
Modeling and Analysis of Adaptive Embedded
Systems using Adaptive Task Automata
Leo Hatvani

Mälardalen University
721 23, Västerås, Sweden

Email: leo.hatvani@mdh.se

Cristina Seceleanu
Mälardalen University

721 23, Västerås, Sweden
Email: cristina.seceleanu@mdh.se

Paul Pettersson
Mälardalen University

721 23, Västerås, Sweden
Email: paul.pettersson@mdh.se

Abstract—Most embedded systems need to continually function
in unpredictable environments. One way to achieve high depend-
ability is to make the system adaptive to changes, if possible,
without sacrificing maintainability. In this paper, we overview
the current functionality implemented in our recently introduced
Adaptive Task Automata framework (ATA), as well as some of
the challenges encountered during the development. In the end,
we enumerate possible future extensions of ATA.

I. INTRODUCTION

Modern industrial systems are constantly facing the possibil-
ity of encountering component failure, or unexpected situations
in which the system may be forced to operate under lower
capacity. Consequently, many of such systems are designed to
provide different levels of quality of service. Various systems
that regulate quality of service in relation to the available
operational capacity already exist (e.g. a voice compression
codec can reduce bitrate if not enough bandwidth is present),
while additional research is carried out to provide safety critical
systems with adaptivity features. Hence, in such cases, formal
verification must cater not only for the temporal and functional
system properties, but also for its ability to dynamically adapt
itself, as a response to external and/or internal stimuli.

t1(C1=2, D1=5, P1=1)

l1 l2

x ≥ 5
x := 0x ≤ 6

Fig. 1. A task automaton snippet

In this work, we present a high-level overview of the
Adaptive Task Automata (ATA) framework (section III) that we
have recently proposed [1] as a model of adaptive embedded
behavior. We have mainly focused on providing the possibility
to model and verify systems where the task set can be regulated
based on the extra functional system properties. The currently
analyzable properties are related to the schedulability of the
individual tasks in the system, as well as the schedulability
of the entire system. By verifying the schedulability of the
system at a runtime, it becomes possible to model systems that
will automatically keep themselves schedulable in all possible
situations, as demonstrated by the example in section IV. To

fully comprehend the ATA framework, a short overview of the
related framework Task Automata is presented in section II.

II. OVERVIEW OF TASK AUTOMATA

The model of task automata is a model for real time systems
with asynchronous tasks, first introduced with non-preemptive
scheduling by Norström et.al [2] and extended to include
preemptive scheduling and dynamic priority scheduling by
Fersman et.al [3], [4]. By basing our work on this model, we
are able to model and verify schedulability of the embedded
systems with task release patterns that can be described in
the model of timed automata and executed by scheduling
policies with static or dynamic priorities, such as fixed priority
scheduling, earliest deadline first, etc. Most of the work on
task automata assumes uniprocessor systems, but supports an
array of scheduling policies.

Since task automata can be encoded as timed automata [5],
they can, in principal, be analyzed using the existing tools
created for verification of timed automata, such as UPPAAL1

[6], Kronos2 [7] or others. However, TIMES3 [8] is a tool
that conveniently supports modeling, simulation, schedulability
analysis, formal verification and code generation in the model
of task automata.

Next, we will give an intuitive description of the task
automata model. For a more formal definition, we refer the
reader to the paper by Fersman et.al [4].

A simple automaton modeling some task release pattern is
presented in Figure 1. It consists of two locations, one edge,
and a clock x. Location l1, denoted by the concentric circles,
is the starting location. An invariant (x ≤ 6) is tied to l1. The
edge between l1 and l2 is annotated by a guard x ≥ 5, and
a clock reset x := 0. The guard prevents the location change
(from l1 to l2) if the clock x is below 5, while the invariant
of l1 ensures that the location is left before x goes over 6.

Once the edge is taken, two things happen: clock x is reset
and task t1 is released. Task t1 is denoted by a triple (C1 =
2, D1 = 5, P1 = 1) that defines the task’s computation time
C1, relative deadline D1, and priority P1.

Once the task is released it is added to the task queue.
The task queue is formed as q = [ti(ci, di), . . . , tj(cj , dj)],

1http://www.uppaal.org/
2http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
3http://www.timestool.com/

http://www.uppaal.org/
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
http://www.timestool.com/


where ci is the remaining computation time and di the relative
deadline of task ti.

Task execution is modeled via a scheduler function that takes
two parameters: q and a non-negative integer δ, and returns
a new task queue q′, which models q after being executed
for δ time units. Assuming the previously mentioned q, and
task ti as currently executing on the CPU, the result would be
q′ = [ti(ci − δ, di − δ), . . . , tj(cj , dj − δ)]. Task ti has been
successfully executed once ci reaches zero and di is greater or
equal to zero. If di reaches zero first, it means that the task has
missed its deadline and the system is considered unschedulable.

