Impact of Test Design Technique Knowledge on
Test Driven Development:
A Controlled Experiment

Adnan Causevié, Daniel Sundmark, and Sasikumar Punnekkat

Malardalen University, Sweden
firstname.lastname®@ndh. se

Abstract. Agile development approaches are increasingly being fol-
lowed and favored by the industry. Test Driven Development (TDD) is
a key agile practice and recent research results suggest that the success-
ful adoption of TDD depends on different limiting factors, one of them
being insufficient developer testing skills. The goal of this paper is to
investigate if developers who are educated on general testing knowledge
will be able to utilize TDD more effectively. We conducted a controlled
experiment with master students during the course on Software Verifi-
cation & Validation (V&V) where source code and test cases created by
each participant during the labs as well as their answers on a survey
questionnaire were collected and analyzed.

Descriptive statistics indicate improvements in statement coverage. How-
ever, no statistically significant differences could be established between
the pre- and post-course groups of students. By qualitative analysis of
students’ tests, we noticed a lack of test cases for non-stated require-
ments (“negative”tests) resulting in a non-detection of bugs. Students
did show preference towards TDD in surveys.

Although further research is required to fully establish this, we believe
that identifying specific testing knowledge which is complementary to
the testing skills of a new TDD developer would enable developers to
perform their tasks in a more efficient manner.

Key words: test driven development; controlled experiment; software testing

1 Motivation

Test Driven Development (TDD), also known as test-first programming, is an
essential part of eXtreme Programming (XP) [1]. TDD requires the developers
to construct automated unit tests in the form of assertions to define code re-
quirements before writing the code itself. In this process, developers evolve the
systems through cycles of test, development and refactoring. In a recent indus-
trial survey [2], we examined the difference between the preferred and the actual
level of usage for several test-related practices. Among the 22 examined prac-
tices, surprisingly, TDD gained the highest score of ‘dissatisfaction’. This means
that the accumulated absolute difference between the preferred and the actual

2 Adnan Causevi¢, Daniel Sundmark and Sasikumar Punnekkat

levels of usage was highest in the case of TDD. The nature of this dissatisfaction
could be stated as “Respondents would like to use TDD to a significantly higher
extent than they actually do currently”.

Subsequently we explored the current body of knowledge through an empiri-
cal systematic literature review [3] to identify the limiting factors which prevents
the successful adoption of TDD. Insufficient developer testing skills was identi-
fied as one of the important limiting factors as part of the study. By developer
testing skill, we refer to the developer’s ability to write efficient and effective
automated test cases.

1.1 Problem Statement

TDD in its essence teaches developers on how to perform software development
providing some indirect basic testing skills, for example based on positive test-
ing (i.e. testing to show that the software “works” using valid input). We are
interested in identifying specific testing knowledge which is complementary to
the already mentioned testing skills of a new TDD developer. We believe that
such a strategy would enable developers to perform their tasks in a more efficient
manner resulting in higher quality of software products.

1.2 Research Objective

In the form suggested by Wohlin et al. [4], the research objective of this study
can be expressed as follows:

To analyze the effect of testing knowledge on TDD

for the purpose of evaluation of factors affecting the outcome of TDD
with respect to the factors’ limiting effect on the usage of TDD

from the point of view of the software developer

in the context of eXtreme Programming software development.

1.3 Context

To perform analysis with respect to the above objective, an experiment was
organised as laboratory activities with master students enrolled in the Software
Verification and Validation course at Malardalen University during the autumn
semester in 2010.

1.4 Paper Outline

This paper is structured according to the reporting guidelines provided in [5]
(although some minor deviations from the reporting guidelines were made). In
section 2 we present the related research works followed by the experimental
design in section 3. Section 4 presents the details of execution of our experi-
ment. The treatment and analysis of the collected data are given in section 5.
In section 6, we present statistical inferences followed by conclusions and future
research planned in section 7.

Impact of Test Design Technique Knowledge on TDD 3

2 Related Work

Test-driven development is a practice derived from experience and without any
ground theory it makes it very difficult to prove its efficiency in a formal way.
This is one of the reasons why many experiments on TDD are conducted in order
to provide empirical evidence of its claimed quality improvements.

