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ABSTRACT

Pettersson, P. 1999: Modelling and Veri�cation of Real-Time Systems Using Timed
Automata: Theory and Practice. DoCS 99/101. 206 pp. Uppsala. ISSN 0283-0574.

During the last decade, model-checking techniques for the veri�cation of timed system
have been developed based on the theory of timed automata. The practical limitation
in applying these techniques to industrial-size systems is the huge amount of time
and memory needed to explore and store the state-space of the system model.

In this thesis, we improve the current status of model-checking techniques for
timed systems by developing symbolic, on-the-y and compositional veri�cation tech-
niques for timed automata. A common characteristics of the model-checking tech-
niques presented is that they use e�cient constraint-solving techniques to symbol-
ically represent and manipulate the state-space. To avoid construction of the full
state-space of the system model two techniques are used: on-the-y generation of
the state-space and a compositional model-checking technique. The memory-usage
is further reduced by developing a minimal and canonical data structure for the class
of constraints used in the model-checking algorithm, which reduces the size of each
individual state. Two other techniques to reduce the total number of states explored
and stored during veri�cation are also presented.

The developed techniques have been implemented in the veri�cation toolUppaal.
To demonstrate the potential applications of our model-checking techniques, we
present three industrial-size case studies where the Uppaal tool is applied.
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Part I

Introduction





1 Background

In this thesis, I shall present the past �ve-years of research behind the following
quotation:

\In 1996, Bengtsson and his colleagues model checked the entire protocol, thus
completing the quest of fully automating a human proof that as little as two
years ago was considered far out of reach for algorithmic methods."

E.M.Clarke and J.M.Wing, Formal Methods: State of
the Art and Future Directions, ACM Computing
Surveys, Vol. 28, No. 4, 1996, page 631.

First, we notice that \Bengtsson and his colleagues" refers to paper E included in
this thesis. It reports an automated analysis of an audio-control protocol developed
by Philips. The protocol is used in Philips audio and TV equipments for transferring
control-information between components. For example, an ampli�er can use the
protocol to transfer information about which buttons are being pressed on the remote
control to a connected CD-player.

The protocol by Philips is just one example of how information technology, i.e.
the use of computers to create, store, exchange, and use information, has become a
part of our everyday life. In fact, we trust computers to control much more safety-
critical equipments than just audio and TV sets. For example, we use computer
based systems to control anti-lock braking systems in cars, railway switching systems,
banking systems, complex production processes, nuclear power plants, and military
systems such as missiles [BW90, But97]. In most of these applications computer
failures can lead to economical damage, environmental catastrophes, and in some
cases, loss of human lives.

Over the past decades, it has been a challenge for computer scientists to de-
velop theories and techniques that guarantee that computer systems operate cor-
rectly, i.e. according to prescribed speci�cations expressing their desired behaviour.
The traditional ways of obtaining such \guarantees" have been simulation and test-
ing. However, in many applications this process is exceedingly time-consuming and
often provides only probabilistic measures of correctness.

In the literature, a great number of mathematically based techniques for reasoning
about the correctness of computer systems have been proposed [Hoa69, Dij75, Pnu77,
Lam77, Hoa78, Mil89, Hol91]. The general idea is to describe the computer system
under consideration in a formal framework, and then apply rigorous methods to prove
that the system description is correct in the sense that it satis�es certain formally
speci�ed requirements. The advantage of this approach is that it can be used early in
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4 Introduction

the design cycle to detect logical design bugs even before they have been implemented.
However, the major drawback is that large formal system descriptions often tend to
become complex and are therefore generally considered di�cult to analyse [WT94].

To overcome this problem, techniques have been sought to analyse formal system
descriptions automatically. One of the most promising approaches has been model
checking [CE81, QS82, BCM+90, ACD90, Hol91, CW96]. In contrast to manual tech-
niques, model checking is completely automatic in the sense that the proof showing
that a system satis�es a given requirement is automatically generated.

In this thesis we shall study and develop model-checking techniques and tools for
a special class of computer systems known as real-time systems. The audio-control
protocol by Philips mentioned earlier is a typical example of such a system.

1.1 Real-Time Systems

A real-time system is a computer system whose correctness depends not only on the
output, but also the time at which the output is produced. In fact, the examples we
have mentioned so far are all real-time systems according to this de�nition. Consider
for example an anti-lock brake system in a modern vehicle. Sensors provide it with
information of the current wheel speed and it must react in a timely fashion when
the driver applies the brake. If it does not react timely, it is not correct and will
probably be of more harm than help to the driver.

The class of real-time system includes many embedded and safety-critical system
that are subcomponents of a larger complex system operating in safety-critical en-
vironment [Sto96]. These systems are often known as hard real-time as they must
always react timely, as opposed to soft real-time systems that may occasionally fail
to meet their timing requirements [TH96]. A common characteristics of real-time
systems is that they may consist of many components operating in parallel; they are
then known as concurrent systems. As real-time system must react to every stimuli
from the environment, they are also called reactive systems [Pnu86].

The term \real-time" is sometimes used for systems that react to external inputs
as quickly as possible. Our de�nition requires the reaction to be timely in the sense
that the system should react according to timing constraints. To reason about these
systems we therefore need to de�ne the meaning of precise timing more carefully. We
shall assume a global time scale that is a time reference for both the system and its
environment. A time scale indicates that time can be measured. However it does not
imply a global clock in the system. The components of a real-time system may have
their own clocks. Conceptually, these clocks can be considered as the local clocks of
the components, which can be tested and reset. The components may communicate
via channels. However, we shall only consider a simple form of synchronisation,
namely handshaking that has been implemented by the rendezvous mechanism in
many programming languages for real-time systems e.g. Occam 2 and Ada [Bar94],
and in formalisms such as CSP [Hoa78] and CCS [Mil89].

This thesis will be focused on developing e�cient techniques for analysing the
behaviours of real-time systems. We �rst introduce a well developed model that we
shall use to describe such systems.
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l0

a

x�2
l0

a

l1

�

(a) (b)

y�1 ^ x�2 y�1

l1

fxg fxg

Figure 1: Two Timed Automata.

1.2 Timed Automata

There have been many formalism description techniques introduced in the litera-
ture for describing time-constrained systems [DS89, NRJV90, Yi91, Han91, AH92,
AL92, BD91, Rok93, AD90, ACD90, Dil89, Hen91, Nan92, ACHH93]. One of the
most successful formalisms is the model of timed automata [AD90, ACD90, HNSY92,
NSY92a].

The model of timed automata was �rst introduced in 1990 by Alur and Dill
[AD90] as an automata-theoretic approach for describing and analysing the behaviour
of �nite-state systems with real-valued clocks. In the following we outline the two
�rst proposed models, timed graphs [ACD90] and timed B�uchi automata [AD90], and
compare them with a later proposed variant, called timed safety automata [HNSY92].
We also briey introduce the model, networks of timed automata, which we shall work
with in this thesis.

Timed Graphs

The model of timed graphs extends the model of �nite-state automata with a �nite
collection of real-valued clocks [ACD90]. The clocks proceed synchronously (i.e. at
the same rate) and measure the time since they were last reset. Syntactically, the
edges of timed graphs are labeled with action names as in �nite-state automata, but
extended with clock constraints to test the clock values, and reset sets indicating
the assignment of the clock values to zero. As an example consider the timed graph
shown in Figure 1(a). It has two clocks, x and y, two control locations l0 and l1, and
an edge from control location l0 to l1 labeled with the guard y�1 ^ x�2, the action
name a, and the reset set fxg.
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A state of a timed graph is in the form (l; v), where l is a control location and v is
an assignment mapping clock variables to non-negative real numbers. To introduce
the semantics of timed graphs we reconsider the timed graph shown in Figure 1(a).
Assuming that all clock variables are initially set to zero and the initial control
location is l0, the graph starts in the state (l0; fx= y = 0g). As the clocks increase
synchronously with time, it may evolve to all states of the form (l0; fx = y = tg),
where t is a non-negative real number. At any state with t 2 [1; 2] it may change to
state (l1; fx=0; y= tg)) by following the edge from l0 to l1, that resets x. However,
it can also idle forever in location l0 since there is no way of forcing progress in the
semantics of timed graphs. Note that in the literature the notion of timed graphs is
often known as timed automata.

Timed B�uchi Automata

A B�uchi automaton [B�uc62] is a �nite-state automaton with a subset of its states
being accepting states. Only transition sequences with in�nitely many accepting
states are considered valid (i.e. accepting) runs of a B�uchi automaton.

Timed B�uchi automata [AD90] are B�uchi automata extended with clocks in the
same way as in timed graphs, but timed B�uchi automata accept in�nite runs only,
in the above sense. As an example, we reconsider the timed automaton shown in
Figure 1(a), but now interpreted semantically as a timed B�uchi automaton. Assuming
l1 is the only accepting location in the automaton, all valid runs must pass through
location l1 in�nitely often. Note that this implies that the automaton, in all valid
runs, leaves location l0 within 2 time units (but not before 1 time unit), as the guard
x�2 is false at any later time point. Thus, in the example and in general, the B�uchi
acceptance condition imposes implicit progress conditions on the control locations,
since only the set of valid runs is considered when the behaviour of an automaton is
analysed.

Timed Safety Automata

In contrast to the B�uchi accepting condition which is a theoretically elegant way
to impose progress conditions on locations in timed automata, there have also been
other suggestions to specify progress conditions [HNSY92, NSY92a]. Timed safety
automata, due to Henzinger et.al. [HNSY92], are timed automata without the ac-
ceptance condition. Instead, each location is labeled explicitly with a local progress
condition in the form of a clock constraint, called a location invariant. Semantically,
the location invariant is required to always hold when the automaton operates in the
location and consequently the automaton must change location while the location
invariant still holds. As an example, consider the timed safety automaton shown in
Figure 1(b). It is similar to the timed B�uchi automaton shown in Figure 1(a) in
the sense that it must advance from location l0 within 2 time units according to the
location invariant.

We believe that the notion of local progress conditions in the form of location
invariants is more appealing for modelling and automated analysis than the more
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complex B�uchi accepting condition. We shall therefore use timed automata with
location invariants to model real-time systems.

Networks of Timed Automata

The systems we are interested in often consists of several communicating components
executing in parallel. The problem of how to describe such systems is not explicitly
addressed in the early work on timed automata [AD90, ACD90, HNSY92]. In [AD90],
the parallel composition of timed automata is interpreted as logical conjunction,
which is similar to the strong (multi-) synchronisation operator from process algebras,
de�ned by the rule:

A
a
�! A0 B

a
�! B0

A & B
a
�! A0 & B0

Intuitively, it means that the whole system described by A & B may make a move
(i.e. do an a) only if the components described by A and B can do the same (and at
the same time). That is, all components of a composed system must synchronise on
every action at every time point.

This seems to be too strong a restriction for applying timed automata in practice.
Therefore, we shall instead work with networks of timed automata. A network of
timed automata is simply the parallel composition A1j � � � jAn of a �nite collection
A1; : : : ; An of timed automata for a given synchronisation function j. In particular, we
will use networks of timed automata composed with a CCS-like parallel composition
operator [Mil89]. It allows for individual components to perform internal actions (i.e.
interleaving), and for pairs of components to synchronise on actions.

1.3 Automatic Veri�cation

The act of veri�cation is that of using mathematically justi�ed methods to prove that
a formal system description satis�es certain desirable properties. In this thesis we
are mainly concerned with algorithmic veri�cation techniques where the property of
interest is checked automatically, as opposed to techniques that require manual assis-
tance. In particular, we shall develop model-checking algorithms for timed systems.
Such algorithms determine if a desired property, formalised as a logical formula, is
satis�ed by a system model.

Safety Properties

To specify and reason about the correctness of untimed computer programs, logics
have been very successful, e.g. pre- and postcondition pairs formulated in Hoare's logic
have been used for sequential programs [Hoa69], and temporal logics for concurrent
systems [Pnu77]. In recent years, several timed variants of these logics have also been
developed for specifying real-time properties, see e.g. [AH92] for an overview.

In [Lam77], Lamport classi�es temporal properties into safety and liveness prop-
erties. Intuitively, a liveness property asserts that \something good" eventually will
happen, and a safety property that \something bad" should never happen [Lam80].
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In this thesis, we shall restrict ourselves to studying safety properties only. This
means that there are some properties that we will not be able to specify and verify1.
However, there are several arguments in favour of the restriction in the context of
real-time systems.

First, real-time systems are often embedded in safety-critical environments. It
has therefore been argued that the practical goal of verifying real-time systems is
often to show that \something bad" never happens [Hal93]. That is, to ensure that
the system is \safe", which can be expressed as a set of safety properties.

Secondly, it is possible to formulate a form of liveness, known as bounded liveness,
with safety properties according to Lamport's classi�cation [Lam77]. Intuitively, a
bounded-liveness property asserts that \something good" happens within a speci�ed
time bound. As we are concerned with systems that are required to operate under
timing-constraints, it is even more interesting to reason about bounded liveness than
unbounded liveness, e.g. some event will eventually occur in the future.

Finally, in choosing speci�cation languages and veri�cation algorithms there is a
trade-o� between expressiveness, i.e. which properties can be speci�ed, and complex-
ity, i.e. how di�cult properties are to verify [Hen91]. In general it is possible to �nd
more e�cient algorithms for logics with restricted expressiveness. Safety properties
can be veri�ed by reachability analysis algorithms that examine all possible states
of a system to ensure that \something bad" never happens. This has been used to
develop e�cient algorithms for �nite automata. For timed automata however, the
state-space is in�nite because of the real-valued clocks; but it is possible to represent
the in�nite state-space by �nite partitioning due to the region-graph construction
technique [AD90].

Region-Graph Construction

In the �rst papers about timed automata it is shown that fundamental veri�cation
problems associated with the model, such as language emptiness and model-checking
of timed temporal logic formulae, are decidable [AD90, ACD90]. The result is ob-
tained by constructing a �nite-state system called a region graph. In a region graph,
each region essentially consists of the set of concrete states that are equivalent, in the
sense that they can evolve to the same regions in the future.

Based on Alur and Dill's pioneer work, several other algorithms were developed
for the veri�cation problems associated with the model, e.g. [ACD90, Nan92, Cer92].
However, in practice these algorithms are often computationally infeasible because of
the huge size of the region graph. The region graph grows exponentially, not only in
the number of automata and the number of clock variables, but also in the largest
integer constant used in the clock constraints of the automata.

Symbolic Veri�cation Algorithms

Subsequently, techniques have been sought to develop algorithms that perform better
in practice, in the sense that they run faster and consume less space on the instances

1For example, we will not be able to reason about zeno-properties [AL92].
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of timed automata that appear when realistic systems are modelled. One way to
develop such algorithms have been to use coarser and consequently more compact
abstract representations of the state-space [Dil89, HNSY92, ACHH93, Hal93]. We
shall call such algorithms symbolic since the term has been used in the literature on
veri�cation of timed systems2. It should be noticed that the region-graph technique
is also a symbolic technique.

The �rst progress in the development of symbolic model-checking algorithms for
timed automata is presented in [HNSY92]. A symbolic model-checking algorithm
is described that partitions the concrete state-space into equivalent classes, in such
a way that states within each class are equivalent with respect to the investigated
automaton and the property currently being checked. Though the algorithm in the
worst case will construct (the equivalent of) the full region-graph, it often yields
a coarser and smaller partitioning. In practice, the algorithm is insensitive to the
maximal integer constant appearing in the clock constraints of the automata and the
checked property. However, it is still very sensitive to the number of automata in the
analysed system as the product of the automata is constructed before veri�cation is
performed.

On-the-Fly State-Space Generation

An on-the-y veri�cation algorithm constructs the state-space of the investigated
system and veri�es the property of interest simultaneously, in contrast to the tradi-
tional approach of generating the whole state-space before veri�cation. This allows
the veri�cation to be stopped when the truth-hood of the veri�ed property has been
determined. On-the-y techniques therefore often require a relatively small part of
the whole state-space to be investigated.

Several on-the-y veri�cation algorithms have been developed for �nite-state sys-
tems in the literature, e.g. [VW86, Hol91]. In this thesis, we shall investigate how
on-the-y techniques can be adopted to veri�cation algorithms for real-time systems
to deal with the exponential growth of the state-space caused by the number of au-
tomata in parallel systems. Moreover, we shall investigate the possibility of combin-
ing on-the-y techniques with symbolic veri�cation techniques to develop algorithms
that are less sensitive to the number of automata and insensitive to the constants
appearing in the clock constraints of the analysed automata.

Compositional Veri�cation

The notion of compositional veri�cation in general relates to methods for splitting up
the veri�cation of a combined system into veri�cations of its components. This means
that a compositional veri�cation technique shows that a system satis�es properties
without investigating the product of the whole system, but rather its components
one by one.

2In the context of veri�cation techniques for �nite-state systems, the term \symbolic" is often
used for non-enumerative methods of state-space representation and exploration, such as Binary
Decision Diagrams (BDD's) [Bry86, BCM+90].
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For untimed systems a number of compositional veri�cation techniques have been
described in the literature, e.g. [OG76, Sti86, Lar86, Jon87, And95]. In this thesis,
we shall develop compositional veri�cation algorithms for real-time systems, based on
a compositional model-checking technique for untimed concurrent systems, known as
quotienting, introduced by Larsen [Lar86] and further studied by Andersen [And95].
The technique avoids exploring the whole state-space of a composed system by grad-
ually moving components from the system description to the speci�cation.

An initial attempt to transfer Andersen's result to a real-time setting is reported
in [LL95]. This work also contains some experimental evidence showing the potential
of the quotienting technique for real-time systems. However, the result in [LL95] is
obtained by using the region-graph technique.

2 Summary of Results

In this section we summarise the main contributions of this thesis. The presentation
is divided into four areas: symbolic veri�cation algorithms, memory usage reductions,
veri�cation tool developments, and case studies.

2.1 Symbolic Veri�cation Algorithms

On-the-Fly Veri�cation (Papers A and B)

A reachability analysis algorithm for verifying safety properties of networks of timed
automata is developed in paper A. In contrast to previously proposed algorithms for
timed automata, ours operates in an on-the-y manner. That is, it veri�es properties
during state-space exploration, instead of constructing and representing the whole
state-space before the checking. The algorithm is also symbolic in the sense that
the in�nite state-space is �nitely partitioned into subsets that are represented and
manipulated using a class of linear constraints, known as di�erence bound matrices
(dbm) [Bel57, Dil89]. To develop the algorithm, we give a �nite symbolic semantics
of timed automata, which is de�ned as a transition system with transition rules given
in terms of predicates and operations on constraints. This means that we reduce the
veri�cation problem of timed automata to that of manipulating and solving simple
constraints.

In paper B these results are applied to develop a symbolic and on-the-y model-
checking technique for checking a simple timed modal logic Ls to express safety and
bounded liveness properties. The logic can be seen as a fragment of the timed modal
�-calculus (T�) [HNSY92]. Though it is comparatively less powerful than e.g. T� and
TCTL [ACD90], our logic is still su�ciently powerful for practical purposes; a claim
we substantiate by showing that a number of operators of other real-time logics can
be expressed as derived operators in Ls. Most importantly, the somewhat restrictive
expressive power of Ls allows us to apply on-the-y and constraint-solving techniques
to develop an e�cient model-checking algorithm for timed automata.
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Compositional Veri�cation (Paper B)

In paper B, we present a symbolic and compositional veri�cation technique for check-
ing Ls-formulae of networks of timed automata. It extends quotienting for (untimed)
�nite-state systems [And95] to real-time systems where subsets of the in�nite state-
space are manipulated symbolically using constraint-solving techniques. This means
that the presented technique con�nes both the exponential blow-up in the state-
space caused by the number of components, and the exponential growth caused by
the number of clocks.

Like the quotienting technique for �nite-state systems [Lar86, And95], ours solves
the model-checking problem without exploring or even generating the state-space
of the automata network. Instead, timed automata are gradually moved from the
system description to the requirement speci�cation. More precisely, given the model-
checking problem (AjB) j= ', where (AjB) is the system to be veri�ed, with the two
timed automata A and B, and ' is a Ls-formula, the quotienting technique shows
how to construct the quotienting formula '=B such that

(AjB) j= ' if and only if A j= ('=B)

Repeating this processes yields the equivalent model-checking problem j= (('=B)=A).
Thus, roughly speaking the quotienting technique transforms the model-checking
problem to that of checking the truth-hood of the quotienting formula (('=B)=A).

2.2 Memory Usage Reduction

In papers D and E, we present three techniques to reduce the memory usage of real-
time veri�cation algorithms. Note that the techniques are orthogonal and can thus
be applied in combination.

Control Structure Reduction (Paper D)

An on-the-y technique to reduce the space-consumption of reachability analysis
algorithms for timed automata is described in paper D. The technique is based on the
observation that not all symbolic states encountered during state-space exploration,
but only certain critical symbolic states, need to be saved to ensure termination.
Before reachability analysis, the control structure of the automata in the network
are statically analysed. Based on this information we are able to compute, in an
on-the-y manner, a set of symbolic states to save, that is su�cient for guaranteeing
termination of the reachability analysis algorithm. The set of saved symbolic states
may not be minimal but the reduction technique performs well in practice. In an
experiment with an implementation of the control structure reduction technique in
the tool Uppaal we found that for six examples from the literature, the space-saving
is between 13% and 72%.

Compact Data Structures for Constraints (Paper D)

In paper D we also present a compact data structure for di�erence bounded matri-
ces (dbm) [Bel57, Dil89, BL96], the class of constraints that arises during symbolic
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veri�cation of timed automata. The data structure is based on an O(n3) reduction
algorithm that, given a constraint system with n clocks, constructs an equivalent
reduced system with the minimal number of constraints. The reduced system is
canonical in the sense that two constraint systems with the same solution sets reduce
to identical constraint systems. The reduction algorithm is essentially a minimisa-
tion algorithm for weighted directed graphs, which extends the transitive reduction
algorithm of [AGU72] to weighted graphs.

The space usage of a reduced constraint system is in the same order as for an
ordinary dbm, i.e. O(n2), but it often turns out to be much less in practice. We have
tested compact data structures for constraints in an experiment with six examples
from the literature. The number of constraints was reduced with 68% to 85%.

Committed Locations (Paper E)

In paper E we develop the notion of committed locations. It allows for atomic be-
haviours, such as atomic broadcasts, to be accurately modelled in the model of net-
works of timed automata. More importantly, committed locations are utilised to guide
the state-space exploration performed during veri�cation by on-the-y reachability
analysis, to avoid exploring unnecessary interleavings of independent transitions. We
present a modi�ed symbolic and on-the-y reachability analysis algorithm for net-
works of timed automata which explores and stores a reduced number of symbolic
states when committed locations are used. Our experimental results demonstrate
signi�cant time and space-savings of the modi�ed model-checking algorithm when
committed locations are used.

2.3 Veri�cation Tool Development

The two veri�cation tools tab and Uppaal have been developed based on the tech-
niques and algorithms presented in this thesis.

The tab Tool (Paper A)

tab is the �rst prototype of Uppaal developed in 1993 at Uppsala University.
It is written in Prolog and the general constraint solver PCS (Prolog Constraint
Solver) [Nil93]. The implementation is based on the symbolic and on-the-y reach-
ability analysis algorithm developed in this thesis. Although the tab tool is a pro-
totype, it has successfully been applied to automatically verify safety properties of
some non-trivial examples, including a version of Fischer's mutual exclusion protocol
and a railway control-system. These examples, as well as the theoretical foundations
of the tool tab are presented in paper A.

The Uppaal Tool (Papers A, B, C, D and E)

Uppaal (Uppsala and aalborg) is a suite of tools for modelling, validation and ver-
i�cation of real-time systems, developed in collaboration between Uppsala University
and Aalborg University since 1995 [LPY97a, BLL+98]. The modelling language in
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Figure 2: Time benchmarks (in seconds) for Uppaal version 1.99{2.19. Version 1.99
and 2.19 are dated December 1996 and September 1998 respectively.

Uppaal is networks of timed automata extended with data variables with �nite do-
mains, and arrays of such variables. The veri�cation engine is based on the on-the-y
and symbolic constraint solving techniques presented in this thesis.

In contrast to its predecessor tab in which all constraint solving is implemented
in PCS, the constraint operations in Uppaal are implemented entirely in C++ based
on dbm [BL96]. To further improve the performance, the notion of committed lo-
cations as well as the control structure reduction and the compact data structures
for constraints have been implemented. Moreover, a simple but e�cient strategy for
reuse is applied in the tool [LPY97b]. If possible, when several properties of a sys-
tem are analysed, the generated portion of the state-space is reused, thus avoiding
time-consuming re-computations.

Figure 2 and 3 illustrate how the time and space performance of Uppaal have
improved from version 1.99 to version 2.19 in terms of three examples3: a TDMA
start-up algorithm, Fischer's mutual exclusion protocol with 5 processes and Philips
audio-control protocol with bus collision. In particular, we notice that in both the
time and space usage diagrams there is a performance improvement in version 2.06
compared with the proceeding version. This is due to a number of internal improve-

3All Uppaal versions in the test are compiled using GCC 2.7.2.3 and installed on the same
Pentium II 375 MHz machine running Redhat Linux 5.1.
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ments in the veri�er, including re-implementation of the main data structure for
the explored symbolic state-space. The tool Purify played a signi�cant role in these
improvements.

Besides e�ciency, the main design criterion of Uppaal has been user-friendliness.
To make debugging of system descriptions easier, the veri�er has been extended with
support for diagnostic traces (see paper C). When the veri�cation of a particular
property succeeds (or fails) an example is automatically produced that shows why the
property is (or is not) satis�ed by the analysed system model. The user-friendliness
has been further improved by the development of graphical interfaces for the various
components in the tool.

Uppaal has been successfully applied in many case studies, to model, design and
analyse complex real-time systems, see e.g. paper C, E, F and G. The theoretical
foundations of Uppaal are presented in the papers A, B, C, D and E.

2.4 Case Studies

Philips Audio-Control Protocol with Bus-Collision Handling (Paper E)

In paper E, we analyse a protocol developed by Philips for the physical layer of a
bus protocol connecting the various devices, such as ampli�ers and CD-players etc,
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in audio equipment4. A formal description of the protocol is given in the model of
timed automata. Four automata are used to model the protocol components and
another three automata are used to encode assumptions about its environment and
to test its behaviour. As main veri�cation results, we prove using Uppaal that the
protocol model behaves correctly if the error on all timing in the components is bound
to �5%, and incorrectly if the error is �6%. In addition, we model and analyse an
erroneous version of the protocol, actually implemented by Philips. Using Uppaal's
ability to generate diagnostic traces when veri�cation fails, we are also able to �nd
and study an error scenario.

Start-Up Algorithm of a TDMA Protocol (Paper F)

The start-up algorithm of a time division multiple access (TDMA) based bus protocol
is analysed in paper F. The protocol is used in DACAPO [RLST95], a conceptual
computer architecture for safety-critical distributed real-time systems. It is intended
for physically small distributed systems limited to tens of meters and less than 40
nodes, e.g. operating in modern vehicles. We formally describe the communicating
nodes on the bus, and the bus itself, in the model of timed automata. To express
correctness properties and assumptions about the protocol, two extra automata are
introduced. Using Uppaal we manage to show that a network of four communicating
nodes is guaranteed to become synchronised and operational within a bounded time
from an arbitrary initial state, given a clock-drift corresponding to �10�3 between
the nodes. Furthermore, we derive an upper time bound for the start-up algorithm to
complete, corresponding to 21 TDMA time slots, and describe a discovered worst-case
scenario.

Gearbox Controller (Paper G)

The gearbox controller is a component in the real-time embedded system that op-
erates in a modern vehicle. In paper G, we presents a case study where Uppaal is
applied to describe and analyse design sketches of a gearbox controller in the early
design stages of a project. The controller receives gear-requests from the driver5 via
a communication network and implements the actual gear changes by controlling
the involved lower level components, such as the gear, the clutch and the engine.
We present a formal description of a gearbox controller, designed from informal re-
quirements prescribed by our industrial partner, the Swedish company Mecel AB.
The description, which comprises both a gearbox controller and abstract models of
the components in the surrounding environment, is given as a network of �ve timed
automata. We also formally describe Mecel's informal requirements as a set of 47
safety properties. Correctness of the modelled system is established using Uppaal's
simulator to validate the design, and the model-checker to verify that the formal
requirements are satis�ed.

4In paper C we analyse a smaller version of Philips audio-control protocol, without bus-collision
handling.

5Gear changes may also be requested by a dedicated component implementing a gear change
algorithm.
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3 Related Work

During the past decade a large number of formalisms for real-time systems have
been proposed in the literature, including timed process algebras [DS89, NRJV90,
Yi91, Han91, DB96], timed Petri net models [Sif77, BD91, Rok93], real-time logics
[AH92, AL92], duration calculus [CHR91], timed automata [AD90, ACD90, HNSY92,
AHV93, SV96], and other state based approaches [Dil89, Hen91, Nan92, ACHH93].
In this section we shall only outline work related to timed automata.

3.1 Veri�cation of Real-Time Systems

Several algorithms for checking properties of timed automata are described in [HNSY92,
KL94, WT94, LL95, SS95, HKV96, Bal96, TC96, BMPY97, BTY97, AJ98, DT98].

In [HNSY92], Henzinger et.al. gives a symbolic model-checking algorithm which
iteratively computes the set of (symbolic) states of a timed automata that satis�es
a given T�-formula (or TCTL-formula). Whereas the symbolic representation of
timing information used in the algorithm is similar as ours; it aims at a much more
general framework in the sense that the logic T� is strictly more expressive than Ls,
the most expressive logic we consider. The restrictive expressive power of our logic
allows for e�cient model-checking, which has been demonstrated in experiments (see
[BLL+95]). Though our logic is restricted it allows to specify invariant and bounded
liveness properties that are su�cient for practical purposes.

Wong-Toi presents, in his thesis, a symbolic reachability analysis algorithm for
timed automata [WT94]. Its distinguishing feature is to combine symbolic represen-
tation of both timing and control information with approximation techniques. To e�-
ciently represent control information he uses binary decision diagrams (BDD) [Bry86].
Timing information is symbolically represented with constraints over clocks. Com-
pared with our work, Wong-Toi focuses on �nding useful over- and underapproxima-
tions techniques to compute super- and subsets of the symbolic state-space respec-
tively. We consider exact veri�cation techniques only.

In [Bal96] Wong-Toi's ideas are further developed by using BDD's also to sym-
bolically represent timing information. The presented algorithm computes, in a more
e�cient way, an overapproximation of the symbolic state-space6. Hence, it can be
applied to safely check that undesired combinations of the automata control locations
and clock assignments are not reachable in a system model. However, since a superset
of the symbolic state-space is computed, the negation can not be checked reliably, i.e.
if states are reachable. Furthermore, it should be noticed that overapproximating the
state-space can also be more expensive than computing the exact state-space, since
in general a super-set of the control-nodes may be generated.

Another symbolic model-checking approach for timed automata based on BDD
techniques is presented in [BMPY97]. Roughly speaking, the algorithm uses an ex-
tension of BDD's, called numerical decision diagrams (NDD's) [AMP97] to represent
a discretization of the region graph [GPV94]. Therefore, the algorithm, like the size
of the region graph, is very sensitive to the constants used in the clock constraints

6In fact, algorithms for computing two di�erent overapproximations are presented.
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of the analysed timed automata and logical formulae. However, it performs well on
systems with small constants, e.g. some instances of Fischer's protocol [BMPY97].

Veri�cation algorithms combining symbolic and on-the-y techniques for timed
automata are presented in [SS95, BTY97, DT98]. In [SS95], the speci�cation language
of consideration is an extension of the modal �-calculus for real-time systems, called
Lt�. Compared with our work, again, a much more expressive logic is considered.
As a consequence, the algorithm needs to keep track of more information during
veri�cation. It must also gradually re�ne the symbolic state-space during operation
by splitting states into �ner partitions. This is not needed in our algorithms since we
consider the more restrictive logic Ls.

Another expressive logic, TECTL�9, is considered in [BTY97]. The developed ver-
i�cation algorithm checks for emptiness [AD90, TC96] of the symbolic state-space of
possibly several timed automata composed in parallel with the formula, expressed as
a (negated) timed B�uchi automaton. Emptiness is checked by a standard loop detec-
tion algorithm that explores the symbolic state-space of the timed automata using
a depth-�rst strategy. Furthermore, the algorithm uses exactly the same representa-
tion of the symbolic state-space as we do. Thus, in comparison with our work, the
main di�erence is that a loop detection algorithm is applied, instead of reachability
analysis.

There have also been successful applications of the abstract interpretation frame-
work [CC77] to develop symbolic veri�cation algorithms for real-time systems. In
[Hal93], Halbwachs presents an approximative algorithm for checking safety proper-
ties of time-constrained reactive systems based on linear relation analysis, an applica-
tion of abstract interpretation. This work successfully demonstrates the power of the
chosen approach, but it is focused on e�ciently overapproximating the state-space.

Some results in the area of veri�cation algorithms for Petri net models with time
are in fact related to model-checking algorithms for timed automata. In [BD91] an
algorithm is presented for verifying reachability, i.e. if a marked place in a safe Petri
net is reachable or not. It is based on a symbolic semantics of time Petri nets and
linear constraints over clock variables are used to represent timing information. The
reachability analysis algorithm of Rokicki [Rok93] for his orbital nets also uses clock
constraints. Notably, Rokicki also presents a number of cleverly optimised algorithms
for handling clock constraints [Rok93, RM94]. These algorithms are directly appli-
cable in veri�cation algorithms for timed automata that represent clock constraints
by di�erence bound matrices.

3.2 Tool Development

There have been a number of veri�cation tools for real-time systems developed during
the past few years, including: Kronos, Rt-Spin, HyTech, CMC, Epsilon [CGL93],
Polka [HRP94], TREAT [KL96], RT-Cospan [AK95], SGM [WH98], and the imple-
mentations described in [WT94]. In the following we briey describe the tools mostly
related to this thesis and compare them with our tool Uppaal.

The veri�cation tool Kronos [DOY94, DOTY95, BDM+98] is originally based
on the symbolic model-checking algorithm for checking TCTL-formulae of timed
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safety automata presented in [HNSY92, NSY92b]. The main veri�cation algorithm in
Kronos therefore, in contrast to Uppaal, generates the product of the analysed sys-
tem before veri�cation. It is also possible in Kronos to check if timed automata are
timed abstracting bisimilar [LY93, YT96]. Recently, the tool has also been extended
with on-the-y veri�cation techniques to check safety properties of timed automata
[BTY97].

Various algorithms to reduce the number of clock variables in a system of timed
automata, without changing its behaviour, have been implemented in the separate
toolOptiKron [DY96, Daw98]. It supports the same �le format for timed automata
as Kronos, and can thus be used to improve the performance of Kronos 7.

Tripakis and Courcoubetis extends the veri�cation tool Spin and its modelling lan-
guage Promela for real-time in [TC96]. In the resulting tool, called RT-Spin, timed
B�uchi automata are used both as a modelling language for describing real-time sys-
tem, and as a speci�cation language for formalising requirements. Thus, its users are
required to specify properties as (negated) timed B�uchi automata. The veri�cation
algorithm in RT-Spin is essentially an on-the-y, depth-�rst search, loop detection
algorithm that checks for language emptiness of the modelled system composed in
parallel with the currently checked property. The symbolic semantics of timed au-
tomata and the constraint solving techniques adopted in the tool is exactly the same
as in Uppaal.

CMC [KLL+97, LL98] is a compositional model-checking tool for networks of timed
automata based on the algorithms presented in [LL95] and further developed in paper
B of this thesis. Its speci�cation language is the logic L�[LL95; LL98] that might be
seen as a fragment of the logic T�, but more powerful than Ls. Besides compositional
model-checking, it is also possible to check if two timed automata are bisimilar.

HyTech (The HYbrid TECHnology Tool) [HHWT95, HH95, HHWT97] analyses
properties of systems modelled as collections of linear hybrid automata [ACHH93],
a strictly more expressive model than timed automata. The tool is therefore not
directly comparable with the previously mentioned tools for the model of timed au-
tomata. However, when applied to real-time system, HyTech allows for veri�cation
of reachability properties. It is also possible to instruct HyTech to treat certain
variables in the automata as parameters and compute a condition on the parameter
under which the automata satisfy a given property [HHWT95].

3.3 Case Studies

Naturally, all the developed tools have been tested in case studies. The number of
successful applications in the literature is large and expanding, e.g. [Gri94, WT94,
Abr95, HWT95, KP95, DY95, HWT96, DKRT96, CW96, MY96, DKRT97, LSW97,
HSLL97, CCMM97, SMF97, TY98, BFK+98, BFM98]. It is impossible to survey
them all here. We therefore restrict to case studies closely related to the work of this
thesis.

In [HWT95], Ho and Wong-Toi report a case study where HyTech is used to
automatically analyse a simpli�ed version of the Philips audio-control protocol, pre-

7An extension of OptiKron for handling the Uppaal �le format is in work [Daw98].
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viously studied without tool support in [BPV94]. The same version of the protocol
was later analysed by other tools, e.g. Uppaal (see paper C) and Kronos [DY95].
The audio-control protocol we describe and analyse in paper E of this thesis is a
more complete version of the protocol, which also includes bus-collision handling
[LSW97, CW96]. It is considerably larger than the simpli�ed version, in the sense
that the number of control-nodes, components, and variables are increased.

A real-time protocol from the same application area, i.e. audio/video components,
by Bang & Olufsen is analysed in [HSLL97]. Though it was known to be faulty, the
error in the protocol could not be found using conventional testing methods. In the
case study Uppaal is used to produce an error-trace that reveals the error. Uppaal
is also applied to verify a suggested corrected version of the protocol, which is shown
to satisfy the speci�ed requirements.

Another industrial case study is described in [SMF97]. A control system by BMW
AG which controls the height of a vehicle by regulating a pneumatic suspension sys-
tem is modelled as a linear hybrid system. Correctness of the control system is for-
mally speci�ed as a number of safety properties and checked by symbolic reachability
analysis in HyTech.

D'Argenio et.al. presents a successful veri�cation of a bounded retransmission �le
transfer protocol for lossy channels [DKRT96, DKRT97]. The protocol is based on
the alternating bit protocol, but allows for a bounded number of retransmissions. To
analyse all aspects of the protocol, two formal descriptions are given. An untimed,
more data-oriented, version is modelled in Promela and analysed in the veri�cation
tool Spin [Hol91]. A timed version with quanti�ed timeout values is modelled as
a network of timed automata and checked to satisfy a number of safety properties,
regarding the timing behaviour of the protocol, using Uppaal.

In [KLL+97], the compositional model-checking tool CMC is applied to verify the
correctness of Fischer's protocol [AL92]. The mutual exclusion property of a protocol
instance with 50 processes is veri�ed using only 173 seconds8 and 32 MB of memory.

Many other time-constrained systems have been modelled as networks of timed
automata and speci�ed with safety properties. Examples hereof include: the mine
pump problem presented and studied in [JBW+96], the steam boiler problem pro-
posed in [Abr95] and further studied in [KP95], the collision avoidance protocol im-
plemented on-top of an Ethernet-like medium analysed in [JLS96, ABL98], the lip
synchronisation algorithm for synchronising multiple information streams sent over a
communication network, described in [BFK+98], and the multimedia stream modelled
and analysed in [BFM98].

4 Conclusion and Future Work

In this thesis, we have developed a number of model-checking techniques for timed
systems, that have been implemented in the Uppaal tool. To evaluate the practical
applicability of these techniques and impact on tool development, we have presented
several case studies. In this section, we discuss the potential implication of our results

8The experiment was performed on a machine running SunOS 5.5.
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and lessons learnt from the work. We conclude the thesis with an outline of future
work.

