Milardalen University Press Licentiate Theses
No. 152

TOWARDS A GUIDELINE FOR
REFACTORING OF EMBEDDED SYSTEMS

Sara Dersten

2012

TN
[ VW 4
MALARDALEN UNIVERSITY
SWEDEN

School of Innovation, Design and Engineering



Copyright © Sara Dersten, 2012

ISBN 978-91-7485-070-3

ISSN 1651-9256

Printed by Mdlardalen University, Vdsteras, Sweden



Abstract

The electronics in automotive systems give great possibilities. It has contrib-
uted to environmental improvements through reduced emissions and reduced
fuel consumption, safety, driver assistance, and quality through better diag-
nostic capabilities.

Automotive systems are today distributed embedded systems that consist
of several nodes that communicate with each other. The increasing possibili-
ties have led to a situation where functions that used to be stand-alone, are
today dependent on several inter-connected systems which all contribute to
the desired functionality. This has increased the costs and the complexity to
deal with the systems.

The automotive industry is adopting a new open software architecture,
called AUTOSAR, that is intended to reduce the complexity. AUTOSAR
also gives possibilities for coping with large product ranges and for compo-
nent sharing. The introduction of AUTOSAR is an example of an architec-
ture change without modifying the external functionality. We have chosen to
call such changes system refactoring.

However, if the introduction of AUTOSAR is not successfully performed,
there are risks for delayed development projects, which are costly for the
automotive companies. Unfortunately, existing engineering standards and
literature focus mostly on new product development and less on system re-
factoring, and this gap needs to be filled. The goal of this research is to pro-
vide guidelines for refactoring, which provides support throughout the com-
plete process of system architects in efforts to refactor the system.

This thesis identifies the characteristics of refactoring processes. This is
done by empirical studies of the drivers behind refactoring, the effects we
can expect from refactoring, and the process activities and characteristics.
The result can be used to create guidelines for improving the work of refac-
toring.






Acknowledgements

Starting doctoral studies was a type of life refactoring. To successfully per-
form this task, | needed support. There are several persons that have contrib-
uted to this support, consciously or unconsciously.

My supervisor, Jakob Axelsson, has supported me during the entire pro-
cess. He helped me structuring my research work and finding relevant ques-
tions and, still, he always let me chose my own ways. My co-supervisor,
Joakim Froberg, helped me get started, both with practicalities and with the
study plans. For a short time, | had the privilege to have Rikard Land, as a
second co-supervisor, who was a co-author of my first and best written pa-
per. | have at Volvo CE the pleasure to work with Nils-Erik Bankestad. He
has during my research studies, especially in the last part, supported me with
interesting ideas for research. The rest of my colleagues, at the E/E system
architecture department, have been very understanding when my focus has
been on my studies instead of current department issues. Several persons at
the research community have been significant for me. It was Christer Nor-
strom that convinced me to start the doctoral studies. Before | accepted, |
consulted Johan Kraft to find out more. | had many laughs with my former
roommates, Rafia Inam and Saad Mubeen. Later | got the opportunity to
share room with Stefan Cedergren, Peter Wallin, Hakan Gustavsson, Anton
Jansen, Anders Wall, and Stig Larsson, who all gave me more insight into
the business aspects of electronics. Daniel Sundmark gave me valuable
comments on my thesis proposal. | learned a lot when assisting Gordana
Dodig-Crnkovic, Jan Gustafsson and Daniel Flemstrom in courses. All prac-
tical problems were smoothly solved by Monica Wasell and Carola Rytters-
son. In fact, all doctoral students and personnel at Mélardalen University are
very nice. Unfortunately, there is limited space to mention everyone, since |
want this section to fit in one page.

My dear friends, Jasmin and Isabell, have been very understanding when |
have been occupied writing papers or travelling to conferences.

My family, has shown great patience and made lots of sacrifices, so | fi-
nally could complete this task, especially my nearest and dearest, Christian
and Ylva.

Thank you all for supporting me.






List of Papers

This thesis is based on the following papers.

Paper A

Paper B

Paper C

Paper D

Dersten, S., Froberg, J., Axelsson, J., Land, R. (2010) Analy-
sis of the Business Effects of Software Architecture Refactor-
ing in an Automotive Development Organization. Proceed-
ings of the 36th EUROMICRO Conference on Software Engi-
neering and Advanced Applications (SEAA) 2010, 269-278

Dersten, S., Axelsson, J., Froberg, J. (2011) Effect Analysis
of the Introduction of AUTOSAR. A Systematic Literature
Review. Proceedings of the 37th EUROMICRO Conference
on Software Engineering and Advanced Applications (SEAA)
2011, 239-246

Dersten, S., Axelsson, J., Froberg, J. (2012) An empirical
study of refactoring decisions in embedded software and sys-
tems. Proceedings of the Conference on Systems Engineering
Research (CSER) 2012, 8: 279-284

Dersten, S., Axelsson, J., Froberg, J. (2012) Characteristics of
a System Refactoring Process in Embedded Systems Devel-
opment. Submitted to the 7th Workshop on SHAring and Re-
using architectural Knowledge (SHARK) 2012






Contents

1.