During the verification, the individual automata are connected
into an automata network, against which reachability properties
are evaluated. In the rest of the paper, the automata that
are modeling the task release patterns are called task release
automata.

III. ADAPTIVE TASK AUTOMATA

In the task automata model, the interface between task release
automata and the rest of the automata network that simulates
the execution of tasks is very limited. This means that only
task release instructions are propagated from the task release
automata to the scheduler and queue. After a task is released,
there are no ways to follow the status of the task as the time
is progressing.

t1(2, 3), t3(1, 3), . . .

task release
queue manip.

sched()
inqueue()

FPS,EDF, . . .
(a)

(b)

(c)

(d)

Fig. 2. Essential components of the ATA model: (a) the task scheduling
policy, (b) the task queue, (c) task automata network modeling task release
patterns, and (d) model of the environment.

Our contribution is the adaptive task automata framework
designed for modeling and verification of adaptive embedded
systems, for which we provide a mechanism to gather data
from the queue and scheduler via a set of predicates, with
the potential of enabling alterations of the queue. A visual
overview of the structure of ATA is given in Figure 2.

The predicates model the schedulability of one or many
tasks in the queue. In other words, we can find out whether
the schedulability of the entire system has been already
compromised, and even check if it will be compromised in
case another task would be added to the queue.

The full formal description of the work can be found in our
recent paper [1].

In Figure 3, we present an adaptive task automaton similar
to the task automaton from Figure 1, but extended with the

t1(C1=2, D1=5, P1=1)

l1

l2

x ≥ 5 ∧ sched(t1)
x := 0

x ≤ 6

x ≥ 5 ∧ ¬sched(t1)
x := 0

t2(C2=2, D2=10, P2=1)

l2

Fig. 3. An adaptive task automaton snippet

schedulability predicate sched/1, and another edge and task that
can be released in case that the original task would not complete
before its deadline. The adaptive task automata framework
provides a set of predicates for modifying task release patterns
based on the state of the queue:
• sched/1 predicate is evaluating whether a task can be

released so that it will complete in time for a given ready
queue. However, there is still a possibility of releasing
another, higher priority, task that will preempt this task
and render it unschedulable.
Another purpose of predicate sched/1 is to evaluate
whether an already released task can complete in time.

• inqueue/1 predicate can be used to find out whether the
task is present in the queue or not. This predicate evaluates
to true if the task is present in the queue or currently
executing on the CPU.

• sched/2, a more advanced version of the predicate
sched/1, takes two parameters: sched(t1, t2). The predi-
cate evaluates whether the task t1 can complete in time
if the task t2 would be released at the current moment,
assuming that the predicate inqueue(t1) holds.

By using the above presented predicates, it is possible to
create a temporary inversion of priorities. A task of higher
priority can wait before being released, in order to ensure that
a task of lower priority completes in time. When modeling a
system in our framework, one has to carefully consider whether
such behavior is wanted in the system.

Besides the basic predicates: sched/1, sched/2, and
inqueue/1, we provide two additional, derived predicates:
• sched all/0 that evaluates whether all tasks in the current

queue are going to meet their respective deadlines;
• sched all/1 that evaluates whether the tasks in the queue

will meet their deadlines provided that a new task is
introduced into the queue.

While implementing the predicates for ATA framework in
timed automata,we had to overcome some issues related to
the encoding and decidability of the schedulability analysis.
One of the most noticeable issues is that the schedulability
testing predicates rely on testing whether the difference between
two clocks is less than a certain constant. This causes the
entire system to be categorized as diagonally constrained timed
automata, which have been proven to be decidable under the
same conditions as diagonal-free timed automata [9].



IV. EXAMPLE

A. Robot teleoperation

As an example, let us look at a model of a hypothetical
system for teleoperating a robot. This particular robot is
equipped with a video camera that sends the image to the
user and a microphone that transmits surrounding sound to
the human operator. The human operator interfaces with the
robot via a user console. We can think of a user console as
a self contained, battery powered computer running a single
core CPU.

The console provides live feed of what the robot “sees” and
“hears”, while transmitting the operator’s commands back to the
robot. To keep the real-time requirements, a processing loop
has been created, being executed every 100 time units. The
processing loop first scans whether any commands from the
operator have been received, acts upon them, then processes
incoming video frame and audio packet and displays them to
the operator.

