progress.

Based on these high level architectural requirements from ISSU perspective,
Table 5-3 summarizes how specific architectural requirements are related to
the evolvability subcharacteristics.

Table 5-3: Mapping between evolvability subcharacteristics and specific

architecture requirements

Requirements Subcharacteristics

R1. The ISSU solution should be easy to understand for the
development organization.

Analyzability

R2. Many kinds of application changes shall be possible without special
upgrade code, e.g., backward compatible interfaces.

Changeability

R3. Enable introduction of ISSU solution without limitations on
extending existing features or adding new ones.

Extensibility

R4. Enable change of operating system or hardware. Portability

R5. Enable the ease to test and debug parts of the system individually,
and extract test data from the system.

Testability

R6. The ISSU total time, capacity impact during ISSU and normal
execution should be within specified values.

Capacity

R7. Critical components need to have redundancy during ISSU.

R8. The impact of software or hardware failure during upgrade should
be limited.

Availability

Analyzing Proprietary Systems 154

- Would it be possible to conduct component tests;

- Would it be possible to reproduce test cases.

- Domain-specific Attributes In this case study, two domain-specific
attributes were identified:

- Capacity, which is an attribute that describes the subscriber and
throughput capacity with various radio access types. It depends
on the traffic pattern and dimensioning of the operator network.
A logical node is dimensioned for a certain load. The admission
control functions and limits given by capacity licenses would
limit the number of subscribers allowed to enter the node and
the number of resources occupied by these subscribers. Besides,
overload protection mechanisms are implemented in case of
node internal failures, network failure, reconfiguration or wrong
node dimensioning. From ISSU perspective, three aspects were
concerned: (i) ISSU total time; (ii) capacity impact during ISSU;
and (iii) capacity impact during normal execution.

- Availability, which is an attribute that describes the ability to
keep the node in service, i.e., to keep the downtime to a
minimum. It is also called In-Service Performance (ISP) by the
domain experts that we interviewed. The system needs to be
tolerant against both hardware- and software-related failures so
that the services provided by the node are always available. The
recovery functions aim to provide a non-stop mode of operation
of the system, i.e., to recover from both software and hardware
failures with minimal inconvenience to the attached subscribers.
From ISSU perspective, three aspects were concerned: (i)
redundancy of critical components during ISSU; (ii) impact of
ISSU solution’s complexity; (iii) impact of software or hardware
failures during upgrade.

5.2.3 Applying the Quantitative Evolvability Analysis
Method

The main focus in our case study was to identify, with respect to the system
function In-Service Software Upgrade (ISSU), which architecture alternative
has the most potential for fulfilling the quality requirements of the system
among a set of architecture candidates.

Analyzing Proprietary Systems 155

Phase 1 – Step 1.1: Elicit stakeholders’ views on evolvability

subcharacteristics

The change stimuli to the evolution of the node architecture in the case study
came from the ever growing stringent requirement on In-Service-
Performance. Based on the identified change stimuli, the high level
architectural requirements were defined in order to evaluate potential
architectural solution alternatives:

- The atomic component for which an upgrade is performed must
have backward compatible interfaces during the upgrade;

- The old configuration data (including node-internal replicate data)
format must be available during the whole upgrade;

- Replicated subscriber data format must be available on old format
until the upgrade is finished;

- It must be known on which software version each atomic component
executes;

- There must be a component which controls the upgrade and is aware
of the progress.

Based on these high level architectural requirements from ISSU perspective,
Table 5-3 summarizes how specific architectural requirements are related to
the evolvability subcharacteristics.

Table 5-3: Mapping between evolvability subcharacteristics and specific

architecture requirements

Requirements Subcharacteristics

R1. The ISSU solution should be easy to understand for the
development organization.

Analyzability

R2. Many kinds of application changes shall be possible without special
upgrade code, e.g., backward compatible interfaces.

Changeability

R3. Enable introduction of ISSU solution without limitations on
extending existing features or adding new ones.

Extensibility

R4. Enable change of operating system or hardware. Portability

R5. Enable the ease to test and debug parts of the system individually,
and extract test data from the system.

Testability

R6. The ISSU total time, capacity impact during ISSU and normal
execution should be within specified values.

Capacity

R7. Critical components need to have redundancy during ISSU.

R8. The impact of software or hardware failure during upgrade should
be limited.

Availability

Analyzing Proprietary Systems 156

It may be noted that architectural integrity is omitted from this table. This is
because, in the case study, it was decided that architectural integrity would
be handled by documenting the architectural choices for handling potential
architectural requirements along with their impacts on evolvability
subcharacteristics.

To elicit stakeholders’ views on evolvability subcharacteristics, we
performed interviews with key personnel and software designers to
understand architectural challenges over the years in general, as well as the
challenges that the architecture is facing due to various emerging
requirements, e.g., distributed development, increased productivity by
including more features in each product release. In addition, we interviewed
various stakeholders to elicit their views on evolvability subcharacteristics,
including three system architects, an operative product manager, the system
owner, and two software designers involved in the logical node’s
development. These stakeholders possess a wide range of expertise, covering
platform development, communication protocol, node configuration,
monitoring and upgrade. The quantitative evolvability analysis method was
presented to the stakeholders that were to be interviewed so that they would
have a clear idea of the entire process, and understand the value of their
contribution. The interviews were conducted separately for each stakeholder
with the intension that his/her preference judgment should not be influenced
by other people. The interviews were semi-structured, and the interviewees
were free to discuss their main concerns about evolvability subcharacteristics
from their perspective. We also extracted the stakeholders’ views on
important domain-specific attributes, i.e., capacity and availability.

Phase 1 – Step 1.2: Extract stakeholders’ prioritization and preferences

of evolvability subcharacteristics

We extracted the information on the stakeholders’ preferences after we had
gone through the list of evolvability subcharacteristics and clarified the
definition of each subcharacteristic in their specific context. This was to
ensure that each stakeholder’s prioritization of evolvability
subcharacteristics is made upon the same ground. We asked each stakeholder
to provide us with the preferences of evolvability subcharacteristics from
his/her own perspective. Table 5-4 shows a system architect’s preferences on
evolvability subcharacteristics.

Analyzing Proprietary Systems 157

Table 5-4: Preferences on evolvability subcharacteristics provided by a

software architect

A
n

a
ly

za
b

il
it

y

In
te

g
ri

ty

C
h

a
n

g
ea

b
il

it
y

E
x

te
n

si
b

il
it

y

P
o

rt
a

b
il

it
y

T
es

ta
b

il
it

y

A
v

a
il

a
b

il
it

y

C
a

p
a

ci
ty

Analyzability 1 3 1/3 1/3 5 1 1/4 1/3

Integrity 1/3 1 1/6 1/6 2 1/3 1/8 1/7

Changeability 3 6 1 2 5 1/3 1/2 1/2

Extensibility 3 6 1/2 1 3 1/3 1/2 1/2

Portability 1/5 1/2 1/5 1/3 1 1/7 1/9 1/8

Testability 1 3 3 3 7 1 1/3 1/2

Availability 4 8 2 2 9 3 1 1

Capacity 3 7 2 2 8 2 1 1

After performing calculations based on equation (1) as described in Chapter
4.4.2, the values indicating subcharacteristic preference from the system
architect’s perspective are summarized in Table 5-5.

Table 5-5: Subcharacteristics from an architect’s perspective

Architect A

A
n

a
ly

za
b

il
it

y

In
te

g
ri

ty

C
h

a
n

g
ea

b
il

it
y

E
x

te
n

si
b

il
it

y

P
o

rt
a

b
il

it
y

T
es

ta
b

il
it

y

A
v

a
il

a
b

il
it

y

C
a

p
a

ci
ty

Preferences 0.077 0.030 0.135 0.110 0.023 0.158 0.249 0.219

These figures suggest that, from this system architect’s perspective, the
evolvability subcharacteristics are prioritized as (in declining order):
availability (24.9%), capacity (21.9%), testability (15.8%), changeability
(13.5%), extensibility (11%), analyzability (7.7%), integrity (3%), and
portability (2.3%). Likewise, the other system architects’ preferences on
evolvability subcharacteristics were collected and calculated. Table 5-6
summarizes all the system architects’ preferences on evolvability
subcharacteristics, along with their aggregated prioritizations based on
equation 2) as described in Chapter 4.4.2.

Analyzing Proprietary Systems 156

It may be noted that architectural integrity is omitted from this table. This is
because, in the case study, it was decided that architectural integrity would
be handled by documenting the architectural choices for handling potential
architectural requirements along with their impacts on evolvability
subcharacteristics.

To elicit stakeholders’ views on evolvability subcharacteristics, we
performed interviews with key personnel and software designers to
understand architectural challenges over the years in general, as well as the
challenges that the architecture is facing due to various emerging
requirements, e.g., distributed development, increased productivity by
including more features in each product release. In addition, we interviewed
various stakeholders to elicit their views on evolvability subcharacteristics,
including three system architects, an operative product manager, the system
owner, and two software designers involved in the logical node’s
development. These stakeholders possess a wide range of expertise, covering
platform development, communication protocol, node configuration,
monitoring and upgrade. The quantitative evolvability analysis method was
presented to the stakeholders that were to be interviewed so that they would
have a clear idea of the entire process, and understand the value of their
contribution. The interviews were conducted separately for each stakeholder
with the intension that his/her preference judgment should not be influenced
by other people. The interviews were semi-structured, and the interviewees
were free to discuss their main concerns about evolvability subcharacteristics
from their perspective. We also extracted the stakeholders’ views on
important domain-specific attributes, i.e., capacity and availability.

Phase 1 – Step 1.2: Extract stakeholders’ prioritization and preferences

of evolvability subcharacteristics

We extracted the information on the stakeholders’ preferences after we had
gone through the list of evolvability subcharacteristics and clarified the
definition of each subcharacteristic in their specific context. This was to
ensure that each stakeholder’s prioritization of evolvability
subcharacteristics is made upon the same ground. We asked each stakeholder
to provide us with the preferences of evolvability subcharacteristics from
his/her own perspective. Table 5-4 shows a system architect’s preferences on
evolvability subcharacteristics.

Analyzing Proprietary Systems 157

Table 5-4: Preferences on evolvability subcharacteristics provided by a

software architect

A
n

a
ly

za
b

il
it

y

In
te

g
ri

ty

C
h

a
n

g
ea

b
il

it
y

E
x

te
n

si
b

il
it

y

P
o

rt
a

b
il

it
y

T
es

ta
b

il
it

y

A
v

a
il

a
b

il
it

y

C
a

p
a

ci
ty

Analyzability 1 3 1/3 1/3 5 1 1/4 1/3

Integrity 1/3 1 1/6 1/6 2 1/3 1/8 1/7

Changeability 3 6 1 2 5 1/3 1/2 1/2

Extensibility 3 6 1/2 1 3 1/3 1/2 1/2

Portability 1/5 1/2 1/5 1/3 1 1/7 1/9 1/8

Testability 1 3 3 3 7 1 1/3 1/2

Availability 4 8 2 2 9 3 1 1

Capacity 3 7 2 2 8 2 1 1

After performing calculations based on equation (1) as described in Chapter
4.4.2, the values indicating subcharacteristic preference from the system
architect’s perspective are summarized in Table 5-5.

Table 5-5: Subcharacteristics from an architect’s perspective

Architect A

A
n

a
ly

za
b

il
it

y

In
te

g
ri

ty

C
h

a
n

g
ea

b
il

it
y

E
x

te
n

si
b

il
it

y

P
o

rt
a

b
il

it
y

T
es

ta
b

il
it

y

A
v

a
il

a
b

il
it

y

C
a

p
a

ci
ty

Preferences 0.077 0.030 0.135 0.110 0.023 0.158 0.249 0.219

These figures suggest that, from this system architect’s perspective, the
evolvability subcharacteristics are prioritized as (in declining order):
availability (24.9%), capacity (21.9%), testability (15.8%), changeability
(13.5%), extensibility (11%), analyzability (7.7%), integrity (3%), and
portability (2.3%). Likewise, the other system architects’ preferences on
evolvability subcharacteristics were collected and calculated. Table 5-6
summarizes all the system architects’ preferences on evolvability
subcharacteristics, along with their aggregated prioritizations based on
equation 2) as described in Chapter 4.4.2.

Analyzing Proprietary Systems 158

Table 5-6: Aggregated subcharacteristics

Architects
A

n
a

ly
za

b
il

it
y

In
te

g
ri

ty

C
h

a
n

g
ea

b
il

it
y

E
x

te
n

si
b

il
it

y

P
o

rt
a

b
il

it
y

T
es

ta
b

il
it

y

A
v

a
il

a
b

il
it

y

C
a

p
a

ci
ty

Architect A 0.077 0.030 0.135 0.110 0.023 0.158 0.249 0.219

Architect B 0.059 0.047 0.084 0.064 0.057 0.105 0.407 0.176

Architect C 0.082 0.036 0.096 0.096 0.038 0.123 0.309 0.220

Aggregated 0.073 0.038 0.105 0.090 0.039 0.128 0.322 0.205

After the process of extracting system architects’ preferences on evolvability
subcharacteristics, it was interesting to note that the three system architects
shared almost the same view of prioritization of evolvability
subcharacteristics. They had commonly shared order of prioritization
(starting from high to low priority) – availability (32.2%), capacity (20.5%),
testability (12.8%), changeability (10.5%), extensibility (9%), and
analyzability (7.3%). This is a good sign of the preference alignment among
architects.

In the same way, we also gathered quality preferences for the other
stakeholder roles, and realized that different stakeholder roles have different
preferences of evolvability subcharacteristics. A summary of different
stakeholder preferences is presented in Table 5-7.

Table 5-7: Preferences on evolvability subcharacteristics provided by

respective stakeholder roles

Stakeholders

A
n

a
ly

za
b

il
it

y

In
te

g
ri

ty

C
h

a
n

g
ea

b
il

it
y

E
x

te
n

si
b

il
it

y

P
o

rt
a

b
il

it
y

T
es

ta
b

il
it

y

A
v

a
il

a
b

il
it

y

C
a

p
a

ci
ty

Architects 0.073 0.038 0.105 0.090 0.039 0.128 0.322 0.205

Designers 0.105 0.125 0.103 0.108 0.042 0.154 0.322 0.041

System

owner
0.061 0.189 0.111 0.108 0.023 0.112 0.350 0.046

Aggregated 0.080 0.117 0.106 0.102 0.035 0.131 0.331 0.098

Analyzing Proprietary Systems 159

The reason why we aggregate preferences per stakeholder role is that each
role represents respective viewpoint and needs, and thus, we assume that the
primary preference differentiation lies between the different stakeholder
roles.

During the process in extracting stakeholders’ views on evolvability
subcharacteristics, we also performed consistency check for each
stakeholder’s comparisons based on AHP [156]. Table 5-8 summarizes the
consistency ratio scores for each stakeholder.

Table 5-8: Consistency ratios for stakeholders

Stakeholders Architect

A

Architect

B

Architect

C

Designers System

Owner

Consistency

Ratio
0.061 0.109 0.039 0.088 0.046

The research in [156] suggested that if the consistency ratio is smaller than
0.10, the participants’ comparisons are consistent enough to be useful, and
the AHP method can yield meaningful results. It is also pointed out in [156]
that, in practice, higher values are often obtained, which indicates that 0.10
may be too hard. But it is an indication of the approximate value of the
expected consistency ratio. As we see from Table 5-7, only architect B’s
value (0.109) is slightly more than 0.10. However, the value is still
acceptable considering that 0.10 is a hard limit for the degree of consistency.
Consequently, all the data we obtained from the stakeholders are
trustworthy. The aggregated values of all the involved stakeholder roles, as
shown in Table 5-5, indicate that availability has the highest priority,
followed by testability, architectural integrity, changeability, extensibility,
capacity, analyzability, and portability.

Phase 2 – Step 2.1: Identify candidate architectural solutions

Two architectural alternatives were developed for the In-Service Software
Upgrade (ISSU) requirement in our study. For reasons of confidentiality we
cannot give full descriptions of the candidate architectural solutions, but in
principle, the architectural alternatives describe two variations of how to
handle execution resource management. Two types of computing resources
(processors) management are used to fulfill the capacity and In-Service
Performance (ISP) requirements:

- Application processors that are optimized for node control and
traffic control logic;

Analyzing Proprietary Systems 158

Table 5-6: Aggregated subcharacteristics

Architects

A
n

a
ly

za
b

il
it

y

In
te

g
ri

ty

C
h

a
n

g
ea

b
il

it
y

E
x

te
n

si
b

il
it

y

P
o

rt
a

b
il

it
y

T
es

ta
b

il
it

y

A
v

a
il

a
b

il
it

y

C
a

p
a

ci
ty

Architect A 0.077 0.030 0.135 0.110 0.023 0.158 0.249 0.219

Architect B 0.059 0.047 0.084 0.064 0.057 0.105 0.407 0.176

Architect C 0.082 0.036 0.096 0.096 0.038 0.123 0.309 0.220

Aggregated 0.073 0.038 0.105 0.090 0.039 0.128 0.322 0.205

After the process of extracting system architects’ preferences on evolvability
subcharacteristics, it was interesting to note that the three system architects
shared almost the same view of prioritization of evolvability
subcharacteristics. They had commonly shared order of prioritization
(starting from high to low priority) – availability (32.2%), capacity (20.5%),
testability (12.8%), changeability (10.5%), extensibility (9%), and
analyzability (7.3%). This is a good sign of the preference alignment among
architects.

In the same way, we also gathered quality preferences for the other
stakeholder roles, and realized that different stakeholder roles have different
preferences of evolvability subcharacteristics. A summary of different
stakeholder preferences is presented in Table 5-7.

Table 5-7: Preferences on evolvability subcharacteristics provided by

respective stakeholder roles

Stakeholders

A
n

a
ly

za
b

il
it

y

In
te

g
ri

ty

C
h

a
n

g
ea

b
il

it
y

E
x

te
n

si
b

il
it

y

P
o

rt
a

b
il

it
y

T
es

ta
b

il
it

y

A
v

a
il

a
b

il
it

y

C
a

p
a

ci
ty

Architects 0.073 0.038 0.105 0.090 0.039 0.128 0.322 0.205

Designers 0.105 0.125 0.103 0.108 0.042 0.154 0.322 0.041

System

owner
0.061 0.189 0.111 0.108 0.023 0.112 0.350 0.046

Aggregated 0.080 0.117 0.106 0.102 0.035 0.131 0.331 0.098

Analyzing Proprietary Systems 159

The reason why we aggregate preferences per stakeholder role is that each
role represents respective viewpoint and needs, and thus, we assume that the
primary preference differentiation lies between the different stakeholder
roles.

During the process in extracting stakeholders’ views on evolvability
subcharacteristics, we also performed consistency check for each
stakeholder’s comparisons based on AHP [156]. Table 5-8 summarizes the
consistency ratio scores for each stakeholder.

Table 5-8: Consistency ratios for stakeholders

Stakeholders Architect

A

Architect

B

Architect

C

Designers System

Owner

Consistency

Ratio
0.061 0.109 0.039 0.088 0.046

The research in [156] suggested that if the consistency ratio is smaller than
0.10, the participants’ comparisons are consistent enough to be useful, and
the AHP method can yield meaningful results. It is also pointed out in [156]
that, in practice, higher values are often obtained, which indicates that 0.10
may be too hard. But it is an indication of the approximate value of the
expected consistency ratio. As we see from Table 5-7, only architect B’s
value (0.109) is slightly more than 0.10. However, the value is still
acceptable considering that 0.10 is a hard limit for the degree of consistency.
Consequently, all the data we obtained from the stakeholders are
trustworthy. The aggregated values of all the involved stakeholder roles, as
shown in Table 5-5, indicate that availability has the highest priority,
followed by testability, architectural integrity, changeability, extensibility,
capacity, analyzability, and portability.

Phase 2 – Step 2.1: Identify candidate architectural solutions

Two architectural alternatives were developed for the In-Service Software
Upgrade (ISSU) requirement in our study. For reasons of confidentiality we
cannot give full descriptions of the candidate architectural solutions, but in
principle, the architectural alternatives describe two variations of how to
handle execution resource management. Two types of computing resources
(processors) management are used to fulfill the capacity and In-Service
Performance (ISP) requirements:

- Application processors that are optimized for node control and
traffic control logic;

Analyzing Proprietary Systems 160

- Device processors that are optimized for communication/protocol
logic to handle time-critical traffic data flow and control signaling
termination.

Specifically, the two candidate architectural solutions are:

- Alt1: Slot by slot concept

The overall idea is to take one board after another out of service for
upgrade to a new release. During In-Service Software Upgrade, the
boards running with old software will coexist and interact with the
boards running with new software.

- Alt2: Zone concept

The overall idea is to divide the node into two zones, i.e., in one zone, all
components run old software, and in the other zone, components run
new software.

Both solutions have their respective benefits and drawbacks. For instance,
the slot by slot concept has the benefit of having board redundancy under
control during ISSU and that the existing mechanisms in the architecture
facilitate the potential implementations of ISSU. On the other hand, the zone
concept has the benefit that backward compatibility is not needed for
application and device processors. But both solutions face several drawbacks
such as time required for ISSU, interface changes, and other specific ones.
Therefore, it was not an easy task to directly decide which alternative would
be more optimal than the other.

Phase 2 – Step 2.2: Assess candidate architectural solutions’ impacts on

evolvability subcharacteristics

To assess ISSU candidate architectural solutions’ impacts on evolvability
subcharacteristics, we actively cooperated with the system architects at
Ericsson. The two candidate architectural solutions were rated with respect
to how well they support each evolvability subcharacteristic. This
information was provided by the three system architects because they
possess the whole system perspective and technical knowledge. The values
indicating the support weights of the two alternatives with respect to
evolvability subcharacteristics are summarized in Table 5-9.

Analyzing Proprietary Systems 161

Table 5-9: Support weights of the two alternatives on evolvability

subcharacteristics

 Alt 1: Slot by slot concept Alt 2: Zone concept

Analyzability 0.667 0.333

Integrity 0.500 0.500

Changeability 0.250 0.750

Extensibility 0.333 0.667

Portability 0.500 0.500

Testability 0.333 0.667

Availability 0.750 0.250

Capacity 0.800 0.200

Phase 3 – Step 3.1: Present evaluation results

Until this step, key domain-specific attributes and candidate architectural
solutions were identified; stakeholders’ preferences on evolvability
subcharacteristics as well as each candidate solution’s support on
evolvability subcharacteristics were quantified. Consequently, considering
the prioritization weights of evolvability subcharacteristics in Table 5-6,
together with the values indicating each alternative’s support on evolvability
subcharacteristics shown in Table 5-8, the overall weight for Alt1 is
calculated based on equation (3) as:

 = 0.080 0.667 + 0.117 0.500 + 0.106 0.250 + 0.102 0.333
+ 0.035 0.500 + 0.131 0.333 + 0.331 0.750 + 0.098 0.800 =
0.560

Likewise, = 0.440, which indicates that, Alt1 (slot by slot concept)
seems to be the preferred solution supporting evolvability.

5.2.4 Quantitative Evolvability Analysis: Experiences

By applying the quantitative evolvability analysis method, we have
improved the capability of being able to explicitly extract stakeholders’
views on evolvability subcharacteristics and quantify candidate architectural

Analyzing Proprietary Systems 160

- Device processors that are optimized for communication/protocol
logic to handle time-critical traffic data flow and control signaling
termination.

Specifically, the two candidate architectural solutions are:

- Alt1: Slot by slot concept

The overall idea is to take one board after another out of service for
upgrade to a new release. During In-Service Software Upgrade, the
boards running with old software will coexist and interact with the
boards running with new software.

- Alt2: Zone concept

The overall idea is to divide the node into two zones, i.e., in one zone, all
components run old software, and in the other zone, components run
new software.

Both solutions have their respective benefits and drawbacks. For instance,
the slot by slot concept has the benefit of having board redundancy under
control during ISSU and that the existing mechanisms in the architecture
facilitate the potential implementations of ISSU. On the other hand, the zone
concept has the benefit that backward compatibility is not needed for
application and device processors. But both solutions face several drawbacks
such as time required for ISSU, interface changes, and other specific ones.
Therefore, it was not an easy task to directly decide which alternative would
be more optimal than the other.

Phase 2 – Step 2.2: Assess candidate architectural solutions’ impacts on

evolvability subcharacteristics

To assess ISSU candidate architectural solutions’ impacts on evolvability
subcharacteristics, we actively cooperated with the system architects at
Ericsson. The two candidate architectural solutions were rated with respect
to how well they support each evolvability subcharacteristic. This
information was provided by the three system architects because they
possess the whole system perspective and technical knowledge. The values
indicating the support weights of the two alternatives with respect to
evolvability subcharacteristics are summarized in Table 5-9.

Analyzing Proprietary Systems 161

Table 5-9: Support weights of the two alternatives on evolvability

subcharacteristics

 Alt 1: Slot by slot concept Alt 2: Zone concept

Analyzability 0.667 0.333

Integrity 0.500 0.500

Changeability 0.250 0.750

Extensibility 0.333 0.667

Portability 0.500 0.500

Testability 0.333 0.667

Availability 0.750 0.250

Capacity 0.800 0.200

Phase 3 – Step 3.1: Present evaluation results

Until this step, key domain-specific attributes and candidate architectural
solutions were identified; stakeholders’ preferences on evolvability
subcharacteristics as well as each candidate solution’s support on
evolvability subcharacteristics were quantified. Consequently, considering
the prioritization weights of evolvability subcharacteristics in Table 5-6,
together with the values indicating each alternative’s support on evolvability
subcharacteristics shown in Table 5-8, the overall weight for Alt1 is
calculated based on equation (3) as:

 = 0.080 0.667 + 0.117 0.500 + 0.106 0.250 + 0.102 0.333
+ 0.035 0.500 + 0.131 0.333 + 0.331 0.750 + 0.098 0.800 =
0.560

Likewise, = 0.440, which indicates that, Alt1 (slot by slot concept)
seems to be the preferred solution supporting evolvability.

5.2.4 Quantitative Evolvability Analysis: Experiences

By applying the quantitative evolvability analysis method, we have
improved the capability of being able to explicitly extract stakeholders’
views on evolvability subcharacteristics and quantify candidate architectural

Analyzing Proprietary Systems 162

solutions’ support on evolvability. In this way, intuitive choices of
architectural solutions are avoided during software evolution.

We list below two visible benefits that were perceived and reported by the
involved stakeholders in the organization:

- Quantification of stakeholders’ preferences on evolvability

subcharacteristics

In this case study, different stakeholder roles had different concerns on the
software system. For instance, the software designers mentioned three main
aspects that were considered important from their perspective, i.e.,
functionality, ease to understand, and source code level performance;
whereas the operative product manager focused on domain-specific
attributes (i.e., availability and capacity), functionality, and time-to-
market/time-to-customer. These concerns are aspects that are critical from
specific stakeholder’s perspective, and thus, will influence how he/she would
prioritize evolvability subcharacteristics. According to the stakeholders that
we interviewed, to think in terms of "subcharacteristics", was not new for
them. But previously they had not been able to quantify the importance of
the various -abilities for their system. The quantitative evolvability analysis
method provided a structured way to extract and quantify the opinions of the
stakeholders of various roles involved in the software architecture decision
process through individual discussions and interviews. In addition, the
quantification results served also as a communication vehicle for discussions
of development concerns among various stakeholders when individual
preferences were quantitatively identified and highlighted.

- Quantification of architectural alternatives’ impacts on

evolvability

In this case study, recalling the stakeholders’ preference weight of
evolvability subcharacteristics and the weight of how well different
alternatives support a specific evolvability subcharacteristic, we obtained a
normalized value, designating the overall weight for each alternative’s
support on evolvability, and indicating which was the preferred candidate
architectural solution. In addition, we also interviewed the system architects
after the execution of the method in the form of a discussion meeting to
collect their opinions on if the method had produced relevant results.
According to them, these results can definitely serve as a basis for further
discussions on the choice of architectural solution. Most importantly, the
systematic character of the evolvability analysis approach, including
documentation of the reasoning of prioritization in each step, was most
valuable, as it provided them an active countermeasure against arbitrarily

Analyzing Proprietary Systems 163

making some design decisions that would be otherwise often based on
intuition because of personal experience and available expertise.

5.2.5 Quantitative Evolvability Analysis: Lessons Learned

In the case study, we conducted a series of semi-structured interviews with
the stakeholders that participated in the evolvability analysis. During the
interviews, we asked questions that were meant to extract and clarify the
stakeholders’ perception on evolvability subcharacteristics. In this process,
cost was not explicitly considered. Cost involves development cost,
maintenance and evolution cost, and concerns time-to-market. We put cost
into consideration when candidate architectural solutions had been identified
as it became more concrete to estimate the workload for each solution. On
the other hand, in order to carry out software evolution efficiently, the cost
aspect could also have been considered upfront and explicitly evaluated
together with the evolvability subcharacteristics.

5.3 Summary
This chapter has described the application of software evolvability model,
qualitative and quantitative architecture evolvability analysis methods in two
industrial projects driven by the need of improving software evolvability.
Based on our experiences, both the qualitative and quantitative analysis
methods can be used as an integral part of software development and
evolution process.

Throughout the process of evolvability analysis at ABB, the architecture
requirements and corresponding design decisions for the transition of
architecture became more explicit, better founded and documented. The
resulting analysis results were well accepted by the stakeholders involved in
the analysis process, and became a blueprint for further implementation
improvement.

Throughout the process of evolvability analysis at Ericsson, the importance
of various quality attributes perceived among different stakeholders was
quantified and became more explicit. This quantification also served as a
communication vehicle for further discussions among stakeholders.

In both cases, by analyzing architectural improvement proposals with respect
to their implications on evolvability subcharacteristics, we further avoided
an ad hoc choice of potential evolution paths of software architecture.

Analyzing Proprietary Systems 162

solutions’ support on evolvability. In this way, intuitive choices of
architectural solutions are avoided during software evolution.

We list below two visible benefits that were perceived and reported by the
involved stakeholders in the organization:

- Quantification of stakeholders’ preferences on evolvability

subcharacteristics

In this case study, different stakeholder roles had different concerns on the
software system. For instance, the software designers mentioned three main
aspects that were considered important from their perspective, i.e.,
functionality, ease to understand, and source code level performance;
whereas the operative product manager focused on domain-specific
attributes (i.e., availability and capacity), functionality, and time-to-
market/time-to-customer. These concerns are aspects that are critical from
specific stakeholder’s perspective, and thus, will influence how he/she would
prioritize evolvability subcharacteristics. According to the stakeholders that
we interviewed, to think in terms of "subcharacteristics", was not new for
them. But previously they had not been able to quantify the importance of
the various -abilities for their system. The quantitative evolvability analysis
method provided a structured way to extract and quantify the opinions of the
stakeholders of various roles involved in the software architecture decision
process through individual discussions and interviews. In addition, the
quantification results served also as a communication vehicle for discussions
of development concerns among various stakeholders when individual
preferences were quantitatively identified and highlighted.