The main lesson learnt from our studies on veri�cation techniques for timed sys-
tems is that relatively small restrictions on the expressive power of speci�cation lan-
guages have rendered much more e�cient veri�cation techniques. In particular, the
restriction to safety and bounded liveness properties has been of crucial importance
to the e�ciency of the Uppaal model-checker. As the class of properties can be
checked by reachability analysis, various optimisations on the model-checker have
been focused on the on-the-y symbolic reachability algorithm. For the compositional
quotienting technique the restriction has also been important. By restricting to the
safety and bounded liveness logic Ls it allows the development of e�cient formulae
simpli�cation strategies, which has been important to the success of the quotienting
technique implemented by Francois Laroussinie in the compositional model-checker
CMC [KLL+97, LL98].

The presented veri�cation techniques and data structures have all been imple-
mented in the Uppaal tool except the quotienting technique. Our experiments
demonstrate that they have dramatically reduced the time- and space-requirements
of veri�cation algorithms in many practical applications. However, it is important to
note that they can not in general improve the worst-case complexity of veri�cation
algorithms for timed automata. It is possible to �nd other examples where the sit-
uation is not much improved, or where other veri�cation techniques perform better,
see e.g. [BMPY97]. It is also important to note that the reduction techniques are
completely independent and can thus be combined.

Most of the examples in our case studies have been taken from the literature.
We believe in that they are of general interest as they have also been studied in
other contexts and veri�cation tools. We have also presented one industrial case
study which is carried out jointly with Mecel AB, a company developing control
systems for modern vehicles. In this study, we developed a prototype controller for
a gearbox. The case study demonstrates the potential industrial applications of the
model-checking technique. In particular, it shows that the model-checking technique
may be used as a powerful debugging tool in the design process of real-time embedded
systems.

There are many possible future extensions of this work. We have used networks
of timed automata, extended with integer data variables and arrays of such vari-
ables to formally describe real-time systems. To meet requirements from industrial
applications, a more sophisticated modelling language will be needed, that supports
more data types and constructs for de�ning abstract data types, such as lists, stacks,
queues etc.

In the area of model-checking for timed systems, a main challenge is to develop
techniques that combine symbolic representation of timing information with symbolic
representation of control-locations. Works in this direction include [WT94, Bal96,
BMPY97], however these works are either in an approximation framework or based
on symbolically representing the region graph, or a discretization of the region graph.

As a concrete future work, we wish to study the control structure reduction tech-
nique presented in paper D further. One possible extension is to identify a minimal
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set of covering states that ensures termination and avoids repeated exploration in
reachability analysis of timed systems. Recent work for �nite-state systems due to
Kurshan et.al. [KLM+98] gives some ideas to how a smaller set of covering states can
be computed, which are applicable also in a real-time setting. Other promising related
techniques for �nite-state, such as the use of pseudo-root states due to Parashkevov
[PY97], might also be applicable in model-checking algorithms for time-constrained
systems.

5 Outline of the Thesis

The rest of this thesis is divided in two main parts: algorithms and data structures,
and case studies.

Algorithms and Data Structures

Paper A presents a process algebra of networks of timed automata and a veri�cation
algorithm based on on-the-y and constraint solving techniques for the reachabil-
ity problem associated with the algebra. As examples, an implementation of the
algorithm is applied to verify a version of Fischer's protocol and a railway control
system.

In paper B, these ideas are applied to develop a symbolic and on-the-y model-
checking technique for the timed modal logic Ls. The same paper also presents a
compositional veri�cation technique for Ls called quotienting. Both techniques are
illustrated by an example.

Paper C describes a diagnostic model-checking technique that generates diagnostic
information when a certain property is (or is not) satis�ed by a given network of timed
automata. It is also shown how the technique was used to debug three early versions
of Philips audio-control protocol.

In paper D we present two contributions to the development of memory e�cient
automatic veri�cation algorithms for timed systems: compact data structure for con-
straints and the control structure reduction technique. An experiment were the two
techniques are applied to six examples from the literature is also presented.

Case Studies

In paper E we study Philips audio-control protocol with bus collision handing. The
protocol is modelled with timed automata and analysed in Uppaal. The same paper
also describes the notion of committed locations that is used to accurately model and
e�ciently verify real-time systems with atomic behaviours.

Paper F presents a rigorous description of the start-up algorithm of a timed divi-
sion multiple access protocol called DACAPO. The algorithm is analysed in Uppaal
and shown to satisfy its correctness criteria. An upper bound for the start-up algo-
rithm to complete is also derived.

Finally, in paper G we describe an application ofUppaal where the tool is applied
to design and analyse a prototype gearbox controller developed at Mecel AB. It is
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also outlined how to check bounded response time properties in a tool like Uppaal
that only provides reachability analysis.
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Abstract. In this paper, an algebra of timed processes with real-valued clocks is pre-
sented, which may serve as a description language for networks of timed automata. We
show that requirements such as \a process will never reach an undesired state" can be ver-
i�ed by solving a simple class of constraints on the clock-variables. A symbolic on-the-y
reachability algorithm for the language has been developed and implemented as a software
tool based on constraint-solving techniques. To our knowledge, this is the �rst on-the-y
veri�cation algorithm for timed automata. In fact, the tool is the very �rst implementation
of the Uppaal tool.

As examples, we model and verify safety properties of a real-time mutual exclusion

protocol and a railway crossing controller.

1 Introduction

During the past few years, various formal techniques for modeling and verifying real-
time systems have been put forwards, e.g. automata based [ACD90, ACH+92, AD90,
HNSY92] and process algebra based [Cer92, CGL93, HLY92, MT91, Yi91]. One
of the most successful approaches is the timed automata model due to Alur and
Dill [ACD90], which is the classical �nite-state automaton model extended with clock
variables modeling time delays.

In this paper, we study real-time communicating systems. Such a system consists
of a number of components with their own or shared clocks. The components may
communicate with each other and the environment through channels according to
the timing constraints on the values of the clocks. Naturally, we can use timed
automata to describe the components. However, it is not obvious how to combine
the component descriptions in a description of the whole system. Traditionally, the
parallel composition of timed automata is interpreted as logical conjunction, which is
similar to the strong (multi-) synchronisation operator from process algebras, de�ned
by the rule:

P
a
�! P 0 Q

a
�! Q0

P & Q
a
�! P 0 & Q0

Intuitively, it means that the whole system described by P & Q may make a move
(i.e. do an a) only if the components described by P and Q can do the same. That
is, all components of a concurrent system must synchronise on every action at every
time point. This seems to be a strong restriction for practical applications of timed
automata. Real systems are often highly distributed and in many cases, a system
component may only want to communicate with the environment or a particular
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component, without synchronising with the others. Therefore, we introduce a CCS-
like parallel composition operator [Mil89] for timed automata, to describe one-to-one
communication and interleaving.

As the �rst contribution of this paper, we present an algebra for networks of timed
automata, which provides a number of algebraic operators including the parallel
composition operator to model communication and concurrency. The operators can
be used to construct complex automata (i.e. complex system descriptions) in terms
of simpler ones (i.e. component descriptions). Thus, the algebra may serve as a
structural description language for real-time communicating systems.

As the second contribution, we develop an on-the-y veri�cation algorithm based
on constraint-solving techniques, for the type of systems described above. There
have been a number of veri�cation techniques developed for timed automata, e.g.
[ACH+92, ACD90, HNSY92]. However, these algorithms always construct the prod-
uct of the automata before checking properties of the system. Even for moderately
sized systems, explicit representation and exploration of the product automaton is
infeasible as it grows exponentially with both the number of components and the
number of clocks in the system. Though there have been e�cient minimisation tech-
niques, such as [ACH+92], the problem of state-space explosion is still an obstacle
for automatic veri�cation.

It has been a well recognised fact (e.g. [Hal93]) that the practical goal of veri�-
cation of real-time systems is often to verify simple logical properties, which do not
need the whole power of model-checking (e.g. for timed CTL). We shall only consider
simple safety-properties, which can be veri�ed by checking if a certain set of states of
the system is reachable or not. For instance, a railway control system (see Section 6)
should guarantee that \at most one train can cross a critical point at the same time".
This is a typical safety-property meaning that bad things can never happen. How-
ever, we can also verify properties requiring that a good thing will eventually happen
within a certain time limit. For example, \a train should be able to pass a critical
point (such as a bridge), within a bounded delay".

We shall present a symbolic on-the-y veri�cation algorithm for networks of timed
automata. It is symbolic in the sense that the inherently in�nite state-space of timed
automata is �nitely partitioned into subsets which are represented and manipulated
using a class of linear constraints, known as di�erence bound matrices [Bel57, Dil89].
This allows the partitioning to take into account both the automata and the logical
property currently being checked, to make the partitioning as coarse (and small)
as possible. The algorithms operates in an on-the-y manner [Hol91] in the sense
that the checking of a particular property and the construction of the reachable part
of the (symbolic) state-space is performed simultaneously. This avoids generating
unnecessary parts of the state-space as the algorithm is stopped when the truth-
hood of the currently checked property is determined, in contrast to the traditional
approach of constructing the full state-space of the system before the checking.

The rest of the paper is organised as follows: In section 2, we present an algebra of
timed processes, in which a syntactical term describes a network of timed automata;
any timed automaton can be expressed in the algebra. Section 3 and 4 describe two
symbolic semantics of processes, of which the latter is shown to yield a �nite number
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of symbolic states. In section 5, we study the reachability problem associated with
the algebra. An algorithm based on the �nite symbolic semantics is presented, and
proved to be sound and complete. In section 6, as examples, we study a simple
railway control system and variant of Fischer's mutual exclusion protocol. Section 7
concludes the paper.

2 An Algebra of Processes with Clocks

Process algebras provide a clean and general paradigm for compositional speci�cation
of communicating processes. In this section we present an algebra of timed automata,
serving as a structural speci�cation language for real-time communicating systems.
The idea is to use algebraic operators to construct complex system speci�cations in
terms of simpler ones (or component speci�cation).

2.1 Syntax

Traditionally, a pre�x expression �:P in process algebras describes a process which
may perform an �-transition and then continue with P . But no timing information
is given on when the transition may be taken.

Following Alur and Dill [AD90], we assume a set of clocks to specify timing
constraints on transitions. Conceptually, the clocks may be considered as the system
clocks of a concurrent system, owned or shared by processes in the system. The
processes may test the clocks by comparing the clock values with integer constants
and reset the clocks (i.e. assigning clock values to 0). Further, assume that all clocks
proceed at the same rate and measure the amount of time that has been elapsed since
they were reset or started.

We extend the action pre�x �:P to the form (g; �; r):P where g is a predicate
over the clock values and r is a subset of clocks to be reset. Intuitively, (g; �; r):P
describes a timed process which may perform an �-transition instantaneously when
g is true of the current clock values and then continue as P with the clocks in r being
reset (and the other clocks proceeding with their old values).

We also introduce a way to force processes to make progress. We use an invariant
operator in the form g�>P , where g is a predicate over clock values [HNSY92, DB96].
Intuitively, the process may idle or go on as P while g is satis�ed by the system clocks.

De�nition 2.1 (Clock Constraints) Let C denote a set of clocks, ranged over by
x, y ,z. We use B(C) to stand for the set of logical formulae generated by the following
syntax:

g ::= x � n j x� y � n j g ^ g

where � 2 f<;>;=;�;�g and n is a natural number. 2

We shall use tt to denote a clock constraint like x � 0 that is always satis�ed, and ff for
x < 0 that is always false as clocks can only have non-negative values. Note that we
could allow a more general form of formulas such as disjunction g_g. However, it will
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not give more expressive power to the description language we are going to develop.
In fact, logical disjunction can be modeled by the behavioural choice operator.

The language is essentially CCS [Mil89] extended with the timed action pre�x
(g; �; r):P and the invariant operator g�>P . Let A be a �nite set of actions ranged
over by �; � etc. We use L = f� j � 2 Ag [ f�� j � 2 Ag1 with ��� = � for
representing external actions, a distinct symbol � representing internal actions, and
Act = L[f�g ranged over by a; b for representing both internal and external actions.
Further, assume a set of process variables ranged over by X; Y (and sequences of
letters).

We shall see that the algebraic structure of a process expression P represents
the control-structure of a process. This will be clear when we present the operational
semantics. We adopt a two-phase syntax according to two types of control-structures:
regular and concurrent.

We start with processes whose control-structure are regular in the sense that
no concurrency is involved. The regular process expressions are generated by the
following grammar:

E ::= nil j (g; a; r):E j g�>E j E + F j X j X
def
= E

We shall restrict expressions to be well-guarded in the following sense:

De�nition 2.2 (Well-Guarded Expressions) X is well-guarded in E if and only
if every free occurrence of X in E is within a subexpression (a guard) of the form
(g; a; r):F . E is well-guarded if and only if every free variable in E is well-guarded in

E, and for every subexpression of the form X
def
= F in E, X is well-guarded in F . 2

Let P denote the set of well-guarded expressions generated by the grammar above.
We call P regular timed processes.

We shall study concurrent processes in the form (P1 j ::: j Pn)nL, where Pi 2 P
describing the components and L � L representing the set of internal channels con-
necting the components. We use PP to denote the set of timed concurrent processes,
ranged over by P;Q and R.

For simplicity, we have ignored the relabelling operator. The results of this paper
can easily be extended to more general types of processes modeled by the combination
of parallel composition, restriction and relabelling.

2.2 Operational Semantics

We interpret PP using clock assignments. Let IR+ stand for the non-negative real
numbers. A clock assignment u : C 7! IR+ is a function mapping each clock x to a
non-negative real u(x). Assume that d 2 IR+ and r � C is a set of clocks. We use
u� d to denote the clock assignment which maps each clock x to u(x) + d, and r[u]
to denote the clock assignment which maps x to 0 if x 2 r and to u(x) otherwise.

1The action �� is called the co-action of �. In our examples, we shall use �! instead of �� to denote
an output event and �? instead of � to denote an input event.
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Furthermore, given a clock constraint g 2 B(C), we write g(u) to mean the truth
value of g, relative to assignment u.

To interpret PP we also de�ne for each control-node E 2 PP an invariant condition,
denoted I(E). Intuitively, I(E) restricts the amount of time the process may idle in
E, i.e. it must switch to another control-node while I(E) still holds. It is de�ned as
follows:

De�nition 2.3 (Invariant Condition) Assume E; F 2 PP. Let I(E) be the invari-
ant condition of E, de�ned inductively as:

I(nil) = tt
I((g; a; r):E) = tt

I(g�>E) = g ^ I(E)
I(E + F ) = I(E) ^ I(F )

I(X) = I(E) if X
def
= E

I(EjF ) = I(E) ^ I(F )
I(EnL) = I(E)

2

A state of a process is a pair (P; u) where P 2 PP stands for the current control-node
and u denotes the current clock values. A process may make two types of transitions
from state to state:

De�nition 2.4 (Transition Rules) Assume a 2 Act and d 2 IR+:

� (Action) (P; u)
a
; (P 0; u0) following the rules de�ned in Table 1.

� (Delay) (P; u)
d
; (P; u� d) if I(E)(u) and I(E)(u� d).

We will use (P 0; u0) ;n (P n; un) to denote (P 0; u0)
�1
; (P 1; u1)

�2
; : : :

�n�1
; (P n�1;

un�1)
�n
; (P n; un) for �i 2 Act[IR+, and (P

0; u0);? (P f ; uf ) if (P 0; u0);n (P f ; uf )
for some �nite number n. 2

The delay transition relation describes the pure passing of time; the action transition
relation describes the instantaneous occurrence of actions and, possibly, the resetting
of clocks.

Example 2.1 Consider the algebraic terms X, P and Q:

X
def
= (y � 1)�>(tt; �; fg):P

P
def
= (x � 2)�>

�
(x < 1; �; fg):Q+ (x � 1; a; fxg):P

�
Q

def
= nil

The control-node X will become P by doing a � -action before the clock value of y
becomes greater than 1. If the value of y is greater than 1, X is deadlocked. However,
when the value of x is greater than, or equal to 1, the control-node of P will remain
the same, i.e. P , but the � -action will be disabled and the a-action will be enabled
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g(u)

((g; �; r):E; u)
a
; (E; r[u])

(E; u)
a
; (E; u0)

(g�>E; u)
a
; (E; u0)

(F; u)
a
; (F 0; r[u])

(E + F; u)
a
; (F 0; r[u])

(E; u)
a
; (E 0; r[u])

(E + F; u)
a
; (E 0; r[u])

(E; u)
a
; (E 0; r[u])

(X; u)
a
; (E 0; r[u])

[X
def
= E]

(E; u)
a
; (E 0; r[u])

(EjF; u)
a
; (E 0jF; r[u])

(F; u)
a
; (F 0; r[u])

(EjF; u)
a
; (EjF 0; r[u])

(E; u)
a
; (E 0; r[u]) (F; u)

�a
; (F 0; q[u])

(EjF; u)
�
; (E 0jF 0; (r [ q)[u])

(E; u)
a
; (E 0; r[u])

(EnL; u)
a
; (E 0nL; r[u])

[a; �a 62 L]

Table 1: The Action Transition Relation.

while x is less than, or equal to 2. For instance, X can perform the following sequence
of transitions:

(X; 0; 0)
�
; (P; 0; 0)

m
; (P;m;m)

a
; (P; 0; m)

�
; (Q; 0; m)

for all m 2 [1; 2].

3 Symbolic Semantics of Processes

Clearly, the concrete semantics of processes de�ned in the previous section yields an
in�nite transition system due to the real-valued clocks. In this section we shall give
a symbolic semantics of processes which will be used in the next section to develop a
�nite partitioning of the state-space.

We consider symbolic states that are sets of concrete states sharing the same
control-node. To represent sets of clock assignments we use clock constraints B(C)
introduced in Section 2.1. Let D range over B(C). The key idea is to let D represent
the set of clock assignments that are its solutions, and use states in the form (P;D)
to symbolically represent the set of all states (P; u) such that u satis�es D.
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Figure 1: Operations on Clock Constraints.

3.1 Operations on Clock Constraints

We will need a few operations on clock constraints to de�ne the symbolic semantics.
Given a clock constraint D we call the set of clock assignments satisfying D, the
solution set of D.

De�nition 3.1 Let A and A0 be solution sets of clock constraint D and D0. We
de�ne:

A ^ A0 = f u j u 2 A and u 2 A0 g
A" = f u� d j d 2 IR+ and u 2 Ag

fxgA = f x[u] j u 2 A g

2

First note that A ^ A0 is simply the intersection of the two sets. Consider the set A
for the case of two clocks, shown in Figure 1(a). The two operations A" and fxgA
are illustrated in (b) and (c) of Figure 1 respectively2. Intuitively, A" is the largest
set of clock assignments that will eventually be reached from A after some delay, and
the reset-operation fx2gA is the projection of A down on the x1-axis. We extend the
reset-operation fxgA to sets of variables. Assume that r is a set of clock variables and
r = fxg [ r0. We de�ne r(A) = fxg(fr0gA) and fgA = A. In order to save notation,
from now on we shall simply use D ^ D0, D" and fxgD to denote the solution sets
A ^ A, A" and fxgA.

We also need two predicates over clock constraints in the semantics. We write
D � D0 to mean that the solution set of D is included in the solution set of D0 and
D = ; to mean that the solution set of D is empty (i.e. D is not satis�able).

3.2 Symbolic Transition Rules

In this section we will de�ne the transition rules for symbolic states. First, we need
to study the control-structure of processes more carefully.

We will interpret algebraic terms PP as timed automata with location invari-
ants3 [AD90, HNSY92]. It should be obvious that each term P 2 PP describes a
timed automaton with location invariants, i.e. hPP; P;�!; Ii, where PP (the set of

2Figure 1(d) is to illustrate the normalisation operator that will be introduced in the next section.
3Timed automata with location invariants are called \timed safety automata" in [HNSY92].



42 Automatic Veri�cation of Real-Time Systems by Constraint-Solving

(g; a; r):E
g a r
�! E

E
g a r
�! E 0

 �>E
g a r
�! E 0

E
g a r
�! E 0

E + F
g a r
�! E 0

F
g a r
�! F 0

E + F
g a r
�! F 0

E
g a r
�! E 0

X
g a r
�! E 0

[ X
def
= E ]

E
g a r
�! E 0

EjF
g a r
�! E 0jF

F
g a r
�! F 0

EjF
g a r
�! EjF 0

E
g a r
�! E 0 F

f �a s
�! F 0

EjF
h � q
�! E 0jF 0

�
h = g ^ f
q = r [ s

�

E
g a r
�! E 0

EnL
g a r
�! E 0nL

[ a; �a 62 L ]

Table 2: Transition Rules for Control-Nodes.

algebraic terms) is the set of nodes, P 2 PP the initial node, �! is the least tran-
sition relation de�ned by the rules in Table 2, and I : PP 7! B(C) is the invariant
assignments function as de�ned in De�nition 2.3. In particular, note that PP is �nite.
Note also that the terms P 2 PP are in the form P = (P1j : : : jPn) n L, where Pi 2 P
and L � L. Thus, rather than describing a single timed automaton, an algebraic
term e.g. P may describe a whole network of timed automata Pi that communicate
by synchronising pairwise on the internal channels (in L) connecting them.

Example 3.1 Reconsider the algebraic terms X, P and Q of Example 2.1. The
timed automaton AX described by X is shown in Figure 2. It has three control-nodes,
X, P and Q, two clocks x and y, and three edges. The edge between P and Q has
x < 1 as guard, � as action and empty reset set fg. The invariant condition of the
control-node P is x � 2.

We are now ready to de�ne the symbolic semantics of processes. It is given by a
transition system with the set of states being the symbolic states (P;D) and the
transition relation de�ned by the following two rules:

De�nition 3.2 (Symbolic Transition Rules) Assume a 2 Act and a new symbol
" representing delays.

� (Action) (P;D)
a
7�! (P 0; r(D ^ g)) if P

g a r
�! P 0.
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tt � fg

x�1
a

fxg

x<1 � fgX P Q
ttx�2y�1

Figure 2: Timed Automaton AX .

� (Delay) (P;D)
"
7�! (P;D"P ),

where D"P = (D ^ I(P ))" ^ I(P ), and I(P ) is the invariant condition of P .
We will use (P 0; D0) 7�!n (P n; Dn) to denote an alternating sequence in the

form (P 0; D0)
"
7�! (P 1; D1)

a27�! (P 2; D2)
"
7�! : : :

an�1
7�! (P n�1; Dn�1)

"
7�! (P n; Dn)

for ai 2 Act, and (P 0; D0) 7�!? (P f ; Df) if (P 0; D0) 7�!n (P n; Dn) for some n. 2

Intuitively, in the action transition relation (P 0; r(D ^ g)) is the strongest post-

condition of (P;D) after a transition P
g a r
�! P 0. In the delay transition relation,

D"P is the largest set of clock assignments that can be reached from D by delaying
in P while the invariant condition I(P ) still holds.

Example 3.2 Consider the timed automaton of Figure 2. It has the following typical
symbolic transition sequence:

(X; (x = y = 0))
"
7�! (X; (x = y ^ y � 1))

�
7�!

(P; (x = y ^ y � 1))
"
7�! (P; (x = y ^ y � 2))

a
7�!

(P; (x = 0 ^ 1 � y � 2))
"
7�!

(P; (x � 2 ^ 1 � y � 4 ^ 1 � y � x � 2))
�
7�!

(Q; (x < 1 ^ 1 � y � x � 2 ^ 1 � y < 3))
"
7�! (Q; (1 � y � x � 2))

Thus, we have that (X; (x = y = 0)) 7�!? (Q; (1 � y � x < 2)).

The following theorem shows that the symbolic semantics of processes is a full char-
acterisation of the concrete semantics.

Theorem 3.1 (Correctness of Symbolic Semantics) Assume P 0, P f 2 PP, D0,
Df 2 B(C), and u0, uf are clock assignments.

� (Soundness) whenever (P 0; fu0g) 7�!? (P f ; Df) then (P 0; u0) ;? (P f ; uf) for
all uf 2 Df

� (Completeness) whenever (P 0; u0) ;? (P f ; uf) then (P 0; fu0g) 7�!? (P f ; Df)
for some Df and uf 2 Df

where fu0g denotes the clock constraint with u0 being the only solution.

Proof: We prove both soundness and completeness by induction on the length
of transition sequences. First, we show that all transition sequences (P 0; u0) ;n

(P n; un) can be assumed (without loss of generality) to have alternating actions 4 ,

4This follows from the Time Continuity Lemma (see e.g. [Yi91]).
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i.e. the form (P 0; u0)
d1
; (P 0; u1)

a2
; (P 2; u2)

d3
; : : :

an�1
; (P n�1; un�1)

dn
; (P n�1; un),

di 2 IR+ and ai 2 Act. Neighboring action-transition in the form : : :
ai
; (P i; ui)

ai+1
; : : : can be transformed to : : :

ai
; (P i; ui)

0
; (P i; ui)

ai+1
; : : : by inserting 0-

delay transitions, and neighboring delay-transitions in the form : : :
di
; (P i; ui)

di+1
;

(P i; ui+1) : : : can be transformed to : : :
di+di+1
; (P i; ui+1) : : :.

(Soundness) Assume (P 0; fu0g) 7�!n (P n; Dn)
�
7�! (P n+1; Dn+1). By induction

(P 0; u0) ;n (P n; un) and for all un 2 Dn. We need to prove for all un+1 2 Dn+1,
(P n; un)

�
; (P n+1; un+1) for some un 2 Dn. There are two cases since � 2 (Act[f"g):

� (� 2 Act) From (P n; Dn)
a
7�! (P n+1; Dn+1) and De�nition 3.2 we have P n gar

�!
P n+1 and Dn+1 = r(g ^ Dn). Further, due to De�nition 3.1, we have Dn+1 =

fr[u] j u 2 Dn and g(u)g. For state (P n; un), by De�nition 2.4 and P n g a r
�! P n+1,

we get a transition (P n; un)
a
; (P n+1; un+1) such that g(un). Thus, we have that

for all un+1 2 Dn+1, there is a un 2 Dn such that g(un) and un+1 = r[un].

� (� = ") From (P n; Dn)
"
7�! (P n+1; Dn+1) and De�nition 3.2 we get P n = P n+1,

Dn+1 = Dn"Pn

= ((Dn ^ I(P n))" ^ I(P n)). Due to De�nition 3.1 Dn+1 =
fun � d j un 2 Dn ^ d 2 IR+ ^ I(P n)(un) ^ I(P n)(un � d)g. For (P n; un), by

De�nition 2.4, we get (P n; un)
d
�! (P n; un�d) if I(un) and I(un�d). Thus, for

all un+1 2 Dn+1, there is a un 2 Dn such that I(un), I(un+1) and un+1 = un+d.

(Completeness) Assume (P 0; u0) ;n (P n; un)
�
; (P n+1; un+1). By induction step

(P 0; fu0g) 7�!n (P n; Dn) and un 2 Dn. We need to prove (P n; Dn)
�
7�! (P n+1; Dn+1)

for some Dn+1 and un+1 2 Dn+1. There are two cases since � 2 (Act [ IR+):

� (� 2 Act) From (P n; un)
a
; (P n+1; un+1) and De�nition 2.4 it follows that

P n g a r
�! P n+1, un+1 = r[un] and g(un). By De�nition 3.2 and P n g a r

�! P n+1 we
get (P n; Dn)

a
7�! (P n+1; Dn+1) and Dn+1 = r(Dn ^ g). Due to De�nition 3.1

r(Dn ^ g) = fr[u] j u 2 Dn ^ g(u)g. Thus, r[un] 2 Dn+1, that is un+1 2 Dn+1.

� (� 2 IR+) From (P n; un)
d
; (P n+1; un+1), d 2 IR+ and De�nition 2.4 we have

P n = P n+1, un+1 = un � d, I(P n)(un), and I(P n)(un � d). From De�nition 3.1
and 3.2 we get (P n; Dn)

"
7�! (P n; Dn+1) and Dn+1 = Dn"Pn

= fu�e j I(P n)(u)
^ I(P n)(u� e) ^ u 2 Dn ^ e 2 IR+g. From un 2 Dn, I(P n)(un), I(P n)(un� d)
and d; e 2 IR+ we have that un � d 2 Dn+1, that is un+1 2 Dn+1. 2

4 Finite Symbolic Semantics of Processes

While the symbolic semantics of timed automata de�ned in the previous section
is coarser than the concrete semantics, it is not a suitable base for a veri�cation
algorithm because it is still in�nite. The problem is that the symbolic state-space of
a timed automaton is not guaranteed to be �nite as the number of clock constraints
in each symbolic state is unbounded.

In this section we shall develop a symbolic semantics which is guaranteed to yield
a �nite number of so-called normalised symbolic states, but still fully characterises



Automatic Veri�cation of Real-Time Systems by Constraint-Solving 45

the concrete semantics. Normalisation will be used in the next section to develop
a veri�cation algorithm for processes. The idea of normalisation is based on the
region graph technique [AD90, ACD90] and similar solutions have been proposed
in [Rok93, WT94, DT98].

Example 4.1 Reconsider the timed automaton AX of Figure 2. It has the following
in�nite symbolic transition sequence:

(X; (x = y = 0))
"
7�! (X; (x = y ^ y � 1))

�
7�!

(P; (x = y ^ y � 1))
"
7�!

(P; (x = y ^ y � 2))
a
7�!

(P; (x = 0 ^ 1 � y � 2))
"
7�!

(P; (x � 2 ^ 1 � y � 4 ^ 1 � y � x � 2))
a
7�!

(P; (x = 0 ^ 2 � y � 4 ^ 2 � y � x � 4))
"
7�!

(P; (x � 2 ^ 2 � y � 6 ^ 2 � y � x � 4))
a
7�!

(P; (x = 0 ^ 3 � y � 6 ^ 3 � y � x � 6))
"
7�!

(P; (x � 2 ^ 3 � y � 8 ^ 3 � y � x � 6))
a
7�! : : :

Clearly, the transition sequence in Example 4.1 yields an in�nite number of symbolic
states as the number of clock constraints is unbounded in the control-node P . The
source of the problem is the upper bound on the y-clock that is gradually increased
in the symbolic states of the sequence. The key question is how to prevent clock
bounds from growing in�nitely, without changing the semantics of the processes.

Normalisation is based on the observation that there is a maximal constant k = 2
appearing in the guards and location invariants of the automaton AX . When a clock
value have grown beyond 2 in AX , the exact value does not matter anymore since it
can not be distinguished by reachability analysis if the clock values over 2 are not
of interest. It follows that a given symbolic state (P;D) of AX can be extended to
include all clock values that can not be distinguished from the ones already in D, in
the above sense.

4.1 Normalisation of Clock Constraints

In this section we de�ne a normalisation operator for clock constraints, which is
parametrised with a given constant m. We �rst need to study the syntactical repre-
sentation of clock constraints more carefully.

A well-known way to represent the class of constraints B(C) is to use di�erence
bounded matrices (dbm, see [Bel57, Dil89, BL96]). A dbm is a matrix representation
providing a canonical representation of clock constraints. For the purposes of this
paper, it su�ces to consider a dbm D as a constraint in the form D =

Vn
j 6=i xi�xj �

dij, where x0 = 0, and dij are integer numbers
5. In general, there are several dbm's

describing the same set of solutions. However, it has been shown that for each
D 2 B(C) there is a unique dbm, denoted DC , with the same solution set as D,

5For reasons of simplicity and clarity in presentation we will only consider the non-strict orderings
in the remainder of the paper. However, the techniques given extends easily to strict orderings.
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which is closed under entailment in the sense that each dij can not be strengthened
without reducing its solution set [Bel57, Dil89].

We now de�ne a normalisation operator on the dbm-representation of clock con-
straints.

De�nition 4.1 Assume D 2 B(C) and a natural number m. The m-normalisation
of D, denoted normm(D) is the clock constraint obtained by substituting in DC: all
dij > m with 1, all dij < �m with �m, and let all dij with jdijj � m remain dij.

Consider again the solution set A for the case of two clocks, shown in Figure 1.
The operation normm(D) is illustrated in Figure 1(d). Intuitively, normm(D) is the
clock constraint D where all upper bounds greater than m are removed and all lower
bounds greater than m are replaced with m.

4.2 Normalised Symbolic Transition Rules

In Section 3.2 we have de�ned a symbolic semantics of processes, which is based
on partitioning the concrete state-space in terms of the clock constraints B(C). In
this section we shall give a �nite symbolic semantics of processes which is based the
normalisation operator on clock constraints. Let Bm(C) denote the subset of B(C)
with no constants greater than m. We shall see that for a given constant m the
normalised state-space is partitioned in terms of the constraints Bm(C) rather than
B(C). As there are �nitely many constraints in Bm(C) and �nitely many control-nodes
for a given process, the normalised symbolic state-space is guaranteed to be �nite.

Let M(P ) denote the maximal integer constant that appears in the guards and the
location invariants of P . For a given timed automaton P and a constant m > M(P ),
we de�ne the normalised symbolic semantics as a transition system where the set of
states are the symbolic states (P;D) with D 2 Bm(C). The normalised transition
relation =)m is de�ned as follows:

De�nition 4.2 (Normalised Symbolic Transition Rules) Assume the symbol "
representing delays, � 2 Act [ f"g and m is a natural number. We de�ne

(P;D)
�

=)m (P 0; normm(D
0)) if (P;D)

�
7�! (P 0; D0)

We shall write (P 0; D0) =)n
m (P n; Dn) to denote an alternating sequence in the form:

(P 0; D0)
"

=)m (P 1; D1)
a2=)m (P 2; D2)

"
=)m : : :

an�1
=)m (P n�1; Dn�1)

"
=)m (P n; Dn)

for ai 2 Act, and (P 0; D0) =)?
m (P f ; Df) if (P 0; D0) =)n

m (P n; Dn) for some n. 2

Thus, the only di�erence between the normalised symbolic semantics and the symbolic
semantics, de�ned in De�nition 3.2, is that the clock constraints are normalised in
the normalised semantics. As all m-normalised constraints belong to Bm(C), and PP
is �nite, the normalised symbolic semantics is guaranteed to yield a �nite number of
symbolic states.
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Example 4.2 Reconsider the in�nite symbolic transition sequence shown in Example
4.1. In the �nite symbolic semantics, with m = 3, we get the following transition
sequence:

(X; (x = y = 0))
"

=)m (X; (x = y ^ y < 1))
�

=)m

(P; (x = y ^ y < 1))
"

=)m

(P; (x = y ^ y < 2))
a

=)m

(P; (x = 0 ^ 1 � y < 2))
"

=)m

(P; (x < 2 ^ 1 � y ^ 1 � y � x < 2))
a

=)m

(P; (x = 0 ^ 2 � y ^ 2 � y � x))
"

=)m

(P; (x � 2 ^ 2 � y ^ 2 � y � x))
a

=)m

(P; (x = 0 ^ 3 � y ^ 3 � y � x))
"

=)m

(P; (x � 2 ^ 3 � y ^ 3 � y � x))
a

=)m : : :

which is the sequence of Example 4.1 but with all clock constraints normalised.

To establish the correctness of the normalised symbolic semantics we shall need the
following properties of the normalisation operator.

Lemma 4.1 Assume D 2 B(C) and a natural number m. We have that for all time
assignments u with maxi(du(xi)e) = k and k < m

(1) u 2 D if and only if u 2 normm(D)

(2) u 2 (g ^D) if and only if u 2 (g ^ normm(D))

(3) u 2 D" if and only if u 2 (normm(D))
"

(4) u 2 fxgD if and only if u 2 fxg(normm(D))

where g 2 Bk(C) and x 2 C.

Proof:

(1) Follows from the fact that the normalisation operator de�ned in De�nition 4.1
does not a�ect any time assignments u 2 DC with maxi(du(xi)e) < m.

(2) Follows from (1) and the de�nition of the constraint operation \^" in De�ni-
tion 3.1.

(3) ()) This direction follows from the monotonicity of the "-operator and (1).
(() Assume u 2 (normm(D))

". By De�nition 3.1 there must exist u = u0 � d
for u0 2 normm(D) and d 2 IR+. It follows that maxi(du(xi)e) < m since
maxi(du0(xi)e) < m, and due to (1) that u0 2 D which gives that u0 � d 2 D".

(4) ()) This follows from the monotonicity of the reset-operator and (1).
(() Assume u 2 fxg(normm(D)). By De�nition 3.1 we have that u(x) = 0 and
that there exists u0 2 (normm(D)) with u(y) = u0(y) for all y 6= x. There are now
two cases, either u0(x) < m or u0(x) � m. First assume u0(x) < m. Then u0 2 D
due to (1) and it follows that u 2 fxgD. For the case u0(x) � m, assume that
there is no u00 2 D with u00(x) � m and u0(y) = u00(y) for all y 6= x. Then x � l
for some l < m must be a constraint in DC . It follows from De�nition 4.1 that
x � l must also be a constraint in normm(D)

C which contradicts the assumption
that u0(x) � m. 2
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The following theorem shows how the normalised symbolic semantics characterises
the concrete operational semantics de�ned in the Section 2.2.

Theorem 4.1 (Correctness of Normalised Symbolic Semantics)
Assume P 0 2 PP, k = M(P 0) and u0 is a time assignment.

� (Soundness) whenever (P 0; fu0g) =)?
m (P f ; Df) then (P 0; u0) ;? (P f ; uf) for

all uf 2 Df and m > max(k;maxi(duf(xi)e))

� (Completeness) whenever (P 0; u0);? (P f ; uf) andm > max(k;maxi(duf (xi)e))
then (P 0; fu0g) =)?

m (P f ; Df) for some Df and uf 2 Df

where fu0g denotes the clock constraint with u0 being the only solution.

Proof: We prove both soundness and completeness by induction on the length of
the transition sequences.

(Soundness) Assume (P 0; fu0g) =)n
m (P n; Dn)

�
=)m (P n+1; Dn+1). By induction we

have (P 0; u0) ;n (P n; un) for all un2Dn with maxi(dun(xi)e) < m, and we need to
prove, for all un+1 2 Dn+1 with maxi(du

n+1(xi)e) < m, (P n; un)
�
; (P n+1; un+1), for

some un 2 Dn such that maxi(du
n(xi)e) < m. We have two cases since � 2 Act or

� = ":

� (� 2 Act) From (P n; Dn)
�

=)m (P n+1; Dn+1), De�nition 4.2 and 3.2 we have

P n g a r
�! P n+1 and Dn+1 = normm(r(g ^Dn)). Due to De�nition 3.1, we get

Dn+1 = normm(fr[un] j un2Dn and g(un)g). Further, by Lemma 4.1(1) and
maxi(dun+1 (xi)e) < m we have un+1 2 fr[un] j un 2 Dn and g(un)g. From

De�nition 2.4, Lemma 4.1(2), 4.1(4) and P n g a r
�! P n+1 we get a transition

(P n; un)
a
; (P n+1; r[un]) such that g(un) and maxi(dun(xi)e) < m. Thus, we

have that for all un+1 2 Dn+1 with maxi(du
n+1(xi)e) < m there is a un 2 Dn

with maxi(dun(xi)e) < m such that g(un) and un+1 = r[un].

� (� = ") From (P n; Dn)
"

=)m (P n+1; Dn+1), De�nition 4.2 and 3.2 we get P n =
P n+1 and Dn+1 = normm(D

n"Pn

). By Lemma 4.1 and maxi(du
n+1 (xi)e) � k

we have un+1 2Dn"Pn

= (Dn ^ I(P n))" ^ I(P n), which by De�nition 3.1 has
the solution set (fun�d j un2Dn ^ d2IR+ ^I(P n)(un) ^ I(P n)(un � d)g). By

De�nition 2.4, Lemma 4.1(3) and (P n; un) we get (P n; un)
d
�! (P n; un�d) such

that I(un), I(un � d) and maxi(du
n(xi)e) < m. Thus, for all un+1 2 Dn+1 with

maxi(du
n+1(xi)e) < m, there is a un 2 Dn with maxi(du

n(xi)e) < m such that
I(un), I(un+1) and un+1 = un � d for some d.