Let us assume that one of the design goals of the system
is to extend its battery life, while maintaining the hard real-
time requirements on its functionality. To achieve that, a CPU
with three clock frequency scaling modes has been built into
the console. The full power mode provides the maximum
performance while sacrificing battery life. The extended life
mode provides more battery life with a small, 20% performance
degradation. The third mode is most suitable for handling
low battery situations, since it significantly degrades CPU
performance to half of the full performance.

The designers have chosen to keep audio and input process-
ing at a constant performance and have built the adaptivity
feature into the video processing task, by providing three
different versions of the task, which can be released based on
the available resources. These versions are shown in table 4
along with all the other tasks present in the system.

On the other hand, if the audio is not critical to the operator,
he/she can mute it, thus freeing the part of the processing cycle
otherwise taken up by the audio processing. This enables the
system to schedule a higher quality task for video.

To model the reduced processing capacity, we are releasing a
high priority task (tint1 or tint2) at the start of each processing
cycle. Their computation times correspond to the missing
capacity.

A model of such system in the ATA framework consists of:
• a task release automaton that models the release pattern

of the input task;
• a task release automaton that models the release pattern

of the audio task, while providing audio muting features;
• an automaton modeling user interaction that mutes the

audio;
• an automaton modeling the reduction in battery levels that

causes reduction of available CPU resources;
• a periodic release automaton modeling different levels of

interference corresponding to the reduction of resources;
• and an adaptive automaton modeling the task release

pattern of the video task.

The large number of automata is due to our wish to
distinguish between different tasks and to model external events
as separate automata. This can be reduced all the way to a
single task release automaton, while sacrificing simplicity of
the individual automata.

P T D C Description
tint1 7 100 100 20 High interference
tint2 6 100 100 50 Low interference
tinput 5 100 100 10 Input processing
taudio 4 100 100 20 Audio processing
tvideo 3 100 100 70 High quality video
t′video 2 – 100 40 Medium quality video
t′′video 1 – 100 20 Low quality video

Fig. 4. Robot teleoperation user console tasks.

tvideo

t′video

t′′video

Start
x ≤ 0

Release tvideo

Release t′video

Release t′′video

x ≥ 100

sch
ed(

tvide
o)

sched(t′video)∧
¬ sched(tvideo)sched(t ′′

video )∧
¬ sched(tvideo)∧
¬ sched(t ′

video )

x ≤ 100

x ≤ 100

x ≤ 100

x := 0

Fig. 5. Adaptive task automaton model for the user console.

In Figure 5, we present the adaptive automaton for the video
task. The automaton tests whether the best priority task can
be released first, and then downgrades the quality of the video
task progressively until one task can be released. In the general
case, this automaton may deadlock due to the lack of an edge
that would be taken if no variant of the video task fits into
the task set, yet by verifying the entirety of the system, it is
possible to conclude that the entire system never deadlocks.

An inaccurate schedulability estimation might occur in case
of multiple task releases in zero time. We address this by
defining the order in which tasks are admitted to the queue,
ensuring that the adaptable task is always admitted last.

We can see that the worst case happens when the operator
wishes to use the audio, while the battery is at its lowest setting.
In that case, the video task t′′video is released and the video
quality is low. In all the other cases, the system automatically
detects the possibility to release higher quality video task and
it does so.

B. Scalability of the approach
Another example involves the usage of the sched all predi-

cate. We would like to create a scalable scheduling automaton



that would enable us to schedule job ti and its n fallback
variants with the fallback sequence ti → ti+1 → . . .→ ti+n.
This can be accomplished easily in our framework by creating a
nondeterministic automaton that can jump into the job release
location if the job can be scheduled. Then, by introducing
determinism via the addition of the edge priorities [10], we
can encode the fallback sequence into the automaton.

ti

ti+n

Start
x ≤ 0

Release ti

Release ti+n

x ≥ T

sch
ed

all(
ti)

sched all(ti+n)

x ≤ T

x ≤ T

x := 0

Fig. 6. A universal automaton for scheduling a task with n fallback tasks.

V. RELATED WORK

Schedulability analysis and formal verification of adaptive
embedded system models specified in high level languages
has recently received increased attention. For instance, several
approaches on verifying adaptive embedded systems specified
as UML Statecharts are presented by Schaefer [11]. Schneider
et al. [12] have proposed a method to describe and analyze
adaptation behavior in embedded systems in which the data
flow is augmented with quality descriptions that are used by
configuration rules to determine potential adaptations. The
application of schedulability verification has already targeted
multiprocessor systems [13], or satellite systems [14], and
results on generalized frameworks for schedulability analysis
have also been provided [15]. However, in these studies the
non-schedulability of the system cannot be predicted soon
enough such that the system does not reach such a state, but
only after a task misses its deadline.