INEFOAUCTION ...t 1
1.1 Complexity in automotive SYStEMS .........cccvevveiieiiiiiesieseese e 2
1.2 Automotive development..........coviiiiieiiiiee e 2
1.3 SysStem arChiteCtUre .........covviiiiiiie e 4
1.4 TheSiS OULIINE ...ccueceiiiciee e 6

RESEAICN SCOPE ...t 7
2.1 Problem formulation ..........ccooviiiiieiiiis e 7
2.2 REeSEArCh QUESTIONS........ccvviieiitiriiiierieiee e 9
2.3 ReSearch Method.........cccveueiviieie e 9

RESUILS ...t st ne s 19
3.1 Which effects can be expected from a system refactoring?............. 19
3.2 What are the drivers of system refactoring decisions?.................... 25
3.3 What would a guideline need to contain to support system
FETACTONING? . e e 28
3.4 DISCUSSION ...cuviieiesiesieteeieete sttt sttt sttt e e neeneeneas 33

REIALEA WOIK.......oeiiieiee sttt 41
4.1 Drivers of refaCtoring.......cccooveiiiiirineneieeese e 41
4.2 Effects from refactoring ..o 42
4.3 The system architecture process and the role of the architect......... 45
4.4 DeCiSION-MAKING ......eieeiiieiiie e e 46

(070 0T [155] o] o PSSR 51
5.1 CoNtriDULION ..o 51
5.2 FULUIE WOIK ..o 52

R T ENCES . ... ettt ettt e e e e e e e ettt e e e e e r e e raaaaen 53



Abbreviations

ABS
AHP
ALMA
ATAM
AUTOSAR
AYC
CBAM
COTS
EBD
ECU
EMC
ESC
ESP
OEM
ROI
SAAM
SW-C
TCS
VFB

Antilock brake system

Analytic hierarchy process
Architecture level modifiability analysis
Architecture trade-off analysis method
Automotive open system architecture
Active yaw control

Cost benefit analysis method
Commercial off the shelf

Electronic brake force distribution
Electronic control unit
Electromagnetic compatibility
Electronic stability control

Electronic stability program

Original equipment manufacturer
Return on investment

Software analysis architecture method
Software component

Traction control system

Virtual functional bus



1. Introduction

Automotive systems are large distributed systems that consist of several
inter-connected electronic control units. In automotive systems the com-
plexity has increased to a level where it becomes very hard to adapt to new
technologies in order to fulfill new customer, environmental and legal re-
guirements. One reason is that the electronics system constitutes a more im-
portant part of the functionality and the business around it. The functions
that before were managed by stand-alone systems, are today dependent on
several inter-connected systems which all contribute to the desired function-
ality. Therefore, a system architecture, i.e. a structure for the system and its
components, is needed to ensure that desired requirements are met.

Lately there have been several major recalls of vehicles from different au-
tomotive producers [1-3]. The increasing complexity of the automotive elec-
tronic systems is blamed for those incidents. To deal with the problem manu-
facturers and automotive suppliers together developed an open standardized
architecture for automotive systems. The result is a common software archi-
tecture for automotive systems called AUTOSAR. The automotive industry
hopes that AUTOSAR will reduce this complexity.

Companies world-wide are now introducing AUTOSAR into their prod-
ucts. This means that the architecture is changed, without any changes in
product functionality that is visible to the user. We have chosen to call such
changes system refactoring.

However, introducing AUTOSAR may not be as easy as the companies
think. It will give effects, not only in the electronics systems, but also across
the company organization. Production systems have to be adjusted; the de-
velopment environment needs to be updated; and processes and responsibili-
ties have to be developed. If these factors are not set in time, the develop-
ment projects that are going to use the new software architecture may be
delayed.

A missed deadline is very costly and the automotive companies want to
avoid this. Therefore, there is a need for the companies to prepare them-
selves in time before the introduction of AUTOSAR. Current practices and
the processes described in the systems engineering standards are mostly con-
centrating on new product development and less on system refactoring. We
think there is a gap here that needs to be filled. Therefore we aim to provide
guidelines for system refactoring to be used in the architecture process. The



goal of the research behind this licentiate thesis is to acquire the required
knowledge for constructing these guidelines.