(Completeness) Assume (P 0; u0);n (P n; un)
�
; (P n+1; un+1) and maxi(dun+1 (xi)e)

< m. By induction step (P 0; fu0g) =)n
m (P n; Dn) and un 2 Dn. We need to

prove (P n; Dn)
�

=)m (P n+1; Dn+1), for some Dn+1 and un+1 2 Dn+1. However, from
Theorem 3.1 we have that there is a symbolic transition (P n; Dn)

�
7�! (P n+1; Dn+1

s )
such that un+1 2 Dn+1

s . Further, from De�nition 4.2 we have (P n; Dn)
�

=)m (P n+1;
Dn+1) and Dn+1 = normm(D

n+1
s ). By De�nition 4.1 we have Dn+1 � Dn+1

s and thus
un+12Dn+1. 2
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5 Checking Safety Properties of Processes

The language developed in Section 2 can be used to construct abstract models of
existing systems or systems to be designed. In this section we discuss how to verify
properties of such systems in terms of their abstract models.

5.1 Reachability Analysis

It has been pointed out that the practical goal of veri�cation of real-time systems, in
particular safety-critical systems, is often to verify safety properties [Hal93]. These
properties are usually formalised as invariant properties in the form INV(:') read
as \' is invariantly false", where ' describes a certain undesired situation or logical
property. For �nite-state systems, safety properties can be veri�ed simply by checking
all reachable states whether they satisfy ' or not, that is by \reachability analysis".

Let N(D) denote the the maximal integer constants that appears in the constraints
of D. We shall consider the following reachability problem:

De�nition 5.1 (Reachability of Normalised Symbolic States) Assume P 0; P f

2 PP, D0; Df 2 B(C) and k = max(M(P 0);N(Df)). We say that a symbolic state
(P f ; Df) is reachable from (P 0; D0) if for all m < k, (P 0; D0) =)?

m (P f ; D) for
some D 2 Bm(C) and D ^Df 6= ;. 2

5.2 An Algorithm for Reachability Analysis

In this section we present an algorithm for forwards reachability analysis6 of timed
automata based on the �nite symbolic semantics. To improve the presentation, we
shall simply call (P;D) a state instead of a (normalised) symbolic state whenever it
is not confusing.

The algorithm is based on the following idea: Assume that we want to decide
whether (P;D) may reach (P 0; D0) in one step (i.e. without passing other control-
nodes) or not. The �rst thing to check is whether it is possible for P to switch to P 0

directly. If this is not the case, i.e. P
g a r
�! P 0 for no P 0; g; a; r, we can immediately

conclude that (P 0; D0) is not reachable from (P;D) in one step. Now, assume P
g a r
�!

P 0. To reach (P 0; D0), there should be clock constraints D1; D2 and D3 such that
D0 ^ D3 6= ; and (P;D)

"
=)m (P;D1)

a
=)m (P 0; D2)

"
=)m (P 0; D3). Note that

D and D0 are given. From the normalised symbolic semantics in De�nition 4.2 we

get D1 = normm(D
"P ); D2 = normm(r(g ^D

1)); D3 = normm(D
2"P

0

). That is, D3 =

normm(normm(r(g ^ normm(D)
"P ))

"P 0

).
The algorithm for forwards reachability analysis is shown in Figure 3. It uses two

bu�ers for saving states: Passed andWaiting, where Passed holds the set of states
that have been examined, and Waiting the set of states that are to be examined

next. When the algorithm is started Passed = fg and Waiting = f(P 0; D0"P
0

)g,

where D0"P
0

is the largest set of clock assignments that can be reached by idling in
P 0. The algorithm then repeatedly examines the states inWaiting. If a state (P;D)

6It can easily be adopted to backwards reachability analysis (see [YPD94]).
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Input:
P 0; P f 2PP, D0; Df 2B(C) and m > max(M(P 0);N(Df)).

Initial:

Waiting := f(P 0; D0"P
0

)g
Passed := fg

Repeat:
for all (P;D) 2Waiting do
begin
if D 6� D0 for all (P;D0) 2 Passed then

begin
Passed := Passed [ f(P;D)g and
Waiting :=Waiting [ f(P 0; D0)g for all P 0; g; a; r

such that P
g a r
�! P 0, D0 = normm((r(g ^D))

"P 0)
and D0 6= ;.

end;
else Waiting :=Waiting� f(P;D))g
end

untilWaiting = ; or (P f ; D0) 2Waiting for some D0 such
that Df ^D0 6= ;.

Termination: if Waiting = ; then return \no" else return \yes".

Figure 3: An Algorithm for Reachability Analysis.

found in Waiting that is smaller7 than a state (P;D0) in Passed, then (P;D) does
not need to be examined further. Otherwise, put all the states that are reachable
from (P;D) in one step into Waiting to be examined further, and put (P;D) into
Passed. The algorithm will terminate when Waiting is empty (i.e. nothing is left
to be examined, and therefore fails to �nd the �nal state) or a state (P f ; D0) is found,
which includes a part of the �nal state (P f ; Df) (i.e. Df ^D0 6= ;).

We now show that the algorithm is partially correct: Given proper inputs, it
always provides the right answer.

Theorem 5.1 (Partial Correctness) For all initial states (P 0; D0) and �nal states
(P f ; Df):

1. whenever the algorithm terminates with answer \yes", there exists
(P 0; u0) 2 (P 0; D0), (P 0; u0);? (P f ; uf) for some (P f ; uf) 2 (P f ; Df)

2. whenever the algorithm terminates with answer \no", then for all
(P 0; u0) 2 (P 0; D0), (P 0; u0);? (P f ; uf) for no (P f ; uf ) 2 (P f ; Df)

7The symbolic state (P;D) is smaller than (P 0; D0) if P = P 0 and D � D0.
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Proof: Let spm((P;D)) denote f (P 0; D0) j (P;D) =)?
m (P 0; D0) g, i.e. the set of

all normalised symbolic states reachable from (P;D). We �rst show that the two sets
Passed andWaiting used in the algorithm satis�es the following invariant property:

spm((P
0; D0)) = Passed [

[
(P;D)2Waiting

spm((P;D))

(Initial:) Trivial, as spm((P
0; D0)) = spm((P

0; D0"P
0

)), Passed = ;, and (P 0; D0)
"

=)m (P 0; D0"P
0

) by De�nition 3.2.
(Repeat:) Assume the invariant property holds for the current values of Passed
and Waiting, (P;D) 2 Waiting, and P 6= P f or D ^ Df = ;. Assume also that
there is no (P;D0) 2 Passed such that D � D0. The algorithm then updates Passed

and Waiting to Passed [ f(P;D)g and Waiting � f(P;D)g [ f(P 0; D0) j P
g a r
�!

P 0 and D0 = normm((r(D ^ g))"P
0

)g. This does not modify the set of states on
the r.h.s. of the invariant property, since the only symbolic state (P;D) removed
from Waiting is added to Passed and all successor states of (P;D) are added to
Waiting.

Now assumeD � D0 for some (P;D0) 2 Passed. Then spm((P;D))� spm((P;D
0))

and thus (P;D) does not have to be further explored.
(Termination:) Trivial as Passed and Waiting are not updated. Note that if the
algorithm terminates on the criteria Waiting = ;, then spm((P 0; D0)) = Passed,
i.e. Passed holds all reachable normalised symbolic states.

We now establish that the criteria (1) and (2) for partial correctness holds.

(1) The algorithm terminates with \yes" whenever there exists (P;D) 2Waiting,
P = P f and D ^ Df 6= ;. From the above invariant we have (P 0; D0) =)?

m

(P f ; D). It follows from Theorem 4.1 that (P 0; u0);? (P f ; uf ) for some u0 2 D0

and uf 2 Df .

(2) When the algorithm terminates with \no" Passed = spm((P
0; D0)) and no

(P;D) 2 Passed is found such that P = P f and D ^Df 6= ;. By Theorem 4.1
we have that (P0; u0);

? (Pf ; uf ) for no u
0 2 D0 and uf 2 Df . 2

Finally, we prove total correctness of the algorithm: Given proper inputs, it always
terminates with an answer.

Theorem 5.2 (Total Correctness) For all initial states (P 0; D0) and �nal states
(P f ; Df), the algorithm always terminates with an answer which is either \yes" or
\no".

Proof: The theorem follows from the following two lemmas.

Lemma 5.1 (Closure Property of Clock Constraints) Assume that C is a set
of clocks, x 2 C, and D;D0 2 B(C) with solution sets A and A0. Then there exist
clock constraints D1, D2, D3 2 B(C) with solution sets A ^ A0, A", and fxgA

Proof: See [Dil89]. 2
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Lemma 5.2 Assume D 2 B(C) and a non-negative integer numberm. Then normm(D)
2 Bm(C), where Bm(C) is the subset of B(C) with no constants greater than m.

Proof: Follows from De�nition 4.1. 2

Thus, due to Lemma 5.1 the class of clock constraints is closed under the operations
on constraints, used in the algorithm. Further, from Lemma 5.2 the number of
constraints manipulated by the algorithm is bounded. Since the number of control-
nodes of P0 is �nite, we have that the algorithm is guaranteed to terminate with an
answer. 2

6 Examples

We have implemented the algorithm presented in the previous section in the two
veri�cation tools tab andUppaal. The tool tab, was developed in 1993 based on the
symbolic and on-the-y backwards reachability analysis algorithm for timed automata
presented in the conference version of this paper [YPD94]. tab is implemented in
a constraint solver developed at the Swedish Institute of Computer Science (SICS)
called Prolog Constraint Solver [Nil93].

In this section, we present two examples which have been analysed in the successor
of tab, called Uppaal [LPY95, LPY97]. The �rst version of Uppaal, implemented
in C++ and with e�cient operations on constraints, was �nished in 1995 [LPY95].
In addition to clock variables the Uppaal-model, which is based on the model of
networks of timed automata presented in this paper, has integer data variables. These
variables do not change their values at the delay-transitions as the clock variables do;
they can only be assigned to values from �nite domains, and therefore they will not
cause in�nite-stateness.

6.1 Fischer's Mutual Exclusion Protocol

The protocol was proposed originally by Fischer and described by Lamport [AL92]. It
is to guarantee mutual exclusion in a concurrent system consisting of several processes
using a variable shared among the processes. Each of the processes is assumed to
have a local clock. The idea behind the protocol is that the timing constraints on
the local clocks ensure that only one process can set the shared variable to its own
process number, then later if the shared variable is still equal to its own number,
enter the critical section.

Assume a concurrent system with n processes P1; : : : ; Pn. We use xi to model the
local clock for each process Pi. The formal description of Pi is given in Figure 4, and
the timed automaton described by Pi is illustrated in Figure 5 8.

This is a simpli�ed version of the original protocol and has been studied by re-
searchers, e.g. [AL92, Sha93], which permits only one process to enter the critical
section and never exits it. Recovery actions from failure to enter the critical section

8In Figure 5 and 7 we adopt the convention that when a transition is not labelled with an action,
it means that the transition is an internal one, that is � .
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Pi
def
= Ai

Ai
def
= ((v = 0); �; fxig):Bi

Bi
def
= (xi < c) �> (tt; �; fv := i; xig):Ci

Ci
def
= ((v = i; xi > c); �; fg):CSi

CSi
def
= nil

Figure 4: Formal Description of Fischer's Protocol.

are omitted. However, the protocol can be extended to an actual mutual exclusion
algorithm.

The processes Pi may be in either of the four local states Ai; Bi; Ci;CSi. Initially,
all processes are in their A-states and the shared variable v is initially 0. A process,
Pi, that tries to enter the critical section changes state from Ai to Bi if it sees v = 0.
In Bi, it will move to Ci before the clock xi proceeds to c, and in doing so, reset the
clock xi (i.e. xi := 0) and assign v to its own process number (i.e. v := i). From Ci,
it can move to the critical section CSi if v is still equal to its process number (i.e.
v = i) when the clock value of xi is larger than c.

Intuitively, the protocol behaves as follows: The constraints on the shared vari-
able v ensure that a process must reach B-node before any process reach C-node;
otherwise, it will never move from A-node to B-node. The timing constraints on the
clocks ensure that all processes in C-node must wait until all processes in B-node
reach C-node. The last process that reached C-node and set v to its own process
number gets the right to enter its critical section. In fact, the protocol will guarantee
mutual exclusion for any non-zero constant c.

We need to check that the mutual exclusion property is satis�ed, i.e. there will
never be more than one process which may reach the critical section, CSi. The
requirement can be formalised as follows: The concurrent system, with an initial
state where the control-node is A1 j : : : j An and arbitrary variable assignment, will
never reach a state where the control-node is in the form

S1 j : : : j CSk j : : : j CSl j : : : j Sn

for some k; l � n and Si 2 fAi; Bi; Ci;CSig.
We have used Uppaal and veri�ed the system consisting of 12 processes and with

c = 1, which satis�es the property 9.

6.2 A Railway Control System

We consider a railway control system to automatically control trains passing a critical
point such as a bridge. The idea is to use a computer to guide trains from several

9Uppaal version 2.18.3 consumed 8376 seconds of CPU time and 265 MB of memory on a
Pentium Pro 200 MHz machine running Redhat Linux 5.0.
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Ci
ttxi<c

BiAi
tt

v = 0

fxig
tt

xi > c
v = i

fg

tt

fxi; v := ig
CSi

Figure 5: Fischer's Mutual Exclusion Protocol.

tracks crossing a single bridge instead of building many bridges. An obvious safety-
property of such a system is to avoid the situation where more than one train are
crossing the bridge at the same time.

Assume that the whole system consists of n trains and a controller. We model
the system by the following process:

(C j Train1 j : : : j Trainn) nA

where Traini describe the behavior of the trains, C describes the behavior of the
controller, and A = fappri; stopi; leavei; goig is the set of internal channel names (or
signals) between the trains and the controller.

To describe timing constraints, we use clocks y and xi to model the local time of
the controller and the trains respectively. The controller uses a list L for the trains
waiting to cross the bridge. The formal descriptions of Traini's and C are given in
Figure 6 and illustrated in Figure 7.

Intuitively, when a train, Traini, approaches the bridge it sends a signal to the con-
troller within a certain distance. If the bridge is occupied the controller immediately
sends a stop signal stopi to prevent the train from entering the bridge. Otherwise,
if the approaching train does not receive a stop signal within 10 time units, it will
start to cross the bridge within 20 time units (but it will take at least 10 time units
for a train to enter the bridge). The crossing train is assumed to leave the bridge
within 3 to 5 time units; a stopped train will slow down and eventually stop after
some delay. When the bridge is free again and the controller signals (by sending goi)
the �rst train in the waiting list to cross.

Assume that the system is started with the following control-node:

(Free j Safe1 j : : : j Safen)

and all clocks are initialised to 0.
We need to guarantee that the system will never reach a state where two trains

are in node Cross (the clocks may have any values). That is, a state in the form:

(Si j T1 j : : : j Crossk j : : : j Crossl j : : : j Tn)

for some k; l � n, Si 2 fFree,Send,Occ1;Occ2g and Ti 2 fSafei; Appri; Slowi; Stopi;
Startig. We have veri�ed that a system consisting of 6 trains satis�es the safety-
requirement 10.

10Uppaal version 2.18.3, installed on the same machine as in the previous example, consumed
143 MB of memory and 3019 seconds of CPU time.
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Traini
def
= Safei

Safei
def
= (tt; appri!; fxig):Appri

Appri
def
= (xi � 20) �> ( ((xi � 0 ^ xi � 10); stopi?; fxig):Slowi

+ (xi � 11); �; fxig):Crossi )

Crossi
def
= (xi � 5) �> ((xi � 3); leavei!; fxig):Safei

Slowi
def
= (xi � 7) �> ((xi � 5); �; fxig):Stopi

Stopi
def
= (tt; goi?; fxig):Starti

Starti
def
= (xi � 15) �> ((xi � 7); �; fxig):Crossi

C
def
= Free

Free
def
= ((L = empty); appri?; fL := ig):Occ1

+ ((L 6= empty); �; fn := hd(L); yg):Send

Send
def
= (y � 0) �> ((tt; gon!; fg):Occ1

Occ1
def
= (tt; leavei?; fL := L� ig):Free

+ (tt; appri?; fn := i; yg):Occ2

Occ2
def
= (y � 0) �> (tt; stopn!; fL := L :: ng):Occ1

Figure 6: Formal Description of the Railway Control System.

7 Conclusion

We have presented an algebra of processes with clocks, which extends timed automata
with algebraic operators. The algebra may serve as a formal description language
for real-time communicating systems modelled as networks of timed automata. In
particular, a parallel composition operator is introduced for timed automata to model
communication and concurrency. The operators can be used to construct complex
system descriptions in terms of simpler ones.

We have also presented a symbolic on-the-y reachability analysis algorithm for
the description language, based on constraint-solving techniques. The algorithm is
proved to be sound (i.e. always provides the right answer) and complete (i.e. always
terminates with an answer). It has been implemented in two automatic veri�cation
tools for checking safety properties of real-time systems: tab and Uppaal. In this
paper, as examples, we apply Uppaal to verify safety properties of a version of
Fischer's mutual exclusion protocol and a railway control system.

There have been many proposals for verifying timed systems. However, most of
them are intended to construct the whole state-space of a system or to obtain more
e�cient model-checking algorithms with respect to a real-time temporal logic, or to
check equivalences between abstract speci�cations. We believe that the practical
goal of verifying real-time systems, in particular safety-critical systems is to check
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(a) (b)
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fxig

fxig
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Figure 7: (a) Controller, (b) Train.

simple logical properties, which can be done without constructing the whole state-
space. We are of the opinion that our approach is simpler as it is based directly on
constraint-solving techniques and can be e�cient in verifying systems consisting of
many components as it explores (and generates) only the reachable part of the whole
state-space.
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Abstract. In this paper, we present symbolic and compositional techniques to avoid

state explosion problems in model-checking for networks of timed automata. The symbolic

technique is based on partitioning the inherently in�nite state-space of timed automata in

terms of simple constraints over the clocks variables instead of into regions. This allows the

partitioning to take into account the particular system and the property to be veri�ed. In

practice, it will result in a considerably coarser and smaller partitioning than the property-

independent region graph. The compositional quotienting construction allows properties

of a network to be veri�ed by gradually moving components from the system description

(the network) into the speci�cation that is a logical formula specifying the properties. This

transforms the model-checking problem to validity-checking of logical formulas, which may

terminate as soon as the formula becomes true or false without exploring the whole state-

space of the network.

1 Introduction

Within the last decade model-checking has turned out to be a useful technique for
verifying temporal properties of �nite-state systems. E�cient model-checking algo-
rithms for �nite-state systems have been obtained with respect to a number of logics.
However, the major problem in applying model-checking even to moderate-size sys-
tems is the potential combinatorial explosion of the state space arising from parallel
composition. In order to avoid this problem, algorithms have been sought that avoid
exhaustive state space exploration, either by symbolic representation of the states
space using Binary Decision Diagrams [BCM+90], by application of partial order
methods [GW91, Val90] which suppresses unnecessary interleavings of transitions, or
by application of abstractions and symmetries [CFJ93, CGL92, EJ93].

In the last few years, model-checking has been extended to real-time systems,
with time considered to be a dense linear order. A timed extension of �nite au-
tomata through addition of a �nite set of real-valued clock-variables has been put
forward [AD94] (so-called timed automata), and the corresponding model-checking
problem has been proven decidable for a number of timed logics including timed ex-
tensions of CTL (TCTL) [ACD90] and timed �-calculus (T�) [HNSY94]. A state of
a timed automaton is of the form (l; u), where l is a control-node and u is a clock-
assignment holding the current values of the clock-variables . The crucial observation
made by Alur, Courcoubetis and Dill and the foundation for decidability of model-
checking is that the (in�nite) set of clock-assignments may e�ectively be partitioned
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into �nitely many regions in such a way that clock-assignments within the same region
induce states satisfying the same logical properties.

Model-checking of real-time systems based on the region technique su�ers two
potential types of explosion arising from parallel composition: Explosion in the region
space, and Explosion in the space of control-nodes. We attack these problems by
development and combination of two new veri�cation techniques:

1. A symbolic technique reducing the veri�cation problem to that of solving simple
constraint systems (on clock-variables), and

2. A compositional quotient construction, which allows components of a real-time
system to be gradually moved from the system into the speci�cation. The in-
termediate speci�cations are kept small using minimisation heuristics.

The property-independent nature of regions leads to an extremely �ne (and large)
partitioning of the set of clock-assignments. Our symbolic technique allows the par-
titioning to take account of the particular property to be veri�ed and will thus in
practice be considerably coarser (and smaller).

For the explosion on control-nodes, recent work by Andersen [And95] on (untimed)
�nite-state systems gives experimental evidence that the quotient technique improves
results obtained using Binary Decision Diagrams [BCM+90] on some examples. Our
aim of this paper is to make this new successful compositional model-checking tech-
nique applicable to real-time systems. For example, consider the following typical
model-checking problem �

A1 j : : : jAn

�
j= '

where the Ai's are timed automata. We want to verify that the parallel composition of
these satis�es the formula ' without having to construct the complete control-node
space of (A1 j : : : jAn). We will avoid this complete construction by removing the
components Ai one by one while simultaneously transforming the formula accordingly.
Thus, when removing the component An we will transform the formula ' into the
quotient formula ' =An such that

�
A1 j : : : jAn

�
j= ' if and only if

�
A1 j : : : jAn�1

�
j= '=An

Now clearly, if the quotient is not much larger than the original formula we have
succeeded in simplifying the problem. Repeated application of quotienting yields

�
A1 j : : : jAn

�
j= ' if and only if 1 j= '=An =An�1 = : : : = A1

where 1 is the unit with respect to parallel composition. However, these ideas alone
are clearly not enough as the explosion may now occur in the size of the �nal formula
instead. The crucial and experimentally \veri�ed" observation by Andersen was that
each quotienting should be followed by a minimisation of the formula based on a
small collection of e�ciently implementable strategies. In our setting, Andersen's
collection is extended to include strategies for propagating and simplifying timing
constraints.
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Our new symbolic and compositional veri�cation technique is developed for a
real-time logic designed speci�cally for expressing safety and bounded liveness prop-
erties. Comparatively less expressive than TCTL and T�, the logic is still su�ciently
expressive for practical purposes, and the logic allows a number of operators of other
logics to be derived. Most importantly, the somewhat restrictive expressive power of
our logic allows for extremely e�cient model-checking.

For the logics TCTL and T�, [HNSY94] o�ers a symbolic veri�cation technique.
However, due to the high expressive power of these logics the partitioning employed
in [HNSY94] is signi�cantly �ner (and larger) and implementation-wise more compli-
cated than the symbolic technique we present in this paper. Our symbolic method is
based on the constraint solving technique presented in [YPD94], where the technique
was developed for simple reachability problems.

An initial e�ort in applying the compositional quotienting technique to real-time
systems has been given in [LL95]. This work also contains experimental evidence of
the potential bene�ts of the quotient technique in a real-time setting. However, being
based directly on the (very �ne) notion of regions, [LL95] su�ers from a potential
explosion in the region-space.

The outline of this paper is as follows: In the next section we give a short pre-
sentation of the notions of timed automata and networks; in section 3, the safety
logic is presented and its expressive power is illustrated. Section 4 describes the sym-
bolic veri�cation technique based on constraint solving and section 5 describes the
compositional quotienting technique. Both techniques are illustrated by an example.
Section 6 concludes the paper.

2 Real-Time Systems

We shall use timed transition systems as a basic semantical model for real-time sys-
tems. The type of systems we are studying will be a particular class of timed transi-
tion systems that are syntactically described by networks of timed automata [YPD94,
LL95].

2.1 Timed Transition Systems

A timed transition system is a labelled transition system with two types of labels:
atomic actions and delay actions (i.e. positive reals), representing discrete and con-
tinuous changes of real-time systems.

Let A be a �nite set of actions ranged over by a; b etc, and P be a set of atomic
propositions ranged over by p; q etc. We use IR+ to stand for the set of non-negative
real numbers, � for the set of delay actions f�(d) j d 2 IR+g, and � for the union
A [�.

De�nition 2.1 (Timed Transition System ) A timed transition system over �
and P is a tuple S = hS; s0;�!; V i, where S is a set of states, s0 is the initial state,
�!� S���S is a transition relation, and V : S ! 2P is a proposition assignment
function. 2
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Note that the above de�nition is standard for labelled transition systems except that
we introduced a proposition assignment function V , which for each state s 2 S assigns
a set of atomic propositions V (s) that hold in s.

In order to study compositionality problems we introduce a parallel composition
between timed transition systems. Following [HL89] we suggest a composition pa-
rameterised with a synchronisation function generalising a large range of existing
notions of parallel compositions. A synchronisation function f is a partial function
(A [ f0g) � (A [ f0g) ,! A, where 0 denotes a distinguished no-action symbol1.
Now, let Si = hSi; si;0;�!i; Vii, i = 1; 2, be two timed transition systems and let
f be a synchronisation function. Then the parallel composition S1 jf S2 is the timed
transition system hS; s0;�!; V i, where s1 jf s2 2 S whenever s1 2 S1 and s2 2 S2,
s0 = s1;0 jf s2;0, �! is inductively de�ned as follows:

� s1 jf s2
c
�! s01 jf s

0
2 if s1

a
�!1 s

0
1, s2

b
�!2 s

0
2 and f(a; b) = c

� s1 jf s2
�(d)
�! s01 jf s

0
2 if s1

�(d)
�!1 s

0
1 and s2

�(d)
�!2 s

0
2

and �nally, the proposition assignment function V is de�ned by V (s1 jf s2) = V1(s1)[
V2(s2).

Note also that the set of states and the transition relation of a timed transi-
tion system may be in�nite. We shall use networks of timed automata as a �nite
syntactical representation to describe timed transition systems.

2.2 Networks of Timed Automata

A timed automaton [AD94, HNSY94] is a standard �nite-state automaton extended
with a �nite collection of real-valued clocks. Conceptually, the clocks may be consid-
ered as the system clocks of a concurrent system. They are assumed to proceed at
the same rate and measure the amount of time that has been elapsed since they were
reset. The clocks values may be tested (compared with natural numbers) and reset
(assigned to 0).

De�nition 2.2 (Clock Constraints) Let C be a set of real-valued clocks ranged
over by x; y etc. We use B(C) to stand for the set of formulas ranged over by g,
generated by the following syntax: g ::= c j g ^ g, where c is an atomic constraint of
the form: x � n or x� y � n for x; y 2 C, �2 f�;�;=; <;>g and n being a natural
number. We shall call B(C) clock constraints or clock constraint systems over C. 2

We shall use tt to stand for a constraint like x � 0 which is always true, and ff for a
constraint x < 0 which is always false as clocks can only have non-negative values.

De�nition 2.3 (Timed Automata) A timed automaton A over actions A, atomic
propositions P and clocks C is a tuple hN; l0;�!; I; V i. N is a �nite set of nodes
(control-nodes), l0 is the initial node, and �!� N�B(C)�A�2C�N corresponds to

the set of edges. In the case, hl; g; a; r; l0i 2�! we shall write, l
g a r
�! l0 which represents

1We extend the transition relation of a timed transition system such that s
0
�! s0 i� s = s0.



Compositional and Symbolic Model-Checking of Real-Time Systems 65

Cm;n :

Bn :Am :

y � n

fyg
c

b
fx; yg

x > m

x�m0
l1

fxg

tt
a

l0

k2

fyg

y � n
c

k1
y�n0

fyg
b

tt

k0

tt

h0

a
fxg

h1
x�m0

x > m

fxg
b

h2

tt tt

tt

tt tt

l3

l2
y�n0

tt

Figure 1: Three timed automata

an edge from the node l to the node l0 with clock constraint g (also called the enabling
condition of the edge), action a to be performed and the set of clocks r to be reset.
I : N ! B(C) is a function which for each node assigns a clock constraint (also
called the invariant condition of the node), and �nally, V : N ! 2P is a proposition
assignment function which for each node gives a set of atomic propositions true in
the node. 2

Note that for each node l, there is an invariant condition I(l) which is a clock con-
straint. Intuitively, this constraint must be satis�ed by the system clocks whenever
the system is operating in that particular control-node.

Informally, the system starts at node l0 with all its clocks initialised to 0. The
values of the clocks increase synchronously with time at node l as long as they satisfy
the invariant condition I(l). At any time, the automaton can change node by following

an edge l
g a r
�! l0 provided the current values of the clocks satisfy the enabling condition

g. With this transition the clocks in r get reset to 0.

Example 2.1 Consider the automata Am, Bn and Cm;n in Figure 1 wherem;n;m
0; n0

are natural numbers. We use m;n;m0 and n0 as parameters. The automaton Cm;n

has four nodes, l0, l1, l2 and l3, two clocks x and y, and three edges. The edge between
l1 and l2 has b as action, fx; yg as reset set and the enabling condition for the edge
is x > m. The invariant conditions for nodes l1 and l2 are x � m0 and y � n0

respectively.

Now we introduce the notion of a clock assignment. Formally, a clock assignment u
for C is a function from C to IR+. We denote by IRC

+ the set of clock assignments for
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C. For u 2 IRC
+, x 2 C and d 2 IR+, u� d denotes the time assignment which maps

each clock x in C to the value u(x) + d. For r � C, r[u] denotes the assignment for
C which maps each clock in r to the value 0 and agrees with u over Cnr. Whenever
u 2 IRC

+, v 2 IR
K
+ and C and K are disjoint, we use uv to denote the clock assignment

over C [ K such that (uv)(x) = u(x) if x 2 C and (uv)(x) = v(x) if x 2 K. Given
a clock constraint g 2 B(C) and a clock assignment u 2 IRC

+, g(u) is a boolean value
describing whether g is satis�ed by u or not. When g(u) is true, we shall say that u
is a solution to g.

A state of an automaton A is a pair (l; u) where l is a node of A and u a clock
assignment for C. The initial state of A is (l0; u0) where u0 is the initial clock as-
signment mapping all clocks in C to 0. The semantics of A is given by the timed
transition system SA = hS; �0;�!; V i, where S is the set of states of A, �0 is the
initial state (l0; u0), �! is the transition relation de�ned as follows:

� (l; u)
a
�!(l0; u0) if there exist r; g such that l

g a r
�! l0, g(u) and u0 = r[u]

� (l; u)
�(d)
�!(l0; u0) if l = l0, u0 = u� d and I(u0)

and V is extended to S simply by V (l; u) = V (l).

Example 2.2 Reconsider the automaton Cm;n of Figure 1. Assume that d � 0,
m < e � m0 and n � f � n0. We have the following typical transition sequence:

(l0; (0; 0))
�(d)
�! (l0; (d; d))

a
�! (l1; (0; d))

�(e)
�! (l1; (e; d+ e))

b
�!

(l2; (0; 0))
�(f)
�! (l2; (f; f))

c
�! (l3; (f; 0))

Note that we need to assume that m < e � m0 and n � f � n0 because of the invariant
conditions on l1 and l2.

Parallel composition may now be extended to timed automata in the obvious way:
for two timed automata A and B and a synchronisation function f , the parallel
composition A j

f
B denotes the timed transition system SA jf SB. Note that the timed

transition system SA jf SB can also be represented �nitely as a timed automaton. In
fact, one may e�ectively construct the product automaton A


f
B such that its timed

transition system SA

f
B is bisimilar to SA jf SB. The nodes of A 
f

B is simply the
product of A's and B's nodes, the invariant conditions on the nodes of A


f
B are the

conjunctions of the conditions on respective A's and B's nodes, the set of clocks is
the (disjoint) union of A's and B's clocks, and the edges are based on synchronisable
A and B edges with enabling conditions conjuncted and reset-sets unioned.

Example 2.3 Let f be the synchronisation function de�ned by f(a; 0) = a, f(b; b) =
b and f(0; c) = c. Then the automaton Cm;n in Figure 1 is isomorphic to the part of
Am 
f

Bn which is reachable from (h0; k0).
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3 A Logic for Safety and Bounded Liveness Prop-

erties

It has been pointed out, that the practical goal of veri�cation of real-time systems,
is to verify simple safety properties such as deadlock-freeness and mutual exclu-
sion [Hal93]. In [YPD94], we have shown that such properties can be veri�ed on-the-
y by simple reachability analysis which avoids to construct the whole state-space of
systems.

3.1 Syntax and Semantics

We shall present a timed modal logic to specify safety properties. In fact, the logic
can also be used to specify bounded liveness properties such as \whenever p becomes
true, q will be true within a given time bound". The logic may be seen as a fragment
of the timed �-calculus presented in [HNSY94], and also studied in [LLW95].

De�nition 3.1 Let K be a �nite set of clocks. We shall call K formula clocks. Let
Id be a set of identi�ers. The set Ls of formulae over K, Id, A, and P is generated
by the abstract syntax with ' and  ranging over Ls:

' ::= cp j cp _ ' j ' ^  j 88' j [a] ' j z in ' j Z

where cp may be an atomic clock constraint c in the form of x � n or x� y � n for
x; y 2 K and natural number n, or an atomic proposition p 2 P, a 2 A (an action),
z 2 K and Z 2 Id (an identi�er). 2

Note that the logic is essentially the fragment of the timed modal logic presented
in [LLW95] by eliminating existential quanti�cation over delay transitions, general
disjunction over formulas, and existential quanti�cation over a-transitions.

We do allow a simple form of disjunction, in that a clock constraint or an atomic
proposition may be disjuncted with an arbitrary formula. We disallow general dis-
junction in the logic to achieve e�cient compositional and symbolic model-checking
algorithms. However, the logic is expressive enough to specify safety and bounded
liveness properties. We shall see, that the simple form of disjunction allows us to
specify bounded liveness properties such as \p will be true within n".

The meaning of the identi�ers is speci�ed by a declaration D assigning a formula

of Ls to each identi�er. When D is understood we write Z
def
= ' for D(Z) = '.

Given a timed transition system S = hS; s0;�!; V i described by a network of
timed automata, we interpret the Ls formulas over an extended state hs; ui where
s 2 S is a state of S, and u is a clock assignment forK. A formula of the form: x � m
and x� y � n is satis�ed by an extended state hs; ui if the values of x; y in u satisfy
the required relationship. Informally, an extended state hs; ui satis�es 88' means that
all future states reachable from hs; ui by delays will satisfy property '; 88 denotes
universal quanti�cation over delay transitions. Similarly, a state hs; ui satis�es [a]'
means that all intermediate states reachable from hs; ui by an a-transition (performed
by s will satisfy property '; [a] denotes universal quanti�cation over a-transitions.
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hs; ui j=D c ) c(u)
hs; ui j=D p ) p 2 V (s)

hs; ui j=D cp _ ' ) hs; ui j=D cp or hs; ui j=D '
hs; ui j=D ' ^  ) hs; ui j=D ' and hs; ui j=D  

hs; ui j=D 88' ) 8d; s0 : s
�(d)
�! s0 ) hs0; u�di j=D '

hs; ui j=D [a] ' ) 8s0 : s
a
�! s0 ) hs0; ui j=D '

hs; ui j=D x in ' ) hs; u0i j=D ' where u0 = fxg[u]
hs; ui j=D Z ) hs; ui j=D D(Z)

Table 1: De�nition of Satis�ability.

The formula (x in') initialises the formula clock x to 0; i.e. an extended state satis�es
the formula in case the modi�ed state with x being reset to 0 satis�es '. Finally, an
extended state satis�es an identi�er Z if it satis�es the corresponding declaration (or
de�nition) D(Z).

Let D be a declaration. Formally, the satisfaction relation j=D between extended
states and formulae is de�ned as the largest relation satisfying the implications of
Table 1. Any relation satisfying the implications in Table 1 is called a satis�ability
relation. It follows from standard �xpoint theory [Tar55] that j=D is the union of all
satis�ability relations. For simplicity, we shall omit the index D and write j= instead
of j=D whenever it is understood from the context. We say that S satis�es a formula
' and write S j= ' when hs0; v0i j= ' where s0 is the initial state of S and v0 is the
assignment with v0(x) = 0 for all x. Similarly, we say that a timed automaton A
satis�es ' in case SA j= '. We write A j= ' in this case.

Example 3.1 Consider the following declaration F of the identi�ersXi and Zi where
i is a natural number.

F =
n
Xi

def
= [a]

�
z in Zi

�
; Zi

def
= (at(l3) _

�
z < i ^ [a]Zi ^ [b]Zi ^ [c]Zi ^ 88Zi

� o

Assume that at(l3) is an atomic proposition meaning that the system is operating in
control-node l3. Then, Xi expresses the property that after an a-transition, the system
must reach node l3 within i time units.

Now, reconsider the automata Am, Bn and Cm;n of Figure 1 and Examples 2.1 and
2.2. Then it may be argued that Cm;n j= Xm0+n0 and (consequently), that Am jf Bn j=
Xm0+n0.

3.2 Derived Operators

The property Zi described in Example 3.1 is an attempt to specify a bounded liveness
property: namely that a certain proposition must be satis�ed within a given time
bound. We shall use the more informative notation at(l3) BEFORE i to denote Zi. In
the following, we shall present several such intuitive operators that are de�nable in
our logic.
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INV(') � X where X
def
= ' ^ 88X ^ [A]X

' UNTIL cp � X where X
def
= cp _

�
' ^ 88X ^ [A]X

�
' UNTIL<n cp � z in

�
(' ^ (z < n)) UNTIL cp

�
cp BEFORE n � tt UNTIL<n cp

Table 2: Derived Operators.

For simplicity, we shall assume that the set of actions A is a �nite set fa1:::amg,
and use [A]' to denote the formula [a1]'^:::^[am]'. Now, let ' be a general formula,
cp be an atomic clock constraint or an atomic proposition and n be a natural number.
A collection of derived operators are given in Table 2.

The intuitive meanings of these operators are as follows: INV(') is satis�ed by
a timed automaton means that the automaton must enjoy the property ' now, and
for all future time points, the reachable states should satisfy INV(') (i.e. X), and
after any action transition, the reachable states should again satisfy INV(') (i.e. X):
namely that ' is an invariant property of the automaton. ' UNTIL cp is satis�ed by a
timed automaton means that the automaton enjoys the property cp now, or otherwise
all reachable states by action transitions and delay transitions should satisfy '. This
simply means that ' must hold at least before cp becomes true. The bounded version
of the UNTIL-construct ' UNTIL<n cp is similar to ' UNTIL cp except that cpmust be
true within n time units. A simpler version of this operator is cp BEFORE n meaning
that property cp must be true within n time units. Alternatively, ' UNTIL<n cp can

be de�ned as z inX where X
def
= cp _

�
' ^ (x < n) ^ 88X ^ [A]X

�
.

4 Symbolic Model-Checking

We have presented a model to describe real-time systems, i.e. networks of timed au-
tomata, and a logic to specify properties of such systems. The next question is how to
check whether a given formula in the logic is satis�ed by a given network of automata.
This is the so-called model-checking problem. As the systems we are studying are
in general in�nite-state due to the real-valued clocks, we need e�cient methods to
represent the state-space symbolically. The region-graph technique by Alur, Cour-
coubetis and Dill allows the state space of a real time system to be partitioned into
�nitely many regions in such a way that states within the same region satisfy the same
properties [ACD90, AD94]. It follows that model-checking is decidable as the region
partitioning enables standard �nite-state algorithmic model-checking techniques to
be applied. However, as the notion of region is property-independent and the num-
ber of such regions depends on the constants used in the clock constraints of an
automaton, this leads to an extremely �ne (and large) partitioning.

Recall that a semantical state of a network of timed automata is a pair (l; u) where
l is a control-node and u 2 IRC

+ is a clock assignment. The model-checking problem
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is in general to check whether an extended state in the form h(l; u); vi satis�es a given
formula ', that is,

h(l; u); vi j= '

Note that u is a clock assignment for the automata clocks and v is a clock assign-
ment for the formula clocks. Now, the problem is that we have in�nitely many such
assignments to check in order to conclude h(l; u); vi j= '.

In this section, we shall use clock constraints B(C [K) for automata clocks C and
formula clocks K, as de�ned in Section 2 to symbolically represent clock assignments.
We shall use D to range over B(C [K). Instead of checking h(l; u); vi j= ' for each
u and v, we develop an algorithm to simultaneously check

(l; D) ` '

which means that for each u and v such that uv is a solution to the constraint system
D, we have h(l; u); vi j= '.