VI. ONGOING AND FUTURE WORK

At the time of writing this paper, we have established
decidability of verifying reachability in uniprocessor ATA
with fixed priority scheduling and sched predicate. We are
looking at the boundaries of the applicability of our framework,
and at which scheduling policies can be adapted to work
within our framework considering that the sched predicate
requires significant support from the automaton implementing
the scheduling policy.

We are also planning to add several new functions that
would dynamically alter the queue of the running system, thus

simulating forceful termination of the tasks. Last but not least,
we will investigate ways of keeping the system running even
in the case when the tasks break their deadlines.

ACKNOWLEDGMENT

This research has been supported by the Swedish Research
Council, which is gratefully acknowledged.

REFERENCES

[1] L. Hatvani, P. Pettersson, and C. Seceleanu, “Adaptive task automata:
A framework for verifying adaptive embedded systems,” in FASE’12:
Proceedings of the 15th International Conference on Fundamental
Approaches to Software Engineering, ser. LNCS, J. de Lara and
A. Zisman, Eds., 2012, pp. 115–129.

[2] C. Norström, A. Wall, and W. Yi, “Timed automata as task models for
event-driven systems,” in Real-Time Computing Systems and Applications,
1999. RTCSA ’99. Sixth International Conference on, 1999, pp. 182 –189.

[3] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Schedulability
analysis of fixed-priority systems using timed automata,” Theor. Comput.
Sci., vol. 354, pp. 301–317, March 2006.

[4] E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task automata: Schedu-
lability, decidability and undecidability,” Information and Computation,
vol. 205, no. 8, pp. 1149 – 1172, 2007.

[5] E. Fersman, P. Pettersson, and W. Yi, “Timed automata with asynchronous
processes: Schedulability and decidability,” in In Proceedings of TACAS
2002. Springer-Verlag, 2002, pp. 67–82.

[6] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nutshell,” Int.
Journal on Software Tools for Technology Transfer, vol. 1, no. 1–2, pp.
134–152, Oct. 1997.

[7] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine,
“Kronos: A model-checking tool for real-time systems,” in Computer
Aided Verification, ser. Lecture Notes in Computer Science, A. Hu and
M. Vardi, Eds. Springer Berlin / Heidelberg, 1998, vol. 1427, pp.
546–550, 10.1007/BFb0028779.

[8] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Times: a
tool for schedulability analysis and code generation of real-time systems,”
in Proc. of International Workshop on Formal Modeling and Analysis of
Timed Systems, ser. Lecture Notes in Computer Science. Springer-Verlag,
2003.

[9] B. Bérard, A. Petit, V. Diekert, and P. Gastin, “Characterization of the
expressive power of silent transitions in timed automata,” Fundam. Inf.,
vol. 36, no. 2-3, pp. 145–182, Nov. 1998.

[10] A. David, J. Håkansson, K. Larsen, and P. Pettersson, “Model checking
timed automata with priorities using dbm subtraction,” in Formal
Modeling and Analysis of Timed Systems, ser. Lecture Notes in Computer
Science, E. Asarin and P. Bouyer, Eds. Springer Berlin / Heidelberg,
2006, vol. 4202, pp. 128–142.

[11] I. Schaefer, “Integrating formal verification into the model-based
development of adaptive embedded systems,” Ph.D. dissertation, TU
Kaiserslautern, Kaiserslautern, Germany, Oct. 2008, iSBN 978-3-89963-
862-2.

[12] K. Schneider, T. Schuele, and M. Trapp, “Verifying the adaptation
behavior of embedded systems,” in Proceedings of the 2006 international
workshop on Self-adaptation and self-managing systems, ser. SEAMS
’06. New York, NY, USA: ACM, 2006, pp. 16–22.

[13] F. Yu, G. Li, and N. Xiong, “Schedulability analysis of multi-processor
real-time systems using uppaal,” in Information Science and Engineering
(ICISE), 2010 2nd International Conference on, dec. 2010, pp. 1 –6.

[14] M. Mikučionis, K. Larsen, J. Rasmussen, B. Nielsen, A. Skou, S. Palm,
J. Pedersen, and P. Hougaard, “Schedulability analysis using uppaal:
Herschel-planck case study,” in Leveraging Applications of Formal
Methods, Verification, and Validation, ser. Lecture Notes in Computer
Science, T. Margaria and B. Steffen, Eds. Springer Berlin / Heidelberg,
2010, vol. 6416, pp. 175–190.

[15] A. David, J. Illum, K. Larsen, and A. Skou, Model-Based Framework
for Schedulability Analysis Using UPPAAL 4.1. CRC Press, 2011/12/27
2009.


	Introduction
	Overview of Task Automata
	Adaptive Task Automata
	Example
	Robot teleoperation
	Scalability of the approach

	Related Work
	Ongoing and Future Work
	References