1.1  Complexity in automotive systems

The complexity in automotive systems can be demonstrated by the Electron-
ic Stability Control (ESC), also referred to as Electronic Stability Program
(ESP). It improves safety by recognizing unstable driving conditions and
taking appropriate actions. To prevent over-steering and under-steering,
braking is applied to the vehicle wheels. ESC is common in all types of ve-
hicles, including cars, trucks and busses [4, 5]. ESC relies on several other
vehicle systems: Antilock Brake System (ABS), a safety system which pre-
vents the wheels from locking up; Electronic Brake force Distribution
(EBD), a system that varies the braking force applied on each wheel; Trac-
tion Control System (TCS), a system which regulates the power supplied to
the wheels; and Active Yaw Control (AYC), a system that uses an active
differential to transfer torque to the wheels that have the best grip on the
road. Traditionally each of these systems consists of at least one electronic
control unit (ECU) which together with connected sensors and actuators
handles system functionality. Nowadays, modern systems must be able to
cooperate across different domains. These interconnections add dependen-
cies in the system, like temporal dependencies or state dependencies of con-
trol units [6].

1.2  Automotive development

The development of automotive systems usually uses a product-line ap-
proach and component-based development. Introducing these methodologies
in a traditional system includes refactoring since the system has to be adjust-
ed to fit a new component model or product platform. For that reason, we
have based our research and literature studies on the introduction of these
development approaches. We will here give a brief background to them.

1.2.1  Component-based development

In component based development software systems are built from existing
components. This means that components can be reused and shared between
product releases and product variants. The advantages are reductions of
time-to-market, development cost and maintenance cost [7, 8]. Since a re-
used component is already used and tested in different contexts, there might
also be a possibility that the component is more reliable than a newly devel-
oped component. The components used in component based development

2



can be developed in-house, bought from an external subsystem developer or
as off-the-shelf components (COTS).

1.2.2 Component-based development in automotive systems
using AUTOSAR

AUTOSAR (AUTomotive Open System Architecture) [9] is a component-
based model for automotive systems. It provides a common software infra-
structure for automotive systems based on standardized interfaces and com-
ponents. Key features are modularity, configurability, standardized interfac-
es and a runtime environment. A layered software platform facilitates the
achievement of the technical goals modularity, scalability, transferability and
reusability of components. Automotive manufacturers and suppliers hope
that AUTOSAR will help managing complexity.

In the AUTOSAR architecture, each ECU incorporates a basic software
component which includes infrastructural services such as operating system
functionality, vehicle network communication, memory services, diagnostics
and ECU state management. The basic software component is built as a lay-
ered structure where each layer is abstracted from the lower layers and hence
independent of hardware implementations. The application layer is located
on top of the basic software. An application is built up by one or several
AUTOSAR software components (SW-Cs) that are located on one ECU or
distributed on several ECUs. The AUTOSAR SW-C contains parts of the
application functionality and is atomic, meaning that it only can be located
on one ECU. The AUTOSAR SW-Cs can also be responsible for handling of
specific sensors or actuators.

The AUTOSAR SW-Cs are communicating through the Virtual function-
al bus (VFB), a middleware responsible for mapping of communication mes-
sages. Usually the address and source information in the communication
messages are specified by the sending application component. In the AU-
TOSAR methodology the address and source information of all communica-
tion messages are configured in system development. During run-time this
information is mapped to each message by the VFB. This methodology re-
quires specific development tools to help OEMs (Original Equipment Manu-
facturers), and suppliers to design and map SW-Cs, ECUs, networks, sensors
and actuators.

1.2.3  Product-line development

Another example of a typical system refactoring is the introduction of prod-
uct-lines. The idea with product-lines is to reuse the same basis, a platform,
in several members of a product family. The platform methodology is nor-
mally structured as layers, as components or as a combination of these. On



top of this platform each specific product adds its own core functionality or
features. In this way, one can concentrate on specific properties of each
product member instead of inventing the same things over and over again.
One example is construction equipment. Both an articulated hauler and a
wheel loader need power management and communication between elec-
tronic control units. However, they differ a lot in core functionality. The
wheel loader needs to have complicated control for lifting its arms when the
articulated hauler might have advanced suspension systems.

The reason why product-lines are so beneficial are not only due to re-use
of software code [7]. Product-line approaches save time during the require-
ment phase since almost all requirements can be reused between products
and releases. Also many architectural problems are already solved and the
system architects can concentrate on core functionality. Other aspects such
as project planning might also be easier when less functionality has to be
developed in each project. One important factor for a successful utilization
of a product-line approach is variability management [10]. However, there
might be several issues related to the introduction [11]. The use of product-
line architecture requires increased knowledge by the engineers. Other prob-
lems are conflicting quality requirements of components in different context
or in different products.