- Quantification of architectural alternatives’ impacts on

evolvability

In this case study, recalling the stakeholders’ preference weight of
evolvability subcharacteristics and the weight of how well different
alternatives support a specific evolvability subcharacteristic, we obtained a
normalized value, designating the overall weight for each alternative’s
support on evolvability, and indicating which was the preferred candidate
architectural solution. In addition, we also interviewed the system architects
after the execution of the method in the form of a discussion meeting to
collect their opinions on if the method had produced relevant results.
According to them, these results can definitely serve as a basis for further
discussions on the choice of architectural solution. Most importantly, the
systematic character of the evolvability analysis approach, including
documentation of the reasoning of prioritization in each step, was most
valuable, as it provided them an active countermeasure against arbitrarily

Analyzing Proprietary Systems 163

making some design decisions that would be otherwise often based on
intuition because of personal experience and available expertise.

5.2.5 Quantitative Evolvability Analysis: Lessons Learned

In the case study, we conducted a series of semi-structured interviews with
the stakeholders that participated in the evolvability analysis. During the
interviews, we asked questions that were meant to extract and clarify the
stakeholders’ perception on evolvability subcharacteristics. In this process,
cost was not explicitly considered. Cost involves development cost,
maintenance and evolution cost, and concerns time-to-market. We put cost
into consideration when candidate architectural solutions had been identified
as it became more concrete to estimate the workload for each solution. On
the other hand, in order to carry out software evolution efficiently, the cost
aspect could also have been considered upfront and explicitly evaluated
together with the evolvability subcharacteristics.

5.3 Summary
This chapter has described the application of software evolvability model,
qualitative and quantitative architecture evolvability analysis methods in two
industrial projects driven by the need of improving software evolvability.
Based on our experiences, both the qualitative and quantitative analysis
methods can be used as an integral part of software development and
evolution process.

Throughout the process of evolvability analysis at ABB, the architecture
requirements and corresponding design decisions for the transition of
architecture became more explicit, better founded and documented. The
resulting analysis results were well accepted by the stakeholders involved in
the analysis process, and became a blueprint for further implementation
improvement.

Throughout the process of evolvability analysis at Ericsson, the importance
of various quality attributes perceived among different stakeholders was
quantified and became more explicit. This quantification also served as a
communication vehicle for further discussions among stakeholders.

In both cases, by analyzing architectural improvement proposals with respect
to their implications on evolvability subcharacteristics, we further avoided
an ad hoc choice of potential evolution paths of software architecture.

 164

Another remark is that we plan to further complement the quantitative
analysis method with cost aspect more explicitly to better support design
decisions, and validate on additional, independent cases.

Chapter 6. Open Source Software
Evolution

Up to this point, we have laid the foundations for analyzing software
architecture evolvability, principally the broad set of studies in architecting
for evolvability during software architecture evolution (Chapter 3), the
proposed software evolvability model and evolvability analysis process that
comprises both qualitative and quantitative analysis methods (Chapter 4).
Chapter 5 presented case studies to cement the proposed evolvability model
and evolvability analysis process. As stated in Chapter 1, the focus of our
research is to analyze proprietary systems for software evolvability
improvement. However, as a supplemental research contribution, we now
turn our attention to the open source software evolution.

With the emergence of the Open Source Software (OSS) paradigm,
researchers have access to the code bases of a large number of evolving
software systems along with their release histories and change logs. There
have been a large number of studies published on OSS characteristics and
evolution patterns by examining sequences of code versions or releases
using statistical analysis. Meanwhile, the easily accessible data about
different aspects of OSS projects also provides researchers with immense
number of opportunities to validate the prior studies of proprietary software
evolution [112] and to study how evolvability has been addressed in OSS
evolution.

This chapter presents the results from a systematic literature review (SLR)
that we performed in the area of OSS evolution research, and will cover
three aspects:

- Systematically select and review published literature in order to
build and present a holistic overview of the existing studies on OSS
evolution.

- Analyze the literature to find out how software evolvability is
addressed during development and evolution of OSS.

 164

Another remark is that we plan to further complement the quantitative
analysis method with cost aspect more explicitly to better support design
decisions, and validate on additional, independent cases.

Chapter 6. Open Source Software
Evolution

Up to this point, we have laid the foundations for analyzing software
architecture evolvability, principally the broad set of studies in architecting
for evolvability during software architecture evolution (Chapter 3), the
proposed software evolvability model and evolvability analysis process that
comprises both qualitative and quantitative analysis methods (Chapter 4).
Chapter 5 presented case studies to cement the proposed evolvability model
and evolvability analysis process. As stated in Chapter 1, the focus of our
research is to analyze proprietary systems for software evolvability
improvement. However, as a supplemental research contribution, we now
turn our attention to the open source software evolution.

With the emergence of the Open Source Software (OSS) paradigm,
researchers have access to the code bases of a large number of evolving
software systems along with their release histories and change logs. There
have been a large number of studies published on OSS characteristics and
evolution patterns by examining sequences of code versions or releases
using statistical analysis. Meanwhile, the easily accessible data about
different aspects of OSS projects also provides researchers with immense
number of opportunities to validate the prior studies of proprietary software
evolution [112] and to study how evolvability has been addressed in OSS
evolution.

This chapter presents the results from a systematic literature review (SLR)
that we performed in the area of OSS evolution research, and will cover
three aspects:

- Systematically select and review published literature in order to
build and present a holistic overview of the existing studies on OSS
evolution.

- Analyze the literature to find out how software evolvability is
addressed during development and evolution of OSS.

Open Source Software Evolution 166

- Extract information on the metrics that researchers use for
measuring OSS evolution from different perspectives such as growth
patterns, complexity patterns, processes and evolution effort
estimation.

The detailed research questions include:

- What are the main research themes that are covered in the scientific
literature regarding open source software evolution, and analysis and
achievement of evolvability-related quality attributes?

- What are the metrics that are used for OSS evolution measurement
and analysis, and what are the limitations in using these metrics, if
any?

The rest of this chapter is structured as follows: Chapter 6.1describes the
research method used. Chapter 6.2 presents demographic information of the
primary studies included in the review. Chapters 6.3 to 6.6 discuss the
findings from this systematic review. Chapter 6.7 discusses validity threats
of the review.

6.1 Systematic Literature Review Process
This research was undertaken as a systematic review [101], which is a
process of assessing and interpreting all available research related to a
particular research topic. The process consists of several stages:

- Development of a review protocol;

- Identification of inclusion and exclusion criteria;

- Searching relevant papers;

- Data extraction and synthesis.

These stages are detailed in the following subsections.

6.1.1 Review Protocol

The review protocol was designed based on the Systematic Literature
Review (SLR) guidelines by Kitchenham and Charters [101]. The protocol
specified the background for the review, research questions, search strategy,
study selection criteria, data extraction and synthesis of the extracted data.
The protocol was developed mainly by one researcher, and reviewed by me
and another senior researcher to reduce bias.

Open Source Software Evolution 167

6.1.2 Inclusion and Exclusion Criteria

The inclusion and exclusion criteria mainly focused on including full-text
papers in English from peer-reviewed journals, conferences, workshops and
book chapters published until the end of 2009. We exclude studies that do
not cover evolution of open source software, prefaces, and articles in the
controversial corner of journals, editorials, and summaries of tutorials,
panels and poster sessions.

6.1.3 Search Process

The search strategy was designed to search in a selected set of electronic
databases:

- ACM Digital Library (http://portal.arm.org)

- Compendex (http://www.engineeringvillage.com)

- IEEE Xplore (http://www.ieee.org/web/publications/xplore/)

- ScienceDirect – Elsevier (http://www.elsevier.com)

- SpringerLink (http://www.springerlink.com)

- Wiley InterScience (http://www3.interscience.wiley.com)

- ISI Web of Science (http://www.isiknowledge.com)

The search terms used for constructing search strings were: "open source
software" OR "libre software" OR "free software" OR "FOSS" OR "F/OSS"
OR "F/OSSD" OR "FOSSD" OR "FLOSS" OR "F/LOSS" OR "OSSD".

The selection of studies was performed through a multi-step process:

- Searches in the databases to identify relevant studies by using the
search terms;

- Exclude studies based on the exclusion criteria;

- Exclude irrelevant studies based on titles and abstracts;

- Obtain primary studies based on full-text reading.

The searches in electronic databases were performed in two stages. At the
first stage, the papers published until the end of 2008 were searched, and
then a separate complimentary search was performed for 2009 publications.
After merging the search results and removing duplicates, there were 11,439
papers published until 2008 and 1,921 papers published in 2009. After
scanning all the papers by titles and abstracts, 134 papers were selected. In
the final stage, full-text was scanned, and we selected 41 papers for this

Open Source Software Evolution 166

- Extract information on the metrics that researchers use for
measuring OSS evolution from different perspectives such as growth
patterns, complexity patterns, processes and evolution effort
estimation.

The detailed research questions include:

- What are the main research themes that are covered in the scientific
literature regarding open source software evolution, and analysis and
achievement of evolvability-related quality attributes?

- What are the metrics that are used for OSS evolution measurement
and analysis, and what are the limitations in using these metrics, if
any?

The rest of this chapter is structured as follows: Chapter 6.1describes the
research method used. Chapter 6.2 presents demographic information of the
primary studies included in the review. Chapters 6.3 to 6.6 discuss the
findings from this systematic review. Chapter 6.7 discusses validity threats
of the review.

6.1 Systematic Literature Review Process
This research was undertaken as a systematic review [101], which is a
process of assessing and interpreting all available research related to a
particular research topic. The process consists of several stages:

- Development of a review protocol;

- Identification of inclusion and exclusion criteria;

- Searching relevant papers;

- Data extraction and synthesis.

These stages are detailed in the following subsections.

6.1.1 Review Protocol

The review protocol was designed based on the Systematic Literature
Review (SLR) guidelines by Kitchenham and Charters [101]. The protocol
specified the background for the review, research questions, search strategy,
study selection criteria, data extraction and synthesis of the extracted data.
The protocol was developed mainly by one researcher, and reviewed by me
and another senior researcher to reduce bias.

Open Source Software Evolution 167

6.1.2 Inclusion and Exclusion Criteria

The inclusion and exclusion criteria mainly focused on including full-text
papers in English from peer-reviewed journals, conferences, workshops and
book chapters published until the end of 2009. We exclude studies that do
not cover evolution of open source software, prefaces, and articles in the
controversial corner of journals, editorials, and summaries of tutorials,
panels and poster sessions.

6.1.3 Search Process

The search strategy was designed to search in a selected set of electronic
databases:

- ACM Digital Library (http://portal.arm.org)

- Compendex (http://www.engineeringvillage.com)

- IEEE Xplore (http://www.ieee.org/web/publications/xplore/)

- ScienceDirect – Elsevier (http://www.elsevier.com)

- SpringerLink (http://www.springerlink.com)

- Wiley InterScience (http://www3.interscience.wiley.com)

- ISI Web of Science (http://www.isiknowledge.com)

The search terms used for constructing search strings were: "open source
software" OR "libre software" OR "free software" OR "FOSS" OR "F/OSS"
OR "F/OSSD" OR "FOSSD" OR "FLOSS" OR "F/LOSS" OR "OSSD".

The selection of studies was performed through a multi-step process:

- Searches in the databases to identify relevant studies by using the
search terms;

- Exclude studies based on the exclusion criteria;

- Exclude irrelevant studies based on titles and abstracts;

- Obtain primary studies based on full-text reading.

The searches in electronic databases were performed in two stages. At the
first stage, the papers published until the end of 2008 were searched, and
then a separate complimentary search was performed for 2009 publications.
After merging the search results and removing duplicates, there were 11,439
papers published until 2008 and 1,921 papers published in 2009. After
scanning all the papers by titles and abstracts, 134 papers were selected. In
the final stage, full-text was scanned, and we selected 41 papers for this

Open Source Software Evolution 168

review. The paper selection process involved two researchers (me and
another researcher) to decide whether to include or exclude a paper. A paper
was excluded if both researchers considered it irrelevant. Any disagreement
was resolved through discussions and involvement of a third senior
researcher.

6.1.4 Data Extraction and Synthesis

Data extraction and synthesis were carried out by reading each of the 41
primary studies thoroughly and extracting relevant data, which were
managed through bibliographical management tool EndNote and
Spreadsheets. The data extraction was driven by a form show in Table 6-1.
For data synthesis, we inspected the extracted data for similarities in terms of
the focus of the studies in order to define how results could be compared.
The results of the synthesis will be described in the subsequent chapters.

Table 6-1: Data extraction for each study

Extracted Data Description

Study identity Unique identity for the study

Bibliographic references Author, year of publication, title and source of publication

Type of study Book, journal paper, conference paper, workshop paper

Focus of the study Main topic area and aspect of open source software being
investigated

Research method used for data
collection

Included technique for the design of the study, e.g. case
study, survey, experiment, interview to obtain data,
observation

Data analysis Qualitative or quantitative analysis of data

Metrics used The metrics used in data collection for analysis

Constraints and limitations Identified constraints and limitations in each study

6.2 Overview of the Primary Studies
This chapter provides some demographic information about the primary
studies. Chapter 6.3 to 6.6 will present the findings from analyzing the data
extracted from the reviewed studies in order to answer the research questions
which motivated this systematic literature review.

Open Source Software Evolution 169

6.2.1 Demographic Information of the Primary Studies

It has been mentioned that we performed searches in multiple electronic
databases. We found that the largest numbers of selected papers (22 papers)
were published on OSS evolution from IEEE. The second largest numbers of
papers (9 papers) were published by ACM; while four selected papers were
published by John Wiley & Sons in its Journal of Software Maintenance and
Evolution. Trend of publications over the years shows a positive growth
except for year 2008. Only three papers on OSS evolution were published in
that year. In year 2009, eleven papers were published showing that a good
number of researchers are addressing OSS evolution.

Our review has also found that the evolution trends and patterns is the most
focused research area with 23 papers published on this topic. There were 10
papers on the role of process support in evolution. However, few papers
address the characteristics of evolvability and architecture, with 5 and 3
papers respectively.

6.2.2 Categories of the Primary Studies

As described in Chapter 6.1.4, during the data synthesis phase, we examined
the papers based on their similarities in terms of research topics and contents
in order to categorize the primary studies of OSS evolution. Besides
classifying the primary studies, we examined also the metrics used for
assessing OSS evolution as well as the analysis methodology for collected
data in each study.

After examining the research topics, data analysis and findings addressed in
each study, we identified four main categories of themes, one of which is
further refined into sub-categories to group primary studies that share similar
characteristics in terms of specific research focus, research concepts and
contexts. The categories and sub-categories are:

- OSS evolution trends and patterns

- Software growth

- Software maintenance and evolution economics

- Prediction of software evolution

- OSS evolution process support

- Evolvability characteristics

- Examining OSS evolution at software architecture level

Open Source Software Evolution 168

review. The paper selection process involved two researchers (me and
another researcher) to decide whether to include or exclude a paper. A paper
was excluded if both researchers considered it irrelevant. Any disagreement
was resolved through discussions and involvement of a third senior
researcher.

6.1.4 Data Extraction and Synthesis

Data extraction and synthesis were carried out by reading each of the 41
primary studies thoroughly and extracting relevant data, which were
managed through bibliographical management tool EndNote and
Spreadsheets. The data extraction was driven by a form show in Table 6-1.
For data synthesis, we inspected the extracted data for similarities in terms of
the focus of the studies in order to define how results could be compared.
The results of the synthesis will be described in the subsequent chapters.

Table 6-1: Data extraction for each study

Extracted Data Description

Study identity Unique identity for the study

Bibliographic references Author, year of publication, title and source of publication

Type of study Book, journal paper, conference paper, workshop paper

Focus of the study Main topic area and aspect of open source software being
investigated

Research method used for data
collection

Included technique for the design of the study, e.g. case
study, survey, experiment, interview to obtain data,
observation

Data analysis Qualitative or quantitative analysis of data

Metrics used The metrics used in data collection for analysis

Constraints and limitations Identified constraints and limitations in each study

6.2 Overview of the Primary Studies
This chapter provides some demographic information about the primary
studies. Chapter 6.3 to 6.6 will present the findings from analyzing the data
extracted from the reviewed studies in order to answer the research questions
which motivated this systematic literature review.

Open Source Software Evolution 169

6.2.1 Demographic Information of the Primary Studies

It has been mentioned that we performed searches in multiple electronic
databases. We found that the largest numbers of selected papers (22 papers)
were published on OSS evolution from IEEE. The second largest numbers of
papers (9 papers) were published by ACM; while four selected papers were
published by John Wiley & Sons in its Journal of Software Maintenance and
Evolution. Trend of publications over the years shows a positive growth
except for year 2008. Only three papers on OSS evolution were published in
that year. In year 2009, eleven papers were published showing that a good
number of researchers are addressing OSS evolution.

Our review has also found that the evolution trends and patterns is the most
focused research area with 23 papers published on this topic. There were 10
papers on the role of process support in evolution. However, few papers
address the characteristics of evolvability and architecture, with 5 and 3
papers respectively.

6.2.2 Categories of the Primary Studies

As described in Chapter 6.1.4, during the data synthesis phase, we examined
the papers based on their similarities in terms of research topics and contents
in order to categorize the primary studies of OSS evolution. Besides
classifying the primary studies, we examined also the metrics used for
assessing OSS evolution as well as the analysis methodology for collected
data in each study.

After examining the research topics, data analysis and findings addressed in
each study, we identified four main categories of themes, one of which is
further refined into sub-categories to group primary studies that share similar
characteristics in terms of specific research focus, research concepts and
contexts. The categories and sub-categories are:

- OSS evolution trends and patterns

- Software growth

- Software maintenance and evolution economics

- Prediction of software evolution

- OSS evolution process support

- Evolvability characteristics

- Examining OSS evolution at software architecture level

Open Source Software Evolution 170

These themes and their corresponding sub-categories will be further detailed
in the following chapters. For each category of theme, we will describe the
category and related studies along with the metrics that are used to
quantitatively or qualitatively analyze the OSS evolution. Finally an analysis
of the studies is discussed with main findings summarized.

6.3 OSS Evolution Trends and Patterns
This category includes studies that focus on investigating OSS evolution
trends and patterns. Based on their focus, the studies were further classified
into three sub-categories:

- Software growth

- Software maintenance and evolution economics

- Prediction of software evolution

6.3.1 Software Growth

The studies in this sub-category mainly focus on software growth and
changes using a variety of metrics as shown in Table 6-2.

Open Source Software Evolution 171

Table 6-2: Software growth metrics

Study Metrics

[2] Number of packages, number of classes, total lines of code, number of statements

[4] Types of extracted changes: addition of source code modules in successive versions
of software; deletion; and modification

[40] Initial size, current size, modules (folders), modules (files), average module size,
days through versions, versions, version rate, delta size

[46] Source file, source folder, source tree, size, RSN (release sequence number), level
number, depth of a folder tree, width of a level, width of a folder tree, files added,
modified or deleted

[81]

[149]

Lines of code (LOC) in source files as a function of the time in days

[82] Lines of source code, the number of packages, the changed and unchanged packages

[90] LOC (lines of code), number of directories, total size in Kbytes, average and median
LOC for header and source files, number of modules (files) for each subsystem and
for the system as a whole

[102] Number of LOC added to a file, including all types of LOC, e.g. also commentaries

[138] Overall project growth in functions over time, overall project growth in LOC over
time

[152] Lines of source code, the number and size of packages

[162] Lines of code (LOC), executable LOC, lines of code per comment ratio, functions
added over each release, number of functions

[164] Size in number of source code files, number of files handled (added, modified,
deleted) between two subsequent releases, average complexity

[169] Rate of growth with respect to release sequence number

[176] Module, bugs, bug fixing and requirement implementation

[180] Source code metrics, e.g., lines of code, number of modules, number of definitions

According to Koch [102], software growth modeling can be of interest for
developing models to predict software evolution, maintainability and other
characteristics. Moreover, many OSS studies focus on utilizing the OSS
evolution data to verify Lehman’s laws of software evolution [105]; their
findings either conform or diverge from the growth behavior of proprietary
software. It is essential that the measures of software growth can actually
represent and quantify the notion of software growth in order to obtain a
reasonable comparison among the results from different studies. However,
we noticed that there have been conflicting interpretations of some important
operational definitions with respect to the metrics used for measuring
software growth patterns. Some examples of the operational definitions that

Open Source Software Evolution 170

These themes and their corresponding sub-categories will be further detailed
in the following chapters. For each category of theme, we will describe the
category and related studies along with the metrics that are used to
quantitatively or qualitatively analyze the OSS evolution. Finally an analysis
of the studies is discussed with main findings summarized.

6.3 OSS Evolution Trends and Patterns
This category includes studies that focus on investigating OSS evolution
trends and patterns. Based on their focus, the studies were further classified
into three sub-categories:

- Software growth

- Software maintenance and evolution economics

- Prediction of software evolution

6.3.1 Software Growth

The studies in this sub-category mainly focus on software growth and
changes using a variety of metrics as shown in Table 6-2.

Open Source Software Evolution 171

Table 6-2: Software growth metrics

Study Metrics

[2] Number of packages, number of classes, total lines of code, number of statements

[4] Types of extracted changes: addition of source code modules in successive versions
of software; deletion; and modification

[40] Initial size, current size, modules (folders), modules (files), average module size,
days through versions, versions, version rate, delta size

[46] Source file, source folder, source tree, size, RSN (release sequence number), level
number, depth of a folder tree, width of a level, width of a folder tree, files added,
modified or deleted

[81]

[149]

Lines of code (LOC) in source files as a function of the time in days

[82] Lines of source code, the number of packages, the changed and unchanged packages

[90] LOC (lines of code), number of directories, total size in Kbytes, average and median
LOC for header and source files, number of modules (files) for each subsystem and
for the system as a whole

[102] Number of LOC added to a file, including all types of LOC, e.g. also commentaries

[138] Overall project growth in functions over time, overall project growth in LOC over
time

[152] Lines of source code, the number and size of packages

[162] Lines of code (LOC), executable LOC, lines of code per comment ratio, functions
added over each release, number of functions

[164] Size in number of source code files, number of files handled (added, modified,
deleted) between two subsequent releases, average complexity

[169] Rate of growth with respect to release sequence number

[176] Module, bugs, bug fixing and requirement implementation

[180] Source code metrics, e.g., lines of code, number of modules, number of definitions

According to Koch [102], software growth modeling can be of interest for
developing models to predict software evolution, maintainability and other
characteristics. Moreover, many OSS studies focus on utilizing the OSS
evolution data to verify Lehman’s laws of software evolution [105]; their
findings either conform or diverge from the growth behavior of proprietary
software. It is essential that the measures of software growth can actually
represent and quantify the notion of software growth in order to obtain a
reasonable comparison among the results from different studies. However,
we noticed that there have been conflicting interpretations of some important
operational definitions with respect to the metrics used for measuring
software growth patterns. Some examples of the operational definitions that

Open Source Software Evolution 172

exhibit varying interpretations include system growth, system change, and
size, as discussed below:

- System growth

Software growth is measured by using the metric of percentage growth over
time. There exist diverse interpretations of rate of growth. For instance, one
assumption in some empirical studies [159, 162] on software evolution, as
also suggested by Lehman [112], is to analyze and plot growth data with
respect to the release sequence number (RSN).

Another interpretation of rate of growth is reflected in the study by Godfrey
and Tu [81], who plotted growth rates against calendar dates rather than
release numbers. Furthermore, they suggest that plotting against release
numbers would have led to dips in the function curves because development
and stable releases follow different behaviors. This interpretation of rate of
growth is further confirmed by Thomas et al. [169], who came to the
conclusion that due to the new temporal variables introduced by OSS, the
rate of growth of OSS should be computed with respect to temporal
variables such as the release date. It was also validated that different
conclusions can be drawn when software evolution data are analyzed against
release date rather than RSN. Therefore, diverse interpretations of rate of
growth can pose a threat in properly interpreting the OSS evolutionary
behaviors.

- System change

Separating the characterizations of system growth and system change is a
challenge [112]. A variety of change metrics can be used. For example, Xie
et al. [180] used changes to program elements (such as types, global
variables, function signatures, and bodies) to characterize system change.
Cumulative numbers of addition and deletion types of changes to these
program elements are plotted. They reported that the majority of changes are
made to functions.

It is also possible to count all the different files that have been added,
modified and deleted between two subsequent releases in order to measure
system changes [164]. In this case, the conventions used for measuring
changes can lead to different results in interpreting the OSS evolutionary
behaviors, e.g., whether or not taking into consideration of the changes in
comment lines or minor changes in a single source line.

- Size

Lehman suggests using the number of modules to quantify program size, as
he argues that this metric is more consistent than considering source lines of

Open Source Software Evolution 173

code [112]. However, there are different interpretations of a module. For
instance, Simmons et al. [162] consider modules only at the file level; while
Capiluppi [40] studies both at file level and directory level, and discovers
different OSS evolutionary behaviors depending on whether directories or
files are considered as modules.

Instead of using modules as Lehman suggested, LOC (lines of code) is often
used for measuring the size of OSS. For instance, Godfrey and Tu [81] used
number of uncommented lines of code because as they claim, using number
of source files would have meant losing some of the full story of the
evolution of the system, especially at the subsystem level due to the variation
in file sizes. Conly and Sproull [81] also assume that the total number of
uncommented LOC grows roughly at the same rate as the number of source
files. However, this assumption is not fully validated in a broader scope as it
was only verified in some of the largest packages in Debian GNU/Linux
[86].

Moreover, the definition of LOC varies as different studies interpret LOC
differently, depending on the tools and available data sources used [136].
Koch’s definition of LOC [102] considers all types of files, including
comments and documentation. Some other studies [81, 149] count LOC in
two ways: including blank lines and comments in source files (e.g., in .c and
.h files), or ignoring blank lines and comments. This kind of counting applies
only to source files, and ignores other source artifacts such as configuration
files, make-files, and documentation.

Even the term source file is defined in different ways. For example, Smith et
al. [164] consider only files with extension .c as source files. Therefore, for
systems involving a variety of source file extensions, different assumptions
regarding file extensions and their belonging to the source code or not could
lead to different values in size, which would affect the analysis results of
different aspects of evolutionary behaviors [151].

6.3.2 Software Maintenance and Evolution Economics

The uncertainties in software evolution arise from, to a certain extent,
understanding how OSS would have evolved in terms of costs. Moreover,
software evolvability concerns both business and technical perspectives, as
the choice of maintenance decisions from technical perspective needs to be
balanced with economic valuation to mitigate risks. Therefore, another
perspective in understanding OSS evolution trends is to analyze how
software has evolved in terms of development and maintenance costs.

Open Source Software Evolution 172

exhibit varying interpretations include system growth, system change, and
size, as discussed below:

- System growth

Software growth is measured by using the metric of percentage growth over
time. There exist diverse interpretations of rate of growth. For instance, one
assumption in some empirical studies [159, 162] on software evolution, as
also suggested by Lehman [112], is to analyze and plot growth data with
respect to the release sequence number (RSN).

Another interpretation of rate of growth is reflected in the study by Godfrey
and Tu [81], who plotted growth rates against calendar dates rather than
release numbers. Furthermore, they suggest that plotting against release
numbers would have led to dips in the function curves because development
and stable releases follow different behaviors. This interpretation of rate of
growth is further confirmed by Thomas et al. [169], who came to the
conclusion that due to the new temporal variables introduced by OSS, the
rate of growth of OSS should be computed with respect to temporal
variables such as the release date. It was also validated that different
conclusions can be drawn when software evolution data are analyzed against
release date rather than RSN. Therefore, diverse interpretations of rate of
growth can pose a threat in properly interpreting the OSS evolutionary
behaviors.

- System change

Separating the characterizations of system growth and system change is a
challenge [112]. A variety of change metrics can be used. For example, Xie
et al. [180] used changes to program elements (such as types, global
variables, function signatures, and bodies) to characterize system change.
Cumulative numbers of addition and deletion types of changes to these
program elements are plotted. They reported that the majority of changes are
made to functions.

It is also possible to count all the different files that have been added,
modified and deleted between two subsequent releases in order to measure
system changes [164]. In this case, the conventions used for measuring
changes can lead to different results in interpreting the OSS evolutionary
behaviors, e.g., whether or not taking into consideration of the changes in
comment lines or minor changes in a single source line.

- Size

Lehman suggests using the number of modules to quantify program size, as
he argues that this metric is more consistent than considering source lines of

Open Source Software Evolution 173

code [112]. However, there are different interpretations of a module. For
instance, Simmons et al. [162] consider modules only at the file level; while
Capiluppi [40] studies both at file level and directory level, and discovers
different OSS evolutionary behaviors depending on whether directories or
files are considered as modules.

Instead of using modules as Lehman suggested, LOC (lines of code) is often
used for measuring the size of OSS. For instance, Godfrey and Tu [81] used
number of uncommented lines of code because as they claim, using number
of source files would have meant losing some of the full story of the
evolution of the system, especially at the subsystem level due to the variation
in file sizes. Conly and Sproull [81] also assume that the total number of
uncommented LOC grows roughly at the same rate as the number of source
files. However, this assumption is not fully validated in a broader scope as it
was only verified in some of the largest packages in Debian GNU/Linux
[86].

Moreover, the definition of LOC varies as different studies interpret LOC
differently, depending on the tools and available data sources used [136].
Koch’s definition of LOC [102] considers all types of files, including
comments and documentation. Some other studies [81, 149] count LOC in
two ways: including blank lines and comments in source files (e.g., in .c and
.h files), or ignoring blank lines and comments. This kind of counting applies
only to source files, and ignores other source artifacts such as configuration
files, make-files, and documentation.

Even the term source file is defined in different ways. For example, Smith et
al. [164] consider only files with extension .c as source files. Therefore, for
systems involving a variety of source file extensions, different assumptions
regarding file extensions and their belonging to the source code or not could
lead to different values in size, which would affect the analysis results of
different aspects of evolutionary behaviors [151].

6.3.2 Software Maintenance and Evolution Economics

The uncertainties in software evolution arise from, to a certain extent,
understanding how OSS would have evolved in terms of costs. Moreover,
software evolvability concerns both business and technical perspectives, as
the choice of maintenance decisions from technical perspective needs to be
balanced with economic valuation to mitigate risks. Therefore, another
perspective in understanding OSS evolution trends is to analyze how
software has evolved in terms of development and maintenance costs.

Open Source Software Evolution 174

Capra et al. [48] analyze the quality degradation effect, i.e., entropy of OSS
by measuring the evolution of maintenance costs over time. The metric used
in this study is function points, and is based on the assumption that the
maintenance costs are proportional to the time elapsed between the releases
of two subsequent versions. Another study by Capra [47] proposes an
empirical model to measure evolutionary reuse and development cost which
is an indicator of the effect of maintenance decisions made by OSS
developers. The metric used is source lines of code (SLOC).