Thus the space IRC[K
+ is partitioned in terms of clock constraints. As the parti-

tioning takes into account both the network and the particular property to check, the
number of partitions is in practice considerably smaller compared with the region-
technique.

4.1 Operations on Clock Constraints

To develop the model-checking algorithm, we need a few operations to manipulate
clock constraints. Given a clock constraint D, we call the set of clock assignments
satisfying D, the solution set of D.

De�nition 4.1 Let A and A0 be the solution sets of clock constraints D;D0 2 B(C [
K). We de�ne

A" = f w + d j w 2 A and d 2 IR+ g
A# = f w j 9d 2 IR+ : w + d 2 A g

fxgA = f x[w] j w 2 A g
A ^ A0 = f w j w 2 A and w 2 A0 g

2

First, note that A ^ A0 is simply the intersection of the two sets. Intuitively, A# is
the largest set of time assignments that will eventually reach A after some delay;
whereas A" is the dual of A#: namely that it is the largest set of time assignments
that can be reached by some delay from A. Finally, fxgA the set of time assignments
A where x is reset to zero. We extend the reset operator to sets of clocks. Let
r = fx1; : : : ; xng be a set of clocks. We de�ne r(A) recursively by fg(A) = A and
fx1; : : : ; xng(A) = fx1g(fx2; : : : ; xngA).

The following Proposition establishes that the class of clock constraints B(C [K)
is closed under the four operations de�ned above.

Proposition 4.1 (Closure Property of Clock Constraints) Let D;D0 2 B(C [
K) with solution sets A and A0, and x 2 C [ K. Then there exist D1; D2; D3; D4 2
B(C [K) with solution sets A", A#, fxgA and A ^ A0 respectively.
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D = ; ) (l; D) `D '
(l; D) `D c ) D � c
(l; D) `D p ) p 2 V (l)
(l; D) `D c _ ' ) (l; D ^ :c) `D '
(l; D) `D p _ ' ) (l; D) `D p or (l; D) `D '
(l; D) `D ' ^  ) (l; D) `D ' and (l; D) `D  
(l; D) `D 88' ) (l; D) `D ' and (l; (D ^ I(l))" ^ I(l)) `D '

(l; D) `D [a] ' ) (l0; r(D ^ g)) `D ' whenever l
g a r
�! l0

(l; D) `D x in ' ) (l; fxgD) `D '
(l; D) `D Z ) (l; D) `D D(Z)

Table 3: De�nition of Symbolic Satis�ability.

Proof: See [Dil89, BL96]. 2

In fact, the resulted constraints Di's can be e�ectively constructed from D and D0, as
shown in Section 4.3. In order to save notation, we shall use D", D#, fxgD and D^D0

to denote the clock constraints which must exist due to the above proposition. We
also need a few predicates over clock constraints for the model-checking procedure.
We write D � D0 to mean that the solution set of D is included in the solution set
of D0 and D = ; to mean that the solution set of D is empty.

4.2 Model-Checking by Constraint Solving

Given a network of timed automaton A over clocks C, we shall interpret formulas over
clocks K with respect to symbolic states of the form (l; D) where l is a control-node
of A and D is a clock constraint of B(C [K).

Let D be a declaration. The symbolic satisfaction relation `D between symbolic
states and formulas is de�ned as the largest relation satisfying the implications in
Table 3. We call a relation satisfying the implications in Table 3 a symbolic satis�a-
bility relation. Again, it follows from standard �xpoint theory [Tar55] that `D is the
union of all symbolic satis�ability relations. For simplicity, we shall omit the index
D and write `D instead of ` whenever it is understood from the context.

The following Theorem shows that the symbolic interpretation of Ls in Table 3
expresses the su�cient and necessary conditions for a timed automata to satisfy a
formula '2.

Theorem 4.1 (Correctness of Symbolic Satis�ability) Let A be a timed au-
tomaton over clock set C and ' a formula over K. Then the following holds:

A j= ' if and only if (l0; D0) ` '

2Note that Theorem cannot be extended to a logic with general disjunction (or existential quan-
ti�cations): the obvious requirement that (l; D) ` '1 _ '2 should imply either (l; D) ` '1 or
(l; D) ` '2 will fail to satisfy the Theorem.
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where l0 is the initial node of A and D0 is the linear constraint system fx = 0 j x 2
C [Kg.

Proof: We prove the theorem by structural induction over '. As induction hypoth-
esis (I.H.) assume that

�
8uv2D : h(l; u); vi j= ' () (l; D) ` '

�
for all symbolic

states (l; D). We have one case for each operator in the logic:

(l; D) ` c () D � c (by Tab. 3)

() c(v) (by Def. 4.1)

() 8uv 2 D : h(l; u); vi j= c (by Tab. 1)

(l; D) ` p () p 2 V (l) (by Tab. 3)

() 8uv 2 D : h(l; u); vi j= p (by Tab. 1)

(l; D) ` c _ ' () (l; D ^ :c) ` ' (by Tab. 3)

() 8uv 2 (D ^ :c) : h(l; u); vi j= ' (by I.H.)

() 8uv 2 D :
�
:c(v) ) h(l; u); vi j= '

�
() 8uv 2 D : h(l; u); vi j= c _ ' (by Tab. 1)

(l; D) ` p _ ' () (l; D) ` p or (l; D) ` ' (by Tab. 3)

() p 2 V (l) or 8uv 2 D : h(l; u); vi j= ' (by I.H.)

() 8uv 2 D : h(l; u); vi j= p _ ' (by Tab. 1)

(l; D) ` ' ^  () (l; D) ` ' and (l; D) `  (by Tab. 3)

() 8uv 2 D : h(l; u); vi j= ' and (by I.H.)

8uv 2 D : h(l; u); vi j=  

() 8uv 2 D : h(l; u); vi j= ' ^  (by Tab. 1)

(l; D) ` [a]' () (l0; r(D ^ g)) ` ' whenever l
g a r
�! l0 (by Tab. 3)

() 8uv 2 r(D ^ g) : h(l0; u); vi j= ' (by I.H.)

whenever l
g a r
�! l0

() 8uv 2 D : h(l; r[u]); vi j= ' (by Def. 4.1)

whenever l
g a r
�! l0 and g(u)

() 8uv 2 D : h(l; u); vi j= [a]' (by Tab. 1)

(l; D) ` 88' () (l; D) ` ' and (l; (D ^ I(l))" ^ I(l)) ` ' (by Tab. 3)

() 8uv 2 D : h(l; u); vi j= ' and (by I.H.)

8uv 2 ((D ^ I(l))" ^ I(l)) : h(l; u); vi j= '

() 8uv 2 D; d 2 IR+ : h(l; u�d); v�di j= ' (by Def. 4.1)

whenever (l; u)
�(d)
�! (l; u�d) and I(l)(u�d)

() 8uv 2 D : h(l; u); vi j= 88' (by Tab. 1)

(l; D) ` x in ' () (l; fxgD) ` ' (by Tab. 3)

() 8uv 2 fxgD : h(l; u); vi j= ' (by I.H.)

() 8uv 2 D : h(l; x[u]); vi j= ' (by Def. 4.1)

() 8uv 2 D : h(l; u); vi j= x in ' (by Tab. 1)
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(l; D) ` Z () (l; D) ` D(Z) (by Tab. 3)

() 8uv 2 D : h(l; u); vi j= D(Z) (by I.H.)

() 8uv 2 D : h(l; u); vi j= Z (by Tab. 1)

2

Given a symbolic satisfaction problem (l; D) ` ' we may determine its validity by
using the implications of Table 3 as rewrite rules. Due to the maximal �xed point
property of `, rewriting may be terminated successfully in case cycles are encountered.

Example 4.1 Reconsider the automaton Cm;n in Figure 1 assuming that m0 = n0 =
+1 (making the invariants of l1 and l2 true). Consider the property [a](z inX) where
X is de�ned as follows:

X
def
= (z � i) _ ([c]ff ^ [a]X ^ [b]X ^ 8X)

The property [a](z in X) expresses that the accumulated time between an initial a-
action and a following c-action must exceed i. We want to show that Cm;n satis�es
this property provided the sum of the delays m and n exceeds the required delay i. That
is, we must show (l0; D0) ` [a](z in X) provided n +m � i. The generated rewrite
tree (i.e. execution tree of our model-checking procedure) is illustrated in Figure 2.
In the rewrite tree, a node (i.e. a problem) is related to its sons by application of
the appropriate rewrite rule of Table 3: i.e. the sons represent the conjuncts of the
right-hand side of the applied rule3. The leaves of the tree are either obviously valid
problems or re-occurrences. The leaf-problem labeled (c) is valid as (D3 ^ y � n) = ;
holds under the assumption that n +m � i. Thus (c) is an instance of the �rst rule
of Table 3. The problem labeled (b) is a re-occurrence of the earlier problem (l1; D0

")
as it can be shown that D0

" = D1
".

4.3 Implementation Issues

The operations and predicates on clock constraint systems discussed in Section 4.1 can
be e�ciently implemented by representing constraint systems as weighted directed
graphs [Bel57, Dil89, BL96]. The basic idea is to use a shortest-path algorithm to
close a constraint system under entailment so that operations and predicates can be
easily computed.

Given a clock constraint system D over a clock set C, we represent D as a weighted
directed graph with vertices C [ f0g. The graph will have an edge from x to y with
weight m provided x � y � m is a constraint of D. Similarly, there will be an edge
from 0 to x (from x to 0) with weight m whenever x � m (x � �m) is a constraint
of D4.

3For problems involving an identi�er, the tree reects two successive rule applications starting
with the unfolding of the identi�er.

4In this presentation we have made the simplifying assumption that D does not contain any
strict constraints, i.e. constraints of the form x� y < n.
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(l0; D0) ` [a](z in X)

(l1; D0) ` X

(l1;D0) ` [c]ff
2

(l1;D0) ` [a]X
2

(l1;D0) ` [b]X (l1; D0) ` 8X

(l1;D
"
0) ` X (l2; fx; yg(D0 ^ x > m)) ` X (a)

2

(l1; D1) ` 8X

(l1;D
"
1) ` X (b)
2

(l2; D2) ` X

(l1;D1) ` [b]X(l1;D1) ` [a]X
2

(l1; D1) ` [c]ff
2

(l2; D2) ` 8X(l2;D2) ` [b]X
2

(l2;D2) ` [a]X
2

(l2; D2) ` [c]ff
2

(l2;D
"
2) ` X

(l2;D3) ` [b]X
2

(l2; D3) ` 8X(l2;D3) ` [a]X
2

(l2; D3) ` [c]ff

(l3; fxg(D3 ^ y � n)) ` [c]ff (c) (l2;D
"
3) ` X (d)
22

D0 = fx = y = z = 0g

D1 = D"
0 ^ (z < i) � fx = y = z; z < ig

D2 = fx; yg(D1^(x>m)) � fx=y=0; m<z<ig

D3 = D"
2 ^ z < i = fx = y;m < z � x < i; z < ig

D"
0 = fx = y = zg

D"
1 = D"

0

D"
2 = fx=y;m<z � x<ig

D"
3 = D"

2

(a) (D0^(x>m)) = ;. (b) D"
1 = D"

0, i.e. re-occurrence.

(c) (D3^(y�n)) = ;, if (n +m) � i. (d) D"
3 = D"

2, i.e. re-occurrence.

Figure 2: Rewrite Tree of (l0; D0) ` [a](z in X).
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A clock constraint system D is closed under entailment if no constraint of D can
be strengthened without reducing the solution set. For closed constraint systems D
and D0 the inclusion and emptiness predicates are easy to decide: D � D0 holds i� for
all constraint in D0 there is a tighter constraint in D (e.g. whenever (x�y � m) 2 D0

then (x�y � m0) 2 D for somem0 � m); D = ; holds ifD contains two contradicting
constraints (e.g. x� y � m and x� y � n where m < n). To close a clock constraint
system D amounts to solve the shortest-path problem for its graph and can thus
be computed in O(n3) (which is also the complexity for the inclusion and emptiness
predicates), where n is the number of clocks.

Given constraint systems D and D0 the operations D", D#, fxgD and D^D0 can
be computed in O(n2). The complexity of the operation c ^D, where c is an atomic
constraint, is O(1). The two predicates D � D0 and D = ; can be checked in O(n2)
and O(1) respectively.

5 Compositional Model-Checking

The symbolic model-checking presented in the previous section provides an e�cient
way to deal with the potential explosion caused by the addition of clocks. However,
a potential explosion in the node-space due to parallel composition still remains. In
this section we attack this problem by development of a quotient construction, which
allows components to be gradually moved from the parallel system into the speci�ca-
tion, thus avoiding explicit construction of the global node space. The intermediate
speci�cations are kept small using minimisation heuristics. Recent experimental work
by Andersen [And95] demonstrates that for (untimed) �nite-state systems the quo-
tient technique improves results obtained using Binary Decision Diagrams. Also,
an initial experimental investigation of the quotient technique to real-time systems
in [LL95] has indicated that these promising results will carry over to the setting of
real-time systems. In this section we shall provide a new (and compared with [LL95]
simple) quotient construction and show how to integrate it with the symbolic tech-
nique of the previous section.

5.1 Quotient Construction

Given a formula ', and two timed automata A and B we aim at constructing a
formula (called the quotient) '/

f
B such that

A j
f
B j= ' if and only if A j= '/

f
B

The bi-implication indicates that we are moving parts of the parallel system into the
formula. Clearly, if the quotient is not much larger than the original formula, we have
simpli�ed the task of model-checking, as the (symbolic) semantics of A is signi�cantly
smaller than that of A j

f
B. More precisely, whenever ' is a formula over K, B is a

timed automaton over C and l is a node of B, we de�ne the quotient formula '/
f
l



76 Compositional and Symbolic Model-Checking of Real-Time Systems

c/
f
l = c

p/
f
l =

(
tt ; p 2 V (l)
p ; p 62 V (l)

(c _ ')/
f
l = (c/

f
l) _ ('/

f
l)

(p _ ')/
f
l = (p/

f
l) _ ('/

f
l)

('1 ^ '2)/f l = ('1/f l) ^ ('2/f l)

(88')/
f
l = 88

�
I(l))('/

f
l)
�

([a]')/
f
l =

^
l
g;c;r
�! l0 ^ f(b; c) = a

�
g)[b](r in '/

f
l0)
�

(x in ')/
f
l = x in ('/

f
l)

X/
f
l = Xl where Xl

def
= D(X)/

f
l

Table 4: De�nition of Quotient '/
f
l

over C [K in Table 4 on the structure of '56.
The quotient '/

f
l expresses the su�cient and necessary requirement to a timed

automaton A in order that the parallel composition A j
f
B with B at node l satis�es '.

In most cases quotienting simply distributes with respect to the formula construction.
The quotient construction for 88' reects that A j

f
B can only delay provided I(l) is

satis�ed. The quotient construction for [a]' must quantify over all actions of A which
can possibly lead to an a-transition of A j

f
B: according to the semantics of parallel

composition, b is such an action provided B (at node l) can perform a synchronisable

action c (according to some edge l
g c r
�! l0) such that f(b; c) = a. The guard as well

as the reset set of the involved A-edge l
g c r
�! l0 is reected in the quotient formula.

Note that the quotient construction for identi�ers introduces new identi�ers of the

form Xl. These new identi�ers and their de�nitions (Xl
def
= D(X)/

f
l) are collected in

the (quotient) declaration DB.
For l0 the initial node of a timed automaton B, the quotient '/

f
l0 expresses the

su�cient and necessary requirement to a timed automaton A in order that the parallel
composition A j

f
B satis�es '. This is stated in the following Theorem 5.1:

Theorem 5.1 (Correctness of Quotienting) Let A and B be two timed automata
and let l0 be the initial node of B. Then

A j
f
B j=D ' if and only if A j=DB

�
'/

f
l0
�

5For g = c1 ^ : : : cn a clock constraint we write g)' as an abbreviation for the formula :c1 _
: : : _ :cn _ '. This is an Ls-formula as atomic constraint are closed under negation.

6In the rule for [a]', we assume that all nodes l of a timed automaton are extended with a 0-edge

l
tt;0;;
�! l.
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Proof: By structural induction over '. As induction hypothesis (I.H) assume�
hs; uvi j=DB

'/
f
l () hsjf(l; u); vi j=D '

�
for all clock assignments u; v and

states hl; ui and s. We have one case for each operator in the logic (we omit the proof
of p _ ' which is similar to the proof of c _ '):

hs; uvi j= c/
f
l () hsjf(l; u); vi j= c (by Tab. 4)

hs; uvi j= p/
f
l () hsjf(l; u); vi j= p (by Tab. 4)

hs; uvi j= (c _ ')/
f
l () hs; uvi j= (c/

f
l) _ ('/

f
l) (by Tab. 4)

() hs; uvi j= c or hs; uvi j= ' (by Tab. 1)

() hsjf(l; u); vi j= c or hsjf(l; u); vi j= ' (by I.H.)

() hsjf(l; u); vi j= c _ ' (by Tab. 1)

hs; uvi j= (' ^  )/
f
l () hs; uvi j= ('/

f
l) ^ ( /

f
l) (by Tab. 4)

() hs; uvi j= ('/
f
l) and hs; uvi j= ( /

f
l) (by Tab. 1)

() hsjf(l; u); vi j= ' and hsjf(l; u); vi j=  (by I.H.)

() hsjf(l; u); vi j= ' ^  (by Tab. 1)

hs; uvi j= ([a]')/
f
l () hs; uvi j=

^
l
g c r
�!l0^f(b;c)=a

(g)[b](r in '/
f
l0) (by Tab. 4)

() hs; uvi j= g)[b](r in '=l0) (by Tab. 1)

whenever l
g c r
�! l0 and f(b; c) = a

() hs0; r[u]vi j= '/
f
l0 whenever l

g c r
�! l0; (by Tab. 1)

g(u); s
a
�! s0 and f(b; c) = a

() hs0jf(l; r[u]); vi j= '/
f
l0 whenever (by I.H.)

l
g c r
�! l0; g(u); s

a
�! s0 and f(b; c) = a

() hsjf(l; u)vi j= [a]' (by Tab. 1)

hs; uvi j= (88')/
f
l () hs; uvi j= 88 (I(l) ) ('/

f
l)) (by Tab. 4)

() 8d 2 IR+ : hsd; (uv)�di j= '/
f
l (by Tab. 1)

whenever s
�(d)
�! s0 and I(l)(u� d)

() 8d 2 IR+ : hsdjf(l; u� d); v�di j= ' (by I.H.)

whenever s
�(d)
�! s0 and I(l)(u� d)

() hsjf(l; u); vi j= ' (by Tab. 1)

hs; uvi j= (x in ')/
f
l () hs; uvi j= x in ('/

f
l) (by Tab. 4)

() hs; r[u]vi j= '/
f
l (by Tab. 1)

() hsjf(l; r[u]); vi j= ' (by I.H.)

() hsjf(l; u); vi j= x in ' (by Tab. 1)

hs; uvi j=DB
Z/

f
l () hs; uvi j=DB

Zl (by Tab. 4)

where DB(Zl) = D(Z)/
f
l

() hs; uvi j=DB
D(Z)/

f
l (by Tab. 1)

() hsjf(l; u); vi j=D D(Z) (by I.H.)

() hsjf(l; u); vi j=D Z (by Tab. 1)

2
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Example 5.1 Reconsider the network, synchronisation function and property from
Examples 2.1, 2.2, 2.3 and 4.1. We want to establish that the network An jf Bn

satis�es the following property Y provided n +m � i:

Y
def
= [a]

�
z inX

�
X

def
= (z � i) _

�
[c]ff ^ [a]X ^ [b]X ^ 88X

�

From Theorem 5.1 it follows that the su�cient and necessary requirement to An in
order that An jf Bn satis�es Y is that An satis�es Y /

f
k0. Using the quotient de�nition

from Table 4 we get:

Y /
f
k0

def
= z in (X/

f
k0)

X/
f
k0

def
= (z � i) _

�
[b](y inX/

f
k1) ^ 88 (X/

f
k0)

�
X/

f
k1

def
= (z � i) _

�
(y � n)[c]ff) ^ 88 (X/

f
k1)

�

5.2 Minimisations

It is obvious that repeated quotienting leads to an explosion in the formula. The
crucial observation made by Andersen in the (untimed) �nite-state case is that sim-
ple and e�ective transformations of the formulas in practice may lead to signi�cant
reductions.

In presence of real-time we need, in addition to the minimisation strategies of
Andersen, heuristics for propagating and eliminating constraints on clocks in formulas
and declarations. Below we describe the transformations considered:

Reachability: When considering an initial quotient formula '/
f
l0 not all identi�ers

in DB may be reachable. Standard \on-the-y" techniques can be applied to ensure
that only the reachable part of DB is generated.

Boolean Simpli�cation: Formulas may be simpli�ed using the following simple
boolean equations and their duals: ff ^ ' � ff, tt ^ ' � ', [a]tt � tt, 88 tt � tt, and
x in ff � ff.

Constraint Propagation: Constraints on formula clocks may be propagated using
various distribution laws (see Table 5). In some cases, propagation will lead to trivial
clock constraints, which may be simpli�ed to either tt or ff and hence made applicable
to Boolean Simpli�cation.

Constant Propagation: Identi�ers with identi�er-free de�nitions (i.e. constants
such as tt or ff) may be removed while substituting their de�nitions in the declaration
of all other identi�ers.
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;)' � tt

D)c � tt ; if D � c

D)([a]') � [a](D)')

D)('1 ^ '2) � (D)'1) ^ (D)'2)

D)(x in ') � x in (fxgD)')

D)(p _ ') � p _ (D)')

D)(c _ ') � (D ^ :c))'

D)(88') � 88 (D")') ; if D# � D

D)X � D)D(X)

Table 5: Constraint Propagation

Trivial Equation Elimination: Equations of the form X
def
= [a]X are easily seen

to have X = tt as solution and may thus be removed. More generally, let S be the

largest set of identi�ers such that whenever X 2 S and X
def
= ' then '[tt=S]7 can

be simpli�ed to tt. Then all identi�ers of S can be removed provided the value tt is
propagated to all uses of identi�ers from S (as under Constant Propagation). The
maximal set S may be e�ciently computed using standard �xed point computation
algorithms.

Equivalence Reduction: If two identi�ers X and Y are semantically equivalent
(i.e. are satis�ed by the same timed transition systems) we may collapse them into
a single identi�er and thus obtain reduction. However, semantical equivalence is
computationally very hard8. To obtain a cost e�ective strategy we approximate
semantical equivalence of identi�ers as follows: Let R be an equivalence relation on
identi�ers. R may be extended homomorphically to formulas in the obvious manner:
i.e. ('1 ^ '2)R(#1 ^ #2) if '1R#1 and '2R#2, (x in ')R(x in #) and [a]'R[a]# if
'R# and so on. Now let �= be the maximal equivalence relation on identi�ers such

that whenever X �= Y , X
def
= ' and Y

def
= # then ' �= #. Then �= provides the

desired cost e�ective approximation: whenever X �= Y then X and Y are indeed
semantically equivalent. Moreover, �= may be e�ciently computed using standard
�xed point computation algorithms.

In the following examples we apply the above transformation strategies to the quotient
formula obtained in Example 5.1. In particular, the strategies will �nd the quotient
formula to be trivially true in certain cases.

Example 5.2 Reconsider Example 5.1 with Y0, X0 andX1 abbreviating Y /
f
k0, X/

f
k0

and X/
f
k1. Now Y0 is the su�cient and necessary requirement to An in order that

7'[tt=S] is the formula obtained by substituting all occurrences of identi�ers from S in ' with
the formula tt.

8For the full logic T� the equivalence problem is undecidable.
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(D0)X0) � [b]
�
y in (D0)X1)

�
^ 88

�
D0

")X0

�
(D0

")X0) � [b]
�
y in (D1)X1)

�
^ 88

�
D0

")X0

�
(D1)X1) �

�
(D1 ^ y � n))[c]ff

�
^ 88 (D1

")X1)

(D0)X1) �
�
(D0 ^ y � n))[c]ff

�
^ 88 (D0

")X1)

(D0
")X1) �

�
(D0

" ^ z < i ^ y � n))[c]ff
�
^ 88 ((D0

" ^ z < i)
"
)X1)

(D1
")X1) �

�
(D1

" ^ z < i ^ y � n))[c]ff
�
^ 88 ((D1

" ^ z < i)
"
)X1)

Table 6: Equations after Constraint Propagation.

An jf Bn satis�es Y . From the de�nition of satis�ability for timed automata we see
that:

An j= Y0 if and only if An j= tt)
�
y in Y0

�
This provides an initial basis for constraint propagation. Using the propagation laws
from Table 5 we get:

tt)
�
y in Y0

�
� tt)

�
fy; zg inX0

�
� fy; zg in

�
D0)X0

�

where D0 = (y = 0 ^ z = 0). This makes the implication D0)X0 applicable to
constraint propagation as follows:

(D0)X0) � D0)
h
(z � i) _

�
[b](y inX1) ^ 88X0

�i
�

�
D0)[b](y inX1)

�
^
�
D0)88X0

�
as (z < i ^D0) = D0

� [b]
�
y in (D0)X1)

�
^ 88

�
D0

")X0

�

Continuing constraint propagation yields the equations in Table 6, where D1 = (y =
0 ^ z < i).

Example 5.3 (Example 5.2 Continued) Now consider the case when n � i. That
is the delay n of the component Bn exceeds the delay i required as a minimum by the
property Y . Thus the component Bn ensures on its own the satis�ability of Y ; i.e. for
any choice of A the system A j

f
Bn will satisfy Y . In this particular case (i.e. n � i)

it is easy to see that (Di
" ^ z < i ^ y � n) = ff for i = 0; 1 as Di

" ensures z � y.
Also for i = 0; 1, (Di ^ y � n) = ff as Di)y = 0 and we assume n > 0. Finally,

it is easily seen that (Di
" ^ z < i)

"
= Di

" for i = 0; 1. Inserting these observations
| which all may be e�ciently computed | in the equations of Table 6 we get the
simpli�ed equations in Table 7.

Now, the conjuncts ff)[c]ff are obviously equivalent to tt and will thus be removed
by the boolean simpli�cation transformations. Now, using our strategy for Trivial
Equation Elimination, it may be found that all the equations in Table 7 are trivial
and may consequently be removed (simpli�ed to tt). To see this, simply observe that
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(D0)X0) � [b]
�
y in (D0)X1)

�
^ 88

�
D0

")X0

�
(D0

")X0) � [b]
�
y in (D1)X1)

�
^ 88

�
D0

")X0

�
(D1)X1) �

�
ff)[c]ff

�
^ 88 (D1

")X1)

(D0)X1) �
�
ff)[c]ff

�
^ 88 (D0

")X1)

(D0
")X1) �

�
ff)[c]ff

�
^ 88 (D0

")X1)

(D1
")X1) �

�
ff)[c]ff

�
^ 88 (D1

")X1)

Table 7: Equations after Simpli�cation.

substituting tt for Di)Xj and Di
")Xj on all right-hand sides in Table 7 leads to

formulas which clearly can be simpli�ed to tt. Thus, in the case n � i, our minimisa-
tion heuristics will yield tt as the property required of A in order that A j

f
Bn satis�es

Y .

6 Conclusion and Future Work

In developing algorithms for automated veri�cation of real-time systems modelled
as networks of timed automata, we need to deal with two types of potential state-
space explosions: explosion in the space of control nodes, and explosion in the region
space over clock-variables. To attack these explosion problems, we have developed
and combined compositional and symbolic model-checking techniques. The symbolic
technique has been implemented in the veri�cation tool Uppaal.

We should point out that the safety logic presented in this paper is designed for
e�cient implementation. Though the logic is less expressive than the full version
of the timed �-calculus T�, it is expressive enough to specify safety properties as
well as bounded liveness properties. As future work, we shall study the practical
applicability of this logic and Uppaal by further examples. Our experience shows
that the practical limits of Uppaal is caused by the space-complexity rather than
the time-complexity of the model-checking algorithms. Thus, future work includes
development of more space-e�cient methods for representation and manipulation of
clock constraints. For a veri�cation tool to be of practical use in a design process
it is of out most importance that the tool o�ers diagnostic information in case of
erroneous. Based on the synthesis technique presented in [GL95] we intend to extend
Uppaal with the ability to generate diagnostic information.
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Abstract. In this paper we present a diagnostic model-checking technique to facilitate

debugging of system descriptions. The basic idea is to let the model-checker generate a

sequence of transitions, namely a diagnostic trace, to explain or prove why certain states

are reachable in a system description. The diagnostic traces turn out to be very useful for

modelling. For example, they can be used in the subsequent debugging of an erroneous

system description to locate error sources. In general, an iterative process can be adopted

in which system descriptions are successively re�ned based on the output of earlier veri�ca-

tions. To illustrate the usefulness of the diagnostic feature, we present a case-study where

Uppaal is used to debug early versions of an audio-control protocol by Philips.

1 Introduction

In the area of model-checking for real-time systems, research e�ort has been focused
on improving the e�ciency of various model-checking procedures. The di�culty
of modelling, i.e. constructing system descriptions, has been paid little attention
by researchers in the community. Many users of the existing model-checkers, e.g.
Uppaal for timed system, may have experienced that a large part of the total time
in most of the case studies with these tools is spent on modeling. The problem is
that the system descriptions developed during the earlier phases of the case studies
are often erroneous and it is di�cult to �nd error sources without tool support.

In this paper, we address this problem by developing a diagnostic model-checking
algorithm. It is based on the observation that whenever a state is reachable in a
system description, there must be a sequence of transitions leading to the state,
namely a diagnostic trace. Thus, the diagnostic trace is a proof that the reachability
property is satis�ed by the system description. We generalise this idea to more general
logical formulas speci�ed in a timed logic for specifying safety and bounded-liveness
properties. More precisely, we develop a model-checking procedure that provides
not only a negative answer, but also generates a diagnostic trace whenever a system
description does not satisfy a given formula. Such a trace describes a scenario that
can be performed by the system model, but which is undesired in the sense that
it violates the currently checked property. The diagnostic trace can be used in the
subsequent debugging of the system description to locate the error sources. Thus,
an iterative process can be adopted in which system descriptions are successively
re�ned based on the output of earlier veri�cations. If the diagnostic model-checking
algorithm fails to produce a diagnostic trace, it can be concluded that the currently
veri�ed property is satis�ed by the system description.
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The diagnostic model-checking procedure has been implemented and added to
the veri�cation tool Uppaal. To demonstrate its usefulness, we present a case-
study where Uppaal is applied to verify a version of Philips audio-control proto-
col [BPV94, HWT95, DY95]; a bus protocol by Philips, which is used in their audio
and TV equipments to transmit control information between components. We �rst
present an erroneous description of the protocol in the model of timed automata,
that was derived from an early version of the description in [HWT95]. To debug the
description, the diagnostic model-checking feature of Uppaal is used to generate di-
agnostic traces which are analysed to �nd and remove errors. The process is iterated
three times before the protocol description is found to satisfy the main correctness
property of the protocol, i.e. the bit sequences received on the receiving node are
always guaranteed to match the sent bit sequences.

The rest of this paper is organised as follows: In the next section we give a short
review of the notions of timed automata and networks; in Section 3 a logic for safety
and bounded liveness properties is presented. Section 4 describes the diagnostic
model-checking procedure; in Section 5 we show how these results have been applied
in a case study where Philips audio-control protocol was analysed.

2 Real-Time Systems

We shall use timed transition systems as a basic semantical model for real-time
systems. The type of systems we are studying will be a particular class of timed
transition systems that are syntactically described by networks of timed automata
[YPD94, LPY95].

2.1 Timed Transition Systems

A timed transition system is a labeled transition system with two types of labels:
atomic actions and delay actions (i.e. positive reals), representing discrete and con-
tinuous changes of real-time systems, respectively.

Let A be a �nite set of actions and P be a set of atomic propositions. We use
IR+ to stand for the set of non-negative real numbers, � for the set of delay actions
f�(d) j d 2 IR+g, and � for the union A [�.

De�nition 2.1 (Timed Transition System) A timed transition system over A
and P is a tuple S = hS; s0;�!; V i, where S is a set of states, s0 is the initial
state, �!� S � � � S is a transition relation, and V : S ! 2P is a proposition
assignment function. 2

We will need for the transition relation �! to satisfy the following well-known prop-
erties (see e.g. [Yi91]):

� (Time Determinism) s
�(d)
�! s1 and s

�(d)
�! s2 ) s1 = s2.

� (Time Continuity) s
�(d+e)
�! s0 , 9s00:s

�(d)
�! s00

�(e)
�! s0.
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Whenever de�ned, we will use the notation sd for the state satisfying s
�(d)
�! sd. Note

that the state sd is unique due to time determinism.
In order to study compositionality problems we introduce a parallel composition

between timed transition systems. Following [HL89] we use synchronisation functions
that generalise a large range of existing notions of parallel compositions. A synchro-
nisation function f is a partial function (A[f0g)� (A[f0g) ,!A, where 0 denotes
a distinguished no-action symbol. Now, let Si = hSi; si;0;�!i; Vii, i = 1; 2, be two
timed transition systems and let f be a synchronisation function. Then the parallel
composition S1 jf S2 is the timed transition system hS; s0;�!; V i, where s1 jf s2 2 S
whenever s1 2 S1 and s2 2 S2, s0 = s1;0 jf s2;0, �! is inductively de�ned as follows:

� s1 jf s2
c
�! s01 jf s

0
2 if s1

a
�!1 s

0
1, s2

b
�!2 s

0
2 and f(a; b) = c

� s1 jf s2
�(d)
�! s01 jf s

0
2 if s1

�(d)
�!1 s

0
1 and s2

�(d)
�!2 s

0
2

and �nally, the proposition assignment function V is de�ned by V (s1 jf s2) = V1(s1)[
V2(s2).

We now introduce the notion of a trace. A trace � of a timed transition system
is a �nite alternating sequence of the form:

� = s0
�(d0)
�! s00

a1�! s1
�(d1)
�! s01

a2�! s2
�(d2)
�! : : :

an�! sn
�(dn)
�! s0n

where di 2 IR+, i.e. a positive real number. A position � of a trace � is a pair � = (i; d)
where i 2 0 : : : n and 0 � d � di. We use D(�; �) to stand for the accumulated delay
of the trace � before the position �, i.e. D(�; �) =

P
j<i dj + d and �(�) for the su�x

of � starting from �, i.e.

�(�) = sdi
�(di�d)
�! s0i

ai+1
�! si+1

�(di+1)
�! : : :

an�! sn
�(dn)
�! s0n

Whenever s
�
�! s0 (� 2 �) we shall denote by s

�
�! � the trace obtained by

extending �1. We order positions lexicographically, denoted � < �0. Finally, we write
V (�) for the set V (s0).

2.2 Networks of Timed Automata

A timed automaton [AD90] is a standard �nite-state automaton extended with a �nite
collection of real-valued clocks. The clocks are assumed to proceed at the same rate
and their values may be tested (compared with natural numbers) and reset (assigned
to 0).

De�nition 2.2 (Clock Constraints) Let C be a set of real-valued clocks. We use
B(C) to stand for the set of clock constraints ranged over by g, generated by the
following syntax: g ::= c j g ^ g, where c is an atomic constraint of the form: x � n
or x� y � n for x; y 2 C, �2 f�;�;=; <;>g and n is a natural number. 2

1In order to keep the extended trace alternating we might have to apply the time continuity
property to avoid two neighboring delay-transitions and we might have to insert 0-delay transition
in order to avoid neighboring action-transitions.
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We shall use tt to stand for a constraint like x � 0 which is always true, and ff for a
constraint x < 0 which is always false as clocks can only have non-negative values.

De�nition 2.3 (Timed Automata) A timed automaton A over actions A, atomic
propositions P and clocks C is a tuple hN; l0;�!; I; V i, where N is a �nite set of
locations (control-locations), l0 is the initial location, and �!� N�B(C)�A�2C�N

corresponds to the set of edges. In the case, hl; g; a; r; l0i 2�! we shall write, l
g a r
�! l0.

I : N ! B(C) is a function which for each location assigns an invariant condition,
and V : N ! 2P is a proposition assignment function which for each location gives a
set of atomic propositions true in the location. 2

A state of an automaton A is a pair (l; u) where l is a location of A and u a clock
assignment for C, mapping each clock in C to a value in IR+. The initial state of A is
(l0; u0) where u0 is the initial clock assignment mapping all clocks in C to 0.

The semantics of A is given by the timed transition system SA = hS; s0;�!; V i,
where S is the set of states of A, s0 is the initial state (l0; u0), �! is the transition
relation de�ned as follows:

� (l; u)
a
�!(l0; u0) if there exist r; g such that l

g a r
�! l0, g is satis�ed by u and

u0 = r[u] 2,

� (l; u)
�(d)
�!(l0; u0) if (l = l0), u0 = u� d 3 and I(l0) is satis�ed by u0,

and V is extended to S simply by V (l; u) = V (l). We denote by Tr(A) all traces of
SA starting from the initial state (l0; u0).

Parallel composition may now be extended to timed automata in the obvious
way: for two timed automata A and B and a synchronisation function f , the parallel
composition A j

f
B denotes the timed transition system SA jf SB.

3 A Logic for Safety and Bounded Liveness Prop-

erties

We consider a timed modal logic to specify safety and bounded liveness properties.
The logic may be seen as a fragment of the timed �-calculus presented in [HNSY94],
and also studied in [LLW95]4.

De�nition 3.1 (Syntax) Assume K is a �nite set of clocks. Then formulas over
K are de�ned by the following abstract syntax:

' ::= a j '1 ^ '2 j a _ ' j INV(') j ' UNTILr a

where r � K and a ::= c j p where c is an atomic clock constraint over K and
p 2 P. 2

2r[u] is the assignment s.t. r[u](x) = 0 if x 2 r and r[u](x) = u(x) otherwise.
3(u� d) is the assignment s.t. (u� d)(x) = u(x) + d.
4The connectives of our logic are expressible as derived operators w.r.t. those in [LLW95].
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� j=v c i� c(v)
� j=v p i� p 2 V (�)

� j=v '1 ^ '2 i� � j=v '1 and � j=v '2

� j=v a _ ' i� � j=v a or � j=v '
� j=v INV(') i� 8� : �(�) j=v�D(�;�) '

� j=v ' UNTILr a i�

8>>>>><
>>>>>:

8� : �(�) j=
r[v]�D(�;�) ';

or

9� :
�
�(�) j=

r[v]�D(�;�) a ^

8�0 < � : �(�0) j=
r[v]�D(�;�0) '

�

Table 1: De�nition of Satis�ability.

Intuitively, for INV(') to be satis�ed all reachable states must satisfy '. ' UNTILr a
is a weak until-property expressing that ' must either hold invariantly or until a.
The use of the clock set r allows for bounded liveness properties to be expressed, e.g.
(x < 5) UNTILfxg a insists that a must hold within 5 time units.

We interpret a formula ' with respect to a trace � relative to a time assignment
v over formula clocks K. We use � j=v ' to mean that � satis�es ' under v. The
interpretation is de�ned on the structure of ' in Table 1. Naturally, if all the traces
of an automaton satisfy a formula, we say that the automaton satis�es the formula.

De�nition 3.2 (Diagnostic Trace) Let Tr(') = f� j � j=vo 'g where v0 is the
initial time assignment. For a timed automaton A and a formula ' we write A j= '
when Tr(A) � Tr('). If there exists a trace � s.t. � 2 Tr(A) n Tr('), we write
A 6j= ' and in this case, � is called a diagnostic trace of A w.r.t. '. 2

4 Diagnostic Model-Checking

Given a network of timed automata A and a formula ' in the logic specifying a
property, the so-called model-checking problem is to check if the formula is satis�ed
by the system. We will take an opposite point of view and check for A 6j= ' instead
of A j= '. From a proof of A 6j= ' we will then be able to synthesise a diagnostic
trace which may prove useful in subsequent debugging. However, if we fail to prove
A 6j= ' we can assert that A j= '.