1.3  System architecture

Refactoring of the system and its infrastructure involves selection of tech-
nology solutions and leads to compromises between desired, but conflicting,
characteristics; activities which typically involve system architects. Usually,
the general system architecture process focuses on the early phases of system
development, when structural and conceptual decisions are made for a new
product. The process of refactoring includes the same types of decisions,
even though there are significant differences. In a typical scenario for refac-
toring, an architecture that supports multiple products and product genera-
tions already exists, when a revision is needed to meet future demands. This
architecture must be improved to meet the desired properties. As both a gen-
eral architecture process and a refactoring need to consider system proper-
ties, we have chosen to use the general system architecture process as a start-
ing point for studying refactoring. This section will briefly explain what
system architecture is.



1.3.1 Definition of system architecture

There are many definitions of system architecture. In this thesis the IEEE
definition [12] is used:
“The fundamental organization of a system embodied in its compo-

nents, their relationships to each other, and to the environment, and
the principles guiding its design and evolution.”

In embedded systems this relates both to software and hardware. It might be
how the software is organized and allocated to the hardware, choice of
communication protocol and physical links, but also which development
environment to use.

1.3.2  System architecture as Lego blocks

System architecture can be exemplified by building a Lego construction.
First we have to define the structure of the Lego blocks, or the components.
We must decide how the blocks fit together, e.g. the bulges on top the
blocks, and their dimensions, e.g. length and width. Second, we have to de-
fine the relation between the blocks, or components. We may decide that a
yellow Lego block always must be placed on a red block. Third, we must
decide the environment to build our construction on. In the Lego case, we
might choose a Lego plate where we attach the lower layer of the Lego
blocks. Fourth, we have to give some guidelines for the design and devel-
opment of the construction. It may be to start building the construction from
the bottom and up. Figure 1 illustrates system architecture as a construction
of Lego blocks.

Figure 1. System architecture illustrated as Lego blocks. The black plate corre-
sponds to a system platform on which system components are connected through
well-defined interfaces (bulges).

In reality, these blocks are software code or hardware components. When
we refer to these components, we mean components on different levels. Both
in hardware and software components are often composed of other compo-
nents. Sometimes the component itself is a system, with its own architecture.



These components, or sometimes subsystems, have interfaces which they
use to communicate with other components. For a hardware component this
interface is often a connector to which an electrical wire is connected. For a
software component, the interface might be a shared memory space, a sock-
et, or a procedure call.

The environment that we build the system on might be an operating sys-
tem, such as Linux, and for hardware the printed circuit board, where our
components are mounted. The system cannot be a system by itself without
any communication with the outer world. It must be able to input and output
data from its environment. In a car this input might be a signal saying that
the driver is braking. An output may be a tell-tale saying the car engine is
out of oil.

Before designing a system, a procedure or principle for how to construct
it must be set. We can choose if any software should be included or not. We
can choose if we are going to construct the system from our existing compo-
nents from earlier developed systems, or if we are going to create everything
from the beginning. We must also decide if we follow strict routines. A cru-
cial step, before constructing the system, is of course to decide the aim of the
system, if any specific requirements have to be fulfilled, and if certain rules
have to be obeyed for the completed system. We must also know about
which budget we have.

1.4  Thesis outline

This introduction is followed by Section 2 that formulates the research prob-
lem with corresponding research questions and explains the research meth-
ods used for answering these questions. In Section 3, the results are present-
ed and discussed. Section 4 gives an overview of related literature and re-
search. Section 5 concludes the thesis results and contributions, and proposes
future work. The thesis is followed by an appendix with the appended pa-
pers.



2.  Research scope

This section will present the research problem and the stated research ques-
tions, followed by the method we used to answer these questions. The four
empirical studies we have conducted will also be presented, and these are
further described in the appended papers.

2.1 Problem formulation

Many companies that develop embedded systems will at some point perform
a refactoring of their system architecture. One example is Volvo CE, a pro-
vider of construction equipment. To cope with a product range of at least
150 machine models, Volvo CE uses a product-line approach where an elec-
tronics platform is shared between the products. This platform includes in-
ternal and external system communication, diagnostics, logging, I/0O han-
dling, systems handling etc. On top of it, machine specific applications are
added. Volvo CE is now facing an updating of the platform. The next archi-
tecture is AUTOSAR based and includes technology, methods, and tools for
the electronics systems of all products developed by the VVolvo group.

The change to the new architecture may affect many aspects of Volvo CE
electronics systems, such as aftermarket tools, software structure, communi-
cation protocols and development tools. The system architects at Volvo CE
have a major work ahead of them, but still know little about how the compa-
ny and the products will be affected. If the new platform is not successfully
introduced, there are risks of delayed development projects.

Several standards for system development exist today. For the architect,
the standard ISO/IEC