6.3.3 Prediction of Software Evolution

The OSS history data over time can be utilized to predict its evolution. It has
been mentioned in Chapter 6.3.1 that modeling software growth is essential
for developing software evolution prediction models. Although there are
many studies of monitoring OSS growth, comparatively fewer studies
actually utilize the historical evolution data for the purpose of predicting its
evolution.

We find only three papers in this area. Herraiz et al. [85] describe using data
from source code management repository to compute size of the software
over time. This information is used to estimate future evolution of the
project. SLOC is used for counting program text that is not a comment or
blank line regardless of the number of statements or fragments of statements
on the line. All lines that contain program headers, declarations, and
executable and non-executable statements are excluded. Therefore, the
results may vary if other sorts of files are considered.

Yu [184] uses source code changes to indirectly predict the maintenance
effort of OSS. The metrics used include lag time between starting a
maintenance task and closing the task, source code change at module level
(e.g., number of modules added, deleted and modified), and source code
change at line level (e.g., number of source LOC added, deleted and
modified) in one maintenance task. Some threats in this study are that all
module-level changes are treated in the same manner irrespective of the
amount of changes as well as the effort for line-level changes.

Another way to predict OSS evolution was proposed by Raja et al. [143],
who described using data from monthly defect reports to build up time series
model that can be used to predict the pattern of OSS evolution defects.

Open Source Software Evolution 175

6.4 Evolution Process Support
This category includes studies that focus on OSS evolution support from
various perspectives of software development process.

- Feedback-driven quality assessment

Bouktif et al. [29] propose an approach that is based on remote and
continuous analysis of OSS evolution. This approach utilizes available data
sources such as CVS versioning system repository, commitment log files and
exchanged mails in order to provide services that mitigate software
degradation and risks. The principle services include growth, complexity and
quality control mechanism, feedback-driven communication service, and
OSS evolution dashboard service.

- Commenting practice

To understand the processes and practices of open source software
development, Arafat and Riehle [7] treat the amount of comments in a given
source code body as an indicator of its maintainability. They focus on one
particular code metric, i.e., the comment density. According to them,
commenting practice is an integrated activity in OSS development, and
successful OSS projects follow consistently this practice.

- Exogenous factors

Capiluppi and Beecher [41] investigated whether or not an OSS system’s
structural decay can be influenced by the repository in which it is retained.
Based on a comparative analysis of two repositories, they concluded that the
repositories in which OSS are retained act as exogenous factors, which can
be a differentiating factor in OSS evolvability. Beecher et al. [20] extended
that work by involving more repositories and strengthening the results with
the formulation of different types of OSS repository along with a transition
framework among the various types.

Robles et al. [150] describe the problems that can be found when retrieving
and preparing for OSS data analysis, and present the tools that support data
retrieval for OSS evolution analysis such as source code, source code
management systems, mailing lists, and bug tracking systems. In accordance
with this study, Bachmann and Bernstein [13] address the quality of data
sources and provide insights into the influencing factors to the quality and
characteristics of software process data gathered from bug tracking database
and version control system log files. These studies reflect that the analysis of
the evolution and history of an open source software as well as the prediction
of its future rely on the quality of data sources and corresponding process
data.

Open Source Software Evolution 174

Capra et al. [48] analyze the quality degradation effect, i.e., entropy of OSS
by measuring the evolution of maintenance costs over time. The metric used
in this study is function points, and is based on the assumption that the
maintenance costs are proportional to the time elapsed between the releases
of two subsequent versions. Another study by Capra [47] proposes an
empirical model to measure evolutionary reuse and development cost which
is an indicator of the effect of maintenance decisions made by OSS
developers. The metric used is source lines of code (SLOC).

6.3.3 Prediction of Software Evolution

The OSS history data over time can be utilized to predict its evolution. It has
been mentioned in Chapter 6.3.1 that modeling software growth is essential
for developing software evolution prediction models. Although there are
many studies of monitoring OSS growth, comparatively fewer studies
actually utilize the historical evolution data for the purpose of predicting its
evolution.

We find only three papers in this area. Herraiz et al. [85] describe using data
from source code management repository to compute size of the software
over time. This information is used to estimate future evolution of the
project. SLOC is used for counting program text that is not a comment or
blank line regardless of the number of statements or fragments of statements
on the line. All lines that contain program headers, declarations, and
executable and non-executable statements are excluded. Therefore, the
results may vary if other sorts of files are considered.

Yu [184] uses source code changes to indirectly predict the maintenance
effort of OSS. The metrics used include lag time between starting a
maintenance task and closing the task, source code change at module level
(e.g., number of modules added, deleted and modified), and source code
change at line level (e.g., number of source LOC added, deleted and
modified) in one maintenance task. Some threats in this study are that all
module-level changes are treated in the same manner irrespective of the
amount of changes as well as the effort for line-level changes.

Another way to predict OSS evolution was proposed by Raja et al. [143],
who described using data from monthly defect reports to build up time series
model that can be used to predict the pattern of OSS evolution defects.

Open Source Software Evolution 175

6.4 Evolution Process Support
This category includes studies that focus on OSS evolution support from
various perspectives of software development process.

- Feedback-driven quality assessment

Bouktif et al. [29] propose an approach that is based on remote and
continuous analysis of OSS evolution. This approach utilizes available data
sources such as CVS versioning system repository, commitment log files and
exchanged mails in order to provide services that mitigate software
degradation and risks. The principle services include growth, complexity and
quality control mechanism, feedback-driven communication service, and
OSS evolution dashboard service.

- Commenting practice

To understand the processes and practices of open source software
development, Arafat and Riehle [7] treat the amount of comments in a given
source code body as an indicator of its maintainability. They focus on one
particular code metric, i.e., the comment density. According to them,
commenting practice is an integrated activity in OSS development, and
successful OSS projects follow consistently this practice.

- Exogenous factors

Capiluppi and Beecher [41] investigated whether or not an OSS system’s
structural decay can be influenced by the repository in which it is retained.
Based on a comparative analysis of two repositories, they concluded that the
repositories in which OSS are retained act as exogenous factors, which can
be a differentiating factor in OSS evolvability. Beecher et al. [20] extended
that work by involving more repositories and strengthening the results with
the formulation of different types of OSS repository along with a transition
framework among the various types.

Robles et al. [150] describe the problems that can be found when retrieving
and preparing for OSS data analysis, and present the tools that support data
retrieval for OSS evolution analysis such as source code, source code
management systems, mailing lists, and bug tracking systems. In accordance
with this study, Bachmann and Bernstein [13] address the quality of data
sources and provide insights into the influencing factors to the quality and
characteristics of software process data gathered from bug tracking database
and version control system log files. These studies reflect that the analysis of
the evolution and history of an open source software as well as the prediction
of its future rely on the quality of data sources and corresponding process
data.

Open Source Software Evolution 176

- Maintenance process evaluation

Koponen [104] presents an evaluation framework for OSS maintenance
process. The framework includes attributes for evaluating activity, efficiency
and traceability of defect management and maintenance processes.

- Evolution model

The traditional staged model [21] represents the software lifecycle as a
sequence of stages. Instead of using the model that was built mainly by
observing traditional software development, Capiluppi et al. [43] revised the
staged model for its applicability to OSS evolution.

- Configuration management

Asklund and Bendix [11] examine the configuration management process,
and analyze how process, tool support, and people aspects of configuration
management influence the OSS evolution.

6.5 Evolvability Characteristics
This category includes studies that focus on characteristics that can be
considered important for software evolvability.

6.5.1 Determinism

As indicated by Herraiz et al. [84], the evolution of open source projects is
governed by a sort of determinism, i.e., the current state of the project is
determined time ago. Their results also show that at least 80% of the
sampled projects are short-term correlated. However, a long-term
perspective to explicitly address evolvability for the entire software lifecycle
is required since the inability to effectively and reliably evolve software
systems means loss of business opportunities [21].

6.5.2 Code Understandability

Another OSS evolvability characteristic is code understandability [44]. This
study views understandability as a key aspect for maintainability, and takes
into account only code structure measures (e.g., code size, number of macro-
modules and micro-modules, size of modules, and average size of modules)
for calculating code indistinctness as an indicator of code understandability.

Open Source Software Evolution 177

6.5.3 Complexity

Complexity is a software characteristic that affects evolvability. Table 6-3
summarizes the variety of metrics that have been used to characterize OSS
evolution from software complexity perspective.

Table 6-3: Complexity metrics

Study Metrics

[2, 42, 58] McCabe’s cyclomatic complexity

[45] System size and the evolving structure of the software

[46] McCabe’s cyclomatic complexity for structural complexity, Halstead Volume
for textual complexity

[138] Overall project complexity, average complexity of all functions, average
complexity of functions added

[162] Overall release complexity and average function complexity using McCabe
and Halstead complexity measure

[180] McCabe’s cyclomatic complexity, common coupling and average number of
function calls per function

According to Table 6-3, McCabe’s cyclomatic complexity [124] is the most
often used metric. It measures the number of independent paths in the
control flow graph. The rationale for using this metric is that the number of
control flow paths is correlated to how well-structured the functions are in
the program. Another metric is Halstead complexity, which measures a
program module’s complexity directly from source code, with focus on
computational complexity. These two complexity measures have different
emphasis, and therefore, can be complementarily used. For instance,
Simmons et al. [162] found that the McCabe and Halstead complexity
metrics yielded contradictory results, which suggested that while the
structure complexity declines with successive releases, the complexity of
calculation logic increases.

Besides McCabe and Halstead indexes, there are other additional indicators
of complexity, both at system and component level, as well as function level:

- Calls per function, indicating the complexity of functions. It is
computed by averaging the number of calls per function for all
functions [180].

- Coupling, representing the number of inter-module references.

Open Source Software Evolution 176

- Maintenance process evaluation

Koponen [104] presents an evaluation framework for OSS maintenance
process. The framework includes attributes for evaluating activity, efficiency
and traceability of defect management and maintenance processes.

- Evolution model

The traditional staged model [21] represents the software lifecycle as a
sequence of stages. Instead of using the model that was built mainly by
observing traditional software development, Capiluppi et al. [43] revised the
staged model for its applicability to OSS evolution.

- Configuration management

Asklund and Bendix [11] examine the configuration management process,
and analyze how process, tool support, and people aspects of configuration
management influence the OSS evolution.

6.5 Evolvability Characteristics
This category includes studies that focus on characteristics that can be
considered important for software evolvability.

6.5.1 Determinism

As indicated by Herraiz et al. [84], the evolution of open source projects is
governed by a sort of determinism, i.e., the current state of the project is
determined time ago. Their results also show that at least 80% of the
sampled projects are short-term correlated. However, a long-term
perspective to explicitly address evolvability for the entire software lifecycle
is required since the inability to effectively and reliably evolve software
systems means loss of business opportunities [21].

6.5.2 Code Understandability

Another OSS evolvability characteristic is code understandability [44]. This
study views understandability as a key aspect for maintainability, and takes
into account only code structure measures (e.g., code size, number of macro-
modules and micro-modules, size of modules, and average size of modules)
for calculating code indistinctness as an indicator of code understandability.

Open Source Software Evolution 177

6.5.3 Complexity

Complexity is a software characteristic that affects evolvability. Table 6-3
summarizes the variety of metrics that have been used to characterize OSS
evolution from software complexity perspective.

Table 6-3: Complexity metrics

Study Metrics

[2, 42, 58] McCabe’s cyclomatic complexity

[45] System size and the evolving structure of the software

[46] McCabe’s cyclomatic complexity for structural complexity, Halstead Volume
for textual complexity

[138] Overall project complexity, average complexity of all functions, average
complexity of functions added

[162] Overall release complexity and average function complexity using McCabe
and Halstead complexity measure

[180] McCabe’s cyclomatic complexity, common coupling and average number of
function calls per function

According to Table 6-3, McCabe’s cyclomatic complexity [124] is the most
often used metric. It measures the number of independent paths in the
control flow graph. The rationale for using this metric is that the number of
control flow paths is correlated to how well-structured the functions are in
the program. Another metric is Halstead complexity, which measures a
program module’s complexity directly from source code, with focus on
computational complexity. These two complexity measures have different
emphasis, and therefore, can be complementarily used. For instance,
Simmons et al. [162] found that the McCabe and Halstead complexity
metrics yielded contradictory results, which suggested that while the
structure complexity declines with successive releases, the complexity of
calculation logic increases.

Besides McCabe and Halstead indexes, there are other additional indicators
of complexity, both at system and component level, as well as function level:

- Calls per function, indicating the complexity of functions. It is
computed by averaging the number of calls per function for all
functions [180].

- Coupling, representing the number of inter-module references.

Open Source Software Evolution 178

- Interface complexity, measuring the sum of input arguments to, and
return states from, a function [167]. The number of arguments and
state returns has impact on software changeability.

- Complexity of some systems may also be found in their data

structures rather than in source code [138].

However, we did not find any research papers that explicitly study
complexity in terms of coupling, interface complexity and data structure
complexity.

6.5.4 Modularity

Modularity is a concept by which a piece of software is grouped into a
number of distinct and logically cohesive sub-units, presenting services to
the outside world through a well-defined interface [16]. Table 6-4
summarizes the metrics that have been used to characterize OSS evolution
from modularity perspective. It is obvious from this table that the metrics for
modularity are used at different levels. For instance, Liu and Iyer [115] and
Simmons et al. [162] studied modularity at the class/file level that provides
information regarding software functionality. However, Conley and Sproull
[58] argue that studying modularity at that level does not capture interface
information, i.e., whether classes or files communicate via interfaces, which
are used to achieve component independence in modular software.
Accordingly, they argue that the package at the module or component level
is more appropriate for assessment of software modularity than using classes
or files.

Table 6-4: Modularity metrics

Study Metrics

[58] Total number of lines of code, number of concrete and abstract classes, afferent and
efferent coupling

[82] Dependencies between packages

[115] Measured at class/file level

[138] Correlation between functions added and functions modified

[162] (Only measured at file level): number of classes, number of files for each release,
directory structure and content

Excessive inter-module dependencies have long been recognized as an
indicator of poor software design [37], and can diminish the ability to reason
about software components in isolation. It becomes also difficult to assess

Open Source Software Evolution 179

and manage change impacts. Therefore, apart from studying the
dependencies between packages [82], inter-module dependency can also be
used for achieving modularity, and for examining the following kinds of
dependencies:

- Class reference: If class A refers to class B, e.g., as in an argument
in a method, then A depends on B.

- Invokes: If a function in class A calls a function or a constructor of
class B, then A depends on B.

- Inherits: If class A is a subclass of class B, then A depends on B.

- Data member reference: If a function in class A makes reference to
a data member of class B, then A depends on B.

However, we did not find any paper that explicitly studies OSS evolution by
using the inter-module dependency.

6.6 Examining OSS at Software Architecture
Level
This category includes studies that focus on examining OSS evolution at
software architecture level. According to Nakagawa et al. [129], there is a
lack of research that investigates the relation between software architecture
and OSS, and discusses in details how software architecture is treated in
OSS. Godfrey and Tu [81] came up with similar observations from another
perspective, i.e., planned evolution and preventive maintenance may suffer
in OSS development, which encourages active participation but not
necessarily careful reflection and reorganization. The scarcity of studies on
architectural-level evolution of OSS confirms the above-mentioned
observations.

Based on a case study, Nakagawa et al. [129] found that software
architecture is directly related to OSS quality, and that the knowledge and
experience in architecture must be considered in OSS projects. This study
also proposes architecture refactoring in order to repair architectures, and
aims at improving mainly maintainability, functionality and usability of
OSS. Tran et al. [171] describe a similar approach, and explains the process
of forward and reverse architectural repair to avoid architectural drift.

There are not many measures proposed for the architectural level evolution.
Some variants of the number of calls into and number of calls from a
component are used in [41], which addresses the structural characteristics of

Open Source Software Evolution 178

- Interface complexity, measuring the sum of input arguments to, and
return states from, a function [167]. The number of arguments and
state returns has impact on software changeability.

- Complexity of some systems may also be found in their data

structures rather than in source code [138].

However, we did not find any research papers that explicitly study
complexity in terms of coupling, interface complexity and data structure
complexity.

6.5.4 Modularity

Modularity is a concept by which a piece of software is grouped into a
number of distinct and logically cohesive sub-units, presenting services to
the outside world through a well-defined interface [16]. Table 6-4
summarizes the metrics that have been used to characterize OSS evolution
from modularity perspective. It is obvious from this table that the metrics for
modularity are used at different levels. For instance, Liu and Iyer [115] and
Simmons et al. [162] studied modularity at the class/file level that provides
information regarding software functionality. However, Conley and Sproull
[58] argue that studying modularity at that level does not capture interface
information, i.e., whether classes or files communicate via interfaces, which
are used to achieve component independence in modular software.
Accordingly, they argue that the package at the module or component level
is more appropriate for assessment of software modularity than using classes
or files.

Table 6-4: Modularity metrics

Study Metrics

[58] Total number of lines of code, number of concrete and abstract classes, afferent and
efferent coupling

[82] Dependencies between packages

[115] Measured at class/file level

[138] Correlation between functions added and functions modified

[162] (Only measured at file level): number of classes, number of files for each release,
directory structure and content

Excessive inter-module dependencies have long been recognized as an
indicator of poor software design [37], and can diminish the ability to reason
about software components in isolation. It becomes also difficult to assess

Open Source Software Evolution 179

and manage change impacts. Therefore, apart from studying the
dependencies between packages [82], inter-module dependency can also be
used for achieving modularity, and for examining the following kinds of
dependencies:

- Class reference: If class A refers to class B, e.g., as in an argument
in a method, then A depends on B.

- Invokes: If a function in class A calls a function or a constructor of
class B, then A depends on B.

- Inherits: If class A is a subclass of class B, then A depends on B.

- Data member reference: If a function in class A makes reference to
a data member of class B, then A depends on B.

However, we did not find any paper that explicitly studies OSS evolution by
using the inter-module dependency.

6.6 Examining OSS at Software Architecture
Level
This category includes studies that focus on examining OSS evolution at
software architecture level. According to Nakagawa et al. [129], there is a
lack of research that investigates the relation between software architecture
and OSS, and discusses in details how software architecture is treated in
OSS. Godfrey and Tu [81] came up with similar observations from another
perspective, i.e., planned evolution and preventive maintenance may suffer
in OSS development, which encourages active participation but not
necessarily careful reflection and reorganization. The scarcity of studies on
architectural-level evolution of OSS confirms the above-mentioned
observations.

Based on a case study, Nakagawa et al. [129] found that software
architecture is directly related to OSS quality, and that the knowledge and
experience in architecture must be considered in OSS projects. This study
also proposes architecture refactoring in order to repair architectures, and
aims at improving mainly maintainability, functionality and usability of
OSS. Tran et al. [171] describe a similar approach, and explains the process
of forward and reverse architectural repair to avoid architectural drift.

There are not many measures proposed for the architectural level evolution.
Some variants of the number of calls into and number of calls from a
component are used in [41], which addresses the structural characteristics of

Open Source Software Evolution 180

OSS with respect to the organization of the software’s constituent
components. This study selects functions as the basic unit for analysis, and
three attributes are considered as proxies of static architectural structure, i.e.,
fan-in, fan-out and instability.

6.7 Summary
This chapter has presented the results from our systematic review which was
based on 41 identified primary studies in open source software evolution.
Based on the research topics of these studies, we have classified them into
four main categories of themes:

- Software trends and patterns

Most papers focus on using different metrics to analyze OSS evolution over
time. Few papers have looked into the economic perspective, e.g.,
maintenance effort, and few papers utilize the historical evolution data for
prediction of OSS evolution and development. In this category, researchers
have used various metrics at varying levels of granularities, e.g., class level,
file level, and module level to measure OSS evolution. However, this review
has also shown that there are diverse interpretations of the same terms, e.g.,
module, lines of code, rate of growth. This may cause conflicting
conclusions that may be drawn from OSS evolution patterns, especially if
the studies attempt to make comparisons on the differentiating results though
based on using different sets of metrics for measuring.

- Evolution process support

Different aspects that appear to have impact on the OSS evolution process
are covered, including commenting practice, OSS evolution and
maintenance evaluation model, structures and quality characteristics of
resources such as repositories, mails, bug tracking systems, as well as tools
that support data retrieval for evolution analysis.

- Evolvability characteristics

Determinism, understandability, modularity and complexity are addressed in
the included studies. However, there are more evolvability characteristics
that are not covered such as changeability, extensibility, and testability. This
might also explain the findings in the analysis of OSS evolution trends
category that focuses on the evolution history instead of predicting the OSS
evolution, because when there is a lack of analysis on OSS evolvability
characteristics, it also becomes harder to predict its evolution.

- Examining OSS evolution at software architecture level

 181

We have found that although an increasing amount of attention is being paid
to the architecture of software systems due to its recognized role in fulfilling
the quality requirements of a system [55], only few papers address OSS
evolution at architectural level. Software evolution can be examined at
different levels such as architectural level, detailed design and source code
level. We have noticed from the review that most papers address OSS
evolution at source code level. However, software architectures are
inevitably subject to evolution. They expose the dimensions along which a
system is expected to evolve [74], and provide basis for software evolution
[126]. Therefore, it is of major importance to put more focus on managing
OSS evolution and assessing OSS evolvability at the software architecture
level besides the code-level evolution.

Open Source Software Evolution 180

OSS with respect to the organization of the software’s constituent
components. This study selects functions as the basic unit for analysis, and
three attributes are considered as proxies of static architectural structure, i.e.,
fan-in, fan-out and instability.

6.7 Summary
This chapter has presented the results from our systematic review which was
based on 41 identified primary studies in open source software evolution.
Based on the research topics of these studies, we have classified them into
four main categories of themes:

- Software trends and patterns

Most papers focus on using different metrics to analyze OSS evolution over
time. Few papers have looked into the economic perspective, e.g.,
maintenance effort, and few papers utilize the historical evolution data for
prediction of OSS evolution and development. In this category, researchers
have used various metrics at varying levels of granularities, e.g., class level,
file level, and module level to measure OSS evolution. However, this review
has also shown that there are diverse interpretations of the same terms, e.g.,
module, lines of code, rate of growth. This may cause conflicting
conclusions that may be drawn from OSS evolution patterns, especially if
the studies attempt to make comparisons on the differentiating results though
based on using different sets of metrics for measuring.

- Evolution process support

Different aspects that appear to have impact on the OSS evolution process
are covered, including commenting practice, OSS evolution and
maintenance evaluation model, structures and quality characteristics of
resources such as repositories, mails, bug tracking systems, as well as tools
that support data retrieval for evolution analysis.

- Evolvability characteristics

Determinism, understandability, modularity and complexity are addressed in
the included studies. However, there are more evolvability characteristics
that are not covered such as changeability, extensibility, and testability. This
might also explain the findings in the analysis of OSS evolution trends
category that focuses on the evolution history instead of predicting the OSS
evolution, because when there is a lack of analysis on OSS evolvability
characteristics, it also becomes harder to predict its evolution.

- Examining OSS evolution at software architecture level

 181

We have found that although an increasing amount of attention is being paid
to the architecture of software systems due to its recognized role in fulfilling
the quality requirements of a system [55], only few papers address OSS
evolution at architectural level. Software evolution can be examined at
different levels such as architectural level, detailed design and source code
level. We have noticed from the review that most papers address OSS
evolution at source code level. However, software architectures are
inevitably subject to evolution. They expose the dimensions along which a
system is expected to evolve [74], and provide basis for software evolution
[126]. Therefore, it is of major importance to put more focus on managing
OSS evolution and assessing OSS evolvability at the software architecture
level besides the code-level evolution.

Chapter 7. Validity Discussions

In general, our software architecture evolution research in this thesis is based
on empirical studies. The software evolvability model, the formulation of the
qualitative and quantitative evolvability analysis methods are built upon our
systematic review of software architecture evolution research [35], our
observations and experiences of working with many different types of
industrial systems from different domains, several workshop discussions
[32] [33] [34], and involvement of practitioners in the discussions.

In this chapter, we discuss the validity aspects of the research results
described in the previous chapters. Because the ways for the data collection
and research design vary for each research result we achieved, we go
through each research contribution, and describe respective type of the
validation used.

7.1 Validity Aspects on Software Evolvability
Model
The formulation of the software evolvability model was based on multiple
sources of evidence, including critical analysis of the existing literature and
industrial case studies [31] [33]. We collected and analyzed data from
published materials. The criteria on which literature to be evaluated include
software evolution related areas which cover a broad range of topics, such as
software quality models, software process models, software quality metrics,
and software architecture evaluation.

Studying the existing quality models provided us the research idea of
establishing a software evolvability model (see Chapter 4), and a basic idea
on subcharacteristics that are essential for software evolvability (see Chapter
2). Moreover, based on our working experiences with various industrial
software systems in different domains, we have found out particular quality
attributes (subcharacteristics) that are essential for evolvability, i.e.,
analyzability, architectural integrity, portability, changeability and
extensibility. Based on these evolvability subcharacteristics, we have

Chapter 7. Validity Discussions

In general, our software architecture evolution research in this thesis is based
on empirical studies. The software evolvability model, the formulation of the
qualitative and quantitative evolvability analysis methods are built upon our
systematic review of software architecture evolution research [35], our
observations and experiences of working with many different types of
industrial systems from different domains, several workshop discussions
[32] [33] [34], and involvement of practitioners in the discussions.

In this chapter, we discuss the validity aspects of the research results
described in the previous chapters. Because the ways for the data collection
and research design vary for each research result we achieved, we go
through each research contribution, and describe respective type of the
validation used.

7.1 Validity Aspects on Software Evolvability
Model
The formulation of the software evolvability model was based on multiple
sources of evidence, including critical analysis of the existing literature and
industrial case studies [31] [33]. We collected and analyzed data from
published materials. The criteria on which literature to be evaluated include
software evolution related areas which cover a broad range of topics, such as
software quality models, software process models, software quality metrics,
and software architecture evaluation.

Studying the existing quality models provided us the research idea of
establishing a software evolvability model (see Chapter 4), and a basic idea
on subcharacteristics that are essential for software evolvability (see Chapter
2). Moreover, based on our working experiences with various industrial
software systems in different domains, we have found out particular quality
attributes (subcharacteristics) that are essential for evolvability, i.e.,
analyzability, architectural integrity, portability, changeability and
extensibility. Based on these evolvability subcharacteristics, we have

Validity Discussions 184

classified the set of quality characteristics (see Chapter 2.3) covered in the
well-known quality models against evolvability subcharacteristics, as shown
in Table 7-1.

Table 7-1: Classification of quality characteristics in quality models

Classification Quality Characteristics in Quality Models

Analyzability Human Engineering (Boehm), Understandability (Boehm, ISO
9126)

Changeability Flexibility (McCall), Modifiability (Boehm, ISO 9126)

Integrity Reusability (McCall, Dromey)

Extensibility Extensibility (FURPS)

Portability Adaptability (FURPS, ISO 9126), Compatibility (FURPS),
Interoperability (McCall, ISO 9126)

Testability Correctness (McCall), Efficiency (McCall, Boehm, ISO 9126,
Dromey)

Apart from the development quality attributes that are explicitly addressed in
the classification, the operational quality attributes, such as performance,
reliability are also indirectly addressed in the sense that the improvement of
these attributes are handled through e.g., analyzability and changeability.
Portability and extensibility are explicit in the classification because they are
essential for software evolvability. As a result, this classification is relevant
for evolution of software-intensive systems, and covers the ranges of
potential future changes that a software system may encounter during its life
cycle.

The software evolvability model has been validated in various domains. The
first industrial case study [31], in which we validated the evolvability model,
is a representative and typical case which captures the commonplace
situation of large complex software systems. From this case, we were
convinced that there are also domain-specific attributes that are essential for
software evolvability depending on the system’s domain. After having
outlined the software evolvability model based on the first industrial case
[31] [33], we applied it also to other domains (see Chapter 5) that might have
extended or different set of evolvability subcharacteristics. We further
validated the software evolvability model in practice by studying also the
documentation on architectural requirements and quality improvement
requirements throughout the case studies. We also interviewed various
stakeholders of different roles for their views on the set of abstractions on
evolvability subcharacteristics.

.

Validity Discussions 185

7.2 Validity Aspects on AREA Process
The formulation of the general AREA process (see Chapter 4) was based on
the qualitative and quantitative software evolvability analysis methods that
we have developed. The process reflects the shared commonalities at the
conceptual level.

- Qualitative evolvability analysis method

The formulation of the qualitative software evolvability analysis method
was based on multiple sources of evidence, including critical analysis of
the existing literature (see Chapter 2 and Chapter 3), and an industrial
case study [32] [33].

- Quantitative evolvability analysis method

The formulation of the quantitative software evolvability analysis method
was based on the experiences and lessons learned from applying the
qualitative analysis method in an industrial case study (see Chapter 5), in
which we discovered the potential to further extend the qualitative method
with a quantitative feasibility in analyzing evolvability.

Based on Wohlin et al. [179], we will discuss below the validation of the
applications of the software evolvability analysis methods in two large-scale
industrial software systems in different domains (see Chapter 5). These case
studies were in essence based on action research [8], i.e., the researchers
participated in the process and perform empirical observations.

Conclusion validity [179] is concerned with the relationship between the
treatment and the outcome. In the qualitative evolvability analysis,
conclusion validity was addressed through:

- Architecture workshops with stakeholders to extract potential
architectural requirements;

- Involvement of software architects and senior software developers in
the analysis process to discuss candidate architectural solutions’
impacts on evolvability;

- Researchers’ experiences and involvement in the software product
development.

In the quantitative evolvability analysis, as the answers to how important the
evolvability subcharacteristics relate to each other is in the form of a
subjective judgment, the answers tend not to be exactly the same for all
participants, especially among stakeholders representing different roles. This
was noticed in the case study, in which the preferences among stakeholder

Validity Discussions 184

classified the set of quality characteristics (see Chapter 2.3) covered in the
well-known quality models against evolvability subcharacteristics, as shown
in Table 7-1.

Table 7-1: Classification of quality characteristics in quality models

Classification Quality Characteristics in Quality Models

Analyzability Human Engineering (Boehm), Understandability (Boehm, ISO
9126)

Changeability Flexibility (McCall), Modifiability (Boehm, ISO 9126)

Integrity Reusability (McCall, Dromey)

Extensibility Extensibility (FURPS)

Portability Adaptability (FURPS, ISO 9126), Compatibility (FURPS),
Interoperability (McCall, ISO 9126)

Testability Correctness (McCall), Efficiency (McCall, Boehm, ISO 9126,
Dromey)

Apart from the development quality attributes that are explicitly addressed in
the classification, the operational quality attributes, such as performance,
reliability are also indirectly addressed in the sense that the improvement of
these attributes are handled through e.g., analyzability and changeability.
Portability and extensibility are explicit in the classification because they are
essential for software evolvability. As a result, this classification is relevant
for evolution of software-intensive systems, and covers the ranges of
potential future changes that a software system may encounter during its life
cycle.