4.1 Clock Constraints

To develop the diagnostic model-checking algorithm, we need a few operations to
manipulate clock constraints. Given a clock constraint D, we shall call the set of
clock assignments satisfying D, the solution set of D.

De�nition 4.1 Let A and A0 be the solution sets of clock constraints D;D0 2 B(C [
K). We de�ne
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A ^ A0 = fw j w 2 A and w 2 A0g
A" = fw + d j w 2 A and d 2 IR+g

fxgA = fx[w] j w 2 Ag
A#C = fw#C j w 2 Ag

where w#C denotes the restriction of w to the clock set C. 2

Note that the operations A^A0, A" and fxgA are de�ned as usual, see e.g. [YPD94,
LPY95]. The solution set A#C is the restriction of A to the clocks in C. We extend
the reset-operator fxgA to sets of clocks. Let r = fx1; :::; xng be a set of clocks.
We de�ne r(A) recursively by fg(A) = A and fx1:::xng(A) = fx1g(fx2:::xngA). The
following proposition establishes that the class of clock constraints B(C [K) is closed
under the four operations de�ned above.

Proposition 4.1 (Closure Property of Clock Constraints) Let D;D0 2 B(C [
K) with solution sets A and A0, and x 2 C [ K. Then there exist D1; D2; D3; D4 2
B(C [K) with solution sets A", fxgA, A ^ A0 and A#C respectively.

Proof: See [Dil89]. 2

In order to save notation, from now on, we shall simply use D", fxgD D ^ D0 and
D#C to denote the clock constraints which are guaranteed to exist due to the above
proposition. Furthermore, we shall use D"l to denote (D ^ I(l))" ^ I(l) where I(l) is
the invariant condition of location l.

We will also need a few predicates over clock constraints for the diagnostic model-
checking procedure. We write D � D0 to mean that the solution set of D is included
in the solution set of D0, D = ; to mean that the solution set of D is empty and
u 2 D to denote that the time assignment u belongs to the solution set of D5.

4.2 Model-Checking with Diagnostic Synthesis

Note that the de�nition A 6j= ' means that there exists a trace � of A such that
� 62 Tr('). Intuitively, � is a possible execution of A that does not meet the re-
quirement ', and therefore it may be used as diagnostic information for subsequent
debugging. In order to e�ectively construct diagnostic traces, we de�ne a relation 6`
of the following type:

� 6` (l; D) : '

where � is a trace of automaton A over the automata clocks C, l is a location of A,
D is a clock constraint in B(C [K) and ' is a formula over K. Now 6` is the smallest
relation satisfying the rules of Table 2.

To exemplify the intuitive explanation of the inference rules we use the third
invariant rule. The assertion (l; u)

a
�! (l0; u0) �! � � � 6` (l; D) : INV(') can be

justi�ed if any of the symbolic states, reachable using an edge l
g a r
�! l0 from the

symbolic state (l; D), does not satisfy the invariant property INV('). The clock

5We will also write u 2 D to mean the operation of computing a time assignment u given a
constraint system D.



Diagnostic Model-Checking for Real-Time Systems 93

c (l; u) �! � � � 6` (l; D) : c w 2 D ^ :c; u = w#C

p (l; u) �! � � � 6` (l; D) : p
w 2 D; u = w#C;
p 62 V (l)

'1 ^ '2

� 6` (l; D) : 'i

� 6` (l; D) : '1 ^ '2

i = 1 or i = 2

a _ '
� 6` (l; D ^ :c) : '

� 6` (l; D) : c _ '

� 6` (l; D) : '

� 6` (l; D) : p _ '
p 62 V (l)

INV(')
� 6` (l; D) : '

� 6` (l; D) : INV(')

(l; u0) �! � � � 6` (l; D"l) : INV(')

(l; u)
�(d)
�! (l; u0) � � � 6` (l; D) : INV(')

u 2 D#C;
u0 = u� d

(l0; u0) �! � � � 6` (l0; r(g ^D)) : INV(')

(l; u)
a
�! (l0; u0) �! � � � 6` (l; D) : INV(')

l
g a r
�! l0; u0 = r[u];

u 2 (g ^D)#C

'UNTILra
� 6` (l; r(D)) : 'UNTIL; a

� 6` (l; D) : 'UNTILr a

'UNTIL;c
� 6` (l; D ^ :c) : '

� 6` (l; D) : ' UNTIL; c

(l; u0) �! � � � 6` (l; (D ^ :c)"l) : (' UNTIL; c)

(l; u)
�(d)
�! (l; u0) �! � � � 6` (l; D) : (' UNTIL; c)

u 2 (D ^ :c)#C;
u0 = u� d

(l0; u0) �! � � � 6` (l; r(g ^D ^ :c)) : (' UNTIL; c)

(l; u)
a
�! (l0; u0) �! � � � 6` (l; D) : (' UNTIL; c)

l
g a r
�! l0; u0 = r[u];

u 2 (D ^ g ^ :c)#C

'UNTIL;p
� 6` (l; D) : '

� 6` (l; D) : ' UNTIL; p
p 62 V (l)

(l; u0) �! � � � 6` (l; D"l) : (' UNTIL; p)

(l; u)
�(d)
�! (l; u0) �! � � � 6` (l; D) : (' UNTIL; p)

p 62 V (l); u 2 D#C;
u0 = u� d

(l0; u0) �! � � � 6` (l; r(g ^D)) : (' UNTIL; p)

(l; u)
a
�! (l0; u0) �! � � � 6` (l; D) : (' UNTIL; p)

p 62 V (l); l
g a r
�! l0;

u0 = r[u]; u 2 (D ^ g)#C

Table 2: Inference Rules for 6`.



94 Diagnostic Model-Checking for Real-Time Systems

assignments in the resulting symbolic state is restricted to the (non-empty) constraint
system r(g ^D). The premise of the rule assumes the existence of a diagnostic trace
for (l0; r(g ^D)) : INV(') and the side-condition of the rule provides information as
to how one may extend this trace (obviously with an a-transition) in order to obtain
a diagnostic trace for (l; D) : INV(').

The rules in Table 2 are sound and complete in the following sense:

Theorem 4.1 Assume A is a timed automaton with initial location l0 and clock
assignment u0, and further v0 is a clock assignment over K. Then:

1. whenever � 2 Tr(A) and � 6` (l0; fu0v0g) : ' then :(� j=v0 ')

2. whenever A 6j= ' then � 6` (l0; fu0v0g) : ' for some � 2 Tr(A)

where fu0v0g is the clock constraint with u0v0 being the only solution.

Proof: The proof is by structural induction over '. It is given in Appendix B. 2

4.3 Towards an Algorithm

Given a symbolic state (l; D) of the automata A and a property ' it is decidable
whether there exists a diagnostic trace � such that � 6` (l; D) : '. We obtain an
algorithm by using the rules in Table 2 in two phases.

In the �rst phase, a goal directed search starting in the symbolic state (l; D)
searching for a violating symbolic state, is performed, by using the inference rules
in Table 2. We have the following two termination criteria for the symbolic state
(ln; Dn) and the property 'n:

� Success: c or p axiom can be applied,

� Fail: for some i, ln = li, Dn � Di and 'n = 'i.

The search will be terminated on the Fail criterion if all the possibilities of back-
tracking have been exhausted. It can then be asserted that the automaton A in any
state complying with (l; D) satis�es '. However, if the �rst phase terminates on the
Success criterion it follows that � 6` (l; D) : '. The rules in Table 2 provide a way
to synthesise the diagnostic trace of the conclusion from a diagnostic trace of the
premise, constituting the second phase. Note that, if the search in the �rst phase is
performed using a breadth-�rst strategy, a resulting trace will be a shortest diagnostic
trace.

4.4 An Example: Fischer's Mutual Exclusion Protocol

To illustrate the algorithm described in the previous sections we apply it to a version
of Fischer's mutual exclusion protocol [AL92, YPD94]. Consider the timed automata
shown in Figure 1. The two automata P1 and P2 model processes, and V a shared
variable. Each process P1 and P2 has a critical section, represented by the locations
CS1 and CS2 respectively.

Assume that the system is described by the following network of timed automata:
((P1jP2)jjV), where j and jj are the full interleaving and full synchronisation operators,
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Figure 1: Fischer's Mutual Exclusion Protocol

induced by the synchronisation functions f and g respectively, de�ned by f(0; a) =
a; f(a; 0) = a, g(a!; a?) = a and g(a?; a!) = a. Moreover, assume that :at(l) is
an atomic proposition meaning that the system is not operating in control-location
l, i.e. at(l0) 2 V (l) if l = l0 and :at(l0) 2 V (l) if l0 6= l for all locations l and l0.
We want to verify that there will never be more than one process in its critical
section. This requirement can be formalised as the invariant property: INV(Excl)

where Excl
def
= :at(CS1) _ :at(CS2).

Under the assumption that l � u we may use the inference rules in Table 2 to
synthesise a trace � of the system ((P1jP2)jjV) that is not permitted by the property
INV(Excl). Thus, under the assumption l � u, the mutual exclusion property does
not hold.

((CS1;CS2;V2); (2 � u; u)) 6` ((CS1;CS2;V2); (�u � x1� x2 � l; x2 � u)) :Excl

((CS1;C2;V2); (2 � u; u))
is2
�! � � � 6` ((CS1;C2;V2); (�u � x1� x2 � l)) : INV(Excl)

((CS1;C2;V2); (u; 0))
�(u)
�! � � � 6` ((CS1;C2;V2); (u � x1 � l; x2 = 0)) : INV(Excl)

((CS1;B2;V1); (u; u))
asn2
�! � � � 6` ((CS1;B2;V1); (x1 � u; 0 � x2� x1 � l)) : INV(Excl)

((CS1;B2;V1); (u; u))
�(0)
�! � � � 6` ((CS1;B2;V1); (x1 � u; 0 � x2� x1 � l)) : INV(Excl)

((C1;B2;V1); (u; u))
is1
�! � � � 6` ((C1;B2;V1); (0 � x2� x1 � l)) : INV(Excl)

((C1;B2;V1); (0; 0))
�(u)
�! � � � 6` ((C1;B2;V1); (x1 = 0; x2 � l)) : INV(Excl)

((B1;B2;V0); (0; 0))
asn1
�! � � � 6` ((B1;B2;V0); (x2 � x1)) : INV(Excl)

((B1;B2;V0); (0; 0))
�(0)
�! � � � 6` ((B1;B2;V0); (x2 = 0)) : INV(Excl)

((B1;A2;V0); (0; 0))
is0
�! � � � 6` ((B1;A2;V0); (x1 � x2)) : INV(Excl)

((B1;A2;V0); (0; 0))
�(0)
�! � � � 6` ((B1;A2;V0); (x1 = 0)) : INV(Excl)

((A1;A2;V0); (0; 0))
is0
�! � � � 6` ((A1;A2;V0); (x1 = x2)) : INV(Excl)

((A1;A2;V0); (0; 0))
�(0)
�! � � � 6` ((A1;A2;V0); (x1 = x2 = 0)) : INV(Excl)

From the above we obtain the following diagnostic trace:

� = ((A1;A2;V0); (0; 0))
is0
�!((B1;A2;V0); (0; 0))

is0
�!((B1;B2;V0); (0; 0))

asn1
�!

((C1;B2;V1); (0; 0))
�(u)
�!((C1;B2;V1); (u; u))

is1
�!((CS1;B2;V1); (u; u))

asn2
�!

((CS1;C2;V2); (u; 0))
�(u)
�!((CS1;C2;V2); (2 � u; u))

is2
�!((CS1;CS2;V2); (2 � u; u))
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which clearly is not allowed by the property INV(Excl). Observe that for this particu-
lar problem, if l < u Phase 1 ends in the symbolic state ((CS1;C2;V2); (u � x1 � l;
x2 = 0)) (and consequently no proof for 6` can be obtained) since the clock constraint
system is then empty. In fact, the protocol is correct when l < u.

5 Applications

The techniques presented in previous sections have been implemented in the veri�-
cation tool Uppaal. In this section, we demonstrate the usefulness of the diagnostic
model-checking feature of Uppaal by applying the tool in a case-study where early
descriptions of Philips audio-control protocol [BPV94, HWT95] are debugged and
veri�ed.

5.1 Uppaal

Uppaal6 is a symbolic model-checker for networks of timed automata. The current
version7, as well as the ongoing work of extending the tool kit, is implemented in
C++. Uppaal has a graphical interface (Autograph) allowing systems to be de�ned
by drawing. The graphical de�nition may be automatically compiled into a textual
format which also serves as a basic programming language for networks of timed
automata. On the textual representation a number of useful syntactical checks may
be done. The tool is based on the techniques described in previous sections but there
is a number of extensions and limitations in the current implementation7.

In Uppaal, state invariants are derived from the enabling conditions of the out-
going edges of a state. Intuitively, the derived state invariant implements a maximal
progress assumption where the control-state has to be switched, if possible, to an-
other control-state before all enabling conditions become false. Uppaal implements
one action function, namely the action function f of complementary actions de�ned
by f(a!; a?) = a and f(a?; a!) = a.

Uppaal has been extended beyond the techniques presented in previous sections.
The tool is able to compile non-zero constant slope hybrid systems and non-zero
linear hybrid systems to timed automata using the technique in [OSY94]. Another
extension in Uppaal is auxiliary data variables (i.e. variables not e�ected by delay-
transitions). One such kind of auxiliary variables, that will be used later in this
section, are integer-variables.

5.2 Philips Audio-Control Protocol

This protocol by Philips was �rst veri�ed by Bosscher et.al. [BPV94] and recently
using veri�cation tools [HWT95]. The protocol is used for exchanging control infor-
mation between components in modern audio equipment. Bit streams are encoded
using Manchester encoding that relies on timing delay between signals. The protocol

6Information about Uppaal is available on the web site http://www.docs.uu.se/uppaal/.
7The current Uppaal version is 0.3, May 1995.
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uses bit slots of four time units, a 1 bit is encoded by raising the voltage from low to
high in the middle of the bit slot. A 0 bit is encoded in the opposite way. The goal
of the protocol is to guarantee reliable communication if the timing error is bound
to �5% in all components. The communication is further complicated since volt-
age changes from high to low can not be reliably detected. The decoding has to be
done using only the changing from low to high. A linear hybrid automaton network
description of the protocol is shown in Figure 8.

To perform experiments on the protocol we used an early draft version of a de-
scription by Wong{Toi and Ho [HWT95]8. In their work they automatically verify the
audio-control protocol using the tool HyTech (The Cornell Hybrid Technology Tool
is a symbolic model checker for linear hybrid systems). By reusing their description
we avoid the di�cult and time-consuming work of modelling the protocol.

The protocol is modeled as a parallel composition of four processes described
below. Several integer variables are used for recording information: leng for recording
the number of bits generated by the input automaton but not yet acknowledged as
being received, c for representing the binary encoding of these bits, k for recording
the parity of the number of bits generated, and m for recording the parity of the
number of bits received. The four parallel processes are:

Input The Input automaton non-deterministically generates valid bit sequences for
the Sender automaton. Valid bit sequences are restricted to either odd length
or ending in two 0 bits. The Input also updates the shared integer variables k,
c and leng, which are used by the Output Ack automaton (see below).

Sender This automaton encodes the bit sequences by reading the value of the next
bit from the Input automaton and determine the time delay for the next high
voltage, modeled as an up!-action.

Receiver The Receiver automaton decodes the bit stream by measuring the time delay
between two subsequent up?-actions received from the Sender. The decoded bits
are then acknowledged by synchronising on the output 1 or output 0 port with
the output-acknowledgment automaton. The Receiver also records the parity of
the received number of bits by updating m.

Output Ack The output-acknowledgment automaton checks the current number of
unacknowledged bits (leng) together with their binary encoding (c) and ac-
knowledges the bits decoded by the receiver. It also updates the values of the
variables leng and c.

The way the protocol has been modeled enables the correctness properties to be

veri�ed by reachability analysis. By introducing the edge stop
leng�1
�! error in the

receiver automaton, the received bit stream is guaranteed to be identical to the sent
bit stream precisely when the system satis�es the property INV(:at(error)).

8Available, at that time, from the Web server at Cornell University (http://www.cs.cornell.-
edu/).
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((start; start; start; ack); (0; 0); (0; 0; 0; 0))
0
�!

((head is 1; start; start; ack); (0; 0); (1; 0; 0; 1))
input 1
�!

((head is 0; rise 1; start; ack); (0; 0); (2; 1; 0; 2))
up
�!

((head is 0; transhigh; up 1; ack); (0; 0); (2; 1; 1; 2))
head 0
�!

((head is 0; tranhigh 0a; up 1; ack); (0; 0); (2; 1; 1; 2))
output 1
�!

((head is 0; tranhigh 0a; last is 1; ack); (0; 0); (0; 1; 1; 1))
�(76)
�!

((head is 0; tranhigh 0a; last is 1; ack); (76; 76); (0; 1; 1; 1))
input 0
�!

((head is 1; translow; last is 1; ack); (0; 76); (1; 0; 1; 2))
head 1
�!

((head is 1; translow 1a; last is 1; ack); (0; 76); 1; 0; 1; 2))
�(76)
�!

((head is 1; translow 1a; last is 1; ack); (76; 152); (1; 0; 1; 2))
0
�!

((head is 1; rise 1; last is 1; ack); (0; 152); (1; 0; 1; 2))
up
�!

((head is 1; transhigh; up 0; ack); (0; 0); (1; 0; 0; 2))
output neq 0

�!
((head is 1; transhigh; error; ack); (0; 0); (1; 0; 0; 2))

Figure 2: Diagnostic trace from the �rst version of the protocol.

5.2.1 The First Version

The �rst version, shown in Figure 5, was an adjusted version of the description
in [HWT95]. The adjustments were necessary due to di�erences in HyTech and
Uppaal. This step comprised: transforming the invariant conditions of the original
description into enabling conditions of the model in Uppaal, introducing comple-

mentary synchronisation actions, adding the edge stop
leng�1
�! error in the receiver au-

tomaton, and model the modulo-2 counters m and k as integer variables. Modulo-2
addition � was modeled as a conditional value assignment on integers (e.g. m==0,
m:=1 or m==1, m:=0). This �rst version was also free from some obvious typing
errors found in the original description of the system, e.g. the enabling condition
leng==leng+1 originally on the edge head is 0 �! endeven 00 in the Input automa-
ton will never be enabled and should be removed.

The protocol was then attempted veri�ed but found erroneous9. Using the diag-
nostic traces, automatically synthesised by Uppaal, as debugging information the
system was further improved. The trace is shown in Figure 2 1011. The trace indi-
cates errors in several ways. First recall that the existence of a trace imply that the
correctness property is not satis�ed. This particular trace is wrong since a head 1-
action is followed by a subsequent up-action without an input 1-action in between.
Also from the diagnostic trace in Figure 2, it was revealed that the action labels
output neq 1? and output neq 0? was swapped in the Output Ack automaton. This
must be the case since c = 1 and leng = 2 implies that the next output should be 0

9Uppaal, installed on a SPARCstation 10, performs the attempted veri�cation and reports a
diagnostic trace in 2.2 seconds.

10The states are shown in this trace as triples, where the �rst component is the control-location,
the second component is the clock assignment for the clocks x and y, and the third component is
the value assignment for the auxiliary variables c, k, m and leng.

11This is a trace of the transformed version of the description, where the non-zero linear hybrid
automata have been compiled into timed automata.
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((start; start; start; ack); (0; 0); (0; 0; 0; 0))
0
�!

((head is 1; start; start; ack); (0; 0); (1; 0; 0; 1))
input 1
�!

((head is 0; rise 1; start; ack); (0; 0); (2; 1; 0; 2))
up
�!

((head is 0; transhigh; up 1; ack); (0; 0); (2; 1; 1; 2))
head 0
�!

((head is 0; tranhigh 0a; up 1; ack); (0; 0); (2; 1; 1; 2))
output 1
�!

((head is 0; tranhigh 0a; last is 1; ack); (0; 0); (0; 1; 1; 1))
�(76)
�!

((head is 0; tranhigh 0a; last is 1; ack); (76; 76); (0; 1; 1; 1))
input 0
�!

((endeven 00; translow; last is 1; ack); (0; 76); (0; 1; 1; 2))
head 0
�!

((endeven 00; translow 0; last is 1; ack); (0; 76); (0; 1; 1; 2))
�(38)
�!

((endeven 00; translow 0; last is 1; ack); (38; 114); (0; 1; 1; 2))
head 0
�!

((endeven 00; rise 0; last is 1; ack); (0; 114); (0; 1; 1; 2))
up
�!

((endeven 00; transhigh 0; next is 01; ack); (0; 0); (0; 1; 1; 2))
output 0
�!

((endeven 00; transhigh 0; up 1; ack); (0; 0); (0; 1; 1; 1))
output neq 1

�!
((endeven 00; transhigh 0; error; ack); (0; 0); (0; 1; 1; 1))

Figure 3: Diagnostic trace from the �rst improved version of the protocol.

while output neq 0? is signaled to acknowledge that the next output can not be 0.

5.2.2 The First Improved Version

The �rst improved version of the protocol is shown in Figure 6. In the �gure, changes
from the previous version have been marked by using bold faces. The missing actions
input 1? on edges translow 1 �! rise 1 and translow 1a �! rise 1 in the Sender
automaton have been added. Furthermore, the action labels output neq 0? and
output neq 1? in the Output Ack automaton have been swapped.

Once again, we attempted to verify the system; the systems was found erroneous.
From the diagnostic trace shown in Figure 3, a timing error was discovered in the re-
ceiver automaton. In the control-state (endeven 00,transhigh 0,up 1,ack) the Receiver
automaton has decoded a 1 bit but this is not the bit sent by the sender. The disagree-
ment is monitored by the output acknowledgment automaton that makes the system
violate the correctness property by o�ering an output neq 1?-action. The reason for
this error was found on the edges last is 1 �! next is 01 and last is 1 �! up 0 where
the enabling conditions on clock y was swapped.

5.2.3 The Second Improved Version

An even further improved version, shown in Figure 7, was prepared by swapping
the enabling conditions on clock y between the edges last is 1 �! next is 01 and
last is 1 �! up 0 in the receiver automaton.

Once again a diagnostic trace was produced, partially shown in Figure 4. This
time the error was found by inspection of the action sequence. In the control-location
(head is 0,tranhigh 0a,last is 1,ack) three output 1-actions and one output 0 have
been performed but the value of the variable m indicates an odd parity of the ac-
cumulated output bit stream. It was concluded that some update operation of m was
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...

((head is 0; tranhigh 0a; up 1; ack); (0; 0); (2; 0; 1; 2))
output 1
�!

((head is 0; tranhigh 0a; last is 1; ack); (0; 0); (0; 0; 1; 1))
�(76)
�!

((head is 0; tranhigh 0a; last is 1; ack); (76; 76); (0; 0; 1; 1))
input 0
�!

...

Figure 4: Diagnostic trace from the second improved version of the protocol.

wrong or missing.

5.2.4 The Final Version

When the modulo-2 addition on the variable m was removed from the edges last is 1 �!
next is 01 and last is 0 �! next is 01 in the receiver automaton we got the �nal ver-
sion of the protocol, shown in Figure 8. Not only is the correctness property satis�ed
by this version, but also will the protocol terminate normally in its �nal state (stop,-
stop,stop,ack). Furthermore, by adjusting the rate of the clocks (i.e. x and y), in the
sender and the receiver respectively, it can be con�rmed that the correctness property
is not satis�ed if the tolerance is greater or equal to � 1

17
.

6 Conclusion and Future Work

In this paper, we have presented a diagnostic model-check algorithm for real-time
systems modelled as networks of timed automata. Like other model-checking algo-
rithms for timed automata, the presented algorithm is capable of checking if a logical
property is satis�ed by an abstract model of an real-time system. However, unlike
most other algorithms, our algorithm is speci�cally designed to support the di�cult
task of debugging system models whenever the veri�cation of a particular property
fails. A diagnostic trace is then automatically generated, which violates the currently
checked logical property, but which is a possible trace of the analysed system. Such
a violating trace may be considered as diagnostic information of the error, useful
during the subsequent debugging of the system model.

The presented algorithm has been implemented in the veri�cation tool Uppaal.
To show how the diagnostic feature of Uppaal can be used, we have presented a
case study where a version of Philips audio-control protocol is analysed. In the case-
study we adopted an iterative procedure in which protocol models were successively
re�ned based on the output of earlier veri�cations. After three iterations the protocol
was found to satisfy the main correctness criteria expressing that the bit sequences
received on the receiving node always match the sent bit sequences.

Besides a diagnostic model-checker for networks of timed automata, the Uppaal
tool have a graphical interface based on Autograph, allowing system descriptions to
be de�ned by drawing and thereby allowing the user to see what is veri�ed. In this
way, a number of errors can be avoided. In a case study, both the graphical interface
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and the automatically generated diagnostic traces proved useful for detecting and
correcting several errors in the description of the protocol.
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Figure 5: Philips Audio-Control Protocol | First Version.
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Figure 6: Philips Audio-Control Protocol | First Improved Version.
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Figure 7: Philips Audio-Control Protocol | Second Improved Version.
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Figure 8: Philips Audio-Control Protocol | Final Version.



Diagnostic Model-Checking for Real-Time Systems 107

B Proof of Theorem 4.1

We only show (1) as the proof of (2) is similar. The proof is by structural induction
over '. Let Tr(l; D) denote all traces of SA starting from the states (l; u) with

u 2D#C. Assume as induction hypothesise (I.H.)
�
8� 2 Tr(l; D) : � 6` (l; D) :

' ) :(� j=v ') and v2D#K
�
for all (l; D). In the proof we shall write j= instead

of j=v and omit v2D#K whenever it is not confusing. We need to prove one case for
each operator in the logic :

(' = p) Assume � 6` (l; D) : p. Due to Table 2 we have p 62 V (l); w 2 D; u = w#C
and �=(l; u) �! � � �. From Table 1 we get :(� j= p).

(' = c) Assume � 6` (l; D) : c. From Table 2 we get w 2 D^:c; v = w#K, u = w#C
and � = (l; u) �! � � �. It follows that :c(v) and further from Table 1 we have
:((� j=v c).

(' =  1 ^  2) Assume � 6` (l; D) :  1 ^  2. By Table 2 we have � 6` (l; D) :  1 and
� 6` (l; D) :  2, which by I.H. implies :((� j=  1) and (� j=  2)). By Table 1
we have (� j=  1 ^  2).

(' = p _  ) Assume � 6` (l; D) : p _  . Due to Table 2 we get � 6` (l; D) : p and
� 6` (l; D) :  . By I.H. this implies p 62 V (�) and � 6` (l; D) :  , which is the
same as :(p2V (�) or � j=  ). Further due to Table 1 we have :(� j= p _  ).

(' = c _  ) Assume � 6` (l; D) : c _  . By Table 2 we have � 6` (l; D ^ :c) : ',
which by I.H. implies :(� j=v  ) and v 2 (D ^ :c)#K. This is equivalent to
:(� j=v  or c(v)) and v 2 D#K. It follows from Table 1 that :(� j=v c _  )
and v 2 D#K.

(' = INV( )) Assume � 6` (l; D) : INV( ). By Table 2 we have
�
(� 6` (l; D) :  )

or (�0 6` (l; D"l) : INV( ) where � = (l; u)
�(d)
�! �0, u 2 D#C, u0 = u� d,

�0 = (l; u0) �! : : :, and d 2 IR+) or (�
00 6` (l0; r(g ^ D)) : INV( ) whenever

l
g a r
�! l0, � = (l; u)

a
�! �00, �00 = (l0; u0) �! : : :, u 2 (g ^D)#C and u0 = r[u]

�
.

Due to I.H. this implies :
�
(� j=v  and v 2 D#K) and (�0 j=v0 INV( ) where

w 2 D"l, � = (l; u)
�(d)
�! �0 u = w#C, u0 = u�d, �0 = (l; u0) �! : : :, d 2 IR+,

and v0 2 w#K) and (�00 j=v00 INV( ) whenever l
g a r
�! l0, � = (l; u)

a
�! �00,

w0 2 (g ^ D) u = w0#C, �00 = (l0; u0) �! : : : u0 = r[u], v00 = w0#K)
�
. Thus,

INV( ) is not satis�ed by any position � reachable in one step from (l; u) where
u 2 D. It follows from Table 1 that :(� j=v INV( )) and v 2 D#K.

(' =  UNTIL;a) We prove the case for a = c. The case for a = p is similar. As-

sume � 6` (l; D) :  UNTIL;c. By Table 2 we have
�
(� 6` (l; D^:c) :  ) or

(�0 6` (l; (D^:c)"l) : ( UNTIL;c) where � = (l; u)
�(d)
�! �0, �0 = (l; u0) �! : : :,

u 2 (D^:c)#C, u0 = u � d) or (�00 6` (l; r(g^D^:c)) : ( UNTIL;c) whenever

l
g a r
�! l0, � = (l; u)

a
�! �00, �00 = (l0; u0) �! : : :, u 2 (D^g^:c)#C, u0 = r[u])

�
.

By the induction hypothesise this implies :
�
(� j=v  and v 2 (D ^:c)#K) and

(�0 j=v0 ( UNTIL;c) where w
0 2 (D ^ :c)"l, v0 = w0#K, � = (l; u)

�(d)
�! �0, �0 =
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(l; u0) �! : : :, u = w0#C, u0 = u� d) and (�00 j=v00 ( UNTIL;c), w
00 2 D ^ g ^ :c

and v00 = w00#K whenever l
g a r
�! l0, � = (l; u)

a
�! �00, �00 = (l0; u0) �! : : :,

u = w00#C; u0 = r[u] )
�
. Due to Table 1 we have :(� j=v ( UNTIL;c)) and

v = D#K.

(' =  UNTILra)) Assume � 6` (l; D) :  UNTILra. We have by Table 2 that � 6` (l; r(D)) :
 UNTIL;a. This implies :(� j=r[v]  UNTIL;a) and v 2 D#K due to the in-
duction hypothesis. Further, from Table 1 we have :(� j=v  UNTILra) and
v 2 D#K. 2
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Abstract. During the past few years, a number of veri�cation tools have been developed
for real-time systems in the framework of timed automata. One of the major problems in
applying these tools to industrial-size systems is the huge memory-usage for the exploration
of the state-space of a network (or product) of timed automata, as the model-checkers must
keep information about not only the control structure of the automata but also the clock
values speci�ed by clock constraints.

In this paper, we present a compact data structure for representing clock constraints.
The data structure is based on an O(n3) algorithm which, given a constraint system over
real-valued variables consisting of bounds on di�erences, constructs an equivalent system
with a minimal number of constraints. In addition, we have developed an on-the-y reduc-
tion technique to minimise the space-usage. Based on static analysis of the control structure
of a network of timed automata, we are able to compute a set of symbolic states that cover
all the dynamic loops of the network in an on-the-y searching algorithm, and thus ensure
termination in reachability analysis.

The two techniques and their combination have been implemented in the tool Uppaal.

Our experimental results demonstrate that the techniques result in truly signi�cant space-

reductions: for six examples from the literature, the space saving is between 75% and

94%, and in (nearly) all examples time-performance is improved. Noteworthy is also the

observation that the two techniques are completely orthogonal.

1 Introduction

Reachability analysis has been one of the most successful methods for automated
analysis of concurrent systems. Many veri�cation problems e.g. invariant checking
can be solved by means of reachability analysis. It can in many cases also be used for
checking whether a system described as an automaton satis�es a requirement speci-
�cation formulated e.g. in linear temporal logic, by converting the requirement to an
automaton and thereafter checking whether the parallel composition of the system
and requirement automata can reach certain annotated states [VW86, Hol91, ABL98].
However, the major problem in applying reachability analysis is the potential com-
binatorial explosion of state spaces. To attack this problem, various symbolic and
reduction techniques have been put forward over the last decade to e�ciently rep-
resent state space and to avoid exhaustive state space exploration (e.g. [BCM+90,
GW91, Val90, CFJ93, CGL92, EJ93, And95]); such techniques have played a crucial
role for the successful development of veri�cation tools for �nite-state systems.

In the last few years, new veri�cation tools have been developed, for the class of
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Passed:= fg
Waiting:= f(l0; D0)g
repeat

begin
get (l; D) from Waiting

if (l; D) j= ' then return \YES"
else if D 6� D0 for all (l; D0) 2 Passed then

begin
add (l; D) to Passed
Succ:=f(ls; Ds) j (l; D); (ls; Ds) and Ds 6= ;g
for all (ls; Ds) in Succ do

put (ls; Ds) to Waiting

end
end

untilWaiting=fg
return \NO"

Figure 1: An Algorithm for Symbolic Reachability Analysis.

in�nite-state systems known as timed systems [HHWT95, DY95, BLL+96]. Notably
the veri�cation engines of most tools in this category are based on reachability anal-
ysis of timed automata following the pioneering work of Alur and Dill [AD90]. A
timed automaton is an extension of a �nite automaton with a �nite set of real-valued
clock-variables. The foundation for decidability of reachability problems for timed
automata is Alur and Dill's region technique, by which the in�nite state space of
a timed automaton due to the density of time, may e�ectively be partitioned into
�nitely many equivalence classes i.e. regions in such a way that states within each
class will always evolve to states within the same classes. However, reachability anal-
ysis based on the region technique is practically infeasible due to the potential state
explosions arising from not only the control-structure (as for �nite-state systems) but
also the region space [LPY95a].

E�cient data structures and algorithms have been sought to represent and ma-
nipulate timing constraints over clock variables (e.g. by Di�erence Bounded Matri-
ces [Bel57, Dil89], or Binary Decision Diagrams [BCM+90, AMP97]) and to avoid
exhaustive state space exploration (e.g. by application of partial order reductions
[GW91, Val90, Pag96] or compositional methods [And95, LPY95a]). One of the
main achievements in these studies is the symbolic technique [Dil89, YL93, HNSY94,
YPD94, LPY95a], that converts the reachability problem to that of solving simple
constraints. The technique can be simply formulated in an abstract reachability algo-
rithm1 as shown in Figure 1. The algorithm is to check whether a timed automaton
may reach a state satisfying a given state formula '. It explores the state space of
the automaton in terms of symbolic states in the form (l; D) where l is a control-node

1Several veri�cation tools for timed systems (e.g. Uppaal [BLL+96]) have been implemented
based on this algorithm.
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and D is a constraint over clocks variables.

We observe that several operations of the algorithm are critical for e�cient imple-
mentations. First, the algorithm depends heavily on the test operations for checking
the inclusion D � D0 (i.e. the inclusion between the solution sets of D;D0) and the
emptiness of Ds in constructing the successor set Succ of (l; D). Clearly, it is im-
portant to design e�cient data structures and algorithms for the representation and
manipulation of clock constraints. One such well-known data structure is that of dbm
(Di�erence Bounded Matrix), which o�ers a canonical representation for constraint
systems. It has been successfully used in several real-time veri�cation tools, e.g.
Uppaal [BLL+96] and Kronos [DY95]. A dbm representation is in fact a weighted
directed graph where the vertices correspond to clocks (including a zero-clock) and
the weights on the edges stand for the bounds on the di�erences between pairs of
clocks [Bel57, Dil89, YL93]. As it gives an explicit bound for the di�erence between
each pair of clocks, its space-usage is in the order of O(n2) where n is the number
of clocks. However, in practice it often turns out that most of these bounds are
redundant.

In this paper, we present a compact data structure for dbm, which provides
minimal and canonical representations of clock constraints and also allows for e�cient
inclusion checks. We have developed an O(n3) algorithm that given a dbm constructs
a minimal number of constraints equivalent to the original constraints represented by
the dbm (i.e. with the same solution set). The algorithm is essentially a minimisation
algorithm for weighted directed graphs, and hence solves a problem of independent
interest. Note that the main global data structure of the algorithm in Figure 1 is
the passed list (i.e. Passed) holding the explored states. In many cases, it will store
all the reachable symbolic states of the automaton. Thus, it is desirable that when
saving a (symbolic) state in the passed list, we save the (often substantially smaller)
minimal constraint system. The minimal representation also makes the inclusion-
checking of the algorithm more e�cient. Our experimental results demonstrate truly
signi�cant space-savings as well as better time-performance (see statistics in section
5).

In addition to the local reduction technique above, which is to minimise the space-
usage of each individual symbolic state, as the second contribution of this paper, we
have developed a global reduction technique to reduce the total number of states to
save in the global data structure, i.e. the passed list. It is completely orthogonal to the
local technique. In the abstract algorithm of Figure 1, we notice the step of saving the
new encountered state (l; D) in the passed list when the inclusion-checking forD � D0

fails (i.e.D 6� D0). Its purpose is �rst of all to guarantee termination but also to avoid
repeated exploration of states that have several predecessors. However, this is not
necessary if all the predecessors of (l; D) are already present in the passed list. In fact,
to ensure termination, it su�ces to save only one state for each dynamic loop. An
improved on-the-y reachability algorithm according to the global reduction strategy
has been implemented in Uppaal [BLL+96] based on static analysis of the control
structure of timed automata. Our experimental results demonstrate signi�cant space-
savings and also better time-performance (see statistics in section 5).

The outline of this paper is as follows: In the next section we review the seman-



114 E�cient Veri�cation of Real-Time Systems

y � 3

y := 0x � 1

x := 0; y := 0
l0 l1

x � 4
x � 5^

Figure 2: A Timed Automaton.

tics of timed automata and the notion of Di�erence Bounded Matrix (dbm) for clock
constraints. Section 3 presents the compact data structure for dbm and the local
reduction technique (i.e. the minimisation algorithm for weighted directed graphs).
Section 4 is devoted to develop the global reduction technique based on control struc-
ture analysis. Section 5 presents our experimental results for both techniques and
their combination. Section 6 concludes the paper.

2 Preliminaries

2.1 Timed Automata

The model of timed automata was �rst introduced in [AD90] and has since then
established itself as a standard model for real-time systems. For the reader not
familiar with the notion of timed automata we give a short informal description.

Consider the timed automaton of Figure 2. It has two control nodes l0 and l1
and two real-valued clocks x and y. A state of the automaton is of the form (l; s; t),
where l is a control node, and s and t are non-negative reals giving the value of the
two clocks x and y. A control node is labelled with a condition (the invariant) on the
clock values that must be satis�ed for states involving this node. Assuming that the
automaton starts to operate in the state (l0; 0; 0), it may stay in node l0 as long as
the invariant x � 4 of l0 is satis�ed. During this time the values of the clocks increase
synchronously. Thus from the initial state, all states of the form (l0; t; t), where t � 4,
are reachable. The edges of a timed automaton may be decorated with a condition
(guard) on the clock values that must be satis�ed in order to be enabled. Thus, only
for the states (l0; t; t), where 1 � t � 4, is the edge from l0 to l1 enabled. Additionally,
edges may be labelled with simple assignments reseting clocks. For example, when
following the edge from l0 to l1 the clock y is reset to 0 leading to states of the form
(l1; t; 0), where 1 � t � 4.

In general, a timed automaton is a standard �nite-state automaton extended with
a �nite collection C of real-valued clocks ranged over by x; y etc. We use B(C) ranged
over by g (and latter D), to stand for the set of formulas that can be an atomic
constraint of the form: x � n or x � y � n for x; y 2 C, �2f�;�g2 and n being a
natural number, or a conjunction of such formulas. Elements of B(C) are called clock
constraints or constraint systems over C.