In this section we present related work on empirical investigations of TDD
identified in our recent systematic literature review [3], grouped w.r.t two as-
pects: (i) related to testing knowledge and (ii) general experiments on TDD.

2.1 TDD and testing knowledge

Sfetos et al. [6] performed an industrial survey on advantages and difficulties
that software companies experienced when applying XP. Test-first was among
the investigated practices. During interviews, developers identified difficulties in
writing tests at the very beginning of the project.

Geras et al. [7] performed an experiment with professionals in academic en-
vironment providing subjects with two programs for development, one using
test-last and one using test-first process. One of the conclusions made from the
experiment is that without adequate training and having proper testing skills it
is risky to adopt TDD.

Kollanus & Isomottonen [8] analysed students perceptions and difficulties
on TDD in an educational context experiment. As part of their conclusions
they present different difficulties students had when designing tests. Generally,
students find it difficult to design appropriate test cases and to design tests in
small steps.

2.2 Experiments in TDD

In Table 1 we present experiments in TDD selected from [3] outlining experiment
environment (industrial or academic) and type of subjects (students, profession-
als or mixed). A brief description of the aim and results of each TDD study is
also presented.

3 Experimental Design

This section details the design of the experiment. Further practical experiment
setup information, e.g., for replication purposes, can be found at the first author’s
webpage!.

! http://www.mrtc.mdh.se/~accO1/tddexperiment

4 Adnan Causevi¢, Daniel Sundmark and Sasikumar Punnekkat

AUTHORS YEAR EXPERIMENT SETTINGS SUBJECTS

Miiller & Hagner [9] 2002 Academic Students

AIM: To evaluate benefits of test-first programming compared to traditional approach.
RESULTS: Test-first does not accelerate programming, produced programs are not more reliable
but test-first supports better understanding of program.

George & Williams [10] 2003 Industrial Professionals

AIM: To evaluate quality improvements of test-driven development compared to a waterfall-like
approach. RESULTS: Test-driven development produces higher quality code with the tendency of
developers spending more time on coding.

Geras et al. [7] 2004 Academic Professionals

AIM: To investigate developer productivity and software quality when comparing test-driven and
traditional development approaches. RESULTS: There were little or no differences in developer
productivity but frequency of unplanned test failure was lower for test-driven development.
Erdogmus et al. [11] 2005 Academic Students

AIM: To evaluate functional tests in test-driven development when compared to traditional test-
last approach. RESULTS: Test-first students created on an average more tests and tended to be
more productive. There was no significant difference in quality of produced code between two
groups.

Flohr & Schneider [12] 2006 Academic Students

AIM: To investigate the impact of test-first compared to clasical-testing approach.

RESULTS: No significant differences could be established, but students did show a preference
towards test-first approach.

Janzen & Saiedian [13] 2006 Academic Students

AIM: To examine the effects of TDD on internal quality of software design. RESULTS: Positive
correlation between productivity and TDD, but no differences in internal quality. Perception on
TDD was more positive after the experiment.

Miiller & Hofer [14] 2007 Academic Mixed

AIM: To investigate the conformance to TDD of professionals and novice TDD developers.
RESULTS: Experts complied more to the rules of TDD and produced test with higher quality.
Janzen et al. [15] 2007 Academic Professionals

AIM: To investigate effects of TDD on internal code quality. RESULTS: Programmers’ opinions
on TDD improved after the experiment but internal code quality had no significant difference
between test-first and test-last approach.

Gupta & Jalote [16] 2007 Academic Students

AIM: To evaluate the impact of TDD on designing, coding and testing when compared with tra-
ditional approach. RESULTS: TDD improves productivity and reduce overall development effort.
Code quality is affected by test effort regardless of the development approach in use.

Kollanus & Isomottonen [8] 2008 Academic Students

AIM: To improve understanding on TDD in educational context. RESULTS: Students expressed
difficulties with following TDD approach and designing proper tests. Regardless, they believed in

the claimed benefits of TDD
Hofer & Philipp [17] 2009 Academic Mixed

AIM: To compare conformance to TDD of experts and novice programmers. RESULTS: Experts
refactored their code more than novice programmers, but they were also significantly slower.
Huang & Holcombe [18] 2009 Academic Students

AIM: To investigate the effectiveness of test-first approach compared to the traditional (test-last)
development. RESULTS: Test-first teams spent more time on testing than coding compared to
test-last teams. There was no linear correlation between effort spent on software testing and the
software external quality.