The software evolvability model has been validated in various domains. The
first industrial case study [31], in which we validated the evolvability model,
is a representative and typical case which captures the commonplace
situation of large complex software systems. From this case, we were
convinced that there are also domain-specific attributes that are essential for
software evolvability depending on the system’s domain. After having
outlined the software evolvability model based on the first industrial case
[31] [33], we applied it also to other domains (see Chapter 5) that might have
extended or different set of evolvability subcharacteristics. We further
validated the software evolvability model in practice by studying also the
documentation on architectural requirements and quality improvement
requirements throughout the case studies. We also interviewed various
stakeholders of different roles for their views on the set of abstractions on
evolvability subcharacteristics.

.

Validity Discussions 185

7.2 Validity Aspects on AREA Process
The formulation of the general AREA process (see Chapter 4) was based on
the qualitative and quantitative software evolvability analysis methods that
we have developed. The process reflects the shared commonalities at the
conceptual level.

- Qualitative evolvability analysis method

The formulation of the qualitative software evolvability analysis method
was based on multiple sources of evidence, including critical analysis of
the existing literature (see Chapter 2 and Chapter 3), and an industrial
case study [32] [33].

- Quantitative evolvability analysis method

The formulation of the quantitative software evolvability analysis method
was based on the experiences and lessons learned from applying the
qualitative analysis method in an industrial case study (see Chapter 5), in
which we discovered the potential to further extend the qualitative method
with a quantitative feasibility in analyzing evolvability.

Based on Wohlin et al. [179], we will discuss below the validation of the
applications of the software evolvability analysis methods in two large-scale
industrial software systems in different domains (see Chapter 5). These case
studies were in essence based on action research [8], i.e., the researchers
participated in the process and perform empirical observations.

Conclusion validity [179] is concerned with the relationship between the
treatment and the outcome. In the qualitative evolvability analysis,
conclusion validity was addressed through:

- Architecture workshops with stakeholders to extract potential
architectural requirements;

- Involvement of software architects and senior software developers in
the analysis process to discuss candidate architectural solutions’
impacts on evolvability;

- Researchers’ experiences and involvement in the software product
development.

In the quantitative evolvability analysis, as the answers to how important the
evolvability subcharacteristics relate to each other is in the form of a
subjective judgment, the answers tend not to be exactly the same for all
participants, especially among stakeholders representing different roles. This
was noticed in the case study, in which the preferences among stakeholder

Validity Discussions 186

roles differed whereas the architects had a commonly shared preference view
on evolvability subcharacteristics. We saw this as a positive indication that
there was an organizational alignment among architects. On the other hand,
even the same participant might not provide exactly the same answer in
terms of pair-wise comparison weights should the study be repeated.
Therefore, the interviews were centered on asking a series of questions that
were open-ended, i.e., conversational responses, to gain information about
respective stakeholder’s view and interpretation on evolvability
subcharacteristics. This was to ensure that the stakeholders have well-
elaborated and clarified understanding of evolvability subcharacteristics in
their specific domain context that is required for providing meaningful pair-
wise comparison weights for evolvability subcharacteristics and impacts of
architectural alternatives on evolvability. Moreover, the calculation of
consistency ratio in the AHP method also helped to check the consistency
level of the individuals’ answers.

I took part in applying the qualitative and quantitative evolvability analysis
in both cases. All experiences are thus first-hand; in addition, other
participants in the cases provided with material to make the conclusions less
subjective. The risk of bias has been further decreased through the
involvement of other researchers in the analysis of the experiences.

Internal validity [179] is concerned with the connection between the
observed behavior and the proposed explanation for the behavior. In the
quantitative evolvability analysis case, during the process of extracting
stakeholders’ preferences on evolvability subcharacteristics, a remark from
the software designers was that a designer may have different valuation of
evolvability subcharacteristics depending on the different subsystems that
he/she has previously worked with. This is because different subsystems
may have different quality attribute requirements in focus. Although we
encouraged them to try to think at the system level, it may still become a
threat to the study when extracting software designers’ preferences of
evolvability subcharacteristics. However, in the qualitative analysis process,
this threat was addressed through the architecture workshops in which all the
stakeholders could discuss about their perception and prioritization of
architectural requirements together, and thus, could reach consensus.

Construct validity [179] is concerned with the relation between theory and
observation. In both the qualitative and quantitative analysis cases, we
informed the participants about the evolvability analysis process so that they
became aware of the purpose and the intended results of the studies.
Therefore, there is no threat of hypothesis guessing. However, one threat that
might happen is in the qualitative analysis case when all the stakeholders

Validity Discussions 187

discussed at the architecture workshops about potential architectural
requirements and their prioritization. Some people might not tell their true
opinions that would deviate from the others. But, this type of threat was
addressed in the quantitative analysis process in which separate interviews
were conducted individually with respective stakeholders.

External validity [179] is concerned with generalization. Both the
evolvability model and the AREA process are quite general, and can be
applied for other properties (or at least for the properties of similar character
as evolvability). The model described in Figure 4-1 is sufficiently general as
it is just a matter of selecting subcharacteristics; the same is with AREA
process. In some other system types, it may happen that subcharacteristic
might be different, but the model and the analysis procedure is still valid. In
both the qualitative and quantitative cases, the participants represented the
different roles of stakeholders that are involved in software development.
Therefore, there is no threat in the selection of participants. In addition,
based on our experiences in both case studies, although the systems
belonged to different domains – automation and telecommunication
domains, the evolvability analysis methods seemed to be generally
applicable. However, one threat to external validity is that there are some
similarities between the two cases, such as large, complex, long-lived
software-intensive systems with strong requirements for backward
compatibility and no evolution breaks. Another threat is that both companies
are large international ones though located in Sweden, and thus might
impose some social and cultural behavior of people, especially during
interviews and workshops.

7.3 Validity Aspects on Architecting for Software
Evolvability
The systematic literature review of software architecture evolution research
(see Chapter 3) was based on a formalized and repeatable process to
document relevant knowledge on architecting for evolvability. All available
research related to the research questions were thoroughly assessed and
interpreted to answer the research questions as specified in Chapter 3.

The main threats to validity in this systematic review are bias in our
selection of the studies to be included, and data extraction. To be able to
identify relevant studies and ensure that the process of selection was
unbiased, a research protocol was developed to define research questions,
inclusion and exclusion criteria, and search strategy. The review protocol

Validity Discussions 186

roles differed whereas the architects had a commonly shared preference view
on evolvability subcharacteristics. We saw this as a positive indication that
there was an organizational alignment among architects. On the other hand,
even the same participant might not provide exactly the same answer in
terms of pair-wise comparison weights should the study be repeated.
Therefore, the interviews were centered on asking a series of questions that
were open-ended, i.e., conversational responses, to gain information about
respective stakeholder’s view and interpretation on evolvability
subcharacteristics. This was to ensure that the stakeholders have well-
elaborated and clarified understanding of evolvability subcharacteristics in
their specific domain context that is required for providing meaningful pair-
wise comparison weights for evolvability subcharacteristics and impacts of
architectural alternatives on evolvability. Moreover, the calculation of
consistency ratio in the AHP method also helped to check the consistency
level of the individuals’ answers.

I took part in applying the qualitative and quantitative evolvability analysis
in both cases. All experiences are thus first-hand; in addition, other
participants in the cases provided with material to make the conclusions less
subjective. The risk of bias has been further decreased through the
involvement of other researchers in the analysis of the experiences.

Internal validity [179] is concerned with the connection between the
observed behavior and the proposed explanation for the behavior. In the
quantitative evolvability analysis case, during the process of extracting
stakeholders’ preferences on evolvability subcharacteristics, a remark from
the software designers was that a designer may have different valuation of
evolvability subcharacteristics depending on the different subsystems that
he/she has previously worked with. This is because different subsystems
may have different quality attribute requirements in focus. Although we
encouraged them to try to think at the system level, it may still become a
threat to the study when extracting software designers’ preferences of
evolvability subcharacteristics. However, in the qualitative analysis process,
this threat was addressed through the architecture workshops in which all the
stakeholders could discuss about their perception and prioritization of
architectural requirements together, and thus, could reach consensus.

Construct validity [179] is concerned with the relation between theory and
observation. In both the qualitative and quantitative analysis cases, we
informed the participants about the evolvability analysis process so that they
became aware of the purpose and the intended results of the studies.
Therefore, there is no threat of hypothesis guessing. However, one threat that
might happen is in the qualitative analysis case when all the stakeholders

Validity Discussions 187

discussed at the architecture workshops about potential architectural
requirements and their prioritization. Some people might not tell their true
opinions that would deviate from the others. But, this type of threat was
addressed in the quantitative analysis process in which separate interviews
were conducted individually with respective stakeholders.

External validity [179] is concerned with generalization. Both the
evolvability model and the AREA process are quite general, and can be
applied for other properties (or at least for the properties of similar character
as evolvability). The model described in Figure 4-1 is sufficiently general as
it is just a matter of selecting subcharacteristics; the same is with AREA
process. In some other system types, it may happen that subcharacteristic
might be different, but the model and the analysis procedure is still valid. In
both the qualitative and quantitative cases, the participants represented the
different roles of stakeholders that are involved in software development.
Therefore, there is no threat in the selection of participants. In addition,
based on our experiences in both case studies, although the systems
belonged to different domains – automation and telecommunication
domains, the evolvability analysis methods seemed to be generally
applicable. However, one threat to external validity is that there are some
similarities between the two cases, such as large, complex, long-lived
software-intensive systems with strong requirements for backward
compatibility and no evolution breaks. Another threat is that both companies
are large international ones though located in Sweden, and thus might
impose some social and cultural behavior of people, especially during
interviews and workshops.

7.3 Validity Aspects on Architecting for Software
Evolvability
The systematic literature review of software architecture evolution research
(see Chapter 3) was based on a formalized and repeatable process to
document relevant knowledge on architecting for evolvability. All available
research related to the research questions were thoroughly assessed and
interpreted to answer the research questions as specified in Chapter 3.

The main threats to validity in this systematic review are bias in our
selection of the studies to be included, and data extraction. To be able to
identify relevant studies and ensure that the process of selection was
unbiased, a research protocol was developed to define research questions,
inclusion and exclusion criteria, and search strategy. The review protocol

Validity Discussions 188

was prepared by me, and was then reviewed by two other researchers to
check the formulation of research questions, whether the search strings were
appropriately derived from the research questions, and whether the data to be
extracted would address the research questions. The review protocol was
also reviewed by an external senior researcher from academia, who is
experienced in systematic review within the research group. In addition, an
earlier version of the paper was presented at an internal workshop within the
research group for additional feedbacks, especially on the inclusion and
exclusion criteria. For instance, in the beginning, we focused mainly on
research papers and excluded experience reports. However, one comment
from the workshop was that we also need to look into the experience reports
to obtain a good understanding of the maturity and applicability of the
approaches regarding the analysis and achievement of software evolvability
at the architectural level. These comments were then taken into consideration
when we started working on this systematic literature review. The external
senior researcher and the participants at the internal workshop were all from
academia.

Although the research protocol was reviewed by several senior researchers
for feedback and was modified based on their comments to reduce the bias
of the formalization of the protocol, due to our choice of search terms, there
is still a risk that we might have missed some relevant studies, especially in
cases when some software engineering keywords are not standardized and
clearly defined, such as definitions for various quality attributes. We dealt
with this threat by making sure that all the researchers participating in this
review had the same definition in case of unclear terms, though in some
cases it was hard to know how the authors of the reviewed papers defined for
example adaptability or evolvability.

To further ensure the unbiased selection of articles, we performed a multi-
step selection process to minimize the risk of exclusion of relevant studies.
Three researchers were involved in the steps that concerned excluding
studies based on the exclusion criteria as well as excluding irrelevant studies
based on their titles and abstracts. We reviewed all the papers’ titles and
abstracts, and recorded independently the decisions if a paper would be
selected for the full-text screening step. Afterwards, to ensure the reliability
of inclusion decisions, we applied the Fleiss Kappa statistic [68] to measure
the agreement among us three researchers. The initial value of the Kappa
statistics was 0.64 which is within the range for significant agreement.
Applying the Fleiss Kappa method gave us very good input on papers that
we had discrepancies on, and thus, resulted in further discussions.
Consequently, each discrepancy was discussed and resolved, and thus we

Validity Discussions 189

had full agreement on studies that should be included for the final full-text
screening step. Throughout this selection process with discussions on
potential primary studies’ actual relevance, we had obtained a clear view on
how to judge a paper’s actual relevance for being included as a primary
study. Therefore, we decided that I would take the lead in the full-text
screening step, and facilitate the discussions that lead to the final paper
selection for this review. Besides, additional reference checking of the
identified studies was conducted to guarantee a representative set of studies
for the review.

To ensure correctness in data extraction, we defined a data extraction form
(see Table 3-2) to obtain consistent extraction of relevant information for
answering the research questions. In addition, we performed quality
assessment on relevant studies to ensure that the identified findings and
implications came from a credible basis.

7.4 Validity Aspects on Open Source Software
Evolution
The systematic literature review of open source software evolution (see
Chapter 6) was based on a formalized and repeatable process to document
relevant knowledge on open source software evolution. All available
research related to the research questions were thoroughly assessed and
interpreted to answer the research questions as specified in Chapter 6. The
following types of validity issues were considered when interpreting the
results from this review.

Conclusion validity [179] refers to the statistically significant relationship
between the treatment and the outcome. One possible threat to conclusion
validity is bias in data extraction. This was addressed through defining a data
extraction form to ensure consistent extraction of relevant data to answering
the research questions. The findings and implications were based on the
extracted data.

Internal validity [179] concerns the connection between the observed
behavior and the proposed explanation for the behavior, i.e., it is about
ensuring that the actual conclusions are true. It is a concern for causal or
explanatory studies. One possible threat to internal validity is the selection
bias. We addressed this threat during the selection step of the review, i.e., the
studies included in this review were identified through a thorough selection
process which comprised of multiple stages. In the first stage, I and another

Validity Discussions 188

was prepared by me, and was then reviewed by two other researchers to
check the formulation of research questions, whether the search strings were
appropriately derived from the research questions, and whether the data to be
extracted would address the research questions. The review protocol was
also reviewed by an external senior researcher from academia, who is
experienced in systematic review within the research group. In addition, an
earlier version of the paper was presented at an internal workshop within the
research group for additional feedbacks, especially on the inclusion and
exclusion criteria. For instance, in the beginning, we focused mainly on
research papers and excluded experience reports. However, one comment
from the workshop was that we also need to look into the experience reports
to obtain a good understanding of the maturity and applicability of the
approaches regarding the analysis and achievement of software evolvability
at the architectural level. These comments were then taken into consideration
when we started working on this systematic literature review. The external
senior researcher and the participants at the internal workshop were all from
academia.

Although the research protocol was reviewed by several senior researchers
for feedback and was modified based on their comments to reduce the bias
of the formalization of the protocol, due to our choice of search terms, there
is still a risk that we might have missed some relevant studies, especially in
cases when some software engineering keywords are not standardized and
clearly defined, such as definitions for various quality attributes. We dealt
with this threat by making sure that all the researchers participating in this
review had the same definition in case of unclear terms, though in some
cases it was hard to know how the authors of the reviewed papers defined for
example adaptability or evolvability.

To further ensure the unbiased selection of articles, we performed a multi-
step selection process to minimize the risk of exclusion of relevant studies.
Three researchers were involved in the steps that concerned excluding
studies based on the exclusion criteria as well as excluding irrelevant studies
based on their titles and abstracts. We reviewed all the papers’ titles and
abstracts, and recorded independently the decisions if a paper would be
selected for the full-text screening step. Afterwards, to ensure the reliability
of inclusion decisions, we applied the Fleiss Kappa statistic [68] to measure
the agreement among us three researchers. The initial value of the Kappa
statistics was 0.64 which is within the range for significant agreement.
Applying the Fleiss Kappa method gave us very good input on papers that
we had discrepancies on, and thus, resulted in further discussions.
Consequently, each discrepancy was discussed and resolved, and thus we

Validity Discussions 189

had full agreement on studies that should be included for the final full-text
screening step. Throughout this selection process with discussions on
potential primary studies’ actual relevance, we had obtained a clear view on
how to judge a paper’s actual relevance for being included as a primary
study. Therefore, we decided that I would take the lead in the full-text
screening step, and facilitate the discussions that lead to the final paper
selection for this review. Besides, additional reference checking of the
identified studies was conducted to guarantee a representative set of studies
for the review.

To ensure correctness in data extraction, we defined a data extraction form
(see Table 3-2) to obtain consistent extraction of relevant information for
answering the research questions. In addition, we performed quality
assessment on relevant studies to ensure that the identified findings and
implications came from a credible basis.

7.4 Validity Aspects on Open Source Software
Evolution
The systematic literature review of open source software evolution (see
Chapter 6) was based on a formalized and repeatable process to document
relevant knowledge on open source software evolution. All available
research related to the research questions were thoroughly assessed and
interpreted to answer the research questions as specified in Chapter 6. The
following types of validity issues were considered when interpreting the
results from this review.

Conclusion validity [179] refers to the statistically significant relationship
between the treatment and the outcome. One possible threat to conclusion
validity is bias in data extraction. This was addressed through defining a data
extraction form to ensure consistent extraction of relevant data to answering
the research questions. The findings and implications were based on the
extracted data.

Internal validity [179] concerns the connection between the observed
behavior and the proposed explanation for the behavior, i.e., it is about
ensuring that the actual conclusions are true. It is a concern for causal or
explanatory studies. One possible threat to internal validity is the selection
bias. We addressed this threat during the selection step of the review, i.e., the
studies included in this review were identified through a thorough selection
process which comprised of multiple stages. In the first stage, I and another

 190

researcher independently selected and reviewed relevant papers from the
complete set of papers retrieved on basis of the search strings. Then the
selected papers were aggregated. After the first set of selected papers was
selected, a third senior researcher performed random check to validate if it
was the right selection of papers.

Construct validity [179] relates to the collected data and how well the data
represent the investigated phenomenon, i.e., it is about ensuring that the
construction of the study actually relates to the research problem and the
chosen sources of information are relevant. The studies identified from the
systematic review were accumulated from multiple literature databases
covering relevant journals, proceedings and book chapters. One possible
threat to construct validity is bias in the selection of publications. This was
addressed through specifying a research protocol that defined the research
questions and objectives of the study, inclusion and exclusion criteria, search
strings that we intended to use, the search strategy and strategy for data
extraction. The research protocol and the identified publications were
reviewed by several researchers to minimize the risk of exclusion of relevant
studies. Besides, additional reference checking of the identified studies was
conducted to guarantee a representative set of studies for the review.

Chapter 8. Conclusions and Future Work

This chapter presents the conclusions of this thesis. First, the answers are
presented to the research questions posed by the thesis. This is followed by a
description of the research contributions. The chapter concludes with an
outlook into future research directions.

8.1 Research Questions and Answers
In Chapter 1.3, the research questions of the thesis were presented. For each
of these questions, we present a short answer here based on the work
presented in the previous chapters.

Question 1: What subcharacteristics are of primary importance for the

evolvability of a software system?

Based on the definition in [154], the analysis of existing quality models (see
Chapter 2), the analysis of the software quality challenges and assessment
[67], the types of change stimuli and evolution [50], the taxonomy of
software change based on various dimensions that characterize or influence
the mechanisms of change [39], and experiences we gained in industrial case
studies (see Chapter 4 and Chapter 5), we have discovered that only having a
collection of the subcharacteristics of maintainability as defined in the ISO
software quality standard [89] (see Chapter 2) is not sufficient for a software
system to be evolvable. Therefore, we have (i) complimented and identified
subcharacteristics that are of primary importance for an evolvable software
system, and (ii) outlined a software evolvability model that provides a basis
for analyzing and evaluating software evolvability.

The idea with the software evolvability model is to further derive the
identified subcharacteristics to the extent when we are able to quantify them
and/or make appropriate reasoning about the quality of the attributes. This
model is established as a first step towards analyzing and quantifying
evolvability, a base and check point for evolvability evaluation and
improvement.

 190

researcher independently selected and reviewed relevant papers from the
complete set of papers retrieved on basis of the search strings. Then the
selected papers were aggregated. After the first set of selected papers was
selected, a third senior researcher performed random check to validate if it
was the right selection of papers.

Construct validity [179] relates to the collected data and how well the data
represent the investigated phenomenon, i.e., it is about ensuring that the
construction of the study actually relates to the research problem and the
chosen sources of information are relevant. The studies identified from the
systematic review were accumulated from multiple literature databases
covering relevant journals, proceedings and book chapters. One possible
threat to construct validity is bias in the selection of publications. This was
addressed through specifying a research protocol that defined the research
questions and objectives of the study, inclusion and exclusion criteria, search
strings that we intended to use, the search strategy and strategy for data
extraction. The research protocol and the identified publications were
reviewed by several researchers to minimize the risk of exclusion of relevant
studies. Besides, additional reference checking of the identified studies was
conducted to guarantee a representative set of studies for the review.

Chapter 8. Conclusions and Future Work

This chapter presents the conclusions of this thesis. First, the answers are
presented to the research questions posed by the thesis. This is followed by a
description of the research contributions. The chapter concludes with an
outlook into future research directions.

8.1 Research Questions and Answers
In Chapter 1.3, the research questions of the thesis were presented. For each
of these questions, we present a short answer here based on the work
presented in the previous chapters.

Question 1: What subcharacteristics are of primary importance for the

evolvability of a software system?

Based on the definition in [154], the analysis of existing quality models (see
Chapter 2), the analysis of the software quality challenges and assessment
[67], the types of change stimuli and evolution [50], the taxonomy of
software change based on various dimensions that characterize or influence
the mechanisms of change [39], and experiences we gained in industrial case
studies (see Chapter 4 and Chapter 5), we have discovered that only having a
collection of the subcharacteristics of maintainability as defined in the ISO
software quality standard [89] (see Chapter 2) is not sufficient for a software
system to be evolvable. Therefore, we have (i) complimented and identified
subcharacteristics that are of primary importance for an evolvable software
system, and (ii) outlined a software evolvability model that provides a basis
for analyzing and evaluating software evolvability.

The idea with the software evolvability model is to further derive the
identified subcharacteristics to the extent when we are able to quantify them
and/or make appropriate reasoning about the quality of the attributes. This
model is established as a first step towards analyzing and quantifying
evolvability, a base and check point for evolvability evaluation and
improvement.

Conclusions and Future Work 192

The subcharacteristics that are of primary importance for software
evolvability in a given context (long-lived software-intensive systems) are
analyzability, architectural integrity, changeability, extensibility, portability,
testability and domain-specific attributes. The validation of the software
evolvability model along with identified evolvability subcharacteristics are
described in Chapter 5, detailing the industrial case studies in automation
domain and mobile network domain.

Question 2: How to assess software evolvability of long-lived proprietary

systems in a systematic manner?

To be able to understand and analyze systematically the evolution of
software system architectures, we have proposed (see Chapter 4) an
architecture evolvability analysis (AREA) process that comprises of the
following main activities:

- Elicit architectural concerns

This activity extracts architectural concerns with respect to evolvability
subcharacteristics among stakeholders either qualitatively or
quantitatively.

- Analyze implications of change stimuli

This activity analyzes the architecture for evolution, and identifies the
impact of change stimuli on the current architecture. Accordingly, this
activity focuses on discovering the problems the software architecture
needs to solve, examining change stimuli and architectural concerns in
order to obtain a set of potential architectural requirements.

- Propose architectural solutions

This activity proposes candidate architecture solutions to accommodate
to a set of potential architectural requirements.

- Assess architectural solutions

This activity ensures that the architectural design decisions made are
appropriate for software architecture evolution. The candidate
architectural solutions are assessed against evolvability
subcharacteristics, i.e., the implications of the potential architectural
strategies and evolution path of the software architecture are analyzed
either qualitatively or quantitatively.

The proposed AREA process provides repeatable techniques for performing
the activities to support software architecture evolution. The activities are
embedded in:

Conclusions and Future Work 193

- A structured qualitative method (see Chapter 4.3) for analyzing
evolvability at the architectural level;

- A quantitative evolvability analysis method (see Chapter 4.4) with
explicit and quantitative treatment of stakeholders’ evolvability
concerns and potential architectural solutions’ impacts on software
evolvability.

Moreover, the qualitative and quantitative assessments manifested in the
evolvability analysis process have been validated through their applications
in two large-scale industrial software systems at ABB and Ericsson (see
Chapter 5).

Question 3: How is software evolvability addressed in the development

and evolution of open source software?

We have performed a systematic review (see Chapter 6) that comprises of 41
identified primary studies. Based on the research topics of these studies, we
have classified them into four main categories of themes: software trends
and patterns, evolution process support, evolvability characteristics, and
examining OSS at software architecture level. The first category is further
refined into three sub-categories: software growth, software maintenance and
evolution economics, and prediction of software evolution. The main
findings from this systematic review are:

- Most papers focus on using different metrics to analyze OSS evolution
over time. Few papers have looked into the economic perspective, e.g.,
maintenance effort, and few papers utilize the historical evolution data
for prediction of OSS evolution and development.

- Several evolution process support, different aspects that appear to have
impact on the OSS evolution process are covered; these aspect include
commenting practice, OSS evolution and maintenance evaluation model,
structures and quality characteristics of resources such as repositories,
mails, bug tracking systems, as well as tools that support data retrieval
for evolution analysis.

- Determinism, understandability, modularity and complexity are related
evolvability characteristics covered in the primary studies. However,
there are more evolvability characteristics that are not covered such as
changeability, extensibility, and testability. This also explains the
findings in the analysis of OSS evolution trends category that most
studies focus on the evolution history instead of predicting the OSS
evolution, because when there is a lack of analysis on OSS evolvability
characteristics, it also becomes harder to predict its evolution.

Conclusions and Future Work 192

The subcharacteristics that are of primary importance for software
evolvability in a given context (long-lived software-intensive systems) are
analyzability, architectural integrity, changeability, extensibility, portability,
testability and domain-specific attributes. The validation of the software
evolvability model along with identified evolvability subcharacteristics are
described in Chapter 5, detailing the industrial case studies in automation
domain and mobile network domain.

Question 2: How to assess software evolvability of long-lived proprietary

systems in a systematic manner?

To be able to understand and analyze systematically the evolution of
software system architectures, we have proposed (see Chapter 4) an
architecture evolvability analysis (AREA) process that comprises of the
following main activities:

- Elicit architectural concerns

This activity extracts architectural concerns with respect to evolvability
subcharacteristics among stakeholders either qualitatively or
quantitatively.

- Analyze implications of change stimuli

This activity analyzes the architecture for evolution, and identifies the
impact of change stimuli on the current architecture. Accordingly, this
activity focuses on discovering the problems the software architecture
needs to solve, examining change stimuli and architectural concerns in
order to obtain a set of potential architectural requirements.

- Propose architectural solutions

This activity proposes candidate architecture solutions to accommodate
to a set of potential architectural requirements.

- Assess architectural solutions

This activity ensures that the architectural design decisions made are
appropriate for software architecture evolution. The candidate
architectural solutions are assessed against evolvability
subcharacteristics, i.e., the implications of the potential architectural
strategies and evolution path of the software architecture are analyzed
either qualitatively or quantitatively.

The proposed AREA process provides repeatable techniques for performing
the activities to support software architecture evolution. The activities are
embedded in:

Conclusions and Future Work 193

- A structured qualitative method (see Chapter 4.3) for analyzing
evolvability at the architectural level;

- A quantitative evolvability analysis method (see Chapter 4.4) with
explicit and quantitative treatment of stakeholders’ evolvability
concerns and potential architectural solutions’ impacts on software
evolvability.

Moreover, the qualitative and quantitative assessments manifested in the
evolvability analysis process have been validated through their applications
in two large-scale industrial software systems at ABB and Ericsson (see
Chapter 5).

Question 3: How is software evolvability addressed in the development

and evolution of open source software?

We have performed a systematic review (see Chapter 6) that comprises of 41
identified primary studies. Based on the research topics of these studies, we
have classified them into four main categories of themes: software trends
and patterns, evolution process support, evolvability characteristics, and
examining OSS at software architecture level. The first category is further
refined into three sub-categories: software growth, software maintenance and
evolution economics, and prediction of software evolution. The main
findings from this systematic review are:

- Most papers focus on using different metrics to analyze OSS evolution
over time. Few papers have looked into the economic perspective, e.g.,
maintenance effort, and few papers utilize the historical evolution data
for prediction of OSS evolution and development.

- Several evolution process support, different aspects that appear to have
impact on the OSS evolution process are covered; these aspect include
commenting practice, OSS evolution and maintenance evaluation model,
structures and quality characteristics of resources such as repositories,
mails, bug tracking systems, as well as tools that support data retrieval
for evolution analysis.

- Determinism, understandability, modularity and complexity are related
evolvability characteristics covered in the primary studies. However,
there are more evolvability characteristics that are not covered such as
changeability, extensibility, and testability. This also explains the
findings in the analysis of OSS evolution trends category that most
studies focus on the evolution history instead of predicting the OSS
evolution, because when there is a lack of analysis on OSS evolvability
characteristics, it also becomes harder to predict its evolution.

Conclusions and Future Work 194

- Few papers address OSS evolution at architectural level. Most papers
address OSS evolution at source code level.

8.2 Contributions
The main focus of this thesis is software evolvability analysis of proprietary
systems. A supplementary research area is open source software evolution.
This section summarizes our research contributions.

8.2.1 Main Research Contributions

The main contributions of the thesis are concerned with the software
evolvability analysis of proprietary systems, and are summarized as follows:

- Software evolvability model

In this thesis, we have proposed a software evolvability model that provides
a basis for analyzing software evolvability. This model refines software
evolvability into a collection of subcharacteristics that can be measured
through a number of measuring attributes, and is established as a first step
towards analyzing and quantifying evolvability. The evolvability
subcharacteristics are used as check points for evolvability evaluation and
improvement. The software evolvability model has been validated in several
industrial settings.

- Software architecture evolvability analysis (AREA) process

In this thesis, we have defined the software architecture evolvability analysis
process (AREA) which engages stakeholders throughout the system
development and evolution lifecycle to discover the driving architectural
requirements, stakeholders’ evolvability concerns, and potential architectural
solutions’ impact on evolvability of a software system. The analysis process
can be carried out at many points during a system’s lifecycle, and is
stakeholder-focused.

The results of the evolvability analysis process include: (i) the prioritized
architectural requirements; (ii) stakeholders’ evolvability concerns; (iii)
candidate architectural solutions; and (iv) the architectural solutions’ impact
on evolvability.