2For reasons of simplicity and clarity in presentation we have chosen only to consider the non-
strict orderings. However, the techniques given extends easily to strict orderings.
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De�nition 2.1 (Timed Automata) A timed automaton A over clocks C is a tuple
hN; l0;�!; Ii where N is a �nite set of nodes (control-nodes), l0 is the initial node,
�!� N �B(C)� 2C �N corresponds to the set of edges, and �nally, I : N 7! B(C)

assigns invariants to nodes. In the case, hl; g; r; l0i 2�!, we write l
g;r
�! l0. 2

Formally, we represent the values of clocks as functions (called clock assignments)
from C to the non-negative reals IR+. We denote by IRC

+ the set of clock assignments
for C. A semantical state of an automaton A is now a pair (l; u), where l is a node of
A and u is a clock assignment for C, and the semantics of A is given by a transition
system with the following two types of transitions (corresponding to delay-transitions
and edge-transitions):

� (l; u)�!(l; u� d) if I(l)(u) and I(l)(u� d)

� (l; u)�!(l0; u0) if there exist g and r such that l
g;r
�! l0, g(u) and u0 = r[u]

where for d 2 IR+, u� d denotes the time assignment which maps each clock x in C
to the value u(x) + d, and for r � C, r[u] denotes the assignment for C which maps
each clock in r to the value 0 and agrees with u over Cnr.

Clearly, the semantics of a timed automaton yields an in�nite transition system,
and is thus not an appropriate basis for decision algorithms. However, e�cient al-
gorithms may be obtained using a �nite-state symbolic semantics based on symbolic
states of the form (l; D), where D 2 B(C) [HNSY94, YPD94]. We shall consider a
clock constraint as a set of clock assignments and use u 2 D to stand for u satis�ed
D.

The symbolic counterpart to the standard semantics is given by the following two
(fairly obvious) types of symbolic transitions:

� (l; D);
�
l; (D ^ I(l))" ^ I(l)

�

� (l; D);
�
l0; r(g ^D)

�
if l

g;r
�! l0

where D" = fu� d j u 2 D ^ d 2 IR+g and r(D) = fr[u] j u 2 Dg. It may be shown
that B(C) (the set of clock constraints) is closed under these two operations (and
^) [Dil89]. Moreover, the symbolic semantics characterise the standard semantics
in the sense that, whenever u 2 D and (l; D) ; (l0; D0) then (l; u) �! (l0; u0) for
u0 2 D0.

Finally, we introduce the notion of networks of timed automata [YPD94, LPY95a].
A network is the parallel composition of a �nite set of automata for a given synchro-
nisation function. To illustrate the on-the-y veri�cation technique, we only need to
study the case dealing with interleaving, that is, the network of automata A1 : : : An,
is the Cartesian product of Ai's. Assume a vector l of control nodes. We shall use
l[i] to stand for the ith element of l and l[l0i=li] for the vector where the ith element
li of l is replaced by l0i. A control node (i.e. control vector) l of a network A1 : : : An

is a vector where l[i] is a node of Ai and the invariant I(l) of l is the conjunction
of I(l[1]) : : : I(l[n]). The symbolic semantics of networks is given in terms of control
vectors [LPY95a].
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Figure 3: Graph for E (a), its shortest-path closure (b), and shortest-path reduction
(c).

� (l; D);
�
l; (D ^ I(l))" ^ I(l)

�

� (l; D);
�
l[l0i=li]; r(g ^D)

�
if li

g;r
�! l0i

In the later case, we shall say that the symbolic transition is derived by the edge
li

g;r
�! l0i.

2.2 Di�erence Bounded Matrices & Shortest-Path Closure

To utilise the symbolic semantics of (networks of) timed automata algorithmically,
as for example in the reachability algorithm of Figure 1, it is important to design
e�cient data structures and algorithms for the representation and manipulation of
clock constraints.

One such well-known data structure is that of di�erence bounded matrices (dbm,
see [Bel57, Dil89]), which o�ers a canonical representation for constraint systems. A
dbm representation of a constraint system D is simply a weighted, directed graph,
where the vertices correspond to the clocks of C and an additional zero-vertex 0. The
graph has an edge from x to y with weight m provided y�x � m is a constraint of D.
Similarly, there is an edge from 0 to x with weight m, whenever x � m is a constraint
of D 3. As an example, consider the constraint system E over fx0; x1; x2; x3g being
a conjunction of the atomic constraints x0 � x1 � 3, x3 � x0 � 5, x3 � x1 � 2,
x2 � x3 � 2, x2 � x1 � 10, and x1 � x2 � �4. The graph representing E is given in
Figure 3 (a).

In general, the same set of clock assignments may be described by several con-
straint systems (and hence graphs). To test for inclusion between constraint systems
D and D0 4, which we recall is essential for the termination of the reachability algo-
rithm of Figure 1, it is advantageous if D is closed under entailment in the sense that
no constraint of D can be strengthened without reducing the solution set. In partic-

3We assume that D has been simpli�ed to contain at most one upper and lower bound for each
clock and clock-di�erence.

4To be precise, it is the inclusion between the solution sets for D and D0.
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ular, for D a closed constraint system, D � D0 holds if and only if for any constraint
in D0 there is a constraint in D at least as tight; i.e. whenever (x � y � m0) 2 D0

then (x � y � m) 2 D for some m � m0. Thus, closedness provides a canonical
representation, as two closed constraint systems describe the same solution set pre-
cisely when they are identical. To close a constraint system D amounts to derive the
shortest-path closure for its graph and can thus be computed in time O(n3), where
n is the number of clocks of D. The graph representation of the closure of the con-
straint system E from Figure 3 (a) is given in Figure 3 (b). The emptiness-check of
a constraint system D simply amounts to checking for negative-weight cycles in its
graph representation. Finally, given a closed constraint system D the operations D"

and r(D) may be performed in time O(n).

3 Minimal Constraint Systems & Shortest Path

Reductions

For the reasons stated above a matrix representation of constraint systems in closed
form is an attractive data structure, which has been successfully employed by a
number of real-time veri�cation tools, e.g. Uppaal [BLL+96] and Kronos [DY95].
As it gives an explicit (tightest) bound for the di�erence between each pair of clocks
(and each individual clock), its space-usage is of the orderO(n2). However, in practice
it often turns out that most of these bounds are redundant, and the reachability
algorithm of Figure 1 is consequently hampered in two ways by this representation.
First, the main data structure Passed, will in many cases store all the reachable
symbolic states of the automaton. Thus, it is desirable, that when saving a symbolic
state in the Passed-list, we save a representation of the constraint system with as few
constraints as possible. Secondly, a constraint system D added to the Passed-list
is subsequently only used in checking inclusions of the form D0 � D. Recalling the
method for inclusion-check from the previous section, we note that (givenD0 is closed)
the time-complexity of the inclusion-check is linear in the number of constraints of
D. Thus, again it is advantageous for D to have as few constraints as possible.

In the following subsections we shall present an O(n3) algorithm, which given a
constraint system constructs an equivalent reduced system with the minimal number
of constraints. The reduced constraint system is canonical in the sense that two
constrain systems with the same solution set give rise to identical reduced systems.
The algorithm is essentially a minimisation algorithm for weighted directed graphs.
Given a weighted, directed graph with n vertices, it constructs in time O(n3) a
reduced graph with the minimal number of edges having the same shortest path
closure as the original graph. Figure 3 (c) shows the minimal graph of the graphs in
Figure 3 (a) and (b), which is computed by the algorithm.

3.1 Reduction of Zero-Cycle Free Graphs

A weighted, directed graph G is a structure (V;EG), where V is a �nite set of vertices
and EG; is a partial function from V � V to Z (the integers). The domain of EG
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constitutes the edges of G, and when de�ned, EG(x; y) gives the weight of the edge
between x and y. We assume that EG(x; x) = 0 for all vertices x, and that G has no
cycles with negative weight5.

Given a graph G, we denote by GC the shortest-path closure of G, i.e. EGC (x; y)
is the length of the shortest path from x to y in G. A shortest-path reduction of a
graph G is a graph GR with the minimal number of edges such that (GR)

C
= GC .

The key to reduce a graph is obviously to remove redundant edges, where an edge
(x; y) is redundant if there exist an alternative path from x to y whose (accumu-
lated) weight does not exceed the weight of the edge itself. E.g. in the graph of
Figure 3 (a), the edge (x1; x2) is clearly redundant as the accumulated weight of path
(x1; x0); (x0; x3); (x3; x2) has a weight (10) not exceeding the weight of the edge itself
(also 10). The path (x1; x3); (x3; x2) makes also the edge (x1; x2) redundant. Being
redundant, the edge (x1; x2) may be removed without changing the shortest-path
closure.

Now, consider the edge (x1; x2) in the graph of Figure 3 (b). Clearly, the edge is
redundant as the path (x1; x3); (x3; x2) has equal weight. Similarly, the edge (x3; x2) is
redundant as the path (x3; x1); (x1; x2) has equal weight. However, though redundant,
we cannot just remove the two edges (x1; x2) and (x3; x2) as removal of one clearly
requires the presence of the other. In fact, all edges between the vertices x1; x2 and
x3 are redundant, but obviously we cannot remove them all simultaneously. The key
explanation of this complicating phenomena is that x1; x2; x3 constitutes a cycle with
length zero (a zero-cycle). However, for zero-cycle free graphs the situation is the
simplest possible:

Lemma 3.1 Let G1 and G2 be zero-cycle free graphs such that G1
C = G2

C . If there
is an edge (x; y) 2 G1 such that (x; y) 62 G2, then (G1nf(x; y)g)

C = G1
C = G2

C.

Proof: Let � denote the edge (x; y) and let m be the weight of � in G1. We will
show that there is an alternative path in G1 not using � with weight no more than
m. From this fact the Lemma obviously follows.

As G1
C = G2

C , the shortest path from x to y in G2 has weight no more than m.
As � 62 G2, this path must visit some vertex z di�erent from x and y. Now let m1 be
the shortest path-weight from x to z and let m2 be the shortest path-weight from z
to y; note that G1 and G2 agrees on m1 and m2, as they have the same shortest-path
closure. Then clearly, m � m1 +m2.

Now assume that the shortest path in G1 from x to z uses � = (x; y). Then, as
a sub-path, G1 will be a path from y to z. Since G1 also has a path from z to y, it
follows that G1 will have a cycle from y via z back to y. The weight of this cycle can
be argued to be no more than (m1 �m) +m2. However, as m � m1 +m2 and there
are no negative cycles, this cycle must have weight 0 contradicting the assumption
that G1 is zero-cycle free.

Similarly, a contradiction with the zero-cycle free assumption of G1 is obtained,
if the shortest path in G1 from z to y uses �. thus we can conclude that there is an
path from x to y not using � with length no greater than m. 2

5This would correspond to constraint systems with empty solution set.
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From the above Lemma it follows immediately that all redundant edges of a zero-
cycle free graph may be removed without a�ecting the closure. On the other hand,
removal of an edge which is not redundant will of course change the closure of the
graph, and must be present in any graph with the same closure. Thus the following
theorem follows:

Theorem 3.1 Let G be a zero-cycle free graph, and let f�1; : : : ; �2g be the set of
redundant edges of G. Then GR = GCnf�1; : : : ; �kg.

Proof: Follows from Lemma 3.1. 2

From an algorithmic point of view, redundancy of edges is easily determined given
the closure GC of a graph G as only path of length 2 needs to be considered: An edge
(x; y) is redundant precisely when there is a vertex z (6= x; y) such that EGC(x; y) �
EGC (x; z) + EGC (z; y). Thus for zero-cycle free graphs computing GR is O(n3).

3.2 Reduction of Negative-Cycle Free Graphs

For general graphs (without negative cycles) our reduction construct relies on a par-
titioning of the vertices according to zero-cycles. We say that two vertices x and y
are equivalent or zero-equivalent, if there is a zero-cycle containing them both. We
write x � y in this case. Given the closure GC of a graph G, it is extremely easy
to check for zero-equivalence: x � y holds precisely when EGC (x; y) = �EGC (y; x).
Thus, in the graphs of Figure 3 (a) and (b), � partitions the vertices into the two
classes fx0g and fx1; x2; x3g.

To obtain a canonical reduction, we assume that the vertices of G are ordered by
assigning them indices as x1; x2; : : : ; xn. The equivalence � now induces a natural
transformation G� on the graph G:

De�nition 3.1 Given a graph G, the vertices of the graph G� are �-equivalence
classes, denoted Ek, of G. There is an edge between the classes Ei and Ej (i 6= j) if
for some x 2 Ei and y 2 Ej there is an edge in G between x and y. The weight of this
edge is EGC (Emin

i ; Emin
j ), where Emin is the vertex in E with the smallest index. 2

Thus, the distance between Ei and Ej in G� is the weight of the shortest path in
G between the elements of Ei and Ej with smallest index. It is obvious that G�

is a zero-cycle free graph. It is also easy to see that G1� = G2� if G1
C = G2

C .
Let H be the graph of Figure 3 (a). Then H� will have vertices E0 = fx0g and
E1 = fx1; x2; x3g. The two vertices are connected by two edges both having weight
3.

The following provides a dual to the operator of De�nition 3.1:

De�nition 3.2 Let F be a graph with vertices being �-equivalence classes with re-
spect to a graph G = (V;EG). Then the expansion of F is a graph F+ with vertices
V and with weight satisfying:
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� For any multi-member equivalence class fz1 < z2 < � � � < zkg
6 of F , F+ contains

a single cycle z1; z2; : : : ; zk; z1, with the weight of the edge (zi; zi+1) being the
weight of the shortest path from zi to zi+1 in G.

� Whenever (Ei; Ej) is an edge in F with weight m, then F+ will have an edge
from Emin

i to Emin
j with weight m. 2

We are now ready to state the main Theorem giving the shortest-path reduction
construct for arbitrary negative-cycle free graphs:

Theorem 3.2 Let G be negative-cycle free graph. Then the shortest-path reduction
GR of G is given by the graph (G�

R)
+
, i.e. GR = (G�

R)
+
.

Proof: We show: (1) that (G�
R)

+
is a candidate for a shortest-path reduction of

G in the sense that (G�
R)

+
= GC , and (2) that (G�

R)
+
is minimal.

1. We �rst prove that (G�
R)

+
= GC . As all edges (x; y) of (G�

R)
+
have weight of

the form EGC (x; y), it follows that for any path in (G�
R)

+
there is a path in G

with same weight.

Now consider an edge (x; y) of G. We will demonstrate that there is a path in

(G�
R)

+
with no greater weight.

� If x = Emin
i and y = Emin

j for two �-classes Ei and Ej, it follows that
EG�(Ei; Ej) � EG(x; y). Furthermore, due to the property of reduction
construction, there is a path in G�

R between Ei and Ej with weight no
greater than EG�(Ei; Ej). The same path, but now between the nodes with

the minimal indices of the �-classes, can be found in (G�
R)

+
. Thus, there

is a path in (G�
R)

+
with weight no greater than EG(x; y).

� If x; y 2 Ei for some �-class Ei, an easy argument gives that E
(G�R)

+ (x;

y) = EGC (x; y) � EG(x; y).

� Consider the case when x 2 Ei and y 2 Ej for two di�erent �-classes, and
assume that EG(x; y) = m.
Now let m1 = E

(G�R)
+(x; Emin

i ), m2 = E
(G�R)

+(Emin
i ; Emin

j ), and m3 =

E
(G�R)

+(Emin
j ; y). Note that by the reduction constructionm2 � EGC (Emin

i ; Emin
j ).

Then there is a path in (G�
R)

+
from x to y via Emin

i and Emin
j with weight

m1 +m2 +m3. Now, if m < m1 +m2 +m3, there is a path in G from Emin
i

to Emin
j of weight m �m1 �m3 < m2 contradicting that m2 is the weight

of the shortest path in G between Emin
i and Emin

j . Thus the path x, Emin
i ,

Emin
j , y in (G�

R)
+
has weight no greater than the edge (x; y) in G.

2. Next we prove that (G�
R)

+
has minimal number of edges by showing that

whenever HC = GC then H has at least as many edges as (G�
R)

+
.

As HC = GC , H and G induces the same �-equivalence relation on the same
zero-length cycles. Obviously the fewest edges that will identify k (> 1) vertices,

6\<" refers to the assumed ordering on the vertices of G.
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Figure 4: A path in the graph H.

with respect to � is k. Hence, (G�
R)

+
uses a minimal number of edges between

vertices in the same �-equivalence class.

Now let (Emin
i ; Emin

j ) be an edge in (G�
R)

+
with weight m. We claim that H

must have at least one edge from Ei to Ej.

Assume that this is not the case. Then, as HC = GC , there must be a path in
H from Emin

i to Emin
j as shown in Figure 4 such that m =

Pk+2
i=0 vi +

Pk+1
i=0 wi.

Now let m0 = E
(G�R)

+(Emin
i ; Emin

0 ), m1 = E
(G�R)

+(Emin
0 ; Emin

1 ), . . . , mk+1 =

E
(G�R)

+(Emin
k ; Emin

i ) (illustrated with dashed lines in Figure 4). Then m0 �

v0 + w0 + v01, m1 � v001 + w1 + v02, . . . , mk+1 � v00k+1 + wk+1 + vk+2, where
v1 = v01 + v001 , v2 = v02 + v002 , . . . , vk+1 = v0k+1 + v00k+1.

It follows that
Pk+1

i=0 mi � m. Hence (Ei; Ej) is redundant in (G�
R)

+
and can

be removed, contradicting Lemma 3.1. 2

First, note that the above construction of (G�
R)

+
is well-de�ned as G� is a zero-

cycle free graph and the reduction construction of Theorem 3.1 thus applies. Given
the closure GC of G the constructions of De�nitions 3.1 and 3.2 can be computed
in O(n2). Since GR is computed from G in O(n3), it follows that also (G�

R)
+
can

be constructed in O(n3). Now applying the above construction to the graph H of
Figure 3 (a), we �rst note that H�

R = H� as H� has no redundant edges. Expanding
H� with respect to the vertex ordering x0 < x1 < x2 < x3 gives the graph of Figure 3
(c), which according to Theorem 3.2 above is the shortest-path reduction of H.
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l2l3

l0 l1 l4

Figure 5: Illustration of Space-Reduction.

Experimental results show that the use of minimal constrain systems (obtained
by the above shortest-path reduction algorithm) as a compact data structure leads
to truly signi�cant space-savings in practical reachability analysis of timed systems:
the space-savings are in the range 68{85%. We refer to Section 5 for more details.

4 Global Reductions and Control Structure Anal-

ysis

The preceding section is about local reductions in reachability analysis in the sense
that the technique developed is for each individual symbolic state. In this section,
we shall develop a global reduction technique to reduce the total number of symbolic
states to save in the global data structure i.e. the passed list.

4.1 Potential Space-Reductions

We recall the standard reachability analysis algorithm for �nite graphs (see e.g.
[Pap94]). It is similar to the one in Figure 1, but simpler as no constraints but
only control nodes are involved. The algorithm repeats three main operations: exam-
ining every new encountered node (to see if it is in the passed list), exploring the new
encountered nodes (computing all their successors for further analysis), and saving
the explored nodes in the passed list until all reachable nodes are present in the list
(i.e. all new encountered nodes are already in the passed list).

Note that the saving of an explored node is to ensure termination and also to
avoid repeated exploration of nodes with more than one incoming edge. However it
is not necessary to save all reachable nodes. Consider for example, the simple graph
in Figure 5 with initial node l0. Clearly, there is no need to save node l2; l3 or l4 as
they will be visited only once if l1 is present in the passed list.

In fact, to guarantee termination on a �nite graph, it is su�cient to save only one
node for each cycle in the graph. For example, as l1 covers the two cycles of the graph
in Figure 5, in addition to l2; l3; and l4, it is not necessary to save l0 either. In general,
for a �nite graph, there is a minimal number of nodes to save in the passed list in
order to guarantee termination. However the trade-o� of the space-saving strategy
may be increased time-consumption. Consider the same graph of Figure 5. If node
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l0 is not present in the passed list, it will be explored again whenever l3 is explored.
This can be avoided by saving l0 when it is �rst visited. But the di�erence from
saving l1 is that saving l0 is for e�ciency and l1 for termination.

Now we again recall the abstract reachability algorithm in Figure 1 for timed systems.
To ensure termination and also to avoid repeated exploration of states (that have more
than one predecessors), it saves every new encountered state (l; D) in the passed list
when the inclusion-checking for D � D0 fails (i.e. D 6� D0). Obviously this is not
necessary if all the predecessors of (l; D) already exist in the Passed-list. Similar to
the case for �nite graphs, for termination, we need to save only one state for every
dynamic loop of a timed automaton.

De�nition 4.1 (Dynamic Loops) Assume a timed automaton with an initial state
(l0; D0). The set of symbolic states Ld = f(l1; D1) : : : (ln; Dn)g is a dynamic loop of
the timed automaton if (l1; D1) ; (l2; D2) : : : (ln�1; Dn�1); (ln; Dn) and (ln; Dn);
(l1; D

0
1) with D0

1 � D1, and (l0; D0) is reachable in the sense that (l0; D0) ; : : :
; (l1; D1). A symbolic state is said to cover a dynamic loop if it is a member of the
loop. 2

We claim that to ensure termination, it is su�cient (but not necessary) to save a
set of symbolic states that cover all the dynamic loops. Now, the problem is how to
compute e�ciently such a set.

4.2 Control Structure Analysis and Application

We shall utilise the statical structure of an automaton to identify potential candidates
of states to cover dynamic loops.

De�nition 4.2 (Statical Loops and Entry Nodes) A set of nodes L = fl1; : : : ;
lng of a timed automaton is a statical loop if there is a sequence of edges l1 �!

l2 � � � ln�1 �! ln and ln �! l1 where li �! lj denotes that li
g;r
�! lj for some g; r

is an edge of the automaton. A node li 2 L is an entry node of the statical loop L
if it is an initial node of the automaton or there exists a node l 62 L (outside of the
loop) and an edge l �! li. Further, we say that a vector of nodes (i.e. a node of a
network) is an entry node if any of its components are entry nodes. 2

For example, nodes l0; l1; l2 and l3 in Figure 5 constitute a statical loop with entry
nodes l0 and l1; another statical loop is nodes l1 and l4 with entry node l1. In general,
since the sets of control nodes and edges of a timed automaton are �nite, the number
of statical loops is �nite and so is the set of entry nodes of all statical loops. In fact the
set of entry nodes of a timed automaton can be easily computed by statical analysis
using a stack or a slightly modi�ed loop detecting algorithm (see e.g. [Sed88]).

Now note that according to De�nition 4.1, a dynamic loop (a set of symbolic
states) must contain a subset of symbolic states whose control nodes constitute a
statical loop. As a statical loop always contains an entry node, we have the following
fact.
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Proposition 4.1 Every dynamic loop of a timed automaton contains at least one
symbolic state (l; D) where l is an entry node.

Proof: Standard proof by contradiction. 2

Following Proposition 4.1, to cover all the dynamic loops, we may simply save all
the states whose control-nodes are an entry node, and ignore the others. Obviously,
this will not give much reduction when dynamic loops include mostly entry nodes,
which is the case when a network of automata contains a component whose nodes are
mostly entry nodes e.g. a testing automaton. For networks of automata, we adopt
the strategy of saving the �rst derived states whose control nodes are an entry node,
known as covering states in the following sense.

De�nition 4.3 (Covering States) Assume a network of timed automata with an
initial state (l0; D0) and a given symbolic state (l; D). We say that (l; D) is a covering
state of the network if it is reachable in the sense that there exists a sequence of
symbolic transitions (l0; D0) ; (l1; D1) : : : (ln; Dn) ; (l; D) and an i (standing for
the ith component of the network) such that l[i] is an entry node and (ln; Dn); (l; D)

is derived by an edge ln[i]
g;r
�! l[i] for some g and r. 2

From the above de�nition, it should be obvious that we can easily decide whether
a reachable symbolic state is a covering state by an on-the-y algorithm when the
entry nodes of all the component automata are known through statical analysis as
discussed earlier.

Finally, we claim that the set of covering states of a network covers all its dy-
namic loops and therefore it su�ces to keep them in the passed list for the sake of
termination in reachability analysis7.

Theorem 4.1 Every dynamic loop of a network of timed automata contains at least
one covering state.

Proof: Assume a dynamic loop Ld = (l1; D1) ; : : : ; (lk; Dk) with no covering
states. However according to Proposition 4.1, Ld contains at least one entry node.
Further, assume (without loss of generality) that the symbolic state (l; D) 2 Ld is an
entry node and the components l[1]; : : : ; l[m] of l are all in an entry node, and all the
other components of l, i.e. l[m+ 1]; : : : ; l[n], are not.

Now, we claim that if Ld contains no covering states, the set of components
li[1]; : : : ; li[m] will remain in an entry node in all symbolic states (li; Di) 2 Ld. Oth-
erwise, if the set of local entry nodes changes, either grows or reduces, it will introduce
a covering state. The case of growing is obvious due to the de�nition for covering
states. The argument for the case of reducing is the same as the control nodes of all
the components will reach l1 again by the end of Ld, meaning that the set will sooner
or later grows again.

In fact, the assumption that Ld contains no covering states, implies an even
stronger property, that is, all symbolic transitions in Ld are derived by components
in li[m + 1]; : : : ; li[n]. A transition is derived by a local transition of a component

7Note that this is only a su�cient condition but not necessary.
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in l[1]; : : : ; l[m], means that the set of local entry nodes will either grow or reduce
(discussed above) or the local transition leaves the current entry node and enters an
another entry node. The later case implies that the new entry node is a covering
state.

Now we construct L0d by removing li[1]; : : : ; li[m] from all symbolic states (li; Di) 2
Ld, that is, L

0
d contains only the components that are not in an entry nodes. Obvi-

ously, all the symbolic transitions of Ld are also in L0d; thus L
0
d must be a loop by

de�nition. However, L0d contains no components that are in an entry node. This
contradicts Proposition 4.1. 2

An improved reachability algorithm according to the saving strategy induced from
Theorem 4.1 (i.e. saving only the covering sates in the passed list) has been im-
plemented in Uppaal. Our experimental results show that the space-reduction is
between 13{72% (see Table 1 and 2 in Section 5).

5 Experimental Results

The techniques developed in preceding sections have been implemented and added to
the tool Uppaal [BLL+96]. In this section we present the results of an experiment
where both the original version of Uppaal and its extension were applied to verify
the following six well-studied examples from the literature:

Philips Audio Protocol (Audio) The protocol was developed and implemented by
Philips to exchange control information between components in audio equipment
using Manchester encoding. The correctness of the encoding relies on timing
delays between signals. It is �rst studied and manually veri�ed in [BPV94].

We have veri�ed that the main correctness property holds of the protocol, i.e. all
bit streams sent by the sender are correctly decoded by the receiver [LPY95b],
if the timing error is �5%.

Philips Audio Protocol with Bus Collision (Audio w. Collision) This is an ex-
tended variant of Philips audio control protocol with bus collision detection
[BGK+96]. It is signi�cantly larger than the version above since several new
components (and variables) are introduced, and existing components are modi-
�ed to deal with bus collisions.

In the experiment we checked that correct bit sequences are received by the
receiver (i.e. Property 1 of [BGK+96]), using the error tolerances set by Philips.

Bang & Olufsen Audio/Video Protocol (Bang & Olufsen) This is an audio con-
trol protocol highly dependent on real-time. The protocol is developed by Bang
& Olufsen, to transmit messages between audio/video components over a single
bus, and further studied in [HSLL97].

In the experiment we have veri�ed the correctness criteria of the protocol. We
refer the reader to Section 5.1 of [HSLL97] for more details.

Box Sorter (Box Sorter) The example of [LPY97] is a model of a sorter unit that
sorts red and blue boxes. When the boxes moves down a lane they pass a censor
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Current Local Global Local+Global
# # % # % # %

Audio 828 219 26 774 93 206 25

Audio w. Collision 646 092 198 178 31 370 800 57 111 632 17

Bang & Olufsen 778 288 249 175 32 642 752 83 204 795 26

Box Sorter 625 139 22 175 28 36 6

Manufact. Plant 92 592 27 042 29 50 904 55 14 933 16

Mutex 2 225 44 20 99 44 18 8

Mutex 3 3 376 621 18 1 360 40 240 7

Mutex 4 56 825 9 352 16 22 125 39 3 532 6

Mutex 5 1 082 916 158 875 15 416 556 38 59 720 6

Train Crossing 464 130 28 384 83 114 25

Table 1: Space performance statistics: number of constraints (#) and percentage of
Current (%).

and a piston. The sorter reads the information from the censor and sorts out
the red boxes by controlling the position of the piston. We have shown, using
Uppaal, that only blue boxes arrive at the end of the lane.

Manufacturing Plant (Manufact. Plant) The example is a model of the manufac-
turing plant of [PV94, DY95]. It is a production cell with: a 50 feet belt moving
from left to right, two boxes, two robots and a service station. Robot A moves
boxes o� the rightmost extreme of the belt to the service station. Robot B
moves boxes from the service station to the left-most extreme of the belt.

Assuming an initial distance between the boxes on the belt we veri�ed that no
box will fall o� the belt.

Mutual Exclusion Protocol (Mutex 2{Mutex 5) It is the so-called Fischer's pro-
tocol that has been studied previously in many experiments, e.g. [AL92, Sha93].
The protocol is to ensure mutual exclusion among several processes competing
for a critical section using timing constraints and a shared variable. In the ex-
periment we use the version of the protocol where a process may recover from
failed attempts to enter the critical section, and also eventually leave the critical
section [KLL+97].

The protocol is shown to enjoy the invariant property: There is never more than
one process existing in the critical section. The results for 2 to 5 processes are
shown in Table 1 and 2.

Train Crossing Controller (Train Crossing) It is a variant of the train gate con-
troller [HHWT95]. An approaching train signals to the controller which reacts
by closing the gate. When the train have passed the controller opens the cross-
ing. We have veri�ed that the gate is closed whenever a train is close to the
crossing.

In Table 1 and 2 we present the space (in number of timing constraints stored on
the Passed-bu�er) and in the time requirements (in seconds) of the examples on
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Current Local Global Local+Global
sec sec % sec % sec %

Audio 0:44 0:43 98 0:44 100 0:47 107

Audio w. Collision 3 465:22 2 067:37 60 1 515:88 44 929:22 27

Bang & Olufsen 13 240:49 6 967:38 53 9 348:48 71 4 966:79 38

Box Sorter 0:20 0:18 90 0:41 205 0:41 205

Manufact. Plant 155:61 39:85 26 56:61 36 24:22 16

Mutex 2 0:13 0:14 108 0:15 115 0:14 108

Mutex 3 1:40 0:67 48 0:65 46 0:51 36

Mutex 4 102:49 24:48 24 25:97 25 12:14 12

Mutex 5 14 790:56 3 299:96 22 3 111:21 21 1 138:32 8

Train Crossing 0:19 0:18 95 0:20 105 0:18 95

Table 2: Time performance statistics: seconds (sec) and percentage of Current (%).

a Sun SPARCstation4 equipped with 64 MB of primary memory. Each example
was veri�ed using the current algorithm of Uppaal (Current), and using modi�ed
algorithms for: Compact Data Structure for Constraints (Local), Control Structure
Reduction (Global), and their combination (Local+Global).

As shown in Table 1 and 2 both techniques give truly signi�cant space savings:
Compact Data Structure for Constraints saves 68{85% of the original consumed space
while Control Structure Reduction demonstrates more variation saving 13{72%. Both
methods result in better time-performance on the examples consuming more than
half a second, whereas the time-performance is worse on the smaller examples. Most
signi�cant is that the two techniques are completely orthogonal, witnessed by the
numbers for the combined technique which shows a space-saving between 75% and
94%.

6 Conclusion

In this paper, we have two contributions to the development of e�cient data struc-
tures and algorithms for memory-usage reduction in the automated analysis of timed
systems.

First, we have presented a compact data structure, for representing the subsets of
Euclidean space that arise during veri�cation of timed automata, which provides min-
imal and canonical representations for clock constraints, and also allows for e�cient
inclusion checks between constraint systems. The data structure is based on an O(n3)
algorithm which, given a constraint systems over real-valued variables consisting of
bounds on di�erences, constructs an equivalent system with a minimal number of con-
straints. It is essentially a minimisation algorithm for weighted directed graphs, that
extends the transitive reduction algorithm of [AGU72] to weighted graphs. Given
a weighted, directed graph with n vertices, it constructs in time O(n3) a reduced
graph with the minimal number of edges having the same shortest path closure as
the original graph.
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Secondly, we have developed an on-the-y reduction technique to minimise the
space-usage by reducing the total number of symbolic states to save in reachability
analysis for timed systems. The technique is based on the observation that to ensure
termination in reachability analysis, it is not necessary to save all the explored states
in memory, but only certain critical states. Based on static analysis of the control
structure of timed automata, we are able to compute a set of covering states that cover
all the dynamic loops of a system. The set of covering states may not be minimal
but su�cient to guarantee termination in an on-the-y reachability algorithm.

The two techniques and their combination have been implemented in the tool
Uppaal. Our experimental results demonstrate that the techniques result in truly
signi�cant space-reductions: For a number of well-studied examples in the literature
the space saving is between 75% and 94%, and in all large examples time-performance
is improved. Noteworthy is also the observation that the two techniques are com-
pletely orthogonal.

As future work, we wish to further study the global on-the-y reduction technique
to identify the minimal sets of covering states that ensure termination and also avoid
repeated explorations in reachability analysis for timed systems.
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Abstract. In this paper we present a case-study where the tool Uppaal is extended and
applied to verify an Audio-Control Protocol developed by Philips. The size of the protocol
studied in this paper is signi�cantly larger than case studies, including various abstract
versions veri�ed of the same protocol without bus collision handling, reported previously
in the community of real time veri�cation. We have checked that the protocol will function
correctly if the timing error of its components is bound to �5%, and incorrectly if the
error is �6%. In addition, using Uppaal's ability of generating diagnostic traces, we have
studied an erroneous version of the protocol actually implemented by Philips in their audio
products, and constructed a possible execution sequence explaining a known error.

During the case-study, Uppaal was extended with the notion of committed locations.
It allows for accurate modelling of atomic behaviours, and more importantly, it is utilised
to guide the state-space exploration of the model checker to avoid exploring unnecessary
interleavings of independent transitions. Our experimental results demonstrate truly time
and space-savings of the modi�ed model checking algorithm. In fact, due to the huge time
and memory-requirement, it was impossible to check a simple reachability property of the
protocol before the introduction of committed locations, and now it takes only seconds.

1 Introduction

During the last few years a number of tools for automatic veri�cation of hybrid
and real-time systems have emerged, e.g. HyTech [HHWT95], Kronos [DY95],
Polka [HRP94], RT-Cospan [AK95] and Uppaal [BLL+95]. These tools have by now
reached a state, where they are mature enough for industrial applications. We hope
to substantiate the claim by reporting on an industry-size case study where the tool
Uppaal is applied.

We analyse an audio control protocol developed by Philips for the physical layer
of an interface bus connecting the various devices e.g. CD-players, ampli�er etc. in
audio equipments. It uses Manchester encoding to transmit bit sequences of arbitrary
length between the components, whose timing errors are bound. A simpli�ed version
of the protocol is studied by Bosscher et.al. [BPV94]. It is showed that the protocol
is incorrect if the timing error of the components is � 1

17
or greater. The proof is

carried out without tool support. The �rst automatic analysis of the protocol is
reported in [HWT95] where HyTech is applied to check an abstract version of the
protocol and automatically synthesise the upper bound on the timing error. Similar
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versions of the protocol have been analysed by other tools, e.g. Uppaal [LPY95]
and Kronos [DY95]. However, all the proofs are based on a simpli�cation on the
protocol, introduced by Bosscher et.al. in 1994, that only one sender is transmitting
on the bus so that no bus collisions can occur. In many applications the bus will
have more than one sender, and the full version of the protocol by Philips therefore
handles bus collisions. The protocol with bus collision handling was manually veri�ed
in [Gri94] without tool support. Since 1994, it had been a challenge for the veri�cation
tool developers to automate the analysis on the full version of the protocol.

The �rst automated proof of the protocol with bus collision handling was presented
in 1996 in the conference version of this paper [BGK+96]. It was the largest case study,
reported in the literature on veri�cation of timed systems, which has been considered
as a primary example in the area (see [CW96, LSW97]). The size of the protocol
studied is signi�cantly larger than various simpli�ed versions of the same protocol
studied previously in the community, e.g. the node-space is 103 times larger than the
case without bus collision handling and the number of clocks, variables and channels
is also increased considerably.

The major problem in applying automatic veri�cation tools to industrial-size sys-
tems is the huge time and memory-usage needed to explore the state-space of a
network (or product) of timed automata, since the veri�cation tools must keep infor-
mation not only on the control structure of the automata but also on the clock values
speci�ed by clock constraints. It is known as the state{space explosion problem. We
experienced the problem right on the �rst attempt in checking a simple reachability
property of the protocol using Uppaal, which did not terminate in hours though it
was installed on a super computer with giga bytes of main memory. We observed
that in addition to the size and complexity of the problem itself, one of the main
causes to the explosion was the inaccurate modelling of atomic behaviours and inef-
�cient search of the unnecessary interleavings of atomic behaviours by the tool. As
a simple solution, during the case-study, Uppaal was extended with the notion of
committed locations. It allows for accurate modelling of atomic behaviours, and more
importantly, it is utilised to guide the state-space exploration of the model checker to
avoid exploring unnecessary interleavings of independent transitions. Our experimen-
tal results demonstrate truly time and space-savings of the modi�ed model checking
algorithm. In fact, due to the huge time and memory-requirement, it was impossi-
ble to check certain properties of the protocol before the introduction of committed
locations, and now it takes only seconds.

The automated analysis was originally carried out using an Uppaal version ex-
tended with the notion of committed location installed on a super computer, a SGI
ONYX machine [BGK+96]. To make a comparison, we in this paper present an
application of the current version of Uppaal, also supporting committed location,
installed on an ordinary Pentium 150 MHz PC machine, to the protocol. We have
checked that the protocol will function correctly if the timing error of its components
is bound to �5%, and incorrectly if the error is �6%. In addition, using Uppaal's
ability of generating diagnostic traces, we have studied an erroneous version of the
protocol actually implemented by Philips in their audio products, and constructed a
possible execution sequence explaining a known error.
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The paper is organised as follows: In the next two sections we present the Uppaal
model with committed location and describe its implementation in the tool. In sec-
tion 4 and 5 the Philip Audio-Control Protocol with Bus Collision is informally and
formally described. The analysis of the protocol is presented in section 6 where
we also compare the performance of the current Uppaal version with the one used
in [BGK+96]. Section 7 concludes the paper. Finally, formal descriptions of the
protocol components are enclosed in the appendix.

2 Committed Locations

The basis of the Uppaal model for real-time systems is networks of timed automata
extended with data variables [AD90, HNSY94, YPD94]. However, to meet require-
ments arising from various case-studies, the Uppaal model has been extended with
various new features such as urgent transitions [BLL+95] etc. The present case-study
indicates that we need to further extend the Uppaal model with committed loca-
tions to model behaviours such as atomic broadcasting in real-time systems. Our
experiences with Uppaal show that the notion of committed locations introduced in
Uppaal is not only useful in modelling but also yields signi�cant improvements in
performance.

We assume that a real-time system consists of a �xed number of sequential pro-
cesses communicating with each other via channels. We further assume that each
communication synchronises two processes as in CCS [Mil89]. Broadcasting com-
munication can be implemented in such systems by repeatedly sending the same
message to all the receivers. To ensure atomicity of such \broadcast" sequences we
mark the intermediate locations of the sender, which are to be executed immediately,
as so-called committed locations.

2.1 An Example

To introduce the notion of committed locations in timed automata, consider the
scenario shown in Figure 1. A sender S is to broadcast a message m to two receivers R1

and R2. As this requires synchronisation between three processes this can not directly
be expressed in the Uppaal model, where synchronisation is between two processes
with complementary actions. As an initial attempt we may model the broadcast
as a sequence of two two-process synchronisations, where �rst S synchronises with
R1 on m1 and then with R2 on m2. However, this is not an accurate model as the
intended atomicity of the broadcast is not preserved (i.e. other processes may interfere
during the broadcast sequence). To ensure atomicity, we mark the intermediate
location S2 of the sender S as a committed location (indicated by the c:-pre�x). The
atomicity of the action sequence m1!m2! is now achieved by insisting that a committed
sequence must be left immediately! This behaviour is similar to what has been
called \urgent transitions" [HHWT95, DY95, BLL+95], which insists that the next
transition taken must be an action (and not a delay), but the essential di�erence is
that no other actions should be performed in between such an atomic sequence. The
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m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!

m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!

m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1? m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?