Vu et al. [19] 2009 Academic Students

AIM: To investigate how test-first and test-last methodologies affects internal and external quality
of the software. RESULTS: Test-last team was more productive and created more tests. Students
indicate preference towards test-first approach.

Madeyski [20] 2010 Academic Students

AIM: To investigate how Test-first programming can impact branch coverage and mutation score
indicator. RESULTS: The benefits of the Test-first practice can be considered minor in the specific
context of this experiment.

Table 1. Research publications on experiments in TDD

3.1 Goals, Hypotheses, Parameters, and Variables

The goal of the experiment was to test the effect of knowledge in software testing
on development speed, artefact quality and developer perception when using TDD.
In order to do so, the following null and alternative hypotheses were formulated:

Impact of Test Design Technique Knowledge on TDD 5

— Development Speed:

— H?y. When using TDD, there is no significant difference between the devel-
opment speed of developers with or without knowledge in software testing.
— H?,. When using TDD, developers with knowledge in software testing de-

velop faster.

— Artefact Quality:

— H9%y. When using TDD, there is no significant difference between the qual-
ity of the artefacts produced by developers with or without knowledge in

software testing.

— HY,. When using TDD, developers with knowledge in software testing pro-
duce artefacts of a higher quality.

— Developer Perception:

— HPg. There is no significant difference in the perception of TDD between
developers with or without knowledge in software testing.
— HP,. Developers with knowledge in software testing have higher preference
towards TDD than those without knowledge in software testing.

The development speed, artefact quality and developer perception are opera-
tionalized in a list of response variables, provided in Table 2.

Construct

Variable name

Description

Scale type

Development Speed |User Stories

Number of user stories finished
within lab session.

Ratio

Artefact Quality Defects

Number of defects found in code im-
plementation by independent test
suite.

Ratio

Artefact Quality Coverage

Statement coverage of test suite
when applied to code implementa-
tion.

Ratio

Artefact Quality Complexity

Cyclomatic complexity of the code
implementation.

Ratio

Developer Perception|Ease of use

The ease of use with which the steps
of TDD could be followed.

Ordinal

Developer Perception|Preference

Subjects’ perception of TDD.

Ordinal

Table 2. Experiment Response Variables

In this experiment, the factor of knowledge in software testing is operational-
ized using a 10-weeks half-time advanced-level academic course in Software Veri-
fication and Validiation. Some topics that are covered by course are: introduction
to software testing and testing fundamentals, the test processes, how to practi-
cally write test cases, code inspection and security testing, test design techniques,
static program analysis and real-time testing. The course content has been in-
spired partly by industrial certification courses (e.g., the International Software

6 Adnan Causevi¢, Daniel Sundmark and Sasikumar Punnekkat

Testing Qualification Board (ISTQB) foundation- and advanced-level certifica-
tion courses [21]), and partly by scientific courses and syllabi (e.g., the software
testing course contents proposed by Ammann and Offutt [22]). For the purpose
of this experiment, a subject is said to have knowledge in software testing if (s)he
has taken part in the course lectures and exercises, and not to have knowledge
in software testing if (s)he has not.

3.2 Experiment Design

The experiment design is detailed in Figure 1. Two groups of subjects (Group
A and Group B) worked on two different problems (Problem 1 and Problem 2)
as part of the labs, once before and once after the course (using TDD on both
the occasions). During both the labs they used the Eclipse [23] integrated de-
velopment environment (IDE) to create working software solutions in the Java
programming language and the jUnit [24] testing framework for writing exe-
cutable tests. Upon completion of each of the labs, the subjects answered a set
of questions in an online survey system.

| b1 Y
! | s c [Ll s
P Probleml 3 H»| Problem2 [
1 1| v 0 1 1| v
1
' : r N u : : r
\" r \"

1 1 1 1

bl Problem2 My © S P Problem1 P ©
[1|y e 1 oy
1 1 1 1
1 1

Fig. 1. Design of Experiment.