It is a challenging task for an architect to choose among competing candidate
architectural solutions and ensure that the system constructed from the
architecture satisfies its stakeholders’ needs. Therefore, the results from the

Conclusions and Future Work 195

evolvability analysis process are useful for an architect to design and evolve
the architecture. The AREA process provides two repeatable techniques to
understand and support software architecture evolution:

- Qualitative evolvability analysis method

We have proposed a qualitative evolvability analysis method that
focuses on improving the capability of being able to understand and
analyze systematically the impact of change stimuli on software
architecture evolution.

- Quantitative evolvability analysis method

We have also proposed a quantitative evolvability analysis method
that provides quantifications of stakeholders’ evolvability concerns
and potential architectural solutions’ impacts on evolvability.

The above techniques have been validated through our participation in two
large-scale industrial projects (at ABB and Ericsson) driven by the need of
improving software evolvability. Based on our experiences, both the
qualitative and quantitative analysis methods can be used as an integral part
of software development and evolution process. Throughout the process of
evolvability analysis at ABB, the architecture requirements and
corresponding design decisions for the transition of architecture became
more explicit, better founded and documented. The resulting analysis results
were well accepted by the stakeholders involved in the analysis process, and
became a blueprint for further implementation improvement. Throughout the
process of evolvability analysis at Ericsson, the importance of various
quality attributes perceived among different stakeholders was quantified and
became more explicit. This quantification also served as a communication
vehicle for further discussions among stakeholders. In both cases, by
analyzing architectural improvement proposals with respect to their
implications on evolvability subcharacteristics, we further avoided an ad hoc
choice of potential evolution paths of software architecture.

- Systematic review in architecting for software evolvability,

revealing suggestions for further research and practice

In this thesis, we have performed a systematic literature review of the
existing studies in analyzing and achieving software evolvability at
architectural level. These studies cover a spectrum of approaches with
specific perspective or focus on a particular architecture-centric activity in
software lifecycle, and belong to five main categories of themes:

a) Quality consideration during software architecture design

b) Architectural quality evaluation

Conclusions and Future Work 194

- Few papers address OSS evolution at architectural level. Most papers
address OSS evolution at source code level.

8.2 Contributions
The main focus of this thesis is software evolvability analysis of proprietary
systems. A supplementary research area is open source software evolution.
This section summarizes our research contributions.

8.2.1 Main Research Contributions

The main contributions of the thesis are concerned with the software
evolvability analysis of proprietary systems, and are summarized as follows:

- Software evolvability model

In this thesis, we have proposed a software evolvability model that provides
a basis for analyzing software evolvability. This model refines software
evolvability into a collection of subcharacteristics that can be measured
through a number of measuring attributes, and is established as a first step
towards analyzing and quantifying evolvability. The evolvability
subcharacteristics are used as check points for evolvability evaluation and
improvement. The software evolvability model has been validated in several
industrial settings.

- Software architecture evolvability analysis (AREA) process

In this thesis, we have defined the software architecture evolvability analysis
process (AREA) which engages stakeholders throughout the system
development and evolution lifecycle to discover the driving architectural
requirements, stakeholders’ evolvability concerns, and potential architectural
solutions’ impact on evolvability of a software system. The analysis process
can be carried out at many points during a system’s lifecycle, and is
stakeholder-focused.

The results of the evolvability analysis process include: (i) the prioritized
architectural requirements; (ii) stakeholders’ evolvability concerns; (iii)
candidate architectural solutions; and (iv) the architectural solutions’ impact
on evolvability.

It is a challenging task for an architect to choose among competing candidate
architectural solutions and ensure that the system constructed from the
architecture satisfies its stakeholders’ needs. Therefore, the results from the

Conclusions and Future Work 195

evolvability analysis process are useful for an architect to design and evolve
the architecture. The AREA process provides two repeatable techniques to
understand and support software architecture evolution:

- Qualitative evolvability analysis method

We have proposed a qualitative evolvability analysis method that
focuses on improving the capability of being able to understand and
analyze systematically the impact of change stimuli on software
architecture evolution.

- Quantitative evolvability analysis method

We have also proposed a quantitative evolvability analysis method
that provides quantifications of stakeholders’ evolvability concerns
and potential architectural solutions’ impacts on evolvability.

The above techniques have been validated through our participation in two
large-scale industrial projects (at ABB and Ericsson) driven by the need of
improving software evolvability. Based on our experiences, both the
qualitative and quantitative analysis methods can be used as an integral part
of software development and evolution process. Throughout the process of
evolvability analysis at ABB, the architecture requirements and
corresponding design decisions for the transition of architecture became
more explicit, better founded and documented. The resulting analysis results
were well accepted by the stakeholders involved in the analysis process, and
became a blueprint for further implementation improvement. Throughout the
process of evolvability analysis at Ericsson, the importance of various
quality attributes perceived among different stakeholders was quantified and
became more explicit. This quantification also served as a communication
vehicle for further discussions among stakeholders. In both cases, by
analyzing architectural improvement proposals with respect to their
implications on evolvability subcharacteristics, we further avoided an ad hoc
choice of potential evolution paths of software architecture.

- Systematic review in architecting for software evolvability,

revealing suggestions for further research and practice

In this thesis, we have performed a systematic literature review of the
existing studies in analyzing and achieving software evolvability at
architectural level. These studies cover a spectrum of approaches with
specific perspective or focus on a particular architecture-centric activity in
software lifecycle, and belong to five main categories of themes:

a) Quality consideration during software architecture design

b) Architectural quality evaluation

Conclusions and Future Work 196

c) Economic valuation

d) Architectural knowledge management

e) Modeling techniques.

A comprehensive overview and analysis of these categories and related
studies is presented, as well as the implications for research and
practitioners.

8.2.2 Supplementary Research Contribution

A supplementary research contribution is concerned with the open source
software evolution, and is summarized below:

- Systematic review in open source software evolution, revealing

suggestions for further research

In this thesis, we have also performed a systematic review of the existing
studies in open source software evolution. These studies are grouped into
four main categories of themes:

a) Software trends and patterns

b) Evolution process support

c) Evolvability characteristics addressed in OSS evolution

d) Examining OSS at software architecture level

A comprehensive overview and analysis of these categories and related
studies is presented, describing how software evolvability is addressed
during development and evolution of OSS, and identifying challenges and
future research directions in OSS evolution.

8.3 Future Research Directions
A number of potential tracks for future research are identified as follows:

- Further validation of evolvability analysis methods

Although the software evolvability analysis methods developed in this
research have been verified through industrial case studies of different
domains in two different companies, one limitation is that there are some
similarities between the two cases, such as large, complex, long-lived
software-intensive systems with strong requirements for backward
compatibility and no evolution breaks. Another limitation is that both

Conclusions and Future Work 197

companies are large international ones though located in Sweden, and thus
might impose some social and cultural behavior of people, especially during
interviews and workshops. Therefore, future research includes additional
validation and adaptation of the methods using multiple case studies in
systems and cultures of different characteristics.

- Further development of foundation theories

There is a space to develop new foundation theories beyond Lehman’s law,
e.g., quantitative expression of evolvability, along with its measurement,
monitoring, prediction, impact analysis, with practical value to software
architecture evolution.

- Novel methods to support ultra-large-systems evolution

Considering that all artefacts produced and used during the entire software
lifecycle are subject to changes, novel methods and tools need to be
developed to be able to design ultra-large-systems that integrate and
orchestrate the evolution of thousands of platforms, decision nodes,
organizations and processes.

- Further research in open source software (OSS) evolution

There are three potential aspects for future research:

- Economic perspective and prediction of OSS evolution

Based on the systematic review that we performed, we have found
that few studies have looked into the economic perspective, e.g.,
maintenance effort, and few papers utilize the historical evolution
data for prediction of OSS evolution and development. Therefore,
future research include examining OSS evolution from economic
perspective as well as predicting OSS evolution based on historical
evolution data.

- Evolvability characteristics of OSS

Based on the systematic review that we performed, we have found
that some evolvability characteristics are not addressed in OSS
evolution such as changeability, extensibility, and testability. This
might also explain the findings that most studies focus on the
evolution history instead of predicting the OSS evolution, because
when there is a lack of analysis on OSS evolvability characteristics,
it also becomes harder to predict its evolution. Therefore, future
research includes further validation and adaptation of the proposed
software evolvability model by applying it to open source software
evolution.

Conclusions and Future Work 196

c) Economic valuation

d) Architectural knowledge management

e) Modeling techniques.

A comprehensive overview and analysis of these categories and related
studies is presented, as well as the implications for research and
practitioners.

8.2.2 Supplementary Research Contribution

A supplementary research contribution is concerned with the open source
software evolution, and is summarized below:

- Systematic review in open source software evolution, revealing

suggestions for further research

In this thesis, we have also performed a systematic review of the existing
studies in open source software evolution. These studies are grouped into
four main categories of themes:

a) Software trends and patterns

b) Evolution process support

c) Evolvability characteristics addressed in OSS evolution

d) Examining OSS at software architecture level

A comprehensive overview and analysis of these categories and related
studies is presented, describing how software evolvability is addressed
during development and evolution of OSS, and identifying challenges and
future research directions in OSS evolution.

8.3 Future Research Directions
A number of potential tracks for future research are identified as follows:

- Further validation of evolvability analysis methods

Although the software evolvability analysis methods developed in this
research have been verified through industrial case studies of different
domains in two different companies, one limitation is that there are some
similarities between the two cases, such as large, complex, long-lived
software-intensive systems with strong requirements for backward
compatibility and no evolution breaks. Another limitation is that both

Conclusions and Future Work 197

companies are large international ones though located in Sweden, and thus
might impose some social and cultural behavior of people, especially during
interviews and workshops. Therefore, future research includes additional
validation and adaptation of the methods using multiple case studies in
systems and cultures of different characteristics.

- Further development of foundation theories

There is a space to develop new foundation theories beyond Lehman’s law,
e.g., quantitative expression of evolvability, along with its measurement,
monitoring, prediction, impact analysis, with practical value to software
architecture evolution.

- Novel methods to support ultra-large-systems evolution

Considering that all artefacts produced and used during the entire software
lifecycle are subject to changes, novel methods and tools need to be
developed to be able to design ultra-large-systems that integrate and
orchestrate the evolution of thousands of platforms, decision nodes,
organizations and processes.

- Further research in open source software (OSS) evolution

There are three potential aspects for future research:

- Economic perspective and prediction of OSS evolution

Based on the systematic review that we performed, we have found
that few studies have looked into the economic perspective, e.g.,
maintenance effort, and few papers utilize the historical evolution
data for prediction of OSS evolution and development. Therefore,
future research include examining OSS evolution from economic
perspective as well as predicting OSS evolution based on historical
evolution data.

- Evolvability characteristics of OSS

Based on the systematic review that we performed, we have found
that some evolvability characteristics are not addressed in OSS
evolution such as changeability, extensibility, and testability. This
might also explain the findings that most studies focus on the
evolution history instead of predicting the OSS evolution, because
when there is a lack of analysis on OSS evolvability characteristics,
it also becomes harder to predict its evolution. Therefore, future
research includes further validation and adaptation of the proposed
software evolvability model by applying it to open source software
evolution.

 198

- Architecture level evolvability analysis of OSS evolution

Based on the systematic review that we performed, we have found
that only few studies address open source software (OSS) evolution
at architectural level. Therefore, future research includes (i) putting
more focus on managing OSS evolution, and assessing OSS
evolvability at the software architecture level; and (ii) further
validation and adaptation of the proposed evolvability analysis
process and methods by applying to open source software evolution.

Appendix A: Primary Studies in Chapter 3

[S1] T. Al-Naeem, J. Gorton, M. Ali Babar, F. Rabhi, B. Benatallah, A
quality-driven systematic approach for architecting distributed
software applications, International Conference on Software
Engineering (ICSE), 2005.

[S2] M. Ali Babar, I. Gorton, A tool for managing software architecture
knowledge, International Conference on Software Engineering
Workshop on Sharing and Reusing architectural Knowledge-
Architecture, Rationale, and Design Intent, 2007.

[S3] M. Ali Babar, I. Gorton, R. Jeffery, Capturing and using software
architecture knowledge for architecture-based software
development, International Conference on Quality Software (QSIC),
pp. 169-176, 2005.

[S4] S. Anwar, M. Ramzan, A. Rauf, A. Ali Shahid, Software
maintenance prediction using weighted scenarios: an architecture
perspective, International Conference on Information Science and
Applications (ICISA), 2010.

[S5] M. Aoyama, Continuous and discontinuous software evolution:
aspects of software evolution across multiple product lines,
International Conference on Software Engineering Workshop on
Principles of Software Evolution, pp. 87-90, 2001.

[S6] R. Bahsoon, W. Emmerich, ArchOptions: a real options-based
model for predicting the stability of software architectures,
International Conference on Software Engineering Workshop on
Economic-Driven Software Engineering Research, 2003.

[S7] R. Bahsoon, W. Emmerich, Evaluating architectural stability with
real options theory, International Conference on Software
Maintenance, pp. 443-447, 2004.

[S8] L. Bass, P. Clements, R. Kazman, Software architecture in practice,
ISBN 0321154959, Addison-Wesley Professional, 2003.

[S9] P. Bengtsson, J. Bosch, Architecture level prediction of software
maintenance, European Conference on Software Maintenance and
Reengineering (CSMR), pp. 139-147, 1999.

 198

- Architecture level evolvability analysis of OSS evolution

Based on the systematic review that we performed, we have found
that only few studies address open source software (OSS) evolution
at architectural level. Therefore, future research includes (i) putting
more focus on managing OSS evolution, and assessing OSS
evolvability at the software architecture level; and (ii) further
validation and adaptation of the proposed evolvability analysis
process and methods by applying to open source software evolution.

Appendix A: Primary Studies in Chapter 3

[S1] T. Al-Naeem, J. Gorton, M. Ali Babar, F. Rabhi, B. Benatallah, A
quality-driven systematic approach for architecting distributed
software applications, International Conference on Software
Engineering (ICSE), 2005.

[S2] M. Ali Babar, I. Gorton, A tool for managing software architecture
knowledge, International Conference on Software Engineering
Workshop on Sharing and Reusing architectural Knowledge-
Architecture, Rationale, and Design Intent, 2007.

[S3] M. Ali Babar, I. Gorton, R. Jeffery, Capturing and using software
architecture knowledge for architecture-based software
development, International Conference on Quality Software (QSIC),
pp. 169-176, 2005.

[S4] S. Anwar, M. Ramzan, A. Rauf, A. Ali Shahid, Software
maintenance prediction using weighted scenarios: an architecture
perspective, International Conference on Information Science and
Applications (ICISA), 2010.

[S5] M. Aoyama, Continuous and discontinuous software evolution:
aspects of software evolution across multiple product lines,
International Conference on Software Engineering Workshop on
Principles of Software Evolution, pp. 87-90, 2001.

[S6] R. Bahsoon, W. Emmerich, ArchOptions: a real options-based
model for predicting the stability of software architectures,
International Conference on Software Engineering Workshop on
Economic-Driven Software Engineering Research, 2003.

[S7] R. Bahsoon, W. Emmerich, Evaluating architectural stability with
real options theory, International Conference on Software
Maintenance, pp. 443-447, 2004.

[S8] L. Bass, P. Clements, R. Kazman, Software architecture in practice,
ISBN 0321154959, Addison-Wesley Professional, 2003.

[S9] P. Bengtsson, J. Bosch, Architecture level prediction of software
maintenance, European Conference on Software Maintenance and
Reengineering (CSMR), pp. 139-147, 1999.

Appendix A: Primary Studies in Chapter 3 200

[S10] P. Bengtsson, J. Bosch, Scenario-based software architecture
reengineering, International Conference on Software Reuse, pp. 308-
317, 1998.

[S11] P. Bengtsson, N. Lassing, J. Bosch, H. van Vliet, Architecture-level
modifiability analysis (ALMA), Journal of Systems and Software,
vol. 69, pp. 129-147, 2004.

[S12] S. Bhattacharya, D. E. Perry, Architecture assessment model for
system evolution, Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2007.

[S13] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach, Addison-Wesley Professional,
ISBN 0-201-67494-7, 2000.

[S14] E. Bouwers, A. van Deursen, A lightweight sanity check for
implemented architectures, IEEE Software, vol. 27, 2010.

[S15] H. P. Breivold, I. Crnkovic, P. J. Eriksson, Analyzing Software
Evolvability, Annual IEEE International Computer Software and
Applications Conference (COMPSAC), 2008.

[S16] H. P. Breivold, I. Crnkovic, R. Land, M. Larsson, Analyzing
software evolvability of an industrial automation control system: a
case study, International Conference on Software Engineering
Advances (ICSEA), 2008.

[S17] R. Brcina, M. Riebisch, Architecting for evolvability by means of
traceability and features, International Conference on Automated
Software Engineering (ASE) Workshops, pp. 72-81, 2008.

[S18] T. R. Browning, E. C. Honour, Measuring the life-cycle value of
enduring systems, Journal of Systems Engineering, vol. 11, 2008.

[S19] W. Bu, A. Tang, J. Han, An analysis of decision-centric architectural
design approaches, International Conference on Software
Engineering Workshop on Sharing and Reusing Architectural
Knowledge (SHARK), 2009.

[S20] J. E. Burge,D. C. Brown, Software Engineering Using RATionale,
Journal of Systems & Software, vol. 81, pp. 395-413, 2008.

[S21] R. Capilla, F. Nava, J. C. Dueas, Modeling and documenting the
evolution of architectural design decisions, International Conference
on Software Engineering Workshop on Sharing and Reusing
Architectural Knowledge-Architecture, Rationale, and Design
Intent, 2007.

[S22] R. Capilla, F. Nava, S. Pérez, J. C. Dueñas, A web-based tool for
managing architectural design decisions, ACM SIGSOFT Software
Engineering Notes, vol. 31, 2006.

Appendix A: Primary Studies in Chapter 3 201

[S23] J. Carriere, R. Kazman, I. Ozkaya, A cost-benefit framework for
making architectural decisions in a business context, International
Conference on Software Engineering, 2010.

[S24] S. J. Carriere, R. Kazman, S. G. Woods, Assessing and maintaining
architectural quality, European Conference on Software
Maintenance and Reengineering, pp. 22-30, 1999.

[S25] H. B. Christensen, K. M. Hansen, An empirical investigation of
architectural prototyping, Journal of Systems and Software, vol. 83,
pp. 133-142, 2010.

[S26] L. Chung, K. Cooper, A. Yi, Developing adaptable software
architectures using design patterns: an NFR approach, Computer
Standards & Interfaces, vol. 25, pp. 253-260, 2003.

[S27] L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, Non-functional
Requirements in Software Engineering, ISBN 978-0-7923-8666-7,
Springer, 2000.

[S28] L. Chung, N. Subramanian, Process-oriented metrics for software
architecture adaptability, IEEE International Symposium on
Requirements Engineering, pp. 310-311, 2001.

[S29] P. Clements, L. Bass, Business goals as architectural knowledge,
International Conference on Software Engineering Workshop on
Sharing and Reusing Architectural Knowledge (SHARK), 2010.

[S30] P. Clements, R. Kazman, M. Klein, Evaluating Software
Architectures: Methods and Case Studies, ISBN 0-201-70482-x,
Addison-Wesley, 2006.

[S31] X. Cui, Y. Sun, S. Xiao, H. Mei, Architecture design for the large-
scale software-intensive systems: a decision-oriented approach and
the experience, International Conference on Engineering of
Complex Computer Systems (ICECCS), 2009.

[S32] R. C. de Boer, P. Lago, A. Telea, H. van Vliet, Ontology-driven
visualization of architectural design decisions, Joint Working
IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture (WICSA/ECSA), 2009.

[S33] C. Del Rosso, Continuous evolution through software architecture
evaluation: A case study, Journal of Software Maintenance and
Evolution, vol. 18, pp. 351-383, 2006.

[S34] C. Del Rosso, A. Maccari, Assessing the architectonics of large,
software-intensive systems using a knowledge-based approach,
Working IEEE/IFIP Conference on Software Architecture (WICSA),
2007.

Appendix A: Primary Studies in Chapter 3 200

[S10] P. Bengtsson, J. Bosch, Scenario-based software architecture
reengineering, International Conference on Software Reuse, pp. 308-
317, 1998.

[S11] P. Bengtsson, N. Lassing, J. Bosch, H. van Vliet, Architecture-level
modifiability analysis (ALMA), Journal of Systems and Software,
vol. 69, pp. 129-147, 2004.

[S12] S. Bhattacharya, D. E. Perry, Architecture assessment model for
system evolution, Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2007.

[S13] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach, Addison-Wesley Professional,
ISBN 0-201-67494-7, 2000.

[S14] E. Bouwers, A. van Deursen, A lightweight sanity check for
implemented architectures, IEEE Software, vol. 27, 2010.

[S15] H. P. Breivold, I. Crnkovic, P. J. Eriksson, Analyzing Software
Evolvability, Annual IEEE International Computer Software and
Applications Conference (COMPSAC), 2008.

[S16] H. P. Breivold, I. Crnkovic, R. Land, M. Larsson, Analyzing
software evolvability of an industrial automation control system: a
case study, International Conference on Software Engineering
Advances (ICSEA), 2008.

[S17] R. Brcina, M. Riebisch, Architecting for evolvability by means of
traceability and features, International Conference on Automated
Software Engineering (ASE) Workshops, pp. 72-81, 2008.

[S18] T. R. Browning, E. C. Honour, Measuring the life-cycle value of
enduring systems, Journal of Systems Engineering, vol. 11, 2008.

[S19] W. Bu, A. Tang, J. Han, An analysis of decision-centric architectural
design approaches, International Conference on Software
Engineering Workshop on Sharing and Reusing Architectural
Knowledge (SHARK), 2009.

[S20] J. E. Burge,D. C. Brown, Software Engineering Using RATionale,
Journal of Systems & Software, vol. 81, pp. 395-413, 2008.

[S21] R. Capilla, F. Nava, J. C. Dueas, Modeling and documenting the
evolution of architectural design decisions, International Conference
on Software Engineering Workshop on Sharing and Reusing
Architectural Knowledge-Architecture, Rationale, and Design
Intent, 2007.

[S22] R. Capilla, F. Nava, S. Pérez, J. C. Dueñas, A web-based tool for
managing architectural design decisions, ACM SIGSOFT Software
Engineering Notes, vol. 31, 2006.

Appendix A: Primary Studies in Chapter 3 201

[S23] J. Carriere, R. Kazman, I. Ozkaya, A cost-benefit framework for
making architectural decisions in a business context, International
Conference on Software Engineering, 2010.

[S24] S. J. Carriere, R. Kazman, S. G. Woods, Assessing and maintaining
architectural quality, European Conference on Software
Maintenance and Reengineering, pp. 22-30, 1999.

[S25] H. B. Christensen, K. M. Hansen, An empirical investigation of
architectural prototyping, Journal of Systems and Software, vol. 83,
pp. 133-142, 2010.

[S26] L. Chung, K. Cooper, A. Yi, Developing adaptable software
architectures using design patterns: an NFR approach, Computer
Standards & Interfaces, vol. 25, pp. 253-260, 2003.

[S27] L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, Non-functional
Requirements in Software Engineering, ISBN 978-0-7923-8666-7,
Springer, 2000.

[S28] L. Chung, N. Subramanian, Process-oriented metrics for software
architecture adaptability, IEEE International Symposium on
Requirements Engineering, pp. 310-311, 2001.

[S29] P. Clements, L. Bass, Business goals as architectural knowledge,
International Conference on Software Engineering Workshop on
Sharing and Reusing Architectural Knowledge (SHARK), 2010.

[S30] P. Clements, R. Kazman, M. Klein, Evaluating Software
Architectures: Methods and Case Studies, ISBN 0-201-70482-x,
Addison-Wesley, 2006.

[S31] X. Cui, Y. Sun, S. Xiao, H. Mei, Architecture design for the large-
scale software-intensive systems: a decision-oriented approach and
the experience, International Conference on Engineering of
Complex Computer Systems (ICECCS), 2009.

[S32] R. C. de Boer, P. Lago, A. Telea, H. van Vliet, Ontology-driven
visualization of architectural design decisions, Joint Working
IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture (WICSA/ECSA), 2009.

[S33] C. Del Rosso, Continuous evolution through software architecture
evaluation: A case study, Journal of Software Maintenance and
Evolution, vol. 18, pp. 351-383, 2006.

[S34] C. Del Rosso, A. Maccari, Assessing the architectonics of large,
software-intensive systems using a knowledge-based approach,
Working IEEE/IFIP Conference on Software Architecture (WICSA),
2007.

Appendix A: Primary Studies in Chapter 3 202

[S35] A. Engel, T. R. Browning, Designing systems for adaptability by
means of architecture options, Journal of Systems Engineering, vol.
11, 2008.

[S36] R. Farenhorst, R. Izaks, P. Lago, H. van Vliet, A Just-In-Time
Architectural Knowledge Sharing Portal, Working IEEE/IFIP
Conference on Software Architecture (WICSA), pp. 125-134, 2008.

[S37] E. Fricke, B. Gebhard, H. Negele, E. Igenbergs, Coping with
changes: Causes, findings, and strategies, Journal of Systems
Engineering, vol. 3, pp. 169-179, 2000.

[S38] E. Fricke, A. P. Schulz, Design for changeability (DfC): Principles
to enable changes in systems throughout their entire lifecycle,
Journal of Systems Engineering, vol. 8, 2005.

[S39] D. Garlan, J. M. Barnes, B. Schmerl, O. Celiku, Evolution styles:
foundations and tool support for software architecture evolution,
Joint Working IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture, 2009.

[S40] S. Giesecke, W. Hasselbring, M. Riebisch, Classifying architectural
constraints as a basis for software quality assessment, Advanced
Engineering Informatics, vol. 21, pp. 169-179, 2007.

[S41] M. O. Hassan, L. Deruelle, H. Basson, A knowledge-based system
for change impact analysis on software architecture, International
Conference on Research Challenges in Information Science, 2010.

[S42] C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture: A
Practical Guide for Software Designers, ISBN 0201325713,
Addison-Wesley Professional, 2000.

[S43] A. Jansen, P. Avgeriou, J. S. van der Ven, Enriching software
architecture documentation, Journal of Systems and Software, vol.
82, pp. 1232-1248, 2009.

[S44] A. Jansen, J. Bosch, P. Avgeriou, Documenting after the fact:
Recovering architectural design decisions, Journal of Systems &
Software, vol. 81, pp. 536-557, 2008.

[S45] A. Jansen, J. Van der Ven, P. Avgeriou, D. K. Hammer, Tool
support for architectural decisions, Working IEEE/IFIP Conference
on Software Architecture (WICSA) 2007.

[S46] R. Kazman, J. Asundi, M. Klein, Quantifying the costs and benefits
of architectural decisions, International Conference on Software
Engineering 2001.

[S47] R. Kazman, L. Bass, G. Abowd, M. Webb, SAAM: a method for
analyzing the properties of software architectures, International
Conference on Software Engineering, pp. 81-90, 1994.

Appendix A: Primary Studies in Chapter 3 203

[S48] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J.
Carriere, The architecture tradeoff analysis method, IEEE
International Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 68-78, 1998.

[S49] S. Kim, D. K. Kim, L. Lu, S. Park, Quality-driven architecture
development using architectural tactics, Journal of Systems and
Software, vol. 82, pp. 1211-1231, 2009.

[S50] M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, H. Lipson,
Attribute-based architecture styles, Working IEEE/IFIP Conference
on Software Architecture (WICSA) 1999.

[S51] P. Lago, H. Muccini, H. van Vliet, A scoped approach to traceability
management, Journal of Systems and Software, vol. 82, pp. 168-182,
2009.

[S52] P. Lago, H. van Vliet, Explicit assumptions enrich architectural
models, International Conference on Software Engineering, pp. 206-
214, 2005.

[S53] N. Lassing, P. Bengtsson, H. van Vliet, J. Bosch, Experiences with
ALMA: Architecture-Level Modifiability Analysis, Journal of
Systems and Software, vol. 61, pp. 47-57, 2002.

[S54] N. Lassing, D. Rijsenbrij, H. van Vliet, How well can we predict
changes at architecture design time?, Journal of Systems and
Software, vol. 65, pp. 141-153, 2003.

[S55] J. Lee, D. H. Lee, Quantitative tradeoff analysis of software
architecture using the architecture analysis and design language,
ACIS International Conference on Software Engineering, Artificial
Intelligences, Networking and Parallel/Distributed Computing,
2009.

[S56] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, W. M.
Turski, Metrics and laws of software evolution-the nineties view, 4th
International Symposium on Software Metrics, 1997.

[S57] X. Liu, Q. Wang, Study on application of a quantitative evaluation
approach for software architecture adaptability, International
Conference on Quality Software (QSIC), pp. 265-272, 2005.

[S58] C. H. Lung, S. Bot, K. Kalaichelvan, R. Kazman, An approach to
software architecture analysis for evolution and reusability,
Conference of the Centre for Advanced Studies on Collaborative
Research, IBM Center for Advanced Studies Conference, 1997.

[S59] T. Marew, J.S. Lee, D. H. Bae, Tactics based approach for
integrating non-functional requirements in object-oriented analysis
and design, Journal of Systems and Software, vol. 82, pp. 1642-
1656, 2009.

Appendix A: Primary Studies in Chapter 3 202

[S35] A. Engel, T. R. Browning, Designing systems for adaptability by
means of architecture options, Journal of Systems Engineering, vol.
11, 2008.

[S36] R. Farenhorst, R. Izaks, P. Lago, H. van Vliet, A Just-In-Time
Architectural Knowledge Sharing Portal, Working IEEE/IFIP
Conference on Software Architecture (WICSA), pp. 125-134, 2008.

[S37] E. Fricke, B. Gebhard, H. Negele, E. Igenbergs, Coping with
changes: Causes, findings, and strategies, Journal of Systems
Engineering, vol. 3, pp. 169-179, 2000.

[S38] E. Fricke, A. P. Schulz, Design for changeability (DfC): Principles
to enable changes in systems throughout their entire lifecycle,
Journal of Systems Engineering, vol. 8, 2005.

[S39] D. Garlan, J. M. Barnes, B. Schmerl, O. Celiku, Evolution styles:
foundations and tool support for software architecture evolution,
Joint Working IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture, 2009.

[S40] S. Giesecke, W. Hasselbring, M. Riebisch, Classifying architectural
constraints as a basis for software quality assessment, Advanced
Engineering Informatics, vol. 21, pp. 169-179, 2007.

[S41] M. O. Hassan, L. Deruelle, H. Basson, A knowledge-based system
for change impact analysis on software architecture, International
Conference on Research Challenges in Information Science, 2010.

[S42] C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture: A
Practical Guide for Software Designers, ISBN 0201325713,
Addison-Wesley Professional, 2000.

[S43] A. Jansen, P. Avgeriou, J. S. van der Ven, Enriching software
architecture documentation, Journal of Systems and Software, vol.
82, pp. 1232-1248, 2009.

[S44] A. Jansen, J. Bosch, P. Avgeriou, Documenting after the fact:
Recovering architectural design decisions, Journal of Systems &
Software, vol. 81, pp. 536-557, 2008.