S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1 R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11 R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21

c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2

S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3 R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12 R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22

R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1SSSSSSSSSSSSSSSSS

Figure 1: Broadcasting Communication and Committed Locations.

precise semantics of committed locations will be formalised in the transition rules for
networks of timed automata with data variables in Section 2.3.

2.2 Syntax

We assume a �nite set of clock variables C ranged over by x; y; z and a �nite set
of data variables D ranged over by i; j. We use B(C) to stand for the set of clock
constraints that are the conjunctive formulas of simple constraints in the form of
x � n or x�y � n, where � 2 f<;�;=;�; >g and n is a natural number. Similarly,
we use B(D) to stand for the set of non-clock constraints that are conjunctive formulas
of i � j or i � k, where � 2 f<;�;=; 6=;�; >g and k is an integer number. We
use B(C;D) ranged over by g to denote the set of formulas that are conjunctions of
clock constraints and a non-clock constraints. The elements of B(C;D) are called
constraints or guards.

To manipulate clock and data variables, we use reset-sets which are �nite sets of
reset-operations. A reset-operation on a clock variable should be in the form x :=n
where n is a natural number and a reset-operation on an data variable should be in
the form: i :=k � j + k0 where k; k0 are integers. A reset-set is a proper reset-set when
the variables are assigned a value at most once, we use R to denote the set of all
proper reset-sets.

We assume that processes synchronise with each other via complementary actions.
Let A be a set of action names with a subset U of urgent actions on which processes
should synchronise whenever possible. We use Act = f �? j � 2 A g [ f �! j � 2
A g [ f � g to denote the set of actions that processes can perform to synchronise
with each other, where � is a distinct symbol representing internal actions. We use
name(a) to denote the action name of a, de�ned by name(�?) = name(�!) = �.

An automaton A over actions Act, clock variables C and data variables D is a
tuple hN; l0;�!; I; NCi where N is a �nite set of locations (control-locations) with
a subset NC � N being the set of committed locations, l0 is the initial location,
�! � N�B(C;D)�Act�R�N corresponds to the set of edges, and I : N 7! B(C)
is the invariant assignment function. To model urgency, we require that the guard
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of an edge with an urgent action is a non-clock constraint, i.e. if name(a) 2 U and
hl; g; a; r; l0i 2 �! then g 2 B(D).

In the case, hl; g; a; r; l0i 2 �! we shall write l
g a r
�! l0 which represents a transition

from the location l to the location l0 with guard g, action a to be performed, and a
sequence of reset-operations r to update the variables. Furthermore, we shall write
C(l) whenever l 2 NC .

To model networks of processes, we introduce a CCS-like parallel composition op-
erator for automata. Assume that A1; :::; An are automata. We use A to denote their
parallel composition. The intuitive meaning of A is similar to the CCS parallel com-
position of A1; :::; An with all actions being restricted, that is, A = (A1j:::jAn)nAct.
Thus only synchronisation between the components Ai is possible. We call A a
network of automata. We simply view A as a vector and use Ai to denote its ith
component.

2.3 Semantics

Informally, a process modelled by an automaton starts at location l0 with all its
variables initialised to 0. The values of the clocks may increase synchronously with
time at location l as long as the invariant condition I(l) is satis�ed. At any time, the

process can change location by following an edge l
g a r
�! l0 provided the current values

of the variables satisfy the enabling condition g. With this transition, the variables
are updated by r.

To formalise the semantics we shall use variable assignments. A variable assign-
ment is a mapping which maps clock variables C to the non-negative reals and data
variables D to integers. For a variable assignment u and a delay d, u�d denotes
the variable assignment such that (u�d)(x) = u(x) + d for a clock variable x and
(u�d)(i) = u(i) for any data variable i. This de�nition of � reects that all clocks
proceed at the same speed and that data variables are time-insensitive.

For a reset-set r (a proper set of reset-operations), we use r[u] to denote the
variable assignment u0 with u0(w) = Value(e)u whenever (w := e) 2 r and u0(w0) =
u(w0) otherwise, where Value(e)u denotes the value of e in u. Given a constraint
g 2 B(C;D) and a variable assignment u, g(u) is a boolean value describing whether
g is satis�ed by u or not.

A control vector l of a network A is a vector of locations where li is a location of
Ai. We write l[l0i=li] to denote the vector where the ith element li of l is replaced by
l0i. Furthermore, we shall write C(l) whenever C(li) for some i.

A state of a network A is a con�guration (l; u) where l is a control vector of A
and u is a variable assignment. The initial state of A is (l0; u0) where l0 is the initial
control vector whose elements are the initial locations l0i of Ai's and u

0 is the initial
variable assignment that maps all variables to 0.

The semantics of a network of automata A is given in terms of a transition system
with the set of states being the con�gurations. The transition relation is de�ned
by the following three rules, which are standard except that each rule has been
augmented with conditions handling control-vectors with committed locations:
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� (l; u) ; (l[l0i=li]; ri[u]) if li
gi � ri�! l0i and gi(u) for some li, gi, ri, and for all k if

C(lk) then k = i,

� (l; u); (l[l0i=li; l
0
j=lj]; (rj [ ri)[u]) if li

gi �! ri�! l0i, lj
gj �? rj
�! l0j, gi(u), gj(u), and i 6= j,

for some li; lj, gi, gj, �, ri, rj, and for all k if C(lk) then k = i or k = j,

� (l; u); (l; u� d) if I(l)(u), I(l)(u� d), :C(l) and no li
gi�?ri�! , lj

gj�!rj
�! such that

gi(u), gj(u), � 2 U , i 6= j, li; lj, ri and rj.

where I(l) =
V
i I(li).

Intuitively, the �rst rule describes a local internal action transition in a component,
and possibly the resetting of variables. An internal transition can occur if the current
variable assignment satis�es the transition guard, and the control-locations of all
other components in the network are not committed. Thus, internal transitions can
not interrupt other components operating in committed locations.

The second rule describes synchronisation transitions that synchronise two com-
ponents. It is required that the control-locations of all other components are not
committed to prevent the transition from interfering with ongoing atomic (i.e. com-
mitted) transition sequences in other components.

The third rule describes delay transitions, i.e. when all clocks increase synchronously
with time. Delay transitions are permitted only while the location invariants of all
components are satis�ed. Delays are not permitted if the control-location of a com-
ponent in the network is committed, or if an urgent transition (i.e. a synchronisation
transition with urgent action) is possible. Note that the guards on urgent transitions
are non-clock constraints whose truth-values are not a�ected by delays.

Finally, we note that the three rules give a semantics where components operating
in committed location are required to participate in the next transition, which must
be an action transition. Furthermore, transition sequences marked as committed are
instantaneous in the sense that they happen without duration, and non-interleaved
(or indivisible) as they are never interfered by other components.

3 Committed Locations in Uppaal

In this section we present a modi�ed version of the model-checking algorithm of
Uppaal for networks of automata with committed locations.

3.1 The Model-Checking Algorithm

The model-checking algorithm performs reachability analysis to check for invariance
properties 82�, and reachability properties 93�, with respect to a local property
� of the control locations and the values of the clock and data variables. It com-
bines constraint-solving techniques with on-the-y generation of the state-space in
order to avoid explicit construction of the product automaton and the immediately
caused memory problems. The algorithm is based on a partitioning of the (other-
wise in�nite) state-space into �nitely many symbolic states of the form (l; D), where
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D is a constraint system (i.e. a conjunction of clock constraints and non-clock con-
straints). It checks if a symbolic state (lf ; Df) is reachable from the initial symbolic
state (l0; D0), where D0 expresses that all clock and data variables are initialised
to 0 [YPD94]. Throughout the rest of this paper we shall simply call (l; D) a state
instead of symbolic state.

The algorithm essentially performs a forwards search of the state-space. The
search is guided and pruned by two bu�ers: Waiting, holding states waiting to be
explored and Passed holding states already explored. Initially, Passed is empty and
Waiting holds the single state (l0; D0). The algorithm then repeats the following
steps:

S1. Pick a state (l; D) from the Waiting bu�er.

S2. If l = lf and D ^Df 6= ; return the answer yes.

S3. a. If l = l0 and D � D0, for some (l0; D0) in the Passed bu�er, drop (l; D) and
go to step S1.

b. Otherwise, save (l; D) in the Passed bu�er.

S4. Find all successor states (ls; Ds) reachable from (l; D) in one step and store them
in the Waiting bu�er.

S5. If the Waiting bu�er is not empty then go to step S1, otherwise return the
answer no.

We will not treat the algorithm in detail here, but refer the reader to [YPD94, BL96].
Note that in step S3.b all explored states are stored in the Passed bu�er to ensure

termination of the algorithm. In many cases, it will store the whole state-space
of the analysed system which grows exponentially both in the number clocks and
components [YPD94]. The algorithm is therefore bound to run into space problems
for large systems. The key question is how to reduce the growth of the Passed bu�er.

The use of committed location to model atomic behaviours render possible two
potential reductions of the Passed bu�er size. First, as atomic sequences in general
restrict the amount of interleaving that is allowed in a system [Hol91], the state-
space of the system is reduced, and consequently also the number of states stored
in the Passed bu�er. Secondly, as a sequence of committed locations semantically
is instantaneous and non-interleaved with other components, it su�ces to save only
the control-location at the beginning of the sequence in the Passed bu�er to ensure
termination. Hence, our proposed solution is simply not to save states in the Passed
bu�er which involve committed locations. We modify step S3 of the algorithm in the
following way:

S30. a. If C(l) go directly to step S4.

b. If l = l0 and D � D0, for some (l0; D0) in the Passed bu�er, drop (l; D) and
go to step S1.

c. If neither of the above steps are applicable, save (l; D) in the Passed bu�er.

So, for a given state (l; D), if l is committed the algorithm proceeds directly from
step S30.a to step S4, thereby omitting the time-consuming step S30.b and the space-
consuming step S30.c. Clearly, this will reduce the growth of the Passed bu�er and
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Figure 2: Broadcasting Using Committed Locations.

the total amount of time spent on step S30. In the following step S4 more reductions
are made as interleavings are not allowed when l is committed. In fact, the next
transition must be an action transition and it must involve all li which are committed
in l (according to the transition rules in the previous section). This reduces the time
spent on generating successor states of (l; D) in S4 as well as the total number of
states in the system. Finally, we note that reducing the Passed bu�er size also yields
potential time-savings in step S30.b when l is not committed as it involves a search
through the Passed bu�er.

3.2 Space and Time Performance Improvements

To investigate the practical bene�ts from the usage of committed locations and its
implementation in Uppaal we perform an experiment with a parameterizable sce-
nario, where a sender S wants to broadcast a message to n receivers R1; : : : ;Rn. The
sender S simply performs n a!-transitions and then terminates, whereas the receivers
are all willing to perform a single a?-transition hereby synchronizing with the sender.
The data variable k ensures that the ith receiver participates in the ith handshake.
Additionally, there are m auxiliary automata D1; : : : ;Dm simply oscillating between
two states. Consider Figure 2, where the control node S2 is committed (indicated by
the c:-pre�x).

We may now use Uppaal to verify that the sender succeeds in broadcasting the
message, i.e. it forces all the receivers to terminate. More precisely we verify that
SYSn;m = ( Sn j R1 j : : : j Rn j D1 j : : : j Dm) satis�es the formula 93(at(S,S3) ^n

i=1

at(Ri,Ri2)), where we assume that the proposition at(A,l) is implicitly assigned to each
location l of the automaton A, meaning that the component A is operating in location
l. We perform two test sequences, with S2 declared as respectively not committed
and committed. The result is shown in Figure 3. In both test sequences the number
of disturbing automata was �xed to eight. Time is measured in seconds and space is
measured in pages (4KB). The general observation is that use of committed locations
in broadcasting saves time as well as space. The most important observation is that
in the committed scenario the space consumption behaves as a constant function in
the number of receivers.
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Figure 3: Time and Space Consumption.

4 The Audio Control Protocol with Bus Collision

In this section an informal introduction to the audio protocol with bus collision is
given. The audio control protocol is a bus protocol, all messages are received by all
components on the bus. If a component receives a message not addressed to it, the
message is just ignored. Philips allows up to 10 components.

Messages are transmitted using Manchester encoding. Time is divided into bit-
slots of equal length, a bit \1" is transmitted by an up-going edge halfway a bit-slot,
a bit \0" by a down-going edge halfway a bit-slot. If the same bit is transmitted
twice in a row the voltage changes at the end of the �rst bit-slot. Note that only a
single wire is used to connect the components, no extra clock wire is needed. This is
one of the properties that makes it a nice protocol.

The protocol has to cope with some problems: (a) The sender and the receiver
must agree on the beginning of the �rst bit-slot, (b) the length of the message is not
known in advance by the receiver, (c) the down-going edges are not detected by the
receiver. To resolve these problems the following is required: Messages must start
with a bit \1" and messages must end with a down-going edge. This ensures that the
voltage on the wire is low between messages. Furthermore the senders must respect a
so-called \radio silence" between the end of a message and the beginning of the next
one. The radio silence marks the end of a message and the receiver knows that the
next up-going edge is the �rst edge of a new message. It is almost possible to decode
a Manchester encoded message by only looking to the up-going messages (problem c)
only the last zero bit of a message can not be detected (consider messages \10" and
\1"). To resolve this, it is required that all messages are of odd length.

It is possible that two or more components start transmitting at the same time.
The behavior of the electric circuit is such that the voltage on the wire will be high
as long as one of the senders pulls it high. In other words: The wire implements the
or-function. This makes it possible for a sender to notice that someone else is also
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transmitting. If the wire is high while it is transmitting a low, a sender can detect a
bus collision. This collision detection happens at certain points in time. Just before
each up-going transition, and at one and three quarters of a bit-slot after a down
going edge (if it is still transmitting a low). When a sender detects a collision it will
stop transmitting and will try to retransmit its message later.

If two messages are transmitted at the same time and one is a pre�x of the other,
the receiver will not notice the pre�x message. To ensure collision detection it is
not allowed that a message is a pre�x of an other message in transit. In the Philips
environment this restriction is met by embedding the source address in each message
(and assigning each component a unique source address).

In Figure 4 an example is depicted. Assume two senders, named A and B, that
start transmitting at exactly the same time. Because two lines on top of each other
is hard to distinguish from one line, they are shifted slightly. The sender A (depicted
with thick lines) starts transmitting \11..." and sender B (depicted with thin lines)
\101...". At the end of the �rst bit-slot sender A does a down, to prepare for the
next up-going edge. But one quarter after this down it detects a collision and stops
transmitting. Sender B did not notice the other sender and continues transmitting.
Note that the receiver will decode the message of the sender B correctly.

The protocol has to cope with one more thing: timing uncertainty. Because
the protocol is implemented on a processor that also has to execute a number of
other time critical tasks, a quite large timing uncertainty is allowed. A bit-slot is 888
microseconds, so the ideal time between two edges is 888 or 444 microseconds. On the
generation of edges a timing uncertainty of �5% is allowed. That is, between 844 and
932 for one bit-slot and between 422 and 466 for half a bit-slot. The collision detection
just before an up-going edge and the actual generation of this up-going edge must be
at most 20 microseconds. The timing uncertainty on the collision detection on one
and three quarters after the generation of a down-going edge is �22 microseconds.
Also the receiver has a timing uncertainty of �5%. And, to complete the timing
information, the distance between the end of one message and the beginning of the
next must be at least 8000 microseconds (8 milliseconds).

5 A Formal Model of the Protocol

To analyse the behavior of the protocol we model the system as a network of seven
timed automata. The network consists of two parts: a core part and a testing environ-
ment. The core part models the components of the protocol to be implemented: two
senders, a wire and a receiver. The testing environment, consisting of two message
generators and an output checker, is used to model assumptions about the environ-
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Figure 5: Philips Audio-Control Protocol with Bus Collision.

ment of the protocol and for testing the behavior of the core part. Figure 5 shows a
ow-graph of the network where nodes represent timed automata and edges represent
synchronisation channels or shared variables (enclosed within parenthesis).

The general idea of the model is as follows. The two automata MessageA and
MessageB generate messages for the both senders, in addition MessageA informs the
Check-automaton on the bits it generated for SenderA. The senders transmit the
messages via the wire to the receiver. The receiver communicates the bits it decoded
to the checker. Thus the Check automaton is able to compare the bits generated by
MessageA and the bits received by Receiver. If this matches the protocol is correct.

The senders A and B are, modulo renaming (all A's in identi�ers to B's), exactly
the same. Because of this symmetry, it is enough to check that the messages trans-
mitted by sender A are received correctly. We will proceed with a short description of
each automaton. The de�nition of these uses a number of constants that are declared
in Table 1 in Appendix A.

The Senders

SenderA is depicted in Figure 9. It takes input actions Ahead0?, Ahead1? and
Aempty?. The output actions UP! and DOWN! will be the Manchester encoding
of the message. The clock Ax is used to measure the time between UP! and DOWN!
actions. The idea behind the model (taken from [DY95]) is that the sender changes
location each half of a bit-slot. The locations HS (wire is High in Second half of the
bit-slot) and HF (High in First half of the bit-slot) refer to this idea. Extra locations
are needed because of the collision detection.

The clock Ad is used to measure the time elapsed between the detection just
before UP! action and the corresponding UP! action. The system is in the locations
ar Q�rst and ar Qlast when the next thing to do is the collision test at one or three
quarters of a bit-slot. When Volt is greater than zero, at that moment, the sender
detects a collision, stops transmitting and returns to the idle location. The clock w
is used to ensure the radio silence between messages. This variable is checked on the
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transition from idle to ar �rst up.

The Wire

This small automaton keeps track of the voltage on the wire and generates VUP!
actions when appropriate, that is when a UP? action is received when the voltage is
low. The automaton is shown in Figure 10.

The Receiver

Receiver, shown in Figure 8, decodes the bit sequence using the up-going (modeled
as VUP?) changes of the wire. Decoded bits are signaled to the environment using
output actions Add0!, Add1! and OUT! (where OUT! is used for signaling the end of
a decoded message). The decoding algorithm of the receiver is a direct translation of
the algorithm in the Philips documentation of the protocol. In the automaton each
VUP? transition is followed by a transition modeling the decoding. This decoding
happens at once, therefore the intermediate locations are modeled as committed
locations. The automaton has two important locations, L1 and L0. When the last
received bit is a bit \1" the receiver is in location L1, after receiving a bit \0" it will
be in location L0. The error location is entered when a VUP? is received much to
early. In the complete model the error location is not reachable, see Section 6. The
receiver keeps track of the parity of the received message using the integer variable
odd. When the last received bit is a bit \1" and the message is even, a bit \0" is
added to make the complete message of odd length.

The Message Generators

The message generators MessageA and MessageB, shown in Figure 11, generate mes-
sages of odd length for sender A and B respectively. Furthermore, the messages
generated for sender A are communicated to the checker. The start of a message is
signaled to the checker by AINc!, bits by expect0! and expect1!. When a collision
is detected by sender A this is communicated to MessageA via Acoll?. The message
generator will communicate this on his turn to the check automaton via CAcoll!.

Generating messages of odd length is quite simple. The only problem is that it
is not allowed that a message for one sender is a pre�x of the message for the other
sender. To be more precise: If only one sender is transmitting there is no pre�x
restriction. Only when the two senders start transmitting at the same time, it is not
allowed that one sender transmits a pre�x of the message transmitted by the other.
As mentioned before the reason for this restriction is that the pre�x message is not
received by the receiver and it is possible that the senders do not notice the collision.
In other words: the pre�x message can be lost.

The Checker

This automaton is shown in Figure 7. It keeps track of the bits \in transit", i.e.
the bits that are generated by the message generators but not yet decoded by the
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receiver. Whenever a bit is decoded or the end of the message is detected not conform
the generated message the checker enters location error. Furthermore, when sender
A detects a collision the checker returns to its initial location.

6 Veri�cation in Uppaal

In this section we present the results of analysing the protocol formally described in
the previous section. We will use A:l to denote the (implicit) proposition at(A; l)
introduced in Section 3.2. Also, note that invariance properties in Uppaal are on
the form 82�, where � is a local property.

Correctness Criteria

The main correctness criterion of the protocol is to ensure that the bit sequence
received by the Receiver matches the bit sequence sent by SenderA. Moreover, the
entire bit sequence should be received by Receiver (and communicated to Check).
From the description of the Check-automaton (see the previous section) it follows
that this behaviour is ensured if Check is always operating in location start or normal:

82 (Check:start _ Check:normal) (1)

When the Receiver-automaton observes changes of the wire too early it changes control
to location error. If the rest of the components behave normally this should not
happen. Therefore, the Receiver-automaton is required to never reach the location
error:

82(:Receiver:error) (2)

Incorrectness

Unfortunately the protocol described in this paper is not the protocol that Philips
has implemented. The original sender checked less often for a bus collision. The \just
before the up going edge" collision detection was only performed before the �rst up.
In the Uppaal model this comes down to deleting outgoing transitions of ar Qlast ok
and using the outgoing transitions of ar up ok instead. This incorrect version is shown
in Figure 12. In general the problem is that if both senders are transmitting and one
is slow and the other fast, the distance can cumulate to a high value that can confuse
the receiver. Uppaal generated a counterexample trace to Property 1. The trace is
depicted in Figure 6. The scenario is as follows: Sender A (depicted with thick lines)
tries to transmit \111..." and sender B (depicted with thin lines) \1100...". The
sender A is fast and the other slow. This makes that the distance between the second
UP's is quite big (77 microseconds). In the third bit-slot the sender A detects the
collision. The result of all this is that the time elapsed between the VUP actions is
6.65Q instead of the ideal 6Q. And because of the timing uncertainty in the receiver
this can be interpreted as 7Q (7 � 0:95 = 6:65). And 7Q is just enough to decode
\01" instead of the transmitted \0". In the correct version this scenario is impossible,



148 Automated Analsysis of an Audio-Control Protocol Using Uppaal

6

?

6

?
�

6

?

6

?

6

�rst bitslot ideal distance = 6Q

actual distance = 6.65Q

Figure 6: Error execution of the incorrect protocol.

because if collision detection happens before every UP action, the distance between
the UP's in the second bit-slot can not be that high (at most 20 microseconds).

It is not likely that these kind of errors happen in the actual implementation. This
is prevented by, among others, the following: It is not likely that two senders do start
at (roughly) the same time. The timing uncertainty is at most 2% instead of 5%. And
the \average" timing uncertainty is even less. And �nally, the source address is in the
beginning of the messages, this makes the senders detect the collision. See [Gri94]
for more details.

Although this problem was know by Philips it is interesting to see how powerful
the diagnostic traces can be. It enables us not only to �nd mistakes in the model of
a protocol, but also to �nd design mistakes in real life protocols.

Veri�cation Results

Uppaal successfully veri�es the correctness properties 1 and 2 for an error tolerance
of 5% on the timing. Recall that SenderA and SenderB are, modulo renaming, ex-
actly the same, implying that the veri�ed properties for SenderA also applies to the
symmetric case for SenderB. The veri�cation of Property 1 and 2 was performed in
12.75 sec using 2.1 MB of memory.

The analysis of the incorrect version of the protocol with less collision detection
(discussed above) uses Uppaal's ability to generate diagnostic traces whenever an
invariant property is not satis�ed by the system. The trace, consisting of 46 tran-
sitions, was generated in 4.5 sec using 1.8 MB of memory. Also, attempts to verify
Property 1 for the full protocol with an error tolerance of 6% on the timing failed.
The scenario is similar to the one found by Bosscher et.al. in [BPV94] for the one
sender protocol.

The properties were veri�ed using Uppaal version 2.17 [LPY97a, BLL+98] that
implements the veri�cation algorithm for handling committed locations described in
Section 3. It was installed on a Pentium 150 MHz MMX running Red Hat Linux 5.0.
In the conference version of this paper [BGK+96] we reported that the same protocol
was veri�ed using Uppaal version 0.961 installed on a SGI ONYX machine. The
veri�cation of the two correctness properties then consumed 7.5 hrs using 527.4 MB
and 1.32 hrs using 227.9 MB, whereas a diagnostic trace for the incorrect version was
generated in 13.0 min using 290.4 MB of memory. Hence, both the time- and space-

1The two Uppaal versions 0.96 and 2.17 are dated Nov 1995 and March 1997 respectively.
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consumption of the veri�er have been reduced with over 99%. These improvements
of the Uppaal veri�er are due to a number of developments in the last two years
that will not be discussed further here, but we refer the reader to [LPY97b, BLL+98].

7 Conclusions

In this paper we have presented a case-study where the veri�cation tool Uppaal
is applied to analyse a realistic audio-control protocol by Philips with bus collision
handling. The protocol has received a lot of attention in the formal methods research
community (see e.g. [LSW97, CW96]) and simpli�ed versions of the protocol without
the handling of bus collisions have previously been analysed by several research teams,
with and without support from automatic tools. To our knowledge, the full protocol
considered in this paper has never before been automatically analysed.

As veri�cation results we have shown that the protocol behaves correctly if the
error on all timing is bound to �5%, and incorrectly if the error is �6%. Furthermore,
using Uppaal's ability to generate diagnostic traces we have been able to study error
scenarios in an incorrect version of the protocol actually implemented by Philips.

In this paper we have also introduced the notion of so-called committed locations
which allows for accurate modelling of atomic behaviours. More importantly, it
is also utilised to guide the state-space exploration of the model checker to avoid
exploring unnecessary interleavings of independent transitions. Our experimental
results demonstrate truly time and space-savings of the modi�ed model checking
algorithm. In fact, due to the huge time and memory-requirement, it was impossible
to check certain properties of the protocol before the introduction of committed
locations, and now it takes only seconds.
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A The System Description

The constants used in the formulas
q 2220 One quarter of a bit-slot: 222 micro sec
d 200 Detection 'just before' the UP:

20 micro sec
g 220 'Around' 25% and 75% of the bit-slot:

22 micro sec
w 80000 The radio silence: 8 milli sec
t 0.05 The timing uncertainty: 5%
The constants in the automata
W w 80000
D d 200
A1min q-g 2000
A1max q+g 2440
A2min 3*q-g 6440
A2max 3*q+g 6880
Q2 2*q 4440
Q2minD 2*q*(1-t)-d 4018
Q2min 2*q*(1-t) 4218
Q2max 2*q*(1+t) 4662
Q3min 3*q*(1-t) 6327
Q3max 3*q*(1+t) 6993
Q5min 5*q*(1-t) 10545
Q5max 5*q*(1+t) 11655
Q7min 7*q*(1-t) 14763
Q7max 7*q*(1+t) 16317
Q9min 9*q*(1-t) 18981
Q9max 9*q*(1+t) 20979

Table 1: Declaration of Constants.



152 Automated Analsysis of an Audio-Control Protocol Using Uppaal

checkcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheck

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

aaaaaaaaaaaaaaaaa

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror

OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?
as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0

Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?
as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0

Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?
as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0

AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?
r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1
l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1

Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1

Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1

OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1

CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?

Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?
l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2
l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2

Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?
l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1
l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0

Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?
l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1
l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1

OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?
l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0

Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?
l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0
l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0

CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?

l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3

AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2

OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2

Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0

Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0

Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1

Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0

Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2

Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1

expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?
r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1
l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1

expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?
r:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*r
l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1

Figure 7: The Check Automaton.
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Figure 8: The Receiver Automaton.
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Figure 9: The SenderA Automaton.
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Figure 10: The Wire Automaton.
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Figure 11: The Message Automata.
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Figure 12: The Incorrect SenderA Automaton.
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Abstract.

In this paper we presents a formal analysis of the start-up algorithm of the DACAPO
protocol. The protocol uses TDMA (Time Division Multiple Access) bus arbitration. It is
checked that a system of four communicating stations becomes synchronised and operational
within a bounded time from an arbitrary initial state. The system model allows a clock
drift corresponding to �10�3. The protocol is modeled as a network of timed automata,
and analysis is performed using the symbolic model-checking tool Uppaal.

1 Introduction

Distributed real-time systems are increasingly used in embedded applications, many
of them safety-critical systems, such as cars, aircraft and industrial robots. The
computer architecture of such systems must meet several stringent requirements in
terms of cost, reliability, testability, etc., and has therefore recently been the object
of much research.

One crucial component of the distributed architecture is the communication sys-
tem. This is the backbone of the system and has a large e�ect on its quality both in
terms of performance and reliability.

Assuming a broadcast bus as the communication media, TDMA-based protocols
have several advantages [Kop93]. They are particularly suitable for safety-critical
architectures because they facilitate clock synchronisation without any message over-
head [BD87] and support timely fault detection. In TDMA protocols, each node
has a time slot where it has exclusive access to the bus. Collisions are thus avoided
without the frame overhead incurred when using contention-based protocols or the
token recovery algorithms needed in token-based protocols.

A characteristic of TDMA protocols is that clocks must be synchronised to guar-
antee collision-free broadcasts | two nodes may otherwise use the same time slot for
transmission. On the other hand, messages must be broadcast to do clock synchro-
nisation.

Since we consider a multi-master system in which all nodes are equals, it is not
possible to allow nodes to wait for initialisation messages from a single master. We
also believe that the use of a unique "jam" signal for synchronisation [KU95] would
make it di�cult to detect and isolate a node that erroneously attempts to perform
resynchronisation.
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t
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Figure 1: The Cyclic Operation of DACAPO.

The start-up algorithms of the TTP [KG94] and DACAPO [LS94] TDMA pro-
tocols have informal descriptions in their respective references. The latter paper
also presents simulations that provide estimation on the worst case duration of the
start-up phase.

In several applications, the reliability of the real-time system must be better than
10�8 failures per hour [Tor92]. This failure probability is so low that validating it by
means of simulation is exceedingly time-consuming and yet provides only a proba-
bilistic measure of correctness. An alternative is to formally verify the algorithms.

This paper presents a rigorous description of a TDMA start-up algorithm in the
model of timed automata. The algorithm is then analysed for a system consisting of
four computers, modelled as a network of timed automata representing the computer
ensemble and the bus. It is checked that all stations becomes synchronised within a
certain deadline. The Uppaal [LPY97] tool is used for this purpose.

The paper starts with a brief presentation of the DACAPO protocol and an in-
formal description of how synchronisation is performed. In section 3 we presents a
formal model of the protocol. Section 4 gives details on the analysis of the protocol,
and conclusions are presented in Section 5.

2 Protocol Description

This section briey describes the protocol and the real-time architecture for which it
is designed. In particular, the start-up algorithm is described.

2.1 General

Dependable Architecture for Control of Applications with Periodic Operation (DA-
CAPO) [RLST95], is a conceptual computer architecture for safety-critical distributed
real-time systems. The concept covers the complete computer architecture, but we
will focus here on the communication protocol.

The DACAPO protocol is intended for physically small distributed systems. The
bus length is limited to tens of meters to avoid problems with large propagation de-
lays, and the number of stations is less than about 40 for reliability reasons. Although
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Figure 2: Time Representation in each Station

the DACAPO concept prescribes a duplex bus to meet reliability requirements, this
paper considers only operation on a single bus.

The DACAPO protocol is controlled by time only. Time is divided into equally
sized time slots, called TDMA slots, that are long enough for one message. An oper-
ational node broadcasts one message in its own TDMA slot. To minimise hardware
complexity and allow simple error detection, time slot i belongs to node i, i.e. the
�rst time slot belongs to node 0, the next to node 1, etc. up to the highest node id.
When all nodes have broadcast a message, a so-called communication cycle is com-
pleted. The communication cycle is repeated continuously during system operation,
see Figure 1. The node sending order is the same in each communication cycle, but
the data contents of a node's message usually change.

Each node thus needs a clock that indicates the duration of each TDMA slot and
controls the transmission and reception of bits. We call this the Bit Clock, since it
is synchronous with the bit stream broadcast on the bus. The Bit Clock will require
relatively frequent adjustment owing to clock drift between nodes.

Bits are non return to zero encoded (NRZ), i.e. each bit is transmitted as either
a high or low signal. NRZ encoding reduces both bandwidth requirements and noise
emission as compared with encoding techniques with guaranteed transitions (such as
Manchester encoding). There is no continuous clock adjustment during the reception
of a message. Since the messages exchanged in a control application are short | a
requirement to limit control delays and allow a su�ciently high sampling frequency
of the control loops | adjustments during frame reception can be avoided.

A Node Id Counter in each node is used to keep track of the owner of each TDMA
slot. The Node Id Counter is incremented each time the bit clock completes one
TDMA slot interval.

A minimum requirement of the clock in a TDMA system is shown in Figure 2.
The non-shaded communication cycle count is not used for the initialisation of com-
munication and is not considered further.

2.2 Bit Synchronisation

With TDMA communication, the arrival time of a message can be used as a clock
reading. Since communication is pre-scheduled, the local time of the sending node is
implicitly known [BD87]. DACAPO uses the Daisy-Chain synchronisation method [LS95].
With Daisy-Chain synchronisation, the local clock is adjusted on each message ar-
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Figure 3: Exchange of Clock Readings.

rival. Since nodes broadcast consecutively according to the TDMA schedule, they
take turns in synchronising the system in a Daisy-Chain manner. To avoid parti-
tioning of the system into unsynchronised cliques, only nodes that are synchronised
with at least half of the ensemble may transmit messages. Correct synchronisation
is decided on the basis of successful reception of a message.

To achieve fault tolerance, a reception window is used. Only messages whose Start
Of Frame �eld (SOF), arrives within a narrow interval are accepted (see Figure 3).
The size of the reception window equals the length of the SOF �eld.

2.3 TDMA Time Slot Synchronisation

Synchronising the TDMA time slots is equivalent to synchronising the Node Id Count
part of the local clocks. To do this, messages with the sending node's Node Id
Count must be broadcast, which is a problem if bus synchronisation has not yet been
established. A carefully designed procedure for initial synchronisation of the TDMA
time slots is thus necessary.

We use a state vector to describe the components of the internal state of the node
that are relevant for the bus synchronisation:

h Bitclock count, Node Id Count, Error Count, Mode i

The �rst two items correspond to the local opinion on system time. The Error Count
is increased each time an erroneous frame or an empty time slot is detected. It is
decreased every time a message is received correctly. Mode is one of three protocol
modes local to each node: Normal, Resynchronisation or Recover.

Node operation in the di�erent internal Modes is as follows:

1. Normal Mode:

a. Broadcast frames according to the TDMA schedule.

b. Assign the Node Id Count of each correctly received frame to the Node Id
Count of the node.
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c. Increment Node Id Count by one in case of empty TDMA slot or erroneous
frame reception.

d. Enter Resynchronisation mode if messages from less than half of the nodes
(bn=2c out of n) have been received correctly.

2. Resynchronisation Mode:

a. Be Silent.

b. Assign the Node Id Count of each correctly received frame to the Node Id
Count of the node.

c. Increment Node Id Count by one in case of empty TDMA slot or erroneous
frame reception.

d. Enter Normal Mode as soon as messages from half of the nodes (� bn=2c
out of n) have been received correctly.

e. When bus has been completely silent for one Communication Cycle: Enter
Recovery Mode.

3. Recovery Mode:

a. Wait for the node's own TDMA slot and broadcast one frame if the node is
part of the recovery set. If the broadcast occurs in the �rst slot in Recovery
Mode, it is postponed until the next TDMA slot belonging to the node.

b. Assign the Node Id Count of each correctly received frame to the Node Id
Count of the node.

c. Increment Node Id Count by one in case of empty TDMA slot or erroneous
frame reception.

d. Enter Normal Mode when messages from half of the nodes (� bn=2c out of
n) have been received correctly.

e. When one frame has been sent: Enter Resynchronisation Mode. If a collision
is detected: reset the local Node Id Count.

In all modes, Node Id Count is set to the id of the sending node on successful reception
of a message. This is reasonable, since it is possible to transmit the message without
collisions, and the sending node is thus likely to have the correct time.

The condition in 3a, that a node may not broadcast in the �rst TDMA slot of
recovery mode prevents a situation in which a fast node breaks bus silence before all
nodes have seen a full Communication Cycle without bus activity. This would prevent
the transition from Resynchronisation Mode to Recovery Mode in these nodes. Only
the �rst node would broadcast a message, and no node would receive enough messages
to enter normal mode.

The broadcast in 3a may result in an in�nite series of collisions for certain system
sizes if all nodes broadcast in recover mode. To avoid this, only members of the
recovery set, a subset of all nodes, may send a message. The nodes that will be
members of the recovery set are selected before run-time.

In 3e, the Node Id Count is reset if a collision occurred to avoid a collision be-
tween the same stations if the start-up fails and a second transmission in recovery
mode is necessary. Together with the recovery set limitation, this makes possible the
completion of the start-up procedure without repeated collisions.
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Figure 4: Timed Automaton Describing the Bus.

3 Formal Description of the Protocol

Our formal description of the protocol is de�ned in the model of timed automata
[AD90]. As the Uppaal tool will be used to analyse the protocol, we use the model
of networks of timed automata extended with data variables, adopted in the tool.
We will not describe the Uppaal-model here, but refer the reader to [LPY97].

3.1 Assumptions

Our model is based on the following assumptions regarding the bus communication:

� Clock precision among the station clocks is �10�3. The DACAPO protocol is
intended for systems with low precision oscillators, and the model must therefore
contain a certain clock drift.

� A message is always received correctly if it arrives within the reception window
and no collision occurs. We have assumed a clock drift that is su�ciently low
to prevent a sending and receiving node from drifting apart during message
reception.

� There is no propagation delay on the bus. In a TDMA system that is scheduled
before run-time, the propagation delay for each message can be calculated before
runtime. Since the sending node is known, compensation can be made for the
propagation delay before the local clock is adjusted.

� Broadcast messages are never corrupted unless two or more messages collide. We
do not assume any transient or permanent communication faults. Disturbances
on the bus, for example, may have caused the initial loss of synchronisation, but
we assume that there are no further faults during the execution of our model.

3.2 The System Model

The main components of the system model are a bus automaton, modeling a broad-
cast bus, and a number of station automata, modeling the computer nodes, which
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Figure 5: Successful Transmission and Reception.

send and receive messages on the bus. In the following we will briey describe these
automata. To indicate the type of identi�ers, we use location, variable, #constant
and ACTION. Table 2 in Appendix A gives a key to the variables, constants and
actions used.

3.2.1 The Bus Automaton

The bus automaton, shown in Figure 4, models the behaviour of the system bus.
When a message is broadcast, the bus automaton receives the input action FTOBUS
from the sending station (sender), to indicate that the start of a frame is transmitted.
This puts the bus automaton in location send in which it o�ers synchronisation with
any receiving station (receiver) on the SOF action, to model the reception of the
start of frame �eld in the receivers. At the end of a frame, the bus synchronises with
the sender on the FFROMBUS action and changes control back to location idle. The
whole scenario of a successfully transmitted frame on the bus is depicted in Figure 5.

If a collision occurs, the transmitting senders after the �rst one synchronise with
the bus on the JAMTOBUS action, see Figure 6. The JAM action is used to model
the reception of corrupted messages in the receivers, either as the result of a bus
collision or because the start of frame was missed. The end of the corrupted message
is modelled by the JAMFROMBUS action.

To model the presence of a message on the communications bus, the bus automa-
ton updates the variable busid. Its value is #noid if the bus is idle or if a collision has
occurred, or #0, #1, . . . , #nodemax depending on which station is sending a mes-
sage. A receiver must see a valid busid at the end of a message reception; otherwise,
the message is considered corrupted.

3.2.2 The station automaton

The station automaton models the protocol behaviour in each computer node. In
Figure 9 the complete automaton is shown annotated with labels on the important
edges corresponding to the operations described in Section 2.3.

To model clock drift, each guard containing a clock variable is transformed to
an interval corresponding to the size of clock drift. This is done automatically by
the Uppaal tool. Because the model-checker investigates all possible scenarios, a
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Figure 6: Message Transmission with Collision.

transition may be taken both early (fast clock) and late (slow clock) in the interval1.
The automaton is divided in three areas, belonging to Normal, reSynchronisation

and Recover mode. Location names in the modes are identical where applicable, but
end with N, S, and R to distinguish between them.