3.3 Subjects

The subjects of the experiment were software engineering master students en-
rolled in the Software Verification and Validation course at Malardalen Uni-
versity during the autumn semester of 2010. The experiment was part of the
laboratory work within the V&V course, and the subjects earned credits for
participation. Students were informed that the final grade for the course will be
obtained from the written exam and their performance during labs would not
affect their grades.

3.4 Objects

As stated above, the experiment used two specific software development prob-
lems for the experiment, namely: (i) Roman numeral conversion (Problem 1) and
(ii) a bowling game score calculator (Problem 2). The specifications for Problem
1 were written by us (in the form of a list of user stories) for the purpose of this
experiment, whereas the specifications for Problem 2 (also a list of user stories)

Impact of Test Design Technique Knowledge on TDD 7

were based on the Bowling Game Kata (i.e., the problem also used by Kollanus
and Isoméottonen to explain TDD [8]). Detailed information about the problems
and their user stories are provided on first author’s webpage?.

TDD Steps:

1. Write one single test-case

2. Run this test-case. If it fails continue with step 3. If the test-case succeeds, con-

tinue with step 1.

Implement the minimal code to make the test-case run

4. Run the test-case again. If it fails again, continue with step 3. If the test-case
succeeds, continue with step 5.

5. Refactor the implementation to achieve the simplest design possible.

6. Run the test-case again, to verify that the refactored implementation still succeeds
the test-case. If it fails, continue with step 5. If the test-case succeeds, continue
with step 1, if there are still requirements left in the specification.

w

Fig. 2. TDD steps for development.

3.5 Instrumentation

As one way of ensuring that subjects properly followed the steps of TDD, we
provided the instructions for TDD prescribed by Flohr and Schneider [12] (see
Figure 2). To avoid problems with subjects’ unfamiliarity of jUnit testing frame-
work and/or Eclipse IDE, subjects were given an Eclipse project code skeleton
with one simple test case. Since this was all located in a subversion (SVN) repos-
itory, an instruction on how to obtain code from SVN and import it in Eclipse
was also provided to students.

3.6 Data Collection Procedure

Teams were instructed to upload their source codes in a SVN repository. This
way the lab instructor has a complete log of subjects’ activities and the option
to obtain code from a specific point in time.

Subjects answered survey questions using quiz assignments in the Blackboard
learning management system for the course. Data from surveys is then exported
in comma separated values (.csv) file format.

4 Execution

4.1 Sample

Twenty-eight students participated in the experiment. Students were informed
that their work in computer laboratory would be used for the experiment, but

2 http://wuw.mrtc.mdh.se/~accO1/tddexperiment

8 Adnan Causevi¢, Daniel Sundmark and Sasikumar Punnekkat

they were not provided any details on the goal of the experiment itself. Also,
we explicitly stated that their performance would not influence the final grade
of the V&V course in any way. The final grade was determined by the written
exam.

4.2 Preparation

Team numbers were assigned in sequential order based on the time of receipt of
the e-mail requested by the lab instructor. Problems for the teams were assigned
in an alternating manner between the two immediate teams (ex., if team i was
assigned problem 1, one team i+1 was assigned problem 2 and team i+2 was
assigned problem 1 again etc.).

Since the lab work was time-boxed to 3 hours, a Java code skeleton was
created for students. It contained a program class with one empty method re-
turning zero and a test class with one assert statement validating the previous
mentioned method. This skeleton was made to be directly imported into Eclipse
as an existing project.

For each team a corresponding subversion (SVN) repository was created with
read/write permissions assigned only to students within the given team and to
the lab instructor. To avoid difficulties in setting up SVN and importing project
in Eclipse, an instruction on the usage of SVN and Eclipse was provided to the
students.

4.3 Data Collection Performed

As explained to students in the lab instruction document, after creating a new
test or after changing code in order to pass the existing tests, an SVN commit
command had to be executed. This way the lab instructor had a complete log of
activities during the lab and an ability to obtain source code of the team at any
given point in time. The absence of some students from any of the lab sessions
were clearly visible from their SVN repository since the date of source code was
not the same as the date of the lab. Such data was excluded from the analysis.

5 Analysis

5.1 Descriptive Statistics

Based on initial experimental plan of response variables (see Table 2) a descrip-
tive analysis was performed for each variable independently.