[S45] A. Jansen, J. Van der Ven, P. Avgeriou, D. K. Hammer, Tool
support for architectural decisions, Working IEEE/IFIP Conference
on Software Architecture (WICSA) 2007.

[S46] R. Kazman, J. Asundi, M. Klein, Quantifying the costs and benefits
of architectural decisions, International Conference on Software
Engineering 2001.

[S47] R. Kazman, L. Bass, G. Abowd, M. Webb, SAAM: a method for
analyzing the properties of software architectures, International
Conference on Software Engineering, pp. 81-90, 1994.

Appendix A: Primary Studies in Chapter 3 203

[S48] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J.
Carriere, The architecture tradeoff analysis method, IEEE
International Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 68-78, 1998.

[S49] S. Kim, D. K. Kim, L. Lu, S. Park, Quality-driven architecture
development using architectural tactics, Journal of Systems and
Software, vol. 82, pp. 1211-1231, 2009.

[S50] M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, H. Lipson,
Attribute-based architecture styles, Working IEEE/IFIP Conference
on Software Architecture (WICSA) 1999.

[S51] P. Lago, H. Muccini, H. van Vliet, A scoped approach to traceability
management, Journal of Systems and Software, vol. 82, pp. 168-182,
2009.

[S52] P. Lago, H. van Vliet, Explicit assumptions enrich architectural
models, International Conference on Software Engineering, pp. 206-
214, 2005.

[S53] N. Lassing, P. Bengtsson, H. van Vliet, J. Bosch, Experiences with
ALMA: Architecture-Level Modifiability Analysis, Journal of
Systems and Software, vol. 61, pp. 47-57, 2002.

[S54] N. Lassing, D. Rijsenbrij, H. van Vliet, How well can we predict
changes at architecture design time?, Journal of Systems and
Software, vol. 65, pp. 141-153, 2003.

[S55] J. Lee, D. H. Lee, Quantitative tradeoff analysis of software
architecture using the architecture analysis and design language,
ACIS International Conference on Software Engineering, Artificial
Intelligences, Networking and Parallel/Distributed Computing,
2009.

[S56] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, W. M.
Turski, Metrics and laws of software evolution-the nineties view, 4th
International Symposium on Software Metrics, 1997.

[S57] X. Liu, Q. Wang, Study on application of a quantitative evaluation
approach for software architecture adaptability, International
Conference on Quality Software (QSIC), pp. 265-272, 2005.

[S58] C. H. Lung, S. Bot, K. Kalaichelvan, R. Kazman, An approach to
software architecture analysis for evolution and reusability,
Conference of the Centre for Advanced Studies on Collaborative
Research, IBM Center for Advanced Studies Conference, 1997.

[S59] T. Marew, J.S. Lee, D. H. Bae, Tactics based approach for
integrating non-functional requirements in object-oriented analysis
and design, Journal of Systems and Software, vol. 82, pp. 1642-
1656, 2009.

Appendix A: Primary Studies in Chapter 3 204

[S60] A. Mubin, D. Ray, R. Rahman, Architecting an evolvable system by
iterative object-process modeling, World Congress on Computer
Science and Information Engineering (CSIE), 2009.

[S61] E. C. Nistor, A. van der Hoek, Explicit concern-driven development
with ArchEvol, IEEE/ACM International Conference on Advanced
Software Engineering, 2009.

[S62] F. G. Olumofin, V. B. Misic, A holistic architecture assessment
method for software product lines, Information and Software
Technology, vol. 49, pp. 309-323, 2007.

[S63] E. Ovaska, A. Evesti, K. Henttonen, M. Palviainen, P. Aho,
Knowledge based quality-driven architecture design and evaluation,
Journal of Information and Software Technology, vol 52, pp.577-
601, 2010.

[S64] I. Ozkaya, R. Kazman, M. Klein, Quality-Attribute Based Economic
Valuation of Architectural Patterns, International Workshop on the
Economics of Software and Computation, 2007.

[S65] C. Pahl, S. Giesecke, W. Hasselbring, Ontology-based modeling of
architectural styles, Journal of Information and Software
Technology, vol. 51, pp. 1739-1749, 2009.

[S66] D. Port, L. Huang. Strategic architectural flexibility, International
Conference on Software Maintenance (ICSM), pp. 389-396, 2003.

[S67] J. F. Ramil, M. M. Lehman, Metrics of software evolution as effort
predictors-a case study, International Conference on Software
Maintenance (ICSM), pp. 163-172, 2000.

[S68] R. Roeller, P. Lago, H. van Vliet, Recovering architectural
assumptions, Journal of Systems and Software, vol. 79, pp. 552-573,
2006.

[S69] G. Scanniello, A. D’Amico, C. D’Amico, T. D’Amico, Architectural
layer recovery for software system understanding and evolution,
Software: Practice and Experience, vol. 40, pp. 897-916, 2010.

[S70] M. Shahin, P. Liang, M. Reza, Improving understandability of
architecture design through visualization of architectural design
decision, International Conference on Software Engineering
Workshop on Sharing and Reusing Architectural Knowledge
(SHARK), 2010.

[S71] N. Subramanian, L. Chung, Process-oriented metrics for software
architecture evolvability, International Workshop on Principles of
Software Evolution, pp. 65-70, 2003.

[S72] K. J. Sullivan, W. G. Griswold, Y. Cai, B. Hallen, The structure and
value of modularity in software design, European Software
Engineering Conference held jointly with 9th ACM SIGSOFT

 205

International Symposium on Foundations of Software Engineering,
pp. 99-108, 2001.

[S73] M. Svahnberg, An industrial study on building consensus around
software architectures and quality attributes, Information and
Software Technology, vol. 46, pp. 805-818, 2004.

[S74] L. Tahvildari, K. Kontogiannis, J. Mylopoulos, Quality-driven
software re-engineering, Journal of Systems and Software, vol. 66,
pp. 225-239, 2003.

[S75] T. Tamai, Y. Torimitsu, Software lifetime and its evolution process
over generations, International Conference on Software
Maintenance, pp. 63-69, 1992.

[S76] D. Tamzalit, T. Mens, Guiding architectural restructuring through
architectural styles, International Conference and Workshops on
Engineering of Computer-Based Systems (ECBS), 2010.

[S77] A. Tang, M. Ali Babar, I. Gorton, J. Han, A survey of architecture
design rationale, Journal of Systems and Software, vol. 79, pp. 1792-
1804, 2006.

[S78] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M. Ali-Babar, A
Comparative Study of Architecture Knowledge Management Tools,
Journal of Systems and Software, vol. 83, pp. 352-370, 2009.

[S79] P. Tarvainen, Adaptability evaluation of software architectures; A
case study, Annual International Computer Software and
Applications Conference (COMPSAC), pp. 579-584, 2007.

[S80] M. van den Berg, A. Tang, R. Farenhorst, A constraint-oriented
approach to software architecture design, International Conference
on Quality Software, 2009.

[S81] W. M. N. Wan-Kadir, P. Loucopoulos, Relating evolving business
rules to software design, Journal of Systems Architecture, vol. 50,
pp. 367-382, 2004.

[S82] L. Zhu, M. Ali Babar, R. Jeffery, Mining patterns to support
software architecture evaluation, Working IEEE/IFIP Conference on
Software Architecture (WICSA), pp. 25-34, 2004.

Appendix A: Primary Studies in Chapter 3 204

[S60] A. Mubin, D. Ray, R. Rahman, Architecting an evolvable system by
iterative object-process modeling, World Congress on Computer
Science and Information Engineering (CSIE), 2009.

[S61] E. C. Nistor, A. van der Hoek, Explicit concern-driven development
with ArchEvol, IEEE/ACM International Conference on Advanced
Software Engineering, 2009.

[S62] F. G. Olumofin, V. B. Misic, A holistic architecture assessment
method for software product lines, Information and Software
Technology, vol. 49, pp. 309-323, 2007.

[S63] E. Ovaska, A. Evesti, K. Henttonen, M. Palviainen, P. Aho,
Knowledge based quality-driven architecture design and evaluation,
Journal of Information and Software Technology, vol 52, pp.577-
601, 2010.

[S64] I. Ozkaya, R. Kazman, M. Klein, Quality-Attribute Based Economic
Valuation of Architectural Patterns, International Workshop on the
Economics of Software and Computation, 2007.

[S65] C. Pahl, S. Giesecke, W. Hasselbring, Ontology-based modeling of
architectural styles, Journal of Information and Software
Technology, vol. 51, pp. 1739-1749, 2009.

[S66] D. Port, L. Huang. Strategic architectural flexibility, International
Conference on Software Maintenance (ICSM), pp. 389-396, 2003.

[S67] J. F. Ramil, M. M. Lehman, Metrics of software evolution as effort
predictors-a case study, International Conference on Software
Maintenance (ICSM), pp. 163-172, 2000.

[S68] R. Roeller, P. Lago, H. van Vliet, Recovering architectural
assumptions, Journal of Systems and Software, vol. 79, pp. 552-573,
2006.

[S69] G. Scanniello, A. D’Amico, C. D’Amico, T. D’Amico, Architectural
layer recovery for software system understanding and evolution,
Software: Practice and Experience, vol. 40, pp. 897-916, 2010.

[S70] M. Shahin, P. Liang, M. Reza, Improving understandability of
architecture design through visualization of architectural design
decision, International Conference on Software Engineering
Workshop on Sharing and Reusing Architectural Knowledge
(SHARK), 2010.

[S71] N. Subramanian, L. Chung, Process-oriented metrics for software
architecture evolvability, International Workshop on Principles of
Software Evolution, pp. 65-70, 2003.

[S72] K. J. Sullivan, W. G. Griswold, Y. Cai, B. Hallen, The structure and
value of modularity in software design, European Software
Engineering Conference held jointly with 9th ACM SIGSOFT

 205

International Symposium on Foundations of Software Engineering,
pp. 99-108, 2001.

[S73] M. Svahnberg, An industrial study on building consensus around
software architectures and quality attributes, Information and
Software Technology, vol. 46, pp. 805-818, 2004.

[S74] L. Tahvildari, K. Kontogiannis, J. Mylopoulos, Quality-driven
software re-engineering, Journal of Systems and Software, vol. 66,
pp. 225-239, 2003.

[S75] T. Tamai, Y. Torimitsu, Software lifetime and its evolution process
over generations, International Conference on Software
Maintenance, pp. 63-69, 1992.

[S76] D. Tamzalit, T. Mens, Guiding architectural restructuring through
architectural styles, International Conference and Workshops on
Engineering of Computer-Based Systems (ECBS), 2010.

[S77] A. Tang, M. Ali Babar, I. Gorton, J. Han, A survey of architecture
design rationale, Journal of Systems and Software, vol. 79, pp. 1792-
1804, 2006.

[S78] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M. Ali-Babar, A
Comparative Study of Architecture Knowledge Management Tools,
Journal of Systems and Software, vol. 83, pp. 352-370, 2009.

[S79] P. Tarvainen, Adaptability evaluation of software architectures; A
case study, Annual International Computer Software and
Applications Conference (COMPSAC), pp. 579-584, 2007.

[S80] M. van den Berg, A. Tang, R. Farenhorst, A constraint-oriented
approach to software architecture design, International Conference
on Quality Software, 2009.

[S81] W. M. N. Wan-Kadir, P. Loucopoulos, Relating evolving business
rules to software design, Journal of Systems Architecture, vol. 50,
pp. 367-382, 2004.

[S82] L. Zhu, M. Ali Babar, R. Jeffery, Mining patterns to support
software architecture evaluation, Working IEEE/IFIP Conference on
Software Architecture (WICSA), pp. 25-34, 2004.

Appendix B: Primary Studies in Chapter 6

[S1] A. Al-Ajlan, The evolution of open source software using eclipse
metrics, International Conference on New Trends in Information and
Service Science (NISS), 2009.

[S2] S. Ali, O. Maqbool, Monitoring software evolution using multiple
types of changes, International Conference on Emerging
Technologies (ICET), 2009.

[S3] O. Arafat, D. Riehle, The commenting practice of open source, 24th
ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications (OOPSLA),
2009.

[S4] U. Asklund, L. Bendix, A study of configuration management in
open source software projects, IEE Proceedings of Software, Issue 1,
pp. 40-46, 2002.

[S5] A. Bachmann, A. Bernstein, Software process data quality and
characteristics – a historical view on open and closed source
projects, Proceedings of the joint International and Annual ERCIM
Workshops on Principles of Software Evolution (IWPSE) and
Software Evolution (Evol) Workshops, 2009.

[S6] A. Bauer, M. Pizka, The contribution of free software to software
evolution, International Workshop on Principles of Software
Evolution (IWPSE), 2003.

[S7] K. Beecher, A. Capiluppi, C. Boldyreff, Identifying exogenous
drivers and evolutionary stages in FLOSS projects, Journal of
Systems and Software, vol. 82, issue 5, pp. 739-750, 2009.

[S8] S. Bouktif, G. Antoniol, E. Merlo, A feedback based quality
assessment to support open source software evolution: the GRASS
case study, International Conference on Software Maintenance
(ICSM), 2006.

[S9] A. Capiluppi, Models for the evolution of OS projects, International
Conference on Software Maintenance (ICSM), 2003.

Appendix B: Primary Studies in Chapter 6

[S1] A. Al-Ajlan, The evolution of open source software using eclipse
metrics, International Conference on New Trends in Information and
Service Science (NISS), 2009.

[S2] S. Ali, O. Maqbool, Monitoring software evolution using multiple
types of changes, International Conference on Emerging
Technologies (ICET), 2009.

[S3] O. Arafat, D. Riehle, The commenting practice of open source, 24th
ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications (OOPSLA),
2009.

[S4] U. Asklund, L. Bendix, A study of configuration management in
open source software projects, IEE Proceedings of Software, Issue 1,
pp. 40-46, 2002.

[S5] A. Bachmann, A. Bernstein, Software process data quality and
characteristics – a historical view on open and closed source
projects, Proceedings of the joint International and Annual ERCIM
Workshops on Principles of Software Evolution (IWPSE) and
Software Evolution (Evol) Workshops, 2009.

[S6] A. Bauer, M. Pizka, The contribution of free software to software
evolution, International Workshop on Principles of Software
Evolution (IWPSE), 2003.

[S7] K. Beecher, A. Capiluppi, C. Boldyreff, Identifying exogenous
drivers and evolutionary stages in FLOSS projects, Journal of
Systems and Software, vol. 82, issue 5, pp. 739-750, 2009.

[S8] S. Bouktif, G. Antoniol, E. Merlo, A feedback based quality
assessment to support open source software evolution: the GRASS
case study, International Conference on Software Maintenance
(ICSM), 2006.

[S9] A. Capiluppi, Models for the evolution of OS projects, International
Conference on Software Maintenance (ICSM), 2003.

Appendix B: Primary Studies in Chapter 6 208

[S10] A. Capiluppi, K. Beecher, Structural complexity and decay in
FLOSS systems: an inter-repository study, European Conference on
Software Maintenance and Reengineering, 2009.

[S11] A. Capiluppi, A. E. Faria, J. F. Ramil, Exploring the relationship
between cumulative change and complexity in an open source
system, European Conference on Software Maintenance and
Reengineering (CSMR), 2005.

[S12] A. Capiluppi, J. M. Gonzalez-Barahona, I. Herraiz, G. Robles,
Adapting the “staged model for software evolution” to
free/libre/open source software, International Workshop on
Principles of Software Evolution (IWPSE) in conjunction with
ESEC/FSE joint meeting, 2007.

[S13] A. Capiluppi, M. Morisio, P. Lago, Evolution of understandability in
OSS projects, European Conference on Software Maintenance and
Reengineering (CSMR), 2004.

[S14] A. Capiluppi, M. Morisio, J. F. Ramil, Structural evolution of an
open source system: a case study, International Workshop on
Program Comprehension (IWPC), 2004.

[S15] A. Capiluppi, J. F. Ramil, Studying the evolution of open source
systems at different levels of granularity: two case studies,
International Workshop on Principles of Software Evolution, 2004.

[S16] E. Capra, Mining open source web repositories to measure the cost
of evolutionary reuse, International Conference on Digital
Information Management, 2006.

[S17] E. Capra, C. Francalanci, F. Merlo, The economics of open source
software: an empirical analysis of maintenance costs, International
Conference on Software Maintenance (ICSM), 2007.

[S18] C. A. Conley, L. Sproull, Easier said than done: an empirical
investigation of software design and quality in open source software
development, 42nd Hawaii International Conference on System
Sciences, 2008.

[S19] J.C. Deprez, F. F. Monfils, M. Ciolkowski, M. Soto, Defining
software evolvability from a free/open-source software perspective,
International IEEE Workshop on Software Evolvability, 2007.

[S20] M. W. Godfrey, Q. Tu, Evolution in open source software: a case
study, International Conference on Software Maintenance, 2000.

[S21] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. José Amor,
D. M. German, Macro-level software evolution: a case study of a
large software compilation, Journal of Empirical Software
Engineering, vol. 14(3), 2007.

Appendix B: Primary Studies in Chapter 6 209

[S22] I. Harraiz, J. M. Gonzalez-Barahona, G. Robles, D. M. German, On
the prediction of the evolution of libre software projects,
International Conference on Software Maintenance (ICSM), 2007.

[S23] I. Herraiz, J. M. Gonzalez-Barahona, G. Robles, Determinism and
evolution, International Working Conference on Mining Software
Repositories (MSR), 2008.

[S24] C. Izurieta, J. Bieman, The evolution of FreeBSD and Linux,
International Symposium on Empirical Software Engineering
(ISESE), 2006.

[S25] S. Koch, Software evolution in open source projects – a large-scale
investigation, Journal of Software Maintenance and Evolution:
Research and Practice, vol. 19, issue 6, pp. 361-382, 2007.

[S26] T. Koponen, Evaluation framework for open source software
maintenance, International Conference on Software Engineering
Advances (ICSEA), 2006.

[S27] E. Y. Nakagawa, E. P. M. de Sousa, K. de Brito Murata, G. de Faria
Andery, et al., Software architecture relevance in open source
software evolution: a case study, 32nd Annual IEEE International
Computer Software and Applications Conference, 2008.

[S28] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, Y. Ye,
Evolution patterns of open-source software systems and
communities, International Workshop on Principles of Software
Evolution (IWPSE), 2002.

[S29] J. W. Paulson, G. Succi, A. Eberlein, An empirical study of open-
source and closed-source software products, Journal of IEEE
Transactions on Software Engineering, vol. 30, issue 4, 2004.

[S30] U. Raja, D. P. Hale, J. E. Hale, Modeling software evolution defects:
a time series approach, Journal of Software Maintenance and
Evolution: Research and Practice, vol. 21, issue 1, pp. 49-71, 2009.

[S31] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, I. Herraiz,
Evolution and growth in large libre software projects, International
Workshop on Principles of Software Evolution (IWPSE), 2005.

[S32] G. Robles, J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, B. E.
Erlandson, Tools for the study of the usual data sources found in
libre software projects, Software Applications: Concepts,
Methodologies, Tools, and Applications, 2009.

[S33] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, J. J. Amor,
Mining large software compilations over time: another perspective
of software evolution, International Workshop on Mining Software
Repositories (MSR), 2006.

Appendix B: Primary Studies in Chapter 6 208

[S10] A. Capiluppi, K. Beecher, Structural complexity and decay in
FLOSS systems: an inter-repository study, European Conference on
Software Maintenance and Reengineering, 2009.

[S11] A. Capiluppi, A. E. Faria, J. F. Ramil, Exploring the relationship
between cumulative change and complexity in an open source
system, European Conference on Software Maintenance and
Reengineering (CSMR), 2005.

[S12] A. Capiluppi, J. M. Gonzalez-Barahona, I. Herraiz, G. Robles,
Adapting the “staged model for software evolution” to
free/libre/open source software, International Workshop on
Principles of Software Evolution (IWPSE) in conjunction with
ESEC/FSE joint meeting, 2007.

[S13] A. Capiluppi, M. Morisio, P. Lago, Evolution of understandability in
OSS projects, European Conference on Software Maintenance and
Reengineering (CSMR), 2004.

[S14] A. Capiluppi, M. Morisio, J. F. Ramil, Structural evolution of an
open source system: a case study, International Workshop on
Program Comprehension (IWPC), 2004.

[S15] A. Capiluppi, J. F. Ramil, Studying the evolution of open source
systems at different levels of granularity: two case studies,
International Workshop on Principles of Software Evolution, 2004.

[S16] E. Capra, Mining open source web repositories to measure the cost
of evolutionary reuse, International Conference on Digital
Information Management, 2006.

[S17] E. Capra, C. Francalanci, F. Merlo, The economics of open source
software: an empirical analysis of maintenance costs, International
Conference on Software Maintenance (ICSM), 2007.

[S18] C. A. Conley, L. Sproull, Easier said than done: an empirical
investigation of software design and quality in open source software
development, 42nd Hawaii International Conference on System
Sciences, 2008.

[S19] J.C. Deprez, F. F. Monfils, M. Ciolkowski, M. Soto, Defining
software evolvability from a free/open-source software perspective,
International IEEE Workshop on Software Evolvability, 2007.

[S20] M. W. Godfrey, Q. Tu, Evolution in open source software: a case
study, International Conference on Software Maintenance, 2000.

[S21] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. José Amor,
D. M. German, Macro-level software evolution: a case study of a
large software compilation, Journal of Empirical Software
Engineering, vol. 14(3), 2007.

Appendix B: Primary Studies in Chapter 6 209

[S22] I. Harraiz, J. M. Gonzalez-Barahona, G. Robles, D. M. German, On
the prediction of the evolution of libre software projects,
International Conference on Software Maintenance (ICSM), 2007.

[S23] I. Herraiz, J. M. Gonzalez-Barahona, G. Robles, Determinism and
evolution, International Working Conference on Mining Software
Repositories (MSR), 2008.

[S24] C. Izurieta, J. Bieman, The evolution of FreeBSD and Linux,
International Symposium on Empirical Software Engineering
(ISESE), 2006.

[S25] S. Koch, Software evolution in open source projects – a large-scale
investigation, Journal of Software Maintenance and Evolution:
Research and Practice, vol. 19, issue 6, pp. 361-382, 2007.

[S26] T. Koponen, Evaluation framework for open source software
maintenance, International Conference on Software Engineering
Advances (ICSEA), 2006.

[S27] E. Y. Nakagawa, E. P. M. de Sousa, K. de Brito Murata, G. de Faria
Andery, et al., Software architecture relevance in open source
software evolution: a case study, 32nd Annual IEEE International
Computer Software and Applications Conference, 2008.

[S28] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, Y. Ye,
Evolution patterns of open-source software systems and
communities, International Workshop on Principles of Software
Evolution (IWPSE), 2002.

[S29] J. W. Paulson, G. Succi, A. Eberlein, An empirical study of open-
source and closed-source software products, Journal of IEEE
Transactions on Software Engineering, vol. 30, issue 4, 2004.

[S30] U. Raja, D. P. Hale, J. E. Hale, Modeling software evolution defects:
a time series approach, Journal of Software Maintenance and
Evolution: Research and Practice, vol. 21, issue 1, pp. 49-71, 2009.

[S31] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, I. Herraiz,
Evolution and growth in large libre software projects, International
Workshop on Principles of Software Evolution (IWPSE), 2005.

[S32] G. Robles, J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, B. E.
Erlandson, Tools for the study of the usual data sources found in
libre software projects, Software Applications: Concepts,
Methodologies, Tools, and Applications, 2009.

[S33] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, J. J. Amor,
Mining large software compilations over time: another perspective
of software evolution, International Workshop on Mining Software
Repositories (MSR), 2006.

 210

[S34] M. Simmons, P. Vercellone-Smith, P. A. Laplante, Understanding
open source software through software archaeology: the case of
Nethack, 30th Annual IEEE/NASA Software Engineering Workshop
(SEW), 2006.

[S35] N. Smith, A. Capiluppi, J. F. Ramil, A study of open source software
evolution data using qualitative simulation, Journal of Software
Maintenance and Evolution: Research and Practice, vol. 10, issue 3,
pp. 287-300, 2005.

[S36] L. G. Thomas, S. R. Schach, G. Z. Heller, J. Offutt, Impact of
release intervals on empirical research into software evolution, with
application to the maintainability of Linux, IET Software, vol. 3,
issue 1, pp. 58-66, 2009.

[S37] J. B. Tran, M. W. Godfrey, E. H. S. Lee, R. C. Holt, Architectural
repair of open source software, International Workshop on Program
Comprehension (IWPC), 2000.

[S38] Y. Wang, D. Guo, H. Shi, Measuring the evolution of open source
software systems with their communities, ACM SIGSOFT Software
Engineering Notes, vol. 32, issue 6, 2007.

[S39] R. van Wendel de Joode, T. M. Egyedi, Handling variety: the
tension between adaptability and interoperability of open source
software, Journal of Computer Standards & Interfaces, vol. 28, issue
1, pp. 109-221, 2005.

[S40] G. Xie, J. Chen, I. Neamtiu, Towards a better understanding of
software evolution: an empirical study on open source software,
International Conference on Software Maintenance, 2009.

[S41] L. Yu, Indirectly predicting the maintenance effort of open-source
software, Journal of Software Maintenance and Evolution: Research
and Practice, vol. 18, issue 5, pp. 311-332, 2006.

References

[1] OSS/BSS reference architecture and its implementation scenario for
fulfillment,
http://www.nokia.com/NOKIA_COM_1/About_Nokia/Press/White_P

apers/pdf_files/nokia_tietoenator_0605_net.pdf.
[2] A. Al-Ajlan, The evolution of open source software using Eclipse

metrics, International Conference on New Trends in Information and
Service Science (NISS), 2009.

[3] M. S. Ali, M. Ali Babar, L. Chen, K. J. Stol, A systematic review of
comparative evidence of aspect-oriented programming, Information
and Software Technology, vol. 52(9), pp. 871-887, 2010.

[4] S. Ali, O. Maqbool, Monitoring software evolution using multiple
types of changes, International Conference on Emerging
Technologies (ICET), 2009.

[5] B. Anda, K. Hansen, A case study on the application of UML in
legacy development, the ACM/IEEE International Symposium on
Empirical Software Engineering (ISESE), 2006.

[6] M. Aoyama, Metrics and analysis of software architecture evolution
with discontinuity, International Workshop on Principles of
Software Evolution (IWPSE), 2002.

[7] O. Arafat, D. Riehle, The commenting practice of open source, 24th
ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications (OOPSLA),
2009.

[8] C. Argyris, R. Putnam, D. M. L. Smith, Action Science: Concepts,
Methods, and Skills for Research and Intervention, Jossey-Bass Inc.
Publications, 1985.

[9] R. S. Arnold, Software restructuring, Proceedings of the IEEE, vol.
77, issue 4, pp. 607-617, 1989.

[10] R. S. Arnold, Software Reengineering, ISBN 0818632712, IEEE
Computer Society Press, 1993.

 210

[S34] M. Simmons, P. Vercellone-Smith, P. A. Laplante, Understanding
open source software through software archaeology: the case of
Nethack, 30th Annual IEEE/NASA Software Engineering Workshop
(SEW), 2006.

[S35] N. Smith, A. Capiluppi, J. F. Ramil, A study of open source software
evolution data using qualitative simulation, Journal of Software
Maintenance and Evolution: Research and Practice, vol. 10, issue 3,
pp. 287-300, 2005.

[S36] L. G. Thomas, S. R. Schach, G. Z. Heller, J. Offutt, Impact of
release intervals on empirical research into software evolution, with
application to the maintainability of Linux, IET Software, vol. 3,
issue 1, pp. 58-66, 2009.

[S37] J. B. Tran, M. W. Godfrey, E. H. S. Lee, R. C. Holt, Architectural
repair of open source software, International Workshop on Program
Comprehension (IWPC), 2000.

[S38] Y. Wang, D. Guo, H. Shi, Measuring the evolution of open source
software systems with their communities, ACM SIGSOFT Software
Engineering Notes, vol. 32, issue 6, 2007.

[S39] R. van Wendel de Joode, T. M. Egyedi, Handling variety: the
tension between adaptability and interoperability of open source
software, Journal of Computer Standards & Interfaces, vol. 28, issue
1, pp. 109-221, 2005.

[S40] G. Xie, J. Chen, I. Neamtiu, Towards a better understanding of
software evolution: an empirical study on open source software,
International Conference on Software Maintenance, 2009.

[S41] L. Yu, Indirectly predicting the maintenance effort of open-source
software, Journal of Software Maintenance and Evolution: Research
and Practice, vol. 18, issue 5, pp. 311-332, 2006.

References

[1] OSS/BSS reference architecture and its implementation scenario for
fulfillment,
http://www.nokia.com/NOKIA_COM_1/About_Nokia/Press/White_P

apers/pdf_files/nokia_tietoenator_0605_net.pdf.
[2] A. Al-Ajlan, The evolution of open source software using Eclipse

metrics, International Conference on New Trends in Information and
Service Science (NISS), 2009.

[3] M. S. Ali, M. Ali Babar, L. Chen, K. J. Stol, A systematic review of
comparative evidence of aspect-oriented programming, Information
and Software Technology, vol. 52(9), pp. 871-887, 2010.

[4] S. Ali, O. Maqbool, Monitoring software evolution using multiple
types of changes, International Conference on Emerging
Technologies (ICET), 2009.

[5] B. Anda, K. Hansen, A case study on the application of UML in
legacy development, the ACM/IEEE International Symposium on
Empirical Software Engineering (ISESE), 2006.

[6] M. Aoyama, Metrics and analysis of software architecture evolution
with discontinuity, International Workshop on Principles of
Software Evolution (IWPSE), 2002.

[7] O. Arafat, D. Riehle, The commenting practice of open source, 24th
ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications (OOPSLA),
2009.

[8] C. Argyris, R. Putnam, D. M. L. Smith, Action Science: Concepts,
Methods, and Skills for Research and Intervention, Jossey-Bass Inc.
Publications, 1985.

[9] R. S. Arnold, Software restructuring, Proceedings of the IEEE, vol.
77, issue 4, pp. 607-617, 1989.

[10] R. S. Arnold, Software Reengineering, ISBN 0818632712, IEEE
Computer Society Press, 1993.

References 212

[11] U. Asklund, L. Bendix, A study of configuration management in
open source software projects, IEE Proceedings of Software, vol.
149, issue 1, pp. 40-46, 2002.

[12] A. Avritzer, E. J. Weyuker, Metrics to assess the likelihood of
project success based on architecture reviews, Journal of Empirical
Software Engineering, vol. 4(3), pp. 199-215, 1999.

[13] A. Bachmann, A. Bernstein, Software process data quality and
characteristics: a historical view on open and closed source projects,
Proceedings of the joint International and Annual ERCIM
Workshops on Principles of Software Evolution (IWPSE) and
Software Evolution (Evol) Workshops, 2009.