Before the protocol begins to execute, the variables bitclock and idcount are
initialised to random values. The variable bitclock is initialised by allowing the
automaton to take its �rst transition, from location start to openS, at any time in the
interval [0; : : : ;#frameper], i.e. at any time in the TDMA slot. The variable idcount
is initialised by an external initialisation automaton.

A station waits for bus activity in location open. It waits for #winsize time
units in normal mode and for the duration of the entire TDMA slot in the two other
modes. When a synchronisation with the bus is performed, bitclock and the counter
silence are reset.

If a SOF action is received, the station enters location receiving for #framesize
time units. If no collision has occurred after this time, the variable busid equals the
id of the sending node and idcount is assigned this value. If a JAM synchronisation
occurs or an initiated message reception fails, variable idcount is temporarily left
unchanged.

If it is not possible to receive a message, bitclock is reset and idcount is incre-
mented at the end of the TDMA slot. The error counter errcount is also incremented
and, if no bus activity has occurred, silence is incremented.

When the various counters have been incremented at the end of a TDMA slot,
the station may change mode. Mode changes to normal mode are made when counter
errcount falls to #errmax (see 1d in Figure 9). In resynchronisation mode, a mode
change to recover mode is done when counter silence reaches #silencetime (see 2e
in Figure 9). Unless it is possible to reach normal mode, the station goes back to
resynchronisation mode after the transmission of one frame.

1The technique is presented in [OSY94, DY95]
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Figure 7: Test Automaton Used to Express Correctness Properties.

At the end of the TDMA slot, decision on message transmission is made as well.
In normal mode, a station enters location send if counter idcount indicates that it
owns the next TDMA slot. In recover mode, location send is entered only if counter
silence is zero as well. This guarantees that a message is not sent in the �rst TDMA
slot in recover mode, since silence is not reset until after the �rst slot.

4 Veri�cation

A system consisting of four stations connected to a communication bus is modeled
to analyse the behaviour of the DACAPO protocol. Each station is modeled as an
instance of the station automaton (i.e. gci 0, gci 1, etc.). Station 3 is not permitted
to broadcast in recover mode (it is not part of the recovery set), since this could cause
repeated collisions. The bus automaton is used to model the communication bus. In
addition, a test automaton is included to support veri�cation.

To validate and verify properties of the protocol model, we use the Uppaal tool-
box [LPY97]. The model-checker in Uppaal allows for veri�cations of invariant and
bounded-liveness properties of networks of timed automata. An invariant property
is in the form "p is always true" and may be used to ensure that certain unexpected
situations never occur, e.g. "automaton A will never reach location bad". A bounded-
liveness property is in the form "p is guaranteed to hold within time t" and may be
used to check that an expected situation occurs within a speci�ed time bound. This
property can be checked by including the state of a test automaton in the invariant
expression [JLS96, ABL98]. For example, if automaton test transits from location
initial to expired at time t, the bounded-liveness property would be "automaton test
in location expired implies that automaton A is in location ready".

4.1 Correctness Properties

The main correctness property of the start-up protocol requires all stations to enter
normal mode within a bounded time (#deadline time units). To conveniently express
this property, we introduce an auxiliary integer variable n. The value of n is incre-
mented when a station enters normal mode (i.e. on the edges 2D and 3D in Figure 9)
and decremented when it exits (i.e. on the edge 1D in Figure 9). A test automaton
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Figure 8: Worst Case Scenario.

that changes control from location start to normal at time #deadline is also included,
see Figure 7.

Property (1) requires all stations to be in normal mode when the test automaton
has left location start, i.e. at time #deadline:

INV( ( :test:start ) ) ( n = 4 ) ) (1)

We also verify that the protocol operates correctly in normal mode. To do this, the
test automaton has a location error that is entered unless there is a bus transmission
once every TDMA slot, and the broadcast order is 0, 1, 2, 3, 0, 1, 2, 3, etc. Property
(2) expresses the correctness property that automaton test never reaches location
error.

INV( :test:error ) (2)

Uppaal veri�es that both these properties hold in the system model. Moreover, the
tool checks that the model never reaches a deadlock, a check that is necessary to
make property (2) meaningful. Otherwise, it could have been the deadlock, rather
than correct operation of the protocol model, that prevented the test automaton from
reaching test.error.

Table 1 summarises the resource requirements of Uppaal2 installed on a Pentium
Pro 200 MHz equipped with 256 Mb of memory.

4.2 Duration of Start-Up

An upper bound on #deadline can be established by iterating the analysis inUppaal
with increasing #deadline until property (1) and (2) are satis�ed. The worst case
scenario (the largest #deadline where property (1) does not hold) occurs when there
is a collision between two nodes during the �rst transmission attempt, see Figure 8.
After the collision, the duration of the TDMA slot is longer than nominal for nodes
2 and 3. This is because, in the worst case, a bit clock synchronisation may occur

2The current Uppaal version is 2.18.4, August 1998.
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Memory usage Execution Time

3 stations, no clock drift 4 Mb 10 s
3 stations, clock drift 6 Mb 20 s
4 stations, no clock drift 65 Mb 691 s
4 stations, clock drift 253 Mb 2589 s

Table 1: Resource Usage for Veri�cation.

at the end of the nominal TDMA slot when a corrupted message is present. Time is
thus set back an entire TDMA slot, and the counter Node Id Count of these stations
are not incremented at the normal time. The total delay until all nodes are in normal
mode corresponds to about 21 TDMA slots.

5 Conclusions

We have formally described, in the model of timed automata, the start-up algorithm
of a TDMA protocol for distributed systems with a broadcast bus. The protocol
model of the start-up algorithm is analysed for a system consisting of four stations
using the symbolic model-checking tool Uppaal. As veri�cation results we have
shown that the protocol model becomes operational after an initial start-up phase
which is bounded to, in the worst-case, 21 TDMA time slots. The worst-case scenario
occurs if there is a collision on the �rst transmission attempt.

The analysis presented in this paper applies to systems with four stations, or less.
Since many real system will contain more stations, this work will have to be extended.
However, even the four station model is large compared with other examples veri�ed
using symbolic model-checking techniques. Consequently, an extension to �ve or
more nodes will be very challenging.

As regards the protocol functionality, the DACAPO protocol uses ordinary mes-
sages in the start-up phase and distributes data during this period. Although it may
take several TDMA slots before all nodes have reached normal mode, this therefore
does not mean that the communication service is unavailable for the duration of that
period. This can be compared to the Time Triggered Protocol (TTP), where a Black-
out monitoring mode is entered when synchronisation is lost. In Blackout monitoring
mode, special frames containing current time and system status are sent, but user
data is not distributed. Also, if a node loses synchronisation while the rest of the
ensemble continues normal operation, it must wait for a re-integration frame to be
broadcast. These are only sent periodically, as de�ned by the applications program-
mer. Including system time in each frame as in DACAPO does cause some overhead,
but single-node recovery can be done very rapidly and re-integration frames can be
avoided altogether.
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A Appendix
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Note: Calculations involving idcount i are made modulo #nodeant.

Figure 9: Timed Automaton Describing a Station.
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Clock Variables

bitclock i The local clock source for station #i
Busclock The bus clock source. Used to enforce immediate delivery

of messages

Integer Variables

idcount i node id of the owner of the current TDMA time slot.
silence i number of TDMA time slots without bus activity.
errcount i number of empty or erroneous messages. Increased on TDMA

slots with empty or erroneous messages.
busid node id in the message on the bus.
n Number of stations in normal mode. Used for invariant

expressions during veri�cation.

Actions

SOF Start Of Frame indication. Used to synchronise bit clock
and start message reception

JAM Bus activity indication. Used to synchronise bit clock.
FTOBUS Indicates that a frame is broadcast to the bus.
FFROMBUS Indicates that a frame is removed from the bus.
JAMTOBUS Indicates that a frame is broadcast to the bus while it

is busy (Resulting in a corrupted frame)
JAMFROMBUS Indicates that a corrupted frame is removed from the bus.

Constants

#frameper Time between start of a TDMA slot, 224.
#frametime Length of a message frame, 218.
#jamtime Maximum duration of a tranmission of a corrupted

message, 219.
#nodeant Number of nodes in the system, 4.
#nodemax The largest node id used (#nodeant-1) 3.
#winsize The size of the reception window, 2.
#halfwin The midpoint of the reception window (#winsize/2), 1.
#noid Bus id used to indicate an idle bus, 99.
#errmax Maximum number of errors tolerated in Normal mode

( b(#nodeant� 1)=2c), 1.
#silenttime Number of silent TDMA slots before entering

Recover Mode -1 (#nodeant-1), 3.
#i Local node id, in the interval [0:::#nodemax].

Table 2: Clock Variables, Integer Variables and Constants Used in the Automata.
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Abstract. In this paper, we report on an application of the validation and veri�cation
tool kit Uppaal in the design and analysis of a prototype gear controller, carried out in a
joint project between industry and academia. We give a detailed description of the formal
model of the gear controller and its surrounding environment, and its correctness formalised
according to the informal requirements delivered by our industrial partner of the project.
The second contribution of this paper is a solution to the problem we met in this case
study, namely how to use a tool like Uppaal, which only provides reachability analysis to
verify bounded response time properties. The advantage of our solution is that we need no
additional implementation work to extend the existing model-checker, but simple manual
syntactical manipulation on the system description.

1 Introduction

Over the past few years, a number of modeling and veri�cation tools for real-time
systems [HHWT95, DOTY95, BLL+96] have been developed based on the theory
of timed automata [AD94]. They have been successfully applied in various case-
studies [BGK+96, JLS96, SMF97]. However, the tools have been mainly used in
the academic community, namely by the tool developers. It has been a challenge
to apply these tools to real-sized industrial case-studies. In this paper we report on
an application of the veri�cation tool-kit Uppaal to a prototype gearbox controller
developed in a joint project between industry and academia. The project has been
carried out in collaboration between Mecel AB and Uppsala University.

The gearbox controller is a component in the real-time embedded system that
operates in a modern vehicle. The gear-requests from the driver are delivered over
a communication network to the gearbox controller. The controller implements the
actual gear change by actuating the lower level components of the system, such as the
clutch, the engine and the gearbox. Obviously, the behavior of the gearbox controller
is critical to the safety of the vehicle. Simulation and testing have been the traditional
ways to ensure that the behavior of the controller satis�es certain safety requirements.
However these methods are by no means complete in �nding errors though they are
useful and practical. As a complement, formal techniques have been a promising
approach to ensuring the correctness of embedded systems. The project is to use
formal modeling techniques in the early design stages to describe design sketches, and
to use symbolic simulators and model checkers as debugging and veri�cation tools to
ensure that the predicted behavior of the designed controller at each design phase,
satis�es certain requirements under given assumptions on the environment where the
gearbox controller is supposed to operate. The requirements on the controller and
assumptions on the environment have been described by Mecel AB in an informal
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document, and then formalised in the Uppaal model and a simple linear-time logic
based on the Uppaal logic to deduce the design of the gearbox controller.

We shall give a detailed description of the formal model of the gearbox controller
and its surrounding environment, and its correctness according to the informal re-
quirements delivered by Mecel AB. Another contribution of this paper is a lesson we
learnt in this case study, namely how to use a tool like Uppaal, which only pro-
vides reachability analysis to verify bounded response time properties e.g. if f 1 (a
request) becomes true at a certain time point, f 2 (a response) must be guaranteed to
be true within a time bound. We present a logic and a method to characterise and
model-check response time properties. The advantage of this approach is that we
need no additional implementation work to extend the existing model-checker, but
simple manual syntactical manipulation on the system description.

Uppaal
1 is a tool suite for validation and symbolic model-checking of real-time

systems. It consists of a number of tools including a graphical editor for system
descriptions (based on Autograph), a graphical simulator, and a symbolic model{
checker. In the design phase the symbolic simulator of Uppaal is applied intensively
to validate the dynamic behavior of each design sketch, in particular for fault detec-
tion, derivation of time constraints (e.g. the time bounds for which a gear change
is guaranteed) and later also for debugging using diagnostic traces (i.e. counter ex-
amples) generated by the model-checker. The correctness of the gearbox controller
design has been established by automatic proofs of 47 logical formulas derived from
the informal requirements speci�ed by Mecel AB. The veri�cation was performed in
a few seconds on a Pentium PC 2 running Uppaal version 2.12.2.

The paper is organised as follows: In the next section we present a simple logic to
characterise safety and response time properties and a method to model-check such
properties. In section 4 and 5 the gearbox controller system and its requirements are
informally and formally described. In section 6 the formal description of the system
and its requirements are transformed using the technique developed in section 3 for
veri�cation by reachability analysis. Section 7 concludes the paper. Finally, in an
appendix, we enclose the formal description of the whole system.

2 A Logic for Safety and Bounded Response Time

Properties

At the start of the project, we found that it was not so obvious how to formalise (in the
Uppaal logic) the pages of informal requirements delivered by the design engineers.
One of the reasons was that our logic is too simple, which can express essentially
only invariant properties. It later became obvious that these requirements could be
described in a simple logic, which can be model-checked by reachability analysis in
combination with a certain syntactical manipulation on the model of the system to be
veri�ed. We also noticed that though the logic is so simple, it characterises the class

1Further information on installation and documentation for Uppaal is available at
http://www.docs.uu.se/uppaal/.

22.99 seconds on a Pentium 75MHz equipped with 24 MB of primary memory.
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of logical properties veri�ed in all previous case studies where Uppaal is applied (see
e.g. [BGK+96, JLS96]).

2.1 Timed Transition Systems and Timed Traces

A timed transition system is a labeled transition system with two types of labels:
atomic actions and delay actions (i.e. positive reals), representing discrete and con-
tinuous changes of real-time systems.

Let A be a �nite set of actions and P be a set of atomic propositions. We use
IR+ to stand for the set of non-negative real numbers, � for the set of delay actions
f�(d) j d 2 IR+g, and � for the union A [� ranged over by �; �1; �2 etc.

De�nition 2.1 (Timed Transition System) A timed transition system over A
and P is a tuple S = hS; s0;�!; V i, where S is a set of states, s0 is the initial
state, �!� S � � � S is a transition relation, and V : S ! 2P is a proposition
assignment function. 2

A trace � of a timed transition system is an in�nite sequence of transitions in the
form:

� = s0
�0�! s1

�1�! s2
�2�! : : : sn

�n�! sn+1 : : :

where �i 2 �. A position � of � is a natural number. We use �[�] to stand for
the �th state of �, and �(�) for the �th transition of �, i.e. �[�] = s� and �(�) =

s�
���! s�+1. We use �(s

�
�! s0) to denote the duration of the transition, de�ned by

�(s
�
�! s0) = 0 if � 2 A or d if � = �(d). Given positions i; k with i � k, we use

D(�; i; k) to stand for the accumulated delay of � between the positions i; k, de�ned
by D(�; i; k) =

P
i�j<k �(�(j)). We shall only consider non-zeno traces.

De�nition 2.2 (Non-Zeno Traces) A trace � is non-zeno if for all natural number
T there exists a position k such that D(�; 0; k) > T . For a timed transition system
S, we denote by Tr(S) all non-zeno traces of S starting from the initial state s0 of
S. 2

Note that the timed transition system de�ned above can also be represented �nitely as
a network of timed automata. For the de�nition of such networks, we refer to [LPY95,
LPY97]. Let A be a network of timed automata with components A1 : : : An. We
denote by Tr(A) all non-zeno traces of the timed transition system S i.e. Tr(A) =
Tr(S).

2.2 The Logic: Syntax and Semantics

The logic may be seen as a timed variant of a fragment of the linear temporal logic
LTL, which does not allow nested applications of modal operators. It is to express
invariant and bounded response time properties.
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(l; u) j= g i� g(u)
(l; u) j= p i� p 2 V (l)

(l; u) j= :f i� (l; u) 6j= f
(l; u) j= f1 ^ f2 i� (l; u) j= f 1 and (l; u) j= f 2

� j= INV(f) i� 8i : �[i] j= f
� j= f 1 ;�T f2 i� 8i : (�[i] j= f 1 ) 9k � i : (�[k] j= f 2 and D(�; i; k) � T ))

Table 1: De�nition of Satis�ability.

De�nition 2.3 (State-Formulas) Assume that C is a set of clocks and P is a �nite
set of propositions. Let Fs denote the set of state-formulas over C and P ranged over
by f; f 1; f 2 etc. de�ned as follows:

f ::= g j p j :f j f 1 ^ f2

where p 2 P is an atomic proposition and g is an atomic clock constraint in the form
x � n or x�y � n for x; y 2 C, � 2 f<;�;=;�; >g and n being a natural number.2

As usual, we use f 1 _ f2 to stand for :(:f 1 ^ :f 2), and tt and � for :f _ f and
:f ^ f respectively. Further, we use f 1 ) f 2 to denote :f 1 _ f2.

De�nition 2.4 (Trace-Formulas) The set Ft ranged over by ';  of trace-formulas
over Fs is de�ned as follows:

' ::= INV(f) j f 1 ;�T f 2

where T is a natural number. If f 1 and f2 are boolean combinations of atomic propo-
sitions, we call f1 ;�T f 2 a bounded response time formula. 2

INV(f) states that f is an invariant property. A system satis�es INV(f) if all its
reachable states satisfy f . It is useful to express safety properties, that is, bad things
(e.g. deadlocks) should never happen, in other words, the system should always be-
have safely. f1 ;�T f2 is similar to the strong Until-operator in LTL, but with an
explicit time bound. In addition to the time bound, it is also an invariant formula.
It means that as soon as f1 is true of a state, f2 must be true within T time units.
However it is not necessary that f1 must be true continuously before f 2 becomes true
as required by the traditional Until-operator.

We shall call a formula of the form f1 ;�T f2 a bounded response time formula.
Intuitively, f1 may be considered as a request and f 2 as a response; thus f 1 ;�T f 2
speci�es the bound for the response time to be T .

We interpret Fs and Ft in terms of states and (in�nite and non-zeno) traces of
timed automata. We write (l; u) j= f to denote that the state (l; u) satis�es the state-
formula f and � j= ' to denote that the trace � satis�es the trace-formula '. The
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p1;p2
l2

l1

r00g0

a0

l

r0 g00
a00

g a r
: : :

q1;q2
: : :

Figure 1: Illustration of a timed automaton A.

interpretation is de�ned on the structure of f and ', given in Table 1. Naturally, if all
the traces of a timed automaton satisfy a trace-formula, we say that the automaton
satis�es the formula.

De�nition 2.5 Assume a network of automata A and a trace-formula '. We write
A j= ' i� � j= ' for all � 2 Tr(A). 2

3 Verifying Bounded Response Time Properties

by Reachability Analysis

The current version of Uppaal3 can only model-check invariant properties by reach-
ability analysis. The question is how to use a tool like Uppaal to check for bounded
response time properties i.e. how to transform the model-checking problem A j=
f 1 ;�T f 2 to a reachability problem. A standard solution is to translate the for-
mula to a testing automaton t (see e.g. [JLS96]) and then check whether the parallel
system Ajjt can reach a designated state of t.

We take a di�erent approach. We modify (or rather decorate) the automaton A
according to the state-formulas f1 and f 2, and the time bound T and then construct
a state-formula f such that

M(A) j= INV(f) i� A j= f 1 ;�T f 2

where M(A) is the modi�ed version of A.
We study an example. As usual, assume that each node of an automaton is

assigned implicitly a proposition at(l) meaning that the current control node is l.
Consider an automaton A illustrated in Figure 1 and a formula at(l1);�3 at(l2) (i.e.
it should always reach l2 from l1 within 3 time units). To check whether A satis�es
the formula, we introduce an extra clock c 2 C and a boolean variable4 v1 into the
automaton A, that should be initiated with �. Assume that the node l1 has no local
loops, i.e. containing no edges leaving and entering l1. We modify the automaton A
as follows:

3The current version of Uppaal is 2.12.2.
4Note that a boolean variable may be represented by an integer variable in Uppaal.
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1. Duplicate all edges entering node l1.

2. Add :v1 as a guard to the original edges entering l1.

3. Add v1 := tt and c := 0 as reset-operations to the original edges entering l1.

4. Add v1 as a guard to the auxiliary copies of the edges entering l1.

5. Add v1 := � as a reset-operation to all the edges entering l2.

The modi�ed (decorated) automatonM(A) is illustrated in Figure 2. Now, we claim
that

M(A) j= INV(v1 ) c � 3) i� A j= at(l1);�3 at(l2)

The invariant property v1 ) c � 3 states that either :v1 or if v1 then c � 3. There
is only one situation that violates the invariant: v1 and c > 3. Due to the progress
property of time (or non-zenoness), the value of c should always increase. It will
sooner or later pass 3. But if l2 is reached before c reaches 3, v1 will become �.
Therefore, the only way to keep the invariant property true is that l2 is reached
within 3 time units whenever l1 is reached.

The above method may be generalised to e�ciently model-check response time
formulas for networks of automata. Let AA(f) denote the set of atomic propositions
occurring in a state-formula f . Assume a network A and a response time formula
f1 ;�T f 2. For simplicity, we consider the case when only atomic propositions occur
in f 1 and f2. Note that this is not a restriction, the result can be easily extended to
the general case which also allows clock constraints in f 1 and f2. We introduce to A
the following auxiliary variables:

1. an auxiliary clock c 2 C and an boolean variable v1 (to denote the truth value
of f 1), and

2. an auxiliary boolean variable vp for all p 2 AA(f1) [ AA(f2).

Assume that all the booleans of AA(f1);AA(f2) and v1 are initiated to �.
Let E(f) denote the boolean expression by replacing all p 2 AA(f) with their

corresponding boolean variable vp. As usual, E(f)[tt=vp] denotes a substitution that
replaces vp with tt in E(f). This can be extended in the usual way to set of substi-
tutions. For instance, the truth value of f at a given state s may be calculated by
E(f)[tt=vpjp 2 V (s)][�=vpjp 62 V (s)].

Now we are ready to construct a decorated version M(A) for the network A. We
modify all the components Ai of A as follows:

1. For all edges of Ai, entering a node l1 such that V (l1) \ AA(f1) 6= ;:

(a) Make two copies of each such edge.

(b) To the original edge, add v1 as a guard.

(c) To the �rst copy, add :v1 ^ E(f1)[tt=vpjp 2 V (l1)] as a guard and c :=
0; v1 := tt and vp := tt for all p 2 V (l1) as reset-operations.

(d) To the second copy, add :v1^:E(f 1)[tt=vpjp 2 V (l1)] as a guard and vp := tt
for all p 2 V (l1) as reset-operations.

2. For all edges of Ai leaving a node l1 such that V (l1) \ AA(f1) 6= ;: add vp := �
for all p 2 V (l1) as reset-operations.
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r [ fc := 0; v1 := ttg

Figure 2: Illustration of a modi�ed timed automaton M(A) of A.
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ag ^ v1 r

Figure 3: Illustration of a modi�ed timed automaton M(Ai) of Ai.

3. For all edges of Ai entering a node l2 such that V (l2)\AA(f 2) 6= ;: add :E(f 2)^
E(f2)[tt=vqjq 2 V (l2)] as a guard and v1 := � as a reset-operation.

4. Finally, remove vp := tt and vp := � whenever they occur at the same edge5.

Thus, we have a decorated versionM(Ai) for each Ai of A. Assume that a component
automaton Ai is as illustrated in Figure 1; its decorated version M(Ai) is shown in
Figure 3. We shall take M(A1) jj : : : jjM(An) to be the decorated version of A, i.e.
M(A) � M(A1) jj : : : jj M(An). For a bounded response time formula f 1 ;�T f2,
we now have

M(A) j= INV(v1 ) c � T ) i� A j= f 1 ;�T f 2

Note that we could have constructed the product automaton of A �rst. Then the
construction ofM(A) from the product automaton would be much simpler. But the
size ofM(A) will be much larger; it will be exponential in the size of the component
automata. Our construction here is purely syntactical based on the syntactical struc-
ture of each component automaton. The size of M(A) is in fact linear in the size of
the component automata. It is particularly appropriate for a tool like Uppaal, that
is based on on-the-y generation of the state-space of a network. For each component

5This means that a proposition p is assigned to both the source and the target nodes of the edge;
vp must have been assigned tt on all the edges entering the source node.
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automaton A, the size ofM(A) can be calculated precisely as follows: In addition to
one auxiliary clock c and jP (f1) [ P (f 2)j boolean variables in M(A), the number of
edges of M(A) is 3� j �!A j where j �!A j is the number of edges of A (note that
no extra nodes introduced in M(A)).

Note also that in the above construction, we have the restriction that f 1 and f 2
contain no constraints, but only atomic propositions. The construction can be easily
generalised to allow constraints by considering each constraint as a proposition and
decorating each location (that is, the incoming edges) where the constraint could
become true when the location is reached. In fact, this is what we did above on the
boolean expressions (constraints) E(f1) and E(f2).

4 The Gear Controller

In this section we informally describe the functionality and the requirements of the
gear controller proposed by Mecel AB, as well as the abstract behavior of the envi-
ronment where the controller is supposed to operate.

4.1 Functionality

The gear controller changes gears by requesting services provided by the compo-
nents in its environment. The interaction with these components is over the vehicles
communication network. A description of the gear controller and its interface is as
follows.

Interface: The interface receives service requests and keeps information about the
current status of the gear controller, which is either changing gear or idling.
The user of this service is either the driver using the gear stick or a dedicated
component implementing a gear change algorithm. The interface is assumed to
respond when the service is completed.

Gear Controller: The only user of the gear controller is its interface. The controller
performs a gear change in �ve steps beginning when a gear change request
is received from the interface. The �rst step is to accomplish a zero torque
transmission, making it possible to release the currently set gear. Secondly
the gear is released. The controller then achieves synchronous speed over the
transmission and sets the new gear. Once the gear is set the engine torque
is increased so that the same wheel torque level as before the gear change is
achieved.

Under di�cult driving conditions the engine may not be able to accomplish zero
torque or synchronous speed over the transmission. It is then possible to change
gear using the clutch. By opening the clutch, and consequently the transmission,
the connection between the engine and the wheels is broken. The gearbox is at
this state able to release and set the new gear, as zero torque and synchronous
speed is no longer required. When the clutch closes it safely bridges the speed
and torque di�erences between the engine and the wheels. We refer to these
exceptional cases as recoverable errors.
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The environment of the gear controller consists of the following three components:

Gearbox: It is an electrically controlled gearbox with control electronics. It provides
services to set a gear in 100 to 300 ms and to release a gear in 100 to 200 ms.
If a setting or releasing-operation of a gear takes more than 300 ms or 200 ms
respectively, the gearbox will indicate this and stop in a speci�c error state.

Clutch: It is an electrically controlled clutch that has the same sort of basic services
as the gearbox. The clutch can open or close within 100 to 150 ms. If a opening
or closing is not accomplish within the time bounds, the clutch will indicate this
and reach a speci�c error state.

Engine: The engine o�ers three modes of operation: normal torque, zero torque,
and synchronous speed. The normal mode is normal torque where the engine
gives the requested engine torque. In zero torque mode the engine will try to
�nd a zero torque di�erence over the transmission. Similarly, in synchronous
speed mode the engine searches zero speed di�erence between the engine and
the wheels6. The maximum time bound searching for zero torque is limited to
400 ms within which a safe state is entered. Furthermore, the maximum time
bound for synchronous speed control is limited to 500 ms. If 500 ms elapse the
engine enters an error state.

We will refer the error states in the environment as unrecoverable errors since it is
impossible for the gear controller alone to recover from these errors.

4.2 Requirements

In this section we list the informal requirements and desired functionality on the gear
controller, provided by Mecel AB. The requirements are to ensure the correctness of
the gear controller. A few operations, such as gear changes and error detections, are
crucial to the correctness and must be guaranteed within certain time bounds. In
addition, there are also requirements on the controller to ensure desired qualities of
the vehicle, such as: good comfort, low fuel consumption, and low emission.

1. Performance. These requirements limit the maximum time to perform a gear
change when no unrecoverable errors occur.

(a) A gear change should be completed within 1.5 seconds.

(b) A gear change, under normal operation conditions, should be performed
within 1 second.

2. Predictability. The predictability requirements are to ensure strict synchro-
nisation and control between components.

(a) There should be no deadlocks in the system.

(b) When the engine is regulating torque, the clutch should be closed.

(c) The gear has to be set in the gearbox when the engine is regulating torque.

6Synchronous speed mode is used only when the clutch is open or no gear is set.
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Figure 4: A Flow-Graph of the Gearbox System.

3. Functionality. The following requirements are to ensure the desired function-
ality of the gear controller.

(a) It is able to use all gears.

(b) It uses the engine to enhance zero torque and synchronous speed over the
transmission.

(c) It uses the gearbox to set and release gears.

(d) It is allowed to use the clutch in di�cult conditions.

(e) It does not request zero torque when changing from neutral gear.

(f) The gear controller does not request synchronous speed when changing to
neutral gear.

4. Error Detection. The gear controller detects and indicates error only when:

(a) the clutch is not opened in time,

(b) the clutch is not closed in time,

(c) the gearbox is not able to set a gear in time,

(d) the gearbox is not able to release a gear in time.

5 Formal Description of the System

To design and analyse the gear controller we model the controller and its environment
in the Uppaal model [LPY97]. The modeling phase has been separated in two
steps. First a model of the environment is created, as its behavior is speci�ed in
advance as assumptions (see Section 4.1). Secondly, the controller itself and its
interface are designed to be functionally correct in the given environment. Figure 4
shows a ow-graph of the resulting model where nodes represent automata and edges
represent synchronisation channels or shared variables (enclosed within parenthesis).
The gear controller and its interface are modeled by the automata GearControl (GC)
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and Interface (I). The environment is modeled by the three automata: Clutch (C),
Engine (E), and GearBox (GB).

The system uses six variables. Four are timers that measure 1=1000 of seconds
(ms): GCTimer, GBTimer, CTimer and ETimer. The two other variables, named
FromGear and ToGear, are used at gear change requests7. In the following we describe
the �ve automata of the system.

The three automata of the environment model the basic functionality and time
behavior of the components in the environment. The components have two channels
associated with each service: one for requests and one to respond when service have
been performed.

Gearbox: In automaton GearBox, shown in Figure 5, inputs on channel ReqSet
request a gear set and the corresponding response on GearSet is output if the
gear is successfully set. Similarly, the channel ReqNeu requests the neutral gear
and the response GearNeu signals if the gear is successfully released. If the
gearbox fails to set or release a gear the locations named ErrorSet and ErrorNeu
are entered respectively.

Clutch: The automaton Clutch is shown in Figure 8. Inputs on channels Open-

Clutch and CloseClutch instruct the clutch to open and close respectively.
The corresponding response channels are ClutchIsOpen and ClutchIsClosed.
If the clutch fails to open or close it enters the location ErrorOpen and ErrorClose
respectively.

Engine: The automaton Engine, shown in Figure 6, accepts incoming requests for
synchronous speed, a speci�ed torque level or zero torque on the channels
ReqSpeed, ReqTorque and ReqZeroTorque respectively. The actual torque level
or requested speed is not modeled since it does not a�ect the design of the gear
controller8. The engine responds on the channels TorqueZero and SpeedSet

when the services have been completed. Requests for speci�c torque levels (i.e.
signal ReqTorque) are not answered, instead torque is assumed to increase im-
mediately after the request. If the engine fails to deliver zero torque or syn-
chronous speed in time, it enters location CluthOpen without responding to the
request. Similarly, the location ErrorSpeed is entered if the engine regulates on
synchronous speed in too long time.

Given the formal model of the environment, the gear controller has been designed to
satisfy both the functionality requirements given in Section 4.1, and the correctness
requirements in Section 4.2

Gear Controller: The GearControl automaton is shown in Figure 7. Each main loop
implements a gear change by interacting with the components of the environ-
ment. The designed controller measures response times from the components
to detect errors (as failures are not signaled). The reaction of the controller

7The domains of FromGear and ToGear are bounded to f0; :::; 6g, where 1 to 5 represent gear 1
to gear 5, 0 represents gear N, and 6 is the reverse gear.

8Hence, the time bound for �nding zero torque (i.e. 400 ms) should hold when decreasing from
an arbitrary torque level.
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depends on how serious the occurred error is. It either recovers the system from
the error, or terminates in a pre-speci�ed location that points out the (unre-
coverable) error: COpenError, CCloseError, GNeuError or GSetError. Recoverable
errors are detected in the locations CheckTorque and CheckSyncSpeed.

Interface: The automaton Interface shown in Figure 9, requests gears R, N, 1, ..., 5
from the gear controller. Requests and responses are sent through channel Req-
NewGear and channel NewGear respectively. When a request is sent, the shared
variables FromGear and ToGear are assigned values corresponding to the current
and the requested new gear respectively.

6 Formal Validation and Veri�cation

In this section we formalise the informal requirements given in Section 4.2 and prove
their correctness using the symbolic model-checker of Uppaal.

To enable formalisation (and veri�cation) of requirements, we decorate the system
description with two integer variables, ErrStat and UseCase. The variable ErrStat
is assigned values at unrecoverable errors: 1 if Clutch fails to close, 2 if Clutch fails
to open, 3 if GearBox fails to set a gear, and 4 if GearBox fails to release a gear. The
variable UseCase is assigned values whenever a recoverable error occurs in Engine:
1 if it fail to deliver zero torque, and 2 if it is not able to �nd synchronous speed.
The system model is also decorated to enable veri�cation of bounded response time
properties, as described in Section 3.

Before formalising the requirement speci�cation of the gear controller we de�ne
negation and conjunction for the bounded response time operator and the invariant
operator de�ned in Section 3,

A j= '1 ^ '2 if and only if A j= '1 and A j= '2

A j= :' if and only if A 6j= '

We also extend the (implicit) proposition at(l) to at(A; l), meaning that the control
location of automaton A is currently l. Finally, we introduce Poss(f) to denote
:INV(:f), f 1 6;�T f 2 to denote :(f 1 ;�T f 2), and A:l to denote at(A; l). We are
now ready to formalise the requirements.

6.1 Requirement Speci�cation

The �rst performance requirement 1a, i.e. that a gear change must be completed
within 1.5 seconds given that no unrecoverable errors occur, is speci�ed in prop-
erty 1. It requires the location GearChanged in automaton GearControl to be reached
within 1.5 seconds after location Initiate has been entered. Only scenarios without
unrecoverable errors are considered as the value of the variable ErrStat is speci�ed
to be zero9. To consider scenarios with normal operation we restrict also the value

9Recall that the variable ErrStat is assigned a positive value (i.e. greater than zero) whenever
an unrecoverable error occurs.
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GearControl:Initiate ;�1500

(( ErrStat = 0 ) ) GearControl:GearChanged) (1)

GearControl:Initiate;�1000

(( ErrStat = 0 ^ UseCase = 0 ) ) GearControl:GearChanged) (2)

Clutch:ErrorClose ;�200 GearControl:CCloseError (3)

Clutch:ErrorOpen ;�200 GearControl:COpenError (4)

GearBox:ErrorIdle ;�350 GearControl:GSetError (5)

GearBox:ErrorNeu ;�200 GearControl:GNeuError (6)

INV ( GearControl:CCloseError ) Clutch:ErrorClose ) (7)

INV ( GearControl:COpenError ) Clutch:ErrorOpen ) (8)

INV ( GearControl:GSetError ) GearBox:ErrorIdle ) (9)

INV ( GearControl:GNeuError ) GearBox:ErrorNeu ) (10)

INV ( Engine:ErrorSpeed ) ErrStat 6= 0 ) (11)^
i2fR;N;1;:::;5g

Poss ( Gear:Geari) (12)

INV ( Engine:Torque ) Clutch:Closed ) (13)^
i2fR;1;:::;5g

INV(( GearControl:Gear ^ Gear:Geari) ) Engine:Torque) (14)

Table 2: Requirement Speci�cation

of variable UseCase to zero (i.e. no recoverable errors occurs). Property 2 requires
gear changes to be completed within one second given that the system is operating
normally.

The properties 3 to 6 require the system to terminate in known error-locations that
point out the speci�c error when errors occur in the clutch or the gear (requirements
4a to 4d). Up to 350 ms is allowed to elapse between the occurrence of an error and
that the error is indicated in the gear controller. The properties 7 to 10 restrict the
controller design to indicate an error only when the corresponding error has arised in
the components. Observe that no speci�c location in the gear controller is dedicated
to indicate the unrecoverable error that may occur when the engines speed-regulation
is interrupted (i.e. when location Engine.ErrorSpeed is reached). Property 11 requires
that no such location is needed since this error is always a consequence of a preceding
unrecoverable error in the clutch or in the gear.

Property 12 holds if the system is able to use all gears (requirement 3a). Further-
more, for full functionality and predictability, the system is required to be deadlock-
free (requirement 2a).

The properties 13 and 14 specify the informal predictability requirements 2b and
2c.

A number of functionality requirements specify how the gear controller should
interact with the environment (e.g. 3a to 3f). These requirements have been used
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GearControl:Initiate ;<900

(( ErrStat = 0 ^ UseCase = 0 ) ) GearControl:GearChanged) (15)

GearControl:Initiate 6;�899

(( ErrStat = 0 ^ UseCase = 0 ) ) GearControl:GearChanged) (16)

Table 3: Time Bounds

to design the gear controller. They have later been validated using the simulator in
Uppaal and have not been formally speci�ed and veri�ed.

Time Bound Derivation

Property 1 requires that a gear change should be performed within one second. Even
though this is an interesting property in itself one may ask for the lowest time bound
for which a gear change is guaranteed. We show that the time bound is 900 ms for
error-free scenarios by proving that the change is guaranteed at 900 ms (property 15),
and that the change is possibly not completed at 899 ms (property 16). Similarly, for
scenarios when the engine fails to deliver zero torque we derive the bound 1055 ms,
and if synchronous speed is not delivered in the engine the time bound is 1205 ms.

We have shown the shortest time for which a gear change is possible in the three
scenarios to be: 150 ms, 550 ms, and 450 ms. However, gear changes involving
neutral gear may be faster as the gear does not have to be released (when changing
from gear neutral) or set (when changing to gear neutral). Finally, we consider the
same three scenarios but without involving neutral gear by constraining the values of
the variables FromGear and ToGear. The derived time bounds are: 400 ms, 700 ms
and 750.

Veri�cation Results

We have veri�ed totally 47 properties of the system10 using Uppaal installed on a
75 MHz Pentium PC equipped with 24 MB of primary memory. The veri�cation of
all the properties consumed 2.99 second.

7 Conclusion

In this paper, we have reported an industrial case study in applying formal techniques
for the design and analysis of control systems for vehicles. The main output of the
case-study is a formally described gear controller and a set of formal requirements.
The designed controller has been validated and veri�ed using the tool Uppaal to
satisfy the safety and functionality requirements on the controller, provided by Mecel

10A complete list of the veri�ed properties can be found in the full version of this paper.
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AB. It may be considered as one piece of evidence that the validation and veri�cation
tools of today are mature enough to be applied in industrial projects.

We have given a detailed description of the formal model of the gear controller
and its surrounding environment, and its correctness formalised in 47 logical formulas
according to the informal requirements delivered by industry. The veri�cation was
performed in a few seconds on a Pentium PC runningUppaal version 2.12.2. Another
contribution of this paper is a solution to a problem we got in this case study, namely
how to use a tool like Uppaal, which only provides reachability analysis to verify
bounded response time properties. We have presented a logic and a method to
characterise and model{check such properties by reachability analysis in combination
with simple syntactical manipulation on the system description.

This work concerns only one component, namely gear controller of a control sys-
tem for vehicles. Future work, naturally include modelling and veri�cation of the
whole control system. The project is still in progress. We hope to report more in the
near future on the project.
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A The System Description
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Figure 5: The Gearbox Automaton.
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Figure 6: The Engine Automaton.
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Figure 7: The Gearbox Controller Automaton.
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Figure 8: The Clutch Automaton.
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Figure 9: The Interface Automaton.
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