First, considering the development speed construct, Figure 3 presents the
percentage of user stories finished during the experiment sessions as mean values
with standard error deviation. As the figure shows, the development speed was
relatively unaffected in both groups before and after the course.

Second, considering the artefact quality construct, Figures 4, 5, and 6 present
percentage of statement coverage of students test suite, cyclomatic complexity

Impact of Test Design Technique Knowledge on TDD 9

User stories finished during labs Coverage

80 110

70 105
100

60
95

50 I
90 T

40 85

30 80
75

20
70

10 65

0 60

Group A before Group A after Group B before Group B after Group A before Group A after Group B before Group B after
the course working the course working the course working the course working the course working the course working the course working the course working
on Problem 1 on Problem 2 on Problem 2 on Problem 1 on Problem 1 on Problem 2 on Problem 2 on Problem 1
+ Mean value + Mean value
Fig. 3. Performance mean values Fig. 4. Code coverage mean values

of the code, and the number of defects detected by an independent test suite
respectively. These measures are given as mean values with standard error devi-
ations. In the case of code coverage, it can been seen that both post-test groups
had better mean values than the pre-test groups. In the complexity and defects
metrics, the differences between the experiment objects seem to obscure such
visible results, if they exist.

Complexity Defects

40 7

35 6

30 5

.) I
L

20 5 t

15

10 + 2

Group A before Group A after Group B before Group B after Group A before Group A after Group B before Group B after
the course working the course working the course working the course working the course working the course working the course working the course working
on Problem 1 on Problem 2 on Problem 2 on Problem 1 on Problem 1 on Problem 2 on Problem 2 on Problem |
+ Mean value + Mean value
Fig. 5. Code complexity mean values Fig. 6. Defects found mean values

Finally, Figures 7 and 8 provide results related to the developer perception
construct. The first of these figures presents the sum of student responses on the
ease of use with which the steps of TDD are followed in labs. Possible responses
vary from 1 to 8 where 1 means impossible to follow and 8 means it was straight-
forward. Data is presented for both instances of labs. Figure 8 presents the sum
of student responses on the perception of TDD. Possible responses varies from 1
to 8 where 1 means they will not consider using TDD in future developments and
8 means they will always use TDD. Data is presented for both instances of labs.
Generally, students found TDD to be a preferable development method that is
easy to use. However, there is no obvious difference between the pre-experiment
and post-experiment perceptions on this matter.

10 Adnan Causevi¢, Daniel Sundmark and Sasikumar Punnekkat

Ease of TDD usage Consider TDD in future development
18 14
16 12
14
10
12
10 8
®labl Elabl
8 6
Lab2 Lab2
6
4
4
2 1 = 2 —
0 0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Impossible Straightforward No 1 will always use those Steps
Fig. 7. How difficult was it to follow TDD Fig. 8. Students perception of TDD

5.2 Data Set Reduction

Source codes of 17 teams (9 from Group A and 8 from Group B) and 28 student
responses in survey questionnaires were collected for analysis. The difference of 6
students were due to the fact that some students did not fill in the questionnaire
but did perform the lab.

When the actual source code analysis was performed additional data points
had to be removed. The projects of teams 4 and 13 were excluded due to several
syntax errors which made the complete solution uncompilable and irrelevant for
any of the analysis. During code coverage analysis a huge deviation occurred
with Team 14. A detailed analysis revealed that students did not write any test
cases during the lab but they subsequently submitted tests in SVN. Since this
was opposite from the TDD practice stated in their lab instructions, data from
this team was also excluded. After removing data from those three teams, finally
we had data points from:

— 14 teams (7 from Group A and 7 from Group B) for source code analysis and
— 22 student responses for survey questionnaire analysis.

5.3 Hypothesis Testing

Hypothesis testing was performed in two steps: First, the Mann-Whitney non-
parametric test was used to ensure that the differences in response variable data
between the experiment groups and between the experiment objects were sta-
tistically nonsignificant. The o was set to 0.05, and consequently a resulting z
score of more than 1.96 or less than -1.96 was required to show a significant
difference between the objects or the groups.