[14] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh,
A. Vilbig, A meta-model for representing variability in product
family development, Software Product-Family Engineering, Lecture
Notes in Computer Science, vol. 3014, pp. 66-80, 2004.

[15] P. Baker, S. Loh, F. Weil, Model-driven engineering in a large
industrial context - Motorola case study, Model Driven Engineering
Languages and Systems, Lecture Notes in Computer Science, vol.
3713, pp. 476-491, 2005.

[16] C. Y. Baldwin, K. B. Clark, Design Rules, Vol. 1: The Power of
Modularity, ISBN 0262024667, MIT Press Cambridge, 2000.

[17] O. Barais, E. Cariou, L. Duchien, N. Pessemier, L. Seinturier,
TranSAT: a framework for the specifcation of software architecture
evolution, Workshop on Coordination and Adaptation Techniques
for Software Entities (ECOOP), 2004.

[18] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
ISBN 0321154959, Addison-Wesley Longman Publishing Co., Inc.
2003.

[19] J. Bayer, J. F. Girard, M. Wurthner, J. M. DeBaud, M. Apel,
Transitioning legacy assets to a product line architecture, ESEC/FSE
Software Engineering, Lecture Notes in Computer Science, vol.
1686, pp. 446-63, 1999.

[20] K. Beecher, A. Capiluppi, C. Boldyreff, Identifying exogenous
drivers and evolutionary stages in FLOSS projects, Journal of
Systems and Software, vol. 82, issue 5, pp. 739-750, 2009.

[21] K. H. Bennett, V. T. Rajlich, Software maintenance and evolution: a
roadmap, ICSE Proceedings of the Conference on the Future of
Software Engineering, 2000.

[22] K. Bennett, Software evolution: past, present and future, Journal of
Information and Software Technology, vol. 38, issue 11, pp. 673-
680, 1996.

References 213

[23] D. Benyon, P. Turner, S. Turner, Designing Interactive Systems:
People, Activities, Contexts, Technologies, ISBN 0321116291,
Addison-Wesley, 2005.

[24] B. W. Boehm, A spiral model of software development and
enhancement, Computer, vol. 21, issue 5, pp. 61-72, 1988.

[25] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. MacLeod,
M. J. Merritt, Characteristics of Software Quality, ISBN
0444851054, North-Holland Publishing Co., 1978.

[26] I. Borne, S. Demeyer, G. H. Galal, Object-oriented architectural
evolution, Object-Oriented Technology ECOOP, Lecture Notes in
Computer Science, vol. 1743, pp. 57-64, 1999.

[27] A. Boronat, Automatic reengineering in MDA using rewriting logic
as transformation engine, 9th European Conference on Software
Maintenance and Reengineering (CSMR), 2005.

[28] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach, ISBN 978-0-201-67494-1,
Addison-Wesley, 2000.

[29] S. Bouktif, G. Antoniol, E. Merlo, A feedback based quality
assessment to support open source software evolution: the grass case
study, International Conference on Software Maintenance (ICSM),
2006.

[30] H. P. Breivold, Software Architecture Evolution and Software
Evolvability, Licentiate Thesis, ISBN 978-91-86135-15-7,
Mälardalen University, 2009.

[31] H. P. Breivold, I. Crnkovic, Using software evolvability model for
evolvability analysis, ISSN 1404-3041, Mälardalen Real-Time
Research Center, Mälardalen University, 2008.

[32] H. P. Breivold, I. Crnkovic, An extended quantitative analysis
approach for architecting evolvable software systems, Computing
Professionals Conference Workshop on Industrial Software
Evolution and Maintenance Processes (WISEMP), 2010.

[33] H. P. Breivold, I. Crnkovic, P. J. Eriksson, Analyzing software
evolvability, IEEE International Computer Software and
Applications Conference (COMPSAC), 2008.

[34] H. P. Breivold, I. Crnkovic, R. Land, M. Larsson, Analyzing
software evolvability of an industrial automation control system: a
case study, International Conference on Software Engineering
Advances (ICSEA), 2008.

[35] H. P. Breivold, I. Crnkovic, M. Larsson, A systematic review of
software architecture evolution research, Journal of Information and
Software Technology, doi: 10.1016/j.infsof.2011.06.002, 2011.

References 212

[11] U. Asklund, L. Bendix, A study of configuration management in
open source software projects, IEE Proceedings of Software, vol.
149, issue 1, pp. 40-46, 2002.

[12] A. Avritzer, E. J. Weyuker, Metrics to assess the likelihood of
project success based on architecture reviews, Journal of Empirical
Software Engineering, vol. 4(3), pp. 199-215, 1999.

[13] A. Bachmann, A. Bernstein, Software process data quality and
characteristics: a historical view on open and closed source projects,
Proceedings of the joint International and Annual ERCIM
Workshops on Principles of Software Evolution (IWPSE) and
Software Evolution (Evol) Workshops, 2009.

[14] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh,
A. Vilbig, A meta-model for representing variability in product
family development, Software Product-Family Engineering, Lecture
Notes in Computer Science, vol. 3014, pp. 66-80, 2004.

[15] P. Baker, S. Loh, F. Weil, Model-driven engineering in a large
industrial context - Motorola case study, Model Driven Engineering
Languages and Systems, Lecture Notes in Computer Science, vol.
3713, pp. 476-491, 2005.

[16] C. Y. Baldwin, K. B. Clark, Design Rules, Vol. 1: The Power of
Modularity, ISBN 0262024667, MIT Press Cambridge, 2000.

[17] O. Barais, E. Cariou, L. Duchien, N. Pessemier, L. Seinturier,
TranSAT: a framework for the specifcation of software architecture
evolution, Workshop on Coordination and Adaptation Techniques
for Software Entities (ECOOP), 2004.

[18] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
ISBN 0321154959, Addison-Wesley Longman Publishing Co., Inc.
2003.

[19] J. Bayer, J. F. Girard, M. Wurthner, J. M. DeBaud, M. Apel,
Transitioning legacy assets to a product line architecture, ESEC/FSE
Software Engineering, Lecture Notes in Computer Science, vol.
1686, pp. 446-63, 1999.

[20] K. Beecher, A. Capiluppi, C. Boldyreff, Identifying exogenous
drivers and evolutionary stages in FLOSS projects, Journal of
Systems and Software, vol. 82, issue 5, pp. 739-750, 2009.

[21] K. H. Bennett, V. T. Rajlich, Software maintenance and evolution: a
roadmap, ICSE Proceedings of the Conference on the Future of
Software Engineering, 2000.

[22] K. Bennett, Software evolution: past, present and future, Journal of
Information and Software Technology, vol. 38, issue 11, pp. 673-
680, 1996.

References 213

[23] D. Benyon, P. Turner, S. Turner, Designing Interactive Systems:
People, Activities, Contexts, Technologies, ISBN 0321116291,
Addison-Wesley, 2005.

[24] B. W. Boehm, A spiral model of software development and
enhancement, Computer, vol. 21, issue 5, pp. 61-72, 1988.

[25] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. MacLeod,
M. J. Merritt, Characteristics of Software Quality, ISBN
0444851054, North-Holland Publishing Co., 1978.

[26] I. Borne, S. Demeyer, G. H. Galal, Object-oriented architectural
evolution, Object-Oriented Technology ECOOP, Lecture Notes in
Computer Science, vol. 1743, pp. 57-64, 1999.

[27] A. Boronat, Automatic reengineering in MDA using rewriting logic
as transformation engine, 9th European Conference on Software
Maintenance and Reengineering (CSMR), 2005.

[28] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach, ISBN 978-0-201-67494-1,
Addison-Wesley, 2000.

[29] S. Bouktif, G. Antoniol, E. Merlo, A feedback based quality
assessment to support open source software evolution: the grass case
study, International Conference on Software Maintenance (ICSM),
2006.

[30] H. P. Breivold, Software Architecture Evolution and Software
Evolvability, Licentiate Thesis, ISBN 978-91-86135-15-7,
Mälardalen University, 2009.

[31] H. P. Breivold, I. Crnkovic, Using software evolvability model for
evolvability analysis, ISSN 1404-3041, Mälardalen Real-Time
Research Center, Mälardalen University, 2008.

[32] H. P. Breivold, I. Crnkovic, An extended quantitative analysis
approach for architecting evolvable software systems, Computing
Professionals Conference Workshop on Industrial Software
Evolution and Maintenance Processes (WISEMP), 2010.

[33] H. P. Breivold, I. Crnkovic, P. J. Eriksson, Analyzing software
evolvability, IEEE International Computer Software and
Applications Conference (COMPSAC), 2008.

[34] H. P. Breivold, I. Crnkovic, R. Land, M. Larsson, Analyzing
software evolvability of an industrial automation control system: a
case study, International Conference on Software Engineering
Advances (ICSEA), 2008.

[35] H. P. Breivold, I. Crnkovic, M. Larsson, A systematic review of
software architecture evolution research, Journal of Information and
Software Technology, doi: 10.1016/j.infsof.2011.06.002, 2011.

References 214

[36] H. P. Breivold, M. Larsson, Component-based and service-oriented
software engineering: key concepts and principles, 33rd Euromicro
Conference on Software Engineering and Advanced Applications,
2007.

[37] J. Brichau, R. Chitchyan, A. Garcia, A. Rashid, S. Clarke, E.
D'Hondt, M. Haupt, W. Joosen, S. Katz, J. Noyé, A model
curriculum for aspect-oriented software development, IEEE
Software, vol. 23(6), pp. 53-61, 2006.

[38] F. P. Brooks, No Silver Bullet, IEEE Computer, vol. 20, pp. 10-19,
1987.

[39] J. Buckley, T. Mens, M. Zenger, A. Rashid, G. Kniesel, Towards a
taxonomy of software change, Journal of Software Maintenance and
Evolution: Research and Practice, vol. 17, issue 5, pp. 309-332,
2004.

[40] A. Capiluppi, Models for the evolution of OS projects, International
Conference on Software Maintenance (ICSM), 2003.

[41] A. Capiluppi, K. Beecher, Structural complexity and decay in
FLOSS systems: an inter-repository study, European Conference on
Software Maintenance and Reengineering, 2009.

[42] A. Capiluppi, A. E. Faria, J. F. Ramil, Exploring the relationship
between cumulative change and complexity in an open source
system, European Conference on Software Maintenance and
Reengineering (CSMR), 2005.

[43] A. Capiluppi, J. M. González-Barahona, I. Herraiz, G. Robles,
Adapting the staged model for software evolution to free/libre/open
source software, International Workshop on Principles of Software
Evolution (IWPSE), 2007.

[44] A. Capiluppi, M. Morisio, P. Lago, Evolution of understandability in
oss projects, European Conference on Software Maintenance and
Reengineering (CSMR), 2004.

[45] A. Capiluppi, M. Morisio, J. F. Ramil, Structural evolution of an
open source system: a case study, International Workshop on
Program Comprehension (IWPC), 2004.

[46] A. Capiluppi, J. F. Ramil, Studying the evolution of open source
systems at different levels of granularity: two case studies,
International Workshop on Principles of Software Evolution
(IWPSE), 2004.

[47] E. Capra, Mining open source web repositories to measure the cost
of evolutionary reuse, International Conference on Digital
Information Management (ICDIM), 2006.

References 215

[48] E. Capra, C. Francalanci, F. Merlo, The economics of open source
software: an empirical analysis of maintenance costs, International
Conference on Software Maintenance (ICSM), 2007.

[49] H. Cervantes, R. S. Hall, Autonomous adaptation to dynamic
availability using a service-oriented component model, International
Conference on Software Engineering (ICSE), 2004.

[50] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, W. G. Tan, Types of
software evolution and software maintenance, Journal of Software
Maintenance and Evolution: Research and Practice, vol. 13, issue 1,
pp. 3-30, 2001.

[51] C. Chavez, A. Garcia, U. Kulesza, C. Sant'Anna, C. Lucena,
Crosscutting interfaces for aspect-oriented modeling, Journal of the
Brazilian Computer Society, vol. 12(1), pp. 43-58, 2006.

[52] E. J. Chikofsky, J. H. Cross, Reverse engineering and design
recovery: a taxonomy, IEEE Software, vol. 7, pp. 13-17, 1990.

[53] D. R. Christian, Continuous evolution through software architecture
evaluation: a case study, Journal of Software Maintenance and
Evolution: Research and Practice, vol. 18, pp. 351-383, 2006.

[54] L. Chung, A. Nixon, E. Yu, J. Mylopoulos, Non-Functional
Requirements in Software Engineering, ISBN 9780792386667,
Kluwer Academic Publishers, 1999.

[55] P. Clements, R. Kazman, M. Klein, Evaluating Software
Architectures: Methods and Case Studies, ISBN 0-201-70482-X,
Addison-Wesley, 2002.

[56] P. Clements, L. Northrop, Software Product Lines: Practices and
Patterns, ISBN-10 9780201703320, Addison-Wesley Professional,
2002.

[57] A. Cockburn, Agile Software Development, ISBN-10 0201699699,
Addison-Wesley Professional, 2002.

[58] C. A. Conley, L. Sproull, Easier said than done: an empirical
investigation of software design and quality in open source software
development, 42nd Hawaii International Conference on System
Sciences, 2008.

[59] J. O. Coplien, Multi-paradigm design for C++, ISBN: 0-201-82467-
1, Addison-Wesley Longman Publishing Co, Inc, USA, 1999.

[60] S. Demeyer, S. Ducasse, O. M. Nierstrasz, Object-Oriented
Reengineering Patterns, ISBN 978-3-9523341-2-6, Morgan
Kaufmann, 2003.

[61] D. Dhungana, T. Neumayer, P. Grünbacher, R. Rabiser, Supporting
evolution in model-based product line engineering, International
Software Product Line Conference, 2008.

References 214

[36] H. P. Breivold, M. Larsson, Component-based and service-oriented
software engineering: key concepts and principles, 33rd Euromicro
Conference on Software Engineering and Advanced Applications,
2007.

[37] J. Brichau, R. Chitchyan, A. Garcia, A. Rashid, S. Clarke, E.
D'Hondt, M. Haupt, W. Joosen, S. Katz, J. Noyé, A model
curriculum for aspect-oriented software development, IEEE
Software, vol. 23(6), pp. 53-61, 2006.

[38] F. P. Brooks, No Silver Bullet, IEEE Computer, vol. 20, pp. 10-19,
1987.

[39] J. Buckley, T. Mens, M. Zenger, A. Rashid, G. Kniesel, Towards a
taxonomy of software change, Journal of Software Maintenance and
Evolution: Research and Practice, vol. 17, issue 5, pp. 309-332,
2004.

[40] A. Capiluppi, Models for the evolution of OS projects, International
Conference on Software Maintenance (ICSM), 2003.

[41] A. Capiluppi, K. Beecher, Structural complexity and decay in
FLOSS systems: an inter-repository study, European Conference on
Software Maintenance and Reengineering, 2009.

[42] A. Capiluppi, A. E. Faria, J. F. Ramil, Exploring the relationship
between cumulative change and complexity in an open source
system, European Conference on Software Maintenance and
Reengineering (CSMR), 2005.

[43] A. Capiluppi, J. M. González-Barahona, I. Herraiz, G. Robles,
Adapting the staged model for software evolution to free/libre/open
source software, International Workshop on Principles of Software
Evolution (IWPSE), 2007.

[44] A. Capiluppi, M. Morisio, P. Lago, Evolution of understandability in
oss projects, European Conference on Software Maintenance and
Reengineering (CSMR), 2004.

[45] A. Capiluppi, M. Morisio, J. F. Ramil, Structural evolution of an
open source system: a case study, International Workshop on
Program Comprehension (IWPC), 2004.

[46] A. Capiluppi, J. F. Ramil, Studying the evolution of open source
systems at different levels of granularity: two case studies,
International Workshop on Principles of Software Evolution
(IWPSE), 2004.

[47] E. Capra, Mining open source web repositories to measure the cost
of evolutionary reuse, International Conference on Digital
Information Management (ICDIM), 2006.

References 215

[48] E. Capra, C. Francalanci, F. Merlo, The economics of open source
software: an empirical analysis of maintenance costs, International
Conference on Software Maintenance (ICSM), 2007.

[49] H. Cervantes, R. S. Hall, Autonomous adaptation to dynamic
availability using a service-oriented component model, International
Conference on Software Engineering (ICSE), 2004.

[50] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, W. G. Tan, Types of
software evolution and software maintenance, Journal of Software
Maintenance and Evolution: Research and Practice, vol. 13, issue 1,
pp. 3-30, 2001.

[51] C. Chavez, A. Garcia, U. Kulesza, C. Sant'Anna, C. Lucena,
Crosscutting interfaces for aspect-oriented modeling, Journal of the
Brazilian Computer Society, vol. 12(1), pp. 43-58, 2006.

[52] E. J. Chikofsky, J. H. Cross, Reverse engineering and design
recovery: a taxonomy, IEEE Software, vol. 7, pp. 13-17, 1990.

[53] D. R. Christian, Continuous evolution through software architecture
evaluation: a case study, Journal of Software Maintenance and
Evolution: Research and Practice, vol. 18, pp. 351-383, 2006.

[54] L. Chung, A. Nixon, E. Yu, J. Mylopoulos, Non-Functional
Requirements in Software Engineering, ISBN 9780792386667,
Kluwer Academic Publishers, 1999.

[55] P. Clements, R. Kazman, M. Klein, Evaluating Software
Architectures: Methods and Case Studies, ISBN 0-201-70482-X,
Addison-Wesley, 2002.

[56] P. Clements, L. Northrop, Software Product Lines: Practices and
Patterns, ISBN-10 9780201703320, Addison-Wesley Professional,
2002.

[57] A. Cockburn, Agile Software Development, ISBN-10 0201699699,
Addison-Wesley Professional, 2002.

[58] C. A. Conley, L. Sproull, Easier said than done: an empirical
investigation of software design and quality in open source software
development, 42nd Hawaii International Conference on System
Sciences, 2008.

[59] J. O. Coplien, Multi-paradigm design for C++, ISBN: 0-201-82467-
1, Addison-Wesley Longman Publishing Co, Inc, USA, 1999.

[60] S. Demeyer, S. Ducasse, O. M. Nierstrasz, Object-Oriented
Reengineering Patterns, ISBN 978-3-9523341-2-6, Morgan
Kaufmann, 2003.

[61] D. Dhungana, T. Neumayer, P. Grünbacher, R. Rabiser, Supporting
evolution in model-based product line engineering, International
Software Product Line Conference, 2008.

References 216

[62] R. G. Dromey, Cornering the Chimera, IEEE Software, vol. 13, pp.
33-43, 1996.

[63] J. Estublier, G. Vega, Reuse and variability in large software
applications, Proceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2005.

[64] D. Falessi, R. Capilla, G. Cantone, A value-based approach for
documenting design decisions rationale: a replicated experiment,
International Workshop on Sharing and Reusing Architectural
Knowledge (SHARK), 2008.

[65] D. Faust, C. Verhoef, Software product line migration and
deployment, Software: Practice and Experience, vol. 33, issue 10,
pp. 933-955, 2003.

[66] N. Fenton, S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, ISBN 0534954251, PWS Publishing Co.
Boston, 1997.

[67] R. Fitzpatrick, P. Smith, B. O'Shea, Software quality challenges,
Workshop on Software Quality at the 26th International Conference
on Software Engineering, 2004.

[68] J. L. Fleiss, Measuring nominal scale agreement among many raters,
Psychological bulletin, vol. 76(5), pp. 378-382, 1971.

[69] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, J. M. Jézéquel, Model-
driven engineering for software migration in a large industrial
context, Model Driven Engineering Languages and Systems, Lecture
Notes in Computer Science, vol. 4735, pp. 482-497, 2007.

[70] M. Fowler, Refactoring: Improving the Design of Existing Code,
ISBN 0-201-48567-2, Addison-Wesley Professional, 1999.

[71] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns:
elements of reusable object-oriented software, ISBN 0201633612,
Addison-Wesley Professional Computing Series, 1995.

[72] A. Garcia, C. Chavez, T. Batista, C. Sant’Anna, U. Kulesza, A.
Rashid, C. Lucena, On the modular representation of architectural
aspects, Software Architecture, Lecture Notes in Computer Science,
vol. 4344, 2006.

[73] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, A.
von Staa, Modularizing design patterns with aspects: a quantitative
study, Transactions on aspect-oriented software development I,
Lecture Notes in Computer Science, vol. 3880, pp. 36-74, 2006.

[74] D. Garlan, Software architecture: a roadmap, ICSE Proceedings of
the Conference on the Future of Software Engineering, 2000.

References 217

[75] D. Garlan, J. M. Barnes, B. Schmerl, O. Celiku, Evolution styles:
foundations and tool support for software architecture evolution,
Joint Working IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture (WICSA/ECSA),
2009.

[76] L. R. Gay, G. E. Mills, P. W. Airasian, Educational Research:
Competencies for Analysis and Applications, ISBN-10
9780131185340, Prentice Hall, 2005.

[77] C. Gibbs, C. R. Liu, Y. Coady, Sustainable system infrastructure and
big bang evolution: can aspects keep pace?, ECOOP - Object-
Oriented Programming, Lecture Notes in Computer Science, vol.
3586, 2005.

[78] T. Gilb, Evolutionary development [software], SIGSOFT Software
Engineering Notes, vol. 6, p. 17, 1981.

[79] T. Gilb, The 10 most powerful principles for quality in software and
software organizations, Cross-Talk, Nov, 2002.

[80] M. W. Godfrey, D. M. German, The past, present, and future of
software evolution, Frontiers of Software Maintenance (FoSM),
2008.

[81] M. W. Godfrey, Q. Tu, Evolution in open source software: a case
study, International Conference on Software Maintenance, 2000.

[82] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J. Amor, D.
M. German, Macro-level software evolution: a case study of a large
software compilation, Journal of Empirical Software Engineering,
vol. 14, pp. 262-285, 2009.

[83] R. B. Grady D. L. Caswell, Software Metrics: Establishing a
Company-Wide Program, ISBN-10 9780138218447, Prentice-Hall,
1987.

[84] I. Herraiz, J. M. Gonzalez-Barahona, G. Robles, Determinism and
evolution, International Working Conference on Mining Software
Repositories (MSR), 2008.

[85] I. Herraiz, J. M. Gonzalez-Barahona, G. Robles, D. M. German, On
the prediction of the evolution of libre software projects,
International Conference on Software Maintenance (ICSM), 2007.

[86] I. Herraiz, G. Robles, J. M. Gonzalez-Barahona, A. Capiluppi, J. F.
Ramil, Comparison between SLOCs and number of files as size
metrics for software evolution analysis, Conference on Software
Maintenance and Reengineering (CSMR), 2006.

[87] H. J. Holz, A. Applin, B. Haberman, D. Joyce, H. Purchase, C.
Reed, Research methods in computing: what are they, and how

References 216

[62] R. G. Dromey, Cornering the Chimera, IEEE Software, vol. 13, pp.
33-43, 1996.

[63] J. Estublier, G. Vega, Reuse and variability in large software
applications, Proceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2005.

[64] D. Falessi, R. Capilla, G. Cantone, A value-based approach for
documenting design decisions rationale: a replicated experiment,
International Workshop on Sharing and Reusing Architectural
Knowledge (SHARK), 2008.

[65] D. Faust, C. Verhoef, Software product line migration and
deployment, Software: Practice and Experience, vol. 33, issue 10,
pp. 933-955, 2003.

[66] N. Fenton, S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, ISBN 0534954251, PWS Publishing Co.
Boston, 1997.

[67] R. Fitzpatrick, P. Smith, B. O'Shea, Software quality challenges,
Workshop on Software Quality at the 26th International Conference
on Software Engineering, 2004.

[68] J. L. Fleiss, Measuring nominal scale agreement among many raters,
Psychological bulletin, vol. 76(5), pp. 378-382, 1971.

[69] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, J. M. Jézéquel, Model-
driven engineering for software migration in a large industrial
context, Model Driven Engineering Languages and Systems, Lecture
Notes in Computer Science, vol. 4735, pp. 482-497, 2007.

[70] M. Fowler, Refactoring: Improving the Design of Existing Code,
ISBN 0-201-48567-2, Addison-Wesley Professional, 1999.

[71] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns:
elements of reusable object-oriented software, ISBN 0201633612,
Addison-Wesley Professional Computing Series, 1995.

[72] A. Garcia, C. Chavez, T. Batista, C. Sant’Anna, U. Kulesza, A.
Rashid, C. Lucena, On the modular representation of architectural
aspects, Software Architecture, Lecture Notes in Computer Science,
vol. 4344, 2006.

[73] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, A.
von Staa, Modularizing design patterns with aspects: a quantitative
study, Transactions on aspect-oriented software development I,
Lecture Notes in Computer Science, vol. 3880, pp. 36-74, 2006.

[74] D. Garlan, Software architecture: a roadmap, ICSE Proceedings of
the Conference on the Future of Software Engineering, 2000.

References 217

[75] D. Garlan, J. M. Barnes, B. Schmerl, O. Celiku, Evolution styles:
foundations and tool support for software architecture evolution,
Joint Working IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture (WICSA/ECSA),
2009.

[76] L. R. Gay, G. E. Mills, P. W. Airasian, Educational Research:
Competencies for Analysis and Applications, ISBN-10
9780131185340, Prentice Hall, 2005.

[77] C. Gibbs, C. R. Liu, Y. Coady, Sustainable system infrastructure and
big bang evolution: can aspects keep pace?, ECOOP - Object-
Oriented Programming, Lecture Notes in Computer Science, vol.
3586, 2005.

[78] T. Gilb, Evolutionary development [software], SIGSOFT Software
Engineering Notes, vol. 6, p. 17, 1981.

[79] T. Gilb, The 10 most powerful principles for quality in software and
software organizations, Cross-Talk, Nov, 2002.

[80] M. W. Godfrey, D. M. German, The past, present, and future of
software evolution, Frontiers of Software Maintenance (FoSM),
2008.

[81] M. W. Godfrey, Q. Tu, Evolution in open source software: a case
study, International Conference on Software Maintenance, 2000.

[82] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J. Amor, D.
M. German, Macro-level software evolution: a case study of a large
software compilation, Journal of Empirical Software Engineering,
vol. 14, pp. 262-285, 2009.

[83] R. B. Grady D. L. Caswell, Software Metrics: Establishing a
Company-Wide Program, ISBN-10 9780138218447, Prentice-Hall,
1987.

[84] I. Herraiz, J. M. Gonzalez-Barahona, G. Robles, Determinism and
evolution, International Working Conference on Mining Software
Repositories (MSR), 2008.

[85] I. Herraiz, J. M. Gonzalez-Barahona, G. Robles, D. M. German, On
the prediction of the evolution of libre software projects,
International Conference on Software Maintenance (ICSM), 2007.

[86] I. Herraiz, G. Robles, J. M. Gonzalez-Barahona, A. Capiluppi, J. F.
Ramil, Comparison between SLOCs and number of files as size
metrics for software evolution analysis, Conference on Software
Maintenance and Reengineering (CSMR), 2006.

[87] H. J. Holz, A. Applin, B. Haberman, D. Joyce, H. Purchase, C.
Reed, Research methods in computing: what are they, and how

References 218

should we teach them?, Annual Joint Conference Integrating
Technology into Computer Science Education, 2006.

[88] IEEE-1471, IEEE Recommended Practices for Architectural
Description of Software-Intensive Systems, 2000.

[89] ISO9126, ISO/IEC 9126-1, International Standard, Software
Engineering. Product Quality – Part 1: Quality Model, 2001-2004.

[90] C. Izurieta, J. Bieman, The evolution of FreeBSD and linux,
ACM/IEEE International Symposium on Empirical Software
Engineering (ISESE), 2006.

[91] A. Jansen, P. Avgeriou, J. S. Van der Ven, Enriching software
architecture documentation, Journal of Systems and Software, vol.
82, pp. 1232-1248, 2009.

[92] A. Jansen, J. Bosch, Evaluation of tool support for architectural
evolution, International Conference on Automated Software
Engineering, 2004.

[93] A. G. J. Jansen, Architectural design decisions, ISBN 978-90-367-
3494-3, 2008.

[94] M. Jiang, A. Willey, Architecting systems with components and
services, International Conference on Information Reuse and
Integration (IRI), 2005.

[95] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson,
Feature-oriented domain analysis (FODA) feasibility study,
Carnegie-Mellon University, Software Engineering Institute, 1990.

[96] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh, FORM: A
feature-; oriented reuse method with domain-; specific reference
architectures, Annals of Software Engineering, vol. 5, pp. 143-168,
1998.

[97] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J.
Carriere, The architecture tradeoff analysis method, International
Conference on Engineering Complex Computer Systems (ICECCS),
1998.

[98] R. Kazman, S. G. Woods, S. J. Carriere, Requirements for
integrating software architecture and reengineering models:
CORUM II, Working Conference on Reverse Engineering, 1998.

[99] D. K. Kim, R. France, S. Ghosh, E. Song, A role-based
metamodeling approach to specifying design patterns, Annual
International Computer Software and Application Conference, 2003.

[100] B. Kitchenham, Procedures for performing systematic reviews,
Keele University, TR/SE-0401/NICTA Technical Report 0400011T,
vol. 1, 2004.

References 219

[101] B. Kitchenham, S. Charters, Guidelines for performing systematic
literature reviews in software engineering, ISBN 1595933751,
Engineering, vol. 2, EBSE 2007-001, 2007.

[102] S. Koch, Evolution of open source software systems–a large-scale
investigation, Journal of Software Maintenance and Evolution:
Research and Practice, vol. 19, issue 6, pp. 361-382, 2007.

[103] R. Kolb, D. Muthig, T. Patzke, K. Yamauchi, A case study in
refactoring a legacy component for reuse in a product line, IEEE
International Conference on Software Maintenance (ICSM), 2005.

[104] T. Koponen, Evaluation framework for open source software
maintenance, International Conference on Software Engineering
Advances (ICSEA), 2006.

[105] G. Kotonya, J. Hutchinson, B. Bloin, A method for formulating and
architecting component and service-oriented systems, Book Chapter
in Service-Oriented Software System Engineering: Challenges and
Practices, ISBN-10 1-59140-426-6, pp. 155-181, 2005.

[106] P. Kruchten, P. Lago, H. van Vliet, Building up and reasoning about
architectural knowledge, Quality of Software Architectures, Lecture
Notes in Computer Science, vol. 4214, pp. 43-58, 2006.

[107] U. Kulesza, Quantifying the effects of aspect-oriented programming:
a maintenance study, IEEE International Conference on Software
Maintenance (ICSM), 2006.

[108] U. Kulesza, A. Garcia, C. Lucena, Generating aspect-oriented agent
architectures, 3rd Workshop on Early Aspect: Aspect-Oriented
Requirements Engineering and Architecture Design, 2004.