The result of this analysis is shown in Table 3. As can be seen from the
table, there were no significant differences between the experiment objects or
groups, with the exception of a significant difference in object complexity. This
parameter is consequently omitted from further analysis.

Second, on the basis of the nonsignificant differences between experiment
objects and groups, the Wilcoxon signed rank test for paired nonparamet-
ric data was used in order to test the null hypotheses of the experiment. As

Impact of Test Design Technique Knowledge on TDD 11

in the Mann-Whitney case, the a was set to 0.05. The result of this analysis
is shown in Table 4. For a null hypothesis to be rejected, it is required that
min(W, W_) < Critical W holds. As shown in the table, none of the exper-
iment’s null hypotheses can be rejected based on the collected data.

Development speed|Artefact quality Developer perception

User Stories Defects|Coverage|Complexity | Ease of use|Preference
Group A vs. Group B[-0.16 -0.80 [-0.34 -1.36 -0.30 1.34
Roman vs. Bowling [0.02 -1.91 0.05 -2.64 0.19 0.09

Table 3. Mann-Whitney z scores for differences between experiment groups and ob-
jects. A significant difference in complexity between the experiment objects is found.

Construct (Null hypothesis) [Parameter | W[W_] min(W,, W_)] Critical W

Development speed (H®g) User Stories|52.5 [52.5 [52.5 21 (14 non-zero differences)
Artefact quality (HY) Defects 22.5 [13.5 [13.5 4 (8 non-zero differences)
Artefact quality (H7) Coverage 25 [80 [25 21 (14 non-zero differences)
Artefact quality (H7) Complexity [Not tested

Developer perception (HPo)[Ease of use [30 [25 [25 [8 (10 non-zero differences)
Developer perception (HPPo)[Preference [30 [15 |15 [6 (9 non-zero differences)

Table 4. Testing of null hypotheses of the experiment

6 Interpretation

6.1 Evaluation of Results and Implications

When looking at the descriptive statistics results of the code coverage variable we
can notice a positive increase in performances of both the groups when compar-
ing before and after the course results. Even though there were no statistically
significant differences in code coverage values (null hypothesis could not be re-
jected), we think this was a borderline case. What we want to emphasise is that,
on an average, the best performing group before the course was still worse than
the worst group after the course:

maw(A7 B)precourse < ’ITLZ’I’L(A, B)postcourse

The level of complexity of the students program solutions changed for both
groups from one lab to another, but this change had one direction for Group
A and another for Group B. What we can only conclude from this data is that
solutions for Problem 1 are of higher complexity than solutions for Problem 2.

We expected the number of defects variable to provide us with a direct way of
evaluating the impact of testing knowledge. An independent suite of test cases
for each problem was created but we could not use it to the full extent since
different teams finished different numbers of user stories. Every team had on an
average four bugs and in most cases those could have been found by test cases
designed using a negative test design technique.

12 Adnan Causevi¢, Daniel Sundmark and Sasikumar Punnekkat

Students claimed they adhered to TDD practice during the experiment to a
high extent (Figure 9). The ease of usage of TDD practice was also reported to
a high extent (Figure 7) but interestingly students did not feel the same about
their preference of using TDD in future development (Figure 8).

How strictly TDD was followed Impact of testing knowledge on TDD

= Lab | 6
Lab2

- 2 -1 0 1 2 3
1 2 3 4 5 6 7 Significant negative Significant positive
Not at all Completely impact impact

Fig. 9. How strictly TDD was followed Fig. 10. Students opinion on the impact

6.2 Limitations of the Study

Typically, four types of validity are discussed in empirical research (i.e., construct
validity, internal validity, external validity and reliability) [4].

Construct validity refers to the correctness in the mapping between the
theoretical constructs that are to be investigated, and the actual observations
of the study. Some of the constructs investigated in this study are not trivially
defined, and may be subject to debate (particularly in the case of artefact quality
and testing knowledge). In order to mitigate this problem, we have used stan-
dard software engineering metrics (e.g., complexity and coverage), and provided
detailed information on the operationalization of each construct involved in the
experiment.

Internal validity concerns the proper analysis of data. The statistical strat-
egy used in this paper was to first eliminate the possibility of major confounding
variables affecting the result (i.e., testing for differences between experiment ob-
jects or groups), and second, to test the null hypotheses. Furthermore, as the
normality of the data could not be assumed, we used non-parametric tests to
conduct these hypothesis tests. However, regardless of the strategy used, it is
without question a fact that the sample size of the data was small, which is
a major limitation for statistical analysis (and potentially also a cause for the
inability for null hypothesis rejection). The only way to resolve this matter is
through replications of the experiment.

External validity relates to the possibility to generalize the study results
outside its scope of investigation. As many of the previously published experi-
ments on TDD (see Table 1), this experiment is performed in a course setting
and suffers from the consequent threats to external validity (e.g., student sub-
jects, small scale objects, short experiment duration). It is, however, uncertain to

Impact of Test Design Technique Knowledge on TDD 13

what extent this affects the results, as we are not examining a practice (TDD)
directly, but rather assessing whether the practice improves given the acquisition
of a certain knowledge.

Reliability concerns the degree of certainty with which a replication of this
study, e.g., by a different set of researchers, would yield the same study outcome.
Here, as the experiment package and guidelines are made available for replica-
tion purposes, the major reliability threat relates to the replicated execution of
the V&V course. On the other hand, without having any deeper insight as to
what specific testing knowledge would be beneficial for TDD, this needs to be
considered future work.

7 Conclusions and Future Work

In this section a summary of the study results with directions for future work
are presented.

7.1 Relation to Existing Evidence

In the related works section we mentioned three research papers where partici-
pants of their studies expressed difficulties with testing and/or constructing test
cases. Opinions of the subjects of our study pointed out that testing knowledge
had a relatively significant positive impact on how they performed TDD as can
be seen in Figure 10. However, based on qualitative data from our experiment,
we also inferred that our respondents had problems with creating negative test
cases.

7.2 Impact

A growing number of research publications empirically evaluating TDD implic-
itly suggest that TDD will most likely provide benefit of higher code quality to
the organisation which decide to implement this development process. However,
to the best of our knowledge, there are no reports on failure of implementing
or adopting TDD within a specific organisation. In this context a more rele-
vant research question could be: where and why will TDD not work and how to
overcome those factors?

Our experiment is a initial attempt to address this research question from an
orthogonal perspective by evaluating specifically whether testing knowledge can
support TDD in practice or it could be considered as a limiting factor (as stated
in [3]). Though the present study is inconclusive, it opens up several interesting
challenges for the research community. We believe that identifying specific testing
knowledge, which is complementary to the testing skills of a new TDD developer,
is essential. Such a knowledge would enable developers to achieve performance
efficiency and higher quality of software products. Additionally, it will have a
great impact on the industrial adoption of TDD.

14 Adnan Causevi¢, Daniel Sundmark and Sasikumar Punnekkat
7.3 Future Work

In this study we presented a detailed experiment with students as subjects,
making it more accessible for other researchers to replicate or perform a sim-
ilar experiment. Alongside of providing more evidence on how general testing
knowledge supports TDD in practice, we think an evolving experiment should
be created with more specific focus. This experiment would be a possibility to
directly investigate the effect of knowledge of negative testing on TDD practice.
It could be designed in a way to provide education to subjects specifically on how
to design test cases for unspecified system behaviours and use that knowledge
when performing TDD of software systems.

TDD per se provides an excellent opportunity for improving code quality
by imbibing “test culture” in the development community. Adherence to TDD
results in the generation of automated and executable test cases during the devel-
opment phase itself, thus improving the testability of the system requirements.
However, as indicated by our study, TDD needs to be supplemented with new
process steps or test design techniques, which could potentially further enhance
the robustness and the reliability of the system.

In a long term research perspective, we also intent to perform an industrial
case study investigating how experienced developers could benefit from testing
knowledge and what kind of specific testing knowledge they need in order to
increase the quality of the code artefacts they produce.

Acknowledgments

This work was supported by SWELL (Swedish software Verification & Validation
ExceLLence) research school and OPEN-SME research project.