[109] P. Lago, P. Avgeriou, R. Capilla, P. Kruchten, Wishes and
boundaries for a software architecture knowledge community,
Working IEEE/IFIP Conference on Software Architecture (WICSA),
2008.

[110] N. Lassing, D. Rijsenbrij, H. van Vliet, How well can we predict
changes at architecture design time?, Journal of Systems and
Software, vol. 65, pp. 141-153, 2003.

[111] M. M. Lehman, On understanding laws, evolution, and conservation
in the large-program life cycle, Journal of Systems and Software,
vol. 1, pp. 213-21, 1980.

[112] M. M. Lehman, D. E. Perry, J. F. Ramil, On evidence supporting the
FEAST hypothesis and the laws of software evolution, International
Symposium on Software Metrics (METRICS), 1998.

[113] M. M. Lehman, J. F. Ramil, G. Kahen, Evolution as a noun and
evolution as a verb, Workshop on Software and Organization Co-
evolution (SOCE), 2000.

References 218

should we teach them?, Annual Joint Conference Integrating
Technology into Computer Science Education, 2006.

[88] IEEE-1471, IEEE Recommended Practices for Architectural
Description of Software-Intensive Systems, 2000.

[89] ISO9126, ISO/IEC 9126-1, International Standard, Software
Engineering. Product Quality – Part 1: Quality Model, 2001-2004.

[90] C. Izurieta, J. Bieman, The evolution of FreeBSD and linux,
ACM/IEEE International Symposium on Empirical Software
Engineering (ISESE), 2006.

[91] A. Jansen, P. Avgeriou, J. S. Van der Ven, Enriching software
architecture documentation, Journal of Systems and Software, vol.
82, pp. 1232-1248, 2009.

[92] A. Jansen, J. Bosch, Evaluation of tool support for architectural
evolution, International Conference on Automated Software
Engineering, 2004.

[93] A. G. J. Jansen, Architectural design decisions, ISBN 978-90-367-
3494-3, 2008.

[94] M. Jiang, A. Willey, Architecting systems with components and
services, International Conference on Information Reuse and
Integration (IRI), 2005.

[95] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson,
Feature-oriented domain analysis (FODA) feasibility study,
Carnegie-Mellon University, Software Engineering Institute, 1990.

[96] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh, FORM: A
feature-; oriented reuse method with domain-; specific reference
architectures, Annals of Software Engineering, vol. 5, pp. 143-168,
1998.

[97] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J.
Carriere, The architecture tradeoff analysis method, International
Conference on Engineering Complex Computer Systems (ICECCS),
1998.

[98] R. Kazman, S. G. Woods, S. J. Carriere, Requirements for
integrating software architecture and reengineering models:
CORUM II, Working Conference on Reverse Engineering, 1998.

[99] D. K. Kim, R. France, S. Ghosh, E. Song, A role-based
metamodeling approach to specifying design patterns, Annual
International Computer Software and Application Conference, 2003.

[100] B. Kitchenham, Procedures for performing systematic reviews,
Keele University, TR/SE-0401/NICTA Technical Report 0400011T,
vol. 1, 2004.

References 219

[101] B. Kitchenham, S. Charters, Guidelines for performing systematic
literature reviews in software engineering, ISBN 1595933751,
Engineering, vol. 2, EBSE 2007-001, 2007.

[102] S. Koch, Evolution of open source software systems–a large-scale
investigation, Journal of Software Maintenance and Evolution:
Research and Practice, vol. 19, issue 6, pp. 361-382, 2007.

[103] R. Kolb, D. Muthig, T. Patzke, K. Yamauchi, A case study in
refactoring a legacy component for reuse in a product line, IEEE
International Conference on Software Maintenance (ICSM), 2005.

[104] T. Koponen, Evaluation framework for open source software
maintenance, International Conference on Software Engineering
Advances (ICSEA), 2006.

[105] G. Kotonya, J. Hutchinson, B. Bloin, A method for formulating and
architecting component and service-oriented systems, Book Chapter
in Service-Oriented Software System Engineering: Challenges and
Practices, ISBN-10 1-59140-426-6, pp. 155-181, 2005.

[106] P. Kruchten, P. Lago, H. van Vliet, Building up and reasoning about
architectural knowledge, Quality of Software Architectures, Lecture
Notes in Computer Science, vol. 4214, pp. 43-58, 2006.

[107] U. Kulesza, Quantifying the effects of aspect-oriented programming:
a maintenance study, IEEE International Conference on Software
Maintenance (ICSM), 2006.

[108] U. Kulesza, A. Garcia, C. Lucena, Generating aspect-oriented agent
architectures, 3rd Workshop on Early Aspect: Aspect-Oriented
Requirements Engineering and Architecture Design, 2004.

[109] P. Lago, P. Avgeriou, R. Capilla, P. Kruchten, Wishes and
boundaries for a software architecture knowledge community,
Working IEEE/IFIP Conference on Software Architecture (WICSA),
2008.

[110] N. Lassing, D. Rijsenbrij, H. van Vliet, How well can we predict
changes at architecture design time?, Journal of Systems and
Software, vol. 65, pp. 141-153, 2003.

[111] M. M. Lehman, On understanding laws, evolution, and conservation
in the large-program life cycle, Journal of Systems and Software,
vol. 1, pp. 213-21, 1980.

[112] M. M. Lehman, D. E. Perry, J. F. Ramil, On evidence supporting the
FEAST hypothesis and the laws of software evolution, International
Symposium on Software Metrics (METRICS), 1998.

[113] M. M. Lehman, J. F. Ramil, G. Kahen, Evolution as a noun and
evolution as a verb, Workshop on Software and Organization Co-
evolution (SOCE), 2000.

References 220

[114] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, W. M.
Turski, Metrics and laws of software evolution - the nineties view,
International Software Metrics Symposium, 1997.

[115] X. Liu, B. Iyer, Design architecture, developer networks, and
performance of Open Source Software projects, International
Conference on Information Systems (ICIS), 2007.

[116] C. H. Lung, S. Bot, K. Kalaichelvan, R. Kazman, An approach to
software architecture analysis for evolution and reusability,
Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON), 1997.

[117] A. Maccari, Experiences in assessing product family software
architecture for evolution, International Conference on Software
Engineering (ICSE), 2002.

[118] A. Maccari, C. Riva, Architectural evolution of legacy product
families, Software Product-Family Engineering, Lecture Notes in
Computer Science, vol. 2290, 2002.

[119] N. H. Madhavji, J. Fernandez-Ramil, D. Perry, Software Evolution
and Feedback: Theory and Practice, ISBN-10 0470871805, Wiley,
2006.

[120] N. Mansurov, D. Campara, Managed architecture of existing code as
a practical transition towards MDA, UML Modeling Languages and
Applications, Lecture Notes in Computer Science, vol. 3297, pp.
219-233, 2005.

[121] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices, ISBN 0135974445, Prentice Hall PTR Upper Saddle
River, 2003.

[122] M. Matinlassi, Quality-driven software architecture model
transformation, Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2005.

[123] M. Mattsson, H. Grahn, F. Mårtensson, Software architecture
evaluation methods for performance, maintainability, testability, and
portability, Conference on the Quality of Software Architecture
(QoSA), 2006.

[124] T. J. McCabe, A complexity measure, IEEE Transactions on
Software Engineering, pp. 308-320, 1976.

[125] J. A. McCall, P. K. Richards, G. F. Walters, Factors in software
quality, National Technical Information Service, 1977.

[126] N. Medvidovic, R. N. Taylor, D. S. Rosenblum, An architecture-
based approach to software evolution, International Workshop on
the Principles of Software Evolution, 1998.

References 221

[127] K. Mens, T. Tourwé, Evolution issues in aspect-oriented
programming, Book chapter in Software Evolution (ISBN 978-3-
540-76439-7), 2008.

[128] T. Mens, S. Demeyer, Software Evolution, ISBN 978-3-540-76439-
7, Springer, 2008.

[129] E. Y. Nakagawa, E. P. M. de Sousa, K. de Brito Murata, G. de Faria
Andery, L. B. Morelli, Software architecture relevance in open
source software evolution: a case study, International Computer
Software and Applications Conference, 2008.

[130] C. L. Nehaniv, P. Wernick, Introduction to software evolvability,
International IEEE Workshop on Software Evolvability, 2007.

[131] R. L. Nord, W. G. Wood, P. C. Clements, Integrating the quality
attribute workshop (QAW) and the attribute-driven design (ADD)
method, Technical Note CMU/SEI-2004-TN-017, 2004.

[132] L. Northrop, P. H. Feiler, B. Pollak, D. Pipitone, Ultra-large-scale
systems: the software challenge of the future: Software Engineering
Institute, Carnegie Mellon University Pittsburgh, 2006.

[133] L. O'Brien, P. Merson, L. Bass, Quality attributes for service-
oriented architectures, International Workshop on Systems
Development in SOA Environments (SDSOA), 2007.

[134] W. F. Opdyke, Refactoring object-oriented frameworks, University
of Illinois, 1992.

[135] M. Ortega, M. Pérez, T. Rojas, Construction of a systemic quality
model for evaluating a software product, Journal of Software
Quality, vol. 11, pp. 219-242, 2003.

[136] R. E. Park, Software size measurement: a framework for counting
source statements, CMU/SEI-92-TR-20, Software Engineering
Institute, Carnegie Mellon University, 1992.

[137] D. L. Parnas, Software aging, International Conference on Software
Engineering (ICSE), 1994.

[138] J. W. Paulson, G. Succi, A. Eberlein, An empirical study of open-
source and closed-source software products, IEEE Transactions on
Software Engineering, vol. 30, pp. 246-256, 2004.

[139] D. E. Perry, A. L. Wolf, Foundations for the study of software
architecture, ACM SIGSOFT Software Engineering Notes, vol. 17,
pp. 40-52, 1992.

[140] N. Pessemier, L. Seinturier, T. Coupaye, L. Duchien, A model for
developing component-based and aspect-oriented systems, Software
Composition, Lecture Notes in Computer Science, vol. 4089, pp.
259-274, 2006.

References 220

[114] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, W. M.
Turski, Metrics and laws of software evolution - the nineties view,
International Software Metrics Symposium, 1997.

[115] X. Liu, B. Iyer, Design architecture, developer networks, and
performance of Open Source Software projects, International
Conference on Information Systems (ICIS), 2007.

[116] C. H. Lung, S. Bot, K. Kalaichelvan, R. Kazman, An approach to
software architecture analysis for evolution and reusability,
Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON), 1997.

[117] A. Maccari, Experiences in assessing product family software
architecture for evolution, International Conference on Software
Engineering (ICSE), 2002.

[118] A. Maccari, C. Riva, Architectural evolution of legacy product
families, Software Product-Family Engineering, Lecture Notes in
Computer Science, vol. 2290, 2002.

[119] N. H. Madhavji, J. Fernandez-Ramil, D. Perry, Software Evolution
and Feedback: Theory and Practice, ISBN-10 0470871805, Wiley,
2006.

[120] N. Mansurov, D. Campara, Managed architecture of existing code as
a practical transition towards MDA, UML Modeling Languages and
Applications, Lecture Notes in Computer Science, vol. 3297, pp.
219-233, 2005.

[121] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices, ISBN 0135974445, Prentice Hall PTR Upper Saddle
River, 2003.

[122] M. Matinlassi, Quality-driven software architecture model
transformation, Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2005.

[123] M. Mattsson, H. Grahn, F. Mårtensson, Software architecture
evaluation methods for performance, maintainability, testability, and
portability, Conference on the Quality of Software Architecture
(QoSA), 2006.

[124] T. J. McCabe, A complexity measure, IEEE Transactions on
Software Engineering, pp. 308-320, 1976.

[125] J. A. McCall, P. K. Richards, G. F. Walters, Factors in software
quality, National Technical Information Service, 1977.

[126] N. Medvidovic, R. N. Taylor, D. S. Rosenblum, An architecture-
based approach to software evolution, International Workshop on
the Principles of Software Evolution, 1998.

References 221

[127] K. Mens, T. Tourwé, Evolution issues in aspect-oriented
programming, Book chapter in Software Evolution (ISBN 978-3-
540-76439-7), 2008.

[128] T. Mens, S. Demeyer, Software Evolution, ISBN 978-3-540-76439-
7, Springer, 2008.

[129] E. Y. Nakagawa, E. P. M. de Sousa, K. de Brito Murata, G. de Faria
Andery, L. B. Morelli, Software architecture relevance in open
source software evolution: a case study, International Computer
Software and Applications Conference, 2008.

[130] C. L. Nehaniv, P. Wernick, Introduction to software evolvability,
International IEEE Workshop on Software Evolvability, 2007.

[131] R. L. Nord, W. G. Wood, P. C. Clements, Integrating the quality
attribute workshop (QAW) and the attribute-driven design (ADD)
method, Technical Note CMU/SEI-2004-TN-017, 2004.

[132] L. Northrop, P. H. Feiler, B. Pollak, D. Pipitone, Ultra-large-scale
systems: the software challenge of the future: Software Engineering
Institute, Carnegie Mellon University Pittsburgh, 2006.

[133] L. O'Brien, P. Merson, L. Bass, Quality attributes for service-
oriented architectures, International Workshop on Systems
Development in SOA Environments (SDSOA), 2007.

[134] W. F. Opdyke, Refactoring object-oriented frameworks, University
of Illinois, 1992.

[135] M. Ortega, M. Pérez, T. Rojas, Construction of a systemic quality
model for evaluating a software product, Journal of Software
Quality, vol. 11, pp. 219-242, 2003.

[136] R. E. Park, Software size measurement: a framework for counting
source statements, CMU/SEI-92-TR-20, Software Engineering
Institute, Carnegie Mellon University, 1992.

[137] D. L. Parnas, Software aging, International Conference on Software
Engineering (ICSE), 1994.

[138] J. W. Paulson, G. Succi, A. Eberlein, An empirical study of open-
source and closed-source software products, IEEE Transactions on
Software Engineering, vol. 30, pp. 246-256, 2004.

[139] D. E. Perry, A. L. Wolf, Foundations for the study of software
architecture, ACM SIGSOFT Software Engineering Notes, vol. 17,
pp. 40-52, 1992.

[140] N. Pessemier, L. Seinturier, T. Coupaye, L. Duchien, A model for
developing component-based and aspect-oriented systems, Software
Composition, Lecture Notes in Computer Science, vol. 4089, pp.
259-274, 2006.

References 222

[141] K. Pohl, G. Böckle, F. van der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques, ISBN-10 3-
540-24372-0, Springer, 2005.

[142] C. Raistrick, Applying MDA and UML in the development of a
healthcare system, UML Modeling Languages and Applications,
Lecture Notes in Computer Science, vol. 3297, pp. 203-218, 2005.

[143] U. Raja, D. P. Hale, J. E. Hale, Modeling software evolution defects:
a time series approach, Journal of Software Maintenance and
Evolution: Research and Practice, vol. 21, pp. 49-71, 2008.

[144] A. Rashid, A. Garcia, A. Moreira, Aspect-oriented software
development beyond programming, The 28th International
Conference on Software Engineering (ICSE), 2006.

[145] A. Rashid, A. Moreira, J. Araújo, Modularisation and composition
of aspectual requirements, The 2nd International Conference on
Aspect-Oriented Software Development (AOSD), 2003.

[146] A. Rawashdeh, B. Matalkah, A new software quality model for
evaluating COTS components, Journal of Computer Science, vol. 2,
pp. 373-381, 2006.

[147] S. T. Redwine Jr, W. E. Riddle, Software technology maturation,
International Conference on Software Engineering (ICSE), 1985.

[148] T. Reus, H. Geers, A. van Deursen, Harvesting software systems for
MDA-based reengineering, Model Driven Architecture -
Foundations and Applications, Lecture Notes in Computer Science,
vol. 4066, pp. 213-225, 2006.

[149] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, I. Herraiz,
Evolution and growth in large libre software projects, International
Workshop on Principles of Software Evolution (IWPSE), 2005.

[150] G. Robles, J. M. González-Barahona, D. Izquierdo-Cortazar, I.
Herraiz, Tools for the study of the usual data sources found in libre
software projects, International Journal of Open Source Software
and Processes, vol. 1, pp. 24–45, 2009.

[151] G. Robles, J. M. Gonzalez-Barahona, J. J. Merelo, Beyond source
code: the importance of other artifacts in software development (a
case study), Journal of Systems & Software, vol. 79, pp. 1233-1248,
2006.

[152] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, J. J. Amor,
Mining large software compilations over time: another perspective
of software evolution, International Workshop on Mining Software
Repositories (MSR), 2006.

References 223

[153] D. Rowe, J. Leaney, Evaluating evolvability of computer based
systems architectures-an ontological approach, Workshop on
Engineering of Computer-Based Systems (ECBS), 1997.

[154] D. Rowe, J. Leaney, D. Lowe, Defining systems evolvability-a
taxonomy of change, International Conference and Workshop:
Engineering of Computer-Based Systems (ECBS), 1998.

[155] W. W. Royce, Managing the development of large software systems:
concepts and techniques, International Conference on Software
Engineering (ICSE), 1987.

[156] T. L. Saaty, The Analytical Hierarchy Process: Planning, Priority
Setting, Resource Allocation, ISBN 0-07-054371-2, McGraw-Hill,
1980.

[157] A. Sampaio, R. Chitchyan, A. Rashid, P. Rayson, EA-Miner: a tool
for automating aspect-oriented requirements identification, The 20th
IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2005.

[158] W. Scacchi, Models of software evolution: life cycle and process,
SEI Curriculum Module SEI-CM-10-1.0, 1987.

[159] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, A. J. Offutt,
Maintainability of the Linux kernel, IEE Proceedings of Software,
vol. 149, pp. 18-23, 2002.

[160] K. Schmid, I. John, R. Kolb, G. Meier, Introducing the PuLSE
approach to an embedded system population at Testo AG,
International Conference on Software Engineering (ICSE), 2005.

[161] D. Shirtz, M. Kazakov, Y. Shaham-Gafni, Adopting model driven
development in a large financial organization, 3rd European
Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA), 2007.

[162] M. M. Simmons, P. Vercellone-Smith, P. A. Laplante,
Understanding open source software through software archaeology:
the case of Nethack, Annual IEEE/NASA Software Engineering
Workshop (SEW), 2006.

[163] D. Smith, L. O'Brien, J. Bergey, Using the options analysis for
reengineering (OAR) method for mining components for a product
line, Software Product Lines, Lecture Notes in Computer Science,
vol 2379, 2002.

[164] N. Smith, A. Capiluppi, J. F. Ramil, A study of open source software
evolution data using qualitative simulation, Software Process
Improvement and Practice, vol. 10, pp. 287-300, 2005.

[165] M. Staron, Adopting model driven software development in industry
- a case study at two companies, Model Driven Engineering

References 222

[141] K. Pohl, G. Böckle, F. van der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques, ISBN-10 3-
540-24372-0, Springer, 2005.

[142] C. Raistrick, Applying MDA and UML in the development of a
healthcare system, UML Modeling Languages and Applications,
Lecture Notes in Computer Science, vol. 3297, pp. 203-218, 2005.

[143] U. Raja, D. P. Hale, J. E. Hale, Modeling software evolution defects:
a time series approach, Journal of Software Maintenance and
Evolution: Research and Practice, vol. 21, pp. 49-71, 2008.

[144] A. Rashid, A. Garcia, A. Moreira, Aspect-oriented software
development beyond programming, The 28th International
Conference on Software Engineering (ICSE), 2006.

[145] A. Rashid, A. Moreira, J. Araújo, Modularisation and composition
of aspectual requirements, The 2nd International Conference on
Aspect-Oriented Software Development (AOSD), 2003.

[146] A. Rawashdeh, B. Matalkah, A new software quality model for
evaluating COTS components, Journal of Computer Science, vol. 2,
pp. 373-381, 2006.

[147] S. T. Redwine Jr, W. E. Riddle, Software technology maturation,
International Conference on Software Engineering (ICSE), 1985.

[148] T. Reus, H. Geers, A. van Deursen, Harvesting software systems for
MDA-based reengineering, Model Driven Architecture -
Foundations and Applications, Lecture Notes in Computer Science,
vol. 4066, pp. 213-225, 2006.

[149] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, I. Herraiz,
Evolution and growth in large libre software projects, International
Workshop on Principles of Software Evolution (IWPSE), 2005.

[150] G. Robles, J. M. González-Barahona, D. Izquierdo-Cortazar, I.
Herraiz, Tools for the study of the usual data sources found in libre
software projects, International Journal of Open Source Software
and Processes, vol. 1, pp. 24–45, 2009.

[151] G. Robles, J. M. Gonzalez-Barahona, J. J. Merelo, Beyond source
code: the importance of other artifacts in software development (a
case study), Journal of Systems & Software, vol. 79, pp. 1233-1248,
2006.

[152] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, J. J. Amor,
Mining large software compilations over time: another perspective
of software evolution, International Workshop on Mining Software
Repositories (MSR), 2006.

References 223

[153] D. Rowe, J. Leaney, Evaluating evolvability of computer based
systems architectures-an ontological approach, Workshop on
Engineering of Computer-Based Systems (ECBS), 1997.

[154] D. Rowe, J. Leaney, D. Lowe, Defining systems evolvability-a
taxonomy of change, International Conference and Workshop:
Engineering of Computer-Based Systems (ECBS), 1998.

[155] W. W. Royce, Managing the development of large software systems:
concepts and techniques, International Conference on Software
Engineering (ICSE), 1987.

[156] T. L. Saaty, The Analytical Hierarchy Process: Planning, Priority
Setting, Resource Allocation, ISBN 0-07-054371-2, McGraw-Hill,
1980.

[157] A. Sampaio, R. Chitchyan, A. Rashid, P. Rayson, EA-Miner: a tool
for automating aspect-oriented requirements identification, The 20th
IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2005.

[158] W. Scacchi, Models of software evolution: life cycle and process,
SEI Curriculum Module SEI-CM-10-1.0, 1987.

[159] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, A. J. Offutt,
Maintainability of the Linux kernel, IEE Proceedings of Software,
vol. 149, pp. 18-23, 2002.

[160] K. Schmid, I. John, R. Kolb, G. Meier, Introducing the PuLSE
approach to an embedded system population at Testo AG,
International Conference on Software Engineering (ICSE), 2005.

[161] D. Shirtz, M. Kazakov, Y. Shaham-Gafni, Adopting model driven
development in a large financial organization, 3rd European
Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA), 2007.

[162] M. M. Simmons, P. Vercellone-Smith, P. A. Laplante,
Understanding open source software through software archaeology:
the case of Nethack, Annual IEEE/NASA Software Engineering
Workshop (SEW), 2006.

[163] D. Smith, L. O'Brien, J. Bergey, Using the options analysis for
reengineering (OAR) method for mining components for a product
line, Software Product Lines, Lecture Notes in Computer Science,
vol 2379, 2002.

[164] N. Smith, A. Capiluppi, J. F. Ramil, A study of open source software
evolution data using qualitative simulation, Software Process
Improvement and Practice, vol. 10, pp. 287-300, 2005.

[165] M. Staron, Adopting model driven software development in industry
- a case study at two companies, Model Driven Engineering

References 224

Languages and Systems, Lecture Notes in Computer Science, vol.
4199, pp. 57-72, 2006.

[166] C. Stoermer, L. O'Brien, MAP - mining architectures for product
line evaluations, Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2001.

[167] S. D. Suh, I. Neamtiu, Studying software evolution for taming
software complexity, 21st Australian Software Engineering
Conference, 2009.

[168] K. J. Sullivan, P. Chalasani, S. Jha, V. Sazawal, Software design as
an investment activity: a real options perspective, Real Options and
Business Strategy: Applications to Decision Making, pp. 215–262,
1999.

[169] L. G. Thomas, S. R. Schach, G. Z. Heller, J. Offutt, Impact of
release intervals on empirical research into software evolution, with
application to the maintainability of Linux, Software, IET, vol. 3,
pp. 58-66, 2009.

[170] S. A. Tonu, A. Ashkan, L. Tahvildari, Evaluating architectural
stability using a metric-based approach, Conference on Software
Maintenance and Reengineering (CSMR), 2006.

[171] J. B. Tran, M. W. Godfrey, E. H. S. Lee, R. C. Holt, Architectural
repair of open source software, International Workshop on Program
Comprehension (IWPC), 2000.

[172] F. van der Linden, J. Bosch, E. Kamsties, K. Kansala, H. Obbink,
Software product family evaluation, Software Product Lines,
Lecture Notes in Computer Science, vol. 3154, 2004.

[173] A. van Deursen, The software evolution paradox: an aspect mining
perspective, International ERCIM Workshop on Software Evolution,
2006.

[174] J. van Gurp, J. Bosch, Design erosion: problems and causes, Journal
of Systems & Software, vol. 61, pp. 105-119, 2002.

[175] G. Wang, C. K. Fung, Architecture paradigms and their influences
and impacts on component-based software systems, 37th Annual
Hawaii International Conference on System Sciences (HICSS),
2004.

[176] Y. Wang, D. Guo, H. Shi, Measuring the evolution of open source
software systems with their communities, ACM SIGSOFT Software
Engineering Notes, vol. 32, p. 7, 2007.

[177] N. H. Weiderman, J. K. Bergey, D. B. Smith, S. R. Tilley,
Approaches to legacy system evolution, CMU/SEI-97-TR-014,
Carneige Mellon University, Software Engineering Institute, 1997.

References 225

[178] T. Weigert, F. Weil, K. Marth, P. Baker, C. Jervis, P. Dietz, Y. Gui,
A. Van Den Berg, K. Fleer, D. Nelson, Experiences in deploying
model-driven engineering, SDL 2007: Design for Dependable
Systems, Lecture Notes in Computer Science, vol. 4745, pp. 35-53,
2007.

[179] C. Wohlin, M. Höst, P. Runeson, M. C. Ohlsson, B. Regnell, A.
Wesslén, Experimentation in software engineering: an introduction,
ISBN 0-7923-8682-5, Kluwer Academic Pub, 2000.

[180] G. Xie, J. Chen, I. Neamtiu, Towards a better understanding of
software evolution: an empirical study on open source software,
International Conference on Software Maintenance, 2009.

[181] H. Yang, M. Ward, Successful Evolution of Software Systems,
ISBN 1-58053-349-3, Artech House, 2003.

[182] S. S. Yau, J. S. Collofello, T. MacGregor, Ripple effect analysis of
software maintenance, International Computer Software and
Applications Conference, 1978.

[183] R. K. Yin, Case Study Research: Design and Methods, ISBN-10
0761925538, Sage Publications Inc, 2002.

[184] L. Yu, Indirectly predicting the maintenance effort of open-source
software, Journal of Software Maintenance and Evolution: Research
and Practice, vol. 18, pp. 311-332, 2006.

[185] L. Yu, S. Ramaswamy, J. Bush, Symbiosis and software
evolvability, IT Professional, vol. 10, pp. 56-62, 2008.

[186] M. V. Zelkowitz, D. Wallace, Experimental validation in software
engineering, Journal of Information and Software Technology, vol.
39, pp. 735-743, 1997.

References 224

Languages and Systems, Lecture Notes in Computer Science, vol.
4199, pp. 57-72, 2006.

[166] C. Stoermer, L. O'Brien, MAP - mining architectures for product
line evaluations, Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2001.

[167] S. D. Suh, I. Neamtiu, Studying software evolution for taming
software complexity, 21st Australian Software Engineering
Conference, 2009.

[168] K. J. Sullivan, P. Chalasani, S. Jha, V. Sazawal, Software design as
an investment activity: a real options perspective, Real Options and
Business Strategy: Applications to Decision Making, pp. 215–262,
1999.

[169] L. G. Thomas, S. R. Schach, G. Z. Heller, J. Offutt, Impact of
release intervals on empirical research into software evolution, with
application to the maintainability of Linux, Software, IET, vol. 3,
pp. 58-66, 2009.

[170] S. A. Tonu, A. Ashkan, L. Tahvildari, Evaluating architectural
stability using a metric-based approach, Conference on Software
Maintenance and Reengineering (CSMR), 2006.

[171] J. B. Tran, M. W. Godfrey, E. H. S. Lee, R. C. Holt, Architectural
repair of open source software, International Workshop on Program
Comprehension (IWPC), 2000.

[172] F. van der Linden, J. Bosch, E. Kamsties, K. Kansala, H. Obbink,
Software product family evaluation, Software Product Lines,
Lecture Notes in Computer Science, vol. 3154, 2004.

[173] A. van Deursen, The software evolution paradox: an aspect mining
perspective, International ERCIM Workshop on Software Evolution,
2006.

[174] J. van Gurp, J. Bosch, Design erosion: problems and causes, Journal
of Systems & Software, vol. 61, pp. 105-119, 2002.

[175] G. Wang, C. K. Fung, Architecture paradigms and their influences
and impacts on component-based software systems, 37th Annual
Hawaii International Conference on System Sciences (HICSS),
2004.

[176] Y. Wang, D. Guo, H. Shi, Measuring the evolution of open source
software systems with their communities, ACM SIGSOFT Software
Engineering Notes, vol. 32, p. 7, 2007.

[177] N. H. Weiderman, J. K. Bergey, D. B. Smith, S. R. Tilley,
Approaches to legacy system evolution, CMU/SEI-97-TR-014,
Carneige Mellon University, Software Engineering Institute, 1997.

References 225

[178] T. Weigert, F. Weil, K. Marth, P. Baker, C. Jervis, P. Dietz, Y. Gui,
A. Van Den Berg, K. Fleer, D. Nelson, Experiences in deploying
model-driven engineering, SDL 2007: Design for Dependable
Systems, Lecture Notes in Computer Science, vol. 4745, pp. 35-53,
2007.

[179] C. Wohlin, M. Höst, P. Runeson, M. C. Ohlsson, B. Regnell, A.
Wesslén, Experimentation in software engineering: an introduction,
ISBN 0-7923-8682-5, Kluwer Academic Pub, 2000.

[180] G. Xie, J. Chen, I. Neamtiu, Towards a better understanding of
software evolution: an empirical study on open source software,
International Conference on Software Maintenance, 2009.

[181] H. Yang, M. Ward, Successful Evolution of Software Systems,
ISBN 1-58053-349-3, Artech House, 2003.

[182] S. S. Yau, J. S. Collofello, T. MacGregor, Ripple effect analysis of
software maintenance, International Computer Software and
Applications Conference, 1978.

[183] R. K. Yin, Case Study Research: Design and Methods, ISBN-10
0761925538, Sage Publications Inc, 2002.

[184] L. Yu, Indirectly predicting the maintenance effort of open-source
software, Journal of Software Maintenance and Evolution: Research
and Practice, vol. 18, pp. 311-332, 2006.

[185] L. Yu, S. Ramaswamy, J. Bush, Symbiosis and software
evolvability, IT Professional, vol. 10, pp. 56-62, 2008.

[186] M. V. Zelkowitz, D. Wallace, Experimental validation in software
engineering, Journal of Information and Software Technology, vol.
39, pp. 735-743, 1997.