References

1. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (2000)

2. Causevic, A., Sundmark, D., Punnekkat, S.: An industrial survey on contempo-
rary aspects of software testing. In: Proceedings of the 3rd IEEE International
Conference on Software Testing, Verification and Validation. ICST (2010) 393-401

3. Causevic, A., Sundmark, D., Punnekkat, S.: Factors limiting industrial adoption
of test driven development: A systematic review. In: Proceedings of the 4th IEEE
International Conference on Software Testing, Verification and Validation. ICST
(2011) 337-346

4. Wohlin, C., Runesson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in Software Engineering — An Introduction. Kluwer Academic Pub-
lishers (2000)

5. Jedlitschka, A., Pfahl, D.: Reporting guidelines for controlled experiments in soft-
ware engineering. In et al., R.J., ed.: Proceedings of the 4th International Sympo-
sium on Empirical Software Engineering (ISESE 2005), IEEE Computer Society
(2005) 94-104

6. Sfetsos, P., Angelis, L., Stamelos, I.: Investigating the extreme programming sys-
tem - an empirical study. Empirical Software Engineering 11 (2006) 269-301

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

Impact of Test Design Technique Knowledge on TDD 15

. Geras, A., Smith, M., Miller, J.: A prototype empirical evaluation of test driven

development. In: Proceedings of the Software Metrics, 10th International Sympo-
sium, Washington, DC, USA, IEEE Computer Society (2004) 405-416

. Kollanus, S., Isométtonen, V.: Understanding tdd in academic environment: expe-

riences from two experiments. In: Proceedings of the 8th International Conference
on Computing Education Research. Koli 08, New York, NY, USA, ACM (2008)
25-31

. Muller, M., Hagner, O.: Experiment about test-first programming. Software, IEE

Proceedings - 149(5) (October 2002) 131 — 136

George, B., Williams, L.: A structured experiment of test-driven development.
Information and Software Technology 46(5) (2003) 337 — 342

Erdogmus, H., Morisio, M., Torchiano, M.: On the effectiveness of the test-first
approach to programming. IEEE Transactions on Software Engineering 31 (2005)
226-237

T. Flohr and T. Schneider: Lessons learned from an xp experiment with students:
Test-first needs more teachings. In Mnch, J., Vierimaa, M., eds.: Product-Focused
Software Process Improvement. Volume 4034 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg (2006) 305-318

Janzen, D.S., Saiedian, H.: On the influence of test-driven development on software
design. Software Engineering Education and Training, Conference on 0 (2006) 141—
148

Miiller, M., Hofer, A.: The effect of experience on the test-driven development
process. Empirical Software Engineering 12 (2007) 593-615

Janzen, D.S., Turner, C.S., Saiedian, H.: Empirical software engineering in industry
short courses. Software Engineering Education and Training, Conference on 0
(2007) 89-96

Gupta, A., Jalote, P.: An experimental evaluation of the effectiveness and efficiency
of the test driven development. In: Proceedings of the First International Sympo-
sium on Empirical Software Engineering and Measurement. ESEM 07, Washing-
ton, DC, USA, IEEE Computer Society (2007) 285-294

Hofer, A., Philipp, M.: An empirical study on the tdd conformance of novice and
expert pair programmers. In Aalst, W., Mylopoulos, J., Sadeh, N.M., Shaw, M.J.,
Szyperski, C., Abrahamsson, P., Marchesi, M., Maurer, F., eds.: Agile Processes
in Software Engineering and Extreme Programming. Volume 31 of Lecture Notes
in Business Information Processing. Springer Berlin Heidelberg (2009) 33-42
Huang, L., Holcombe, M.: Empirical investigation towards the effectiveness of test
first programming. Inf. Softw. Technol. 51 (January 2009) 182-194

Vu, J.H., Frojd, N., Shenkel-Therolf, C., Janzen, D.S.: Evaluating test-driven
development in an industry-sponsored capstone project. In: Proceedings of the
2009 Sixth International Conference on Information Technology: New Generations,
Washington, DC, USA, IEEE Computer Society (2009) 229-234

Madeyski, L.: The impact of test-first programming on branch coverage and muta-
tion score indicator of unit tests: An experiment. Inf. Softw. Technol. 52 (February
2010) 169-184

The International Software Testing Qualifications Board (ISTQB). http://www.
istgb.org

Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge, UK (2008) ISBN 0-52188-038-1.

Eclipse. http://www.eclipse.org

jUnit Framework. http://www.junit.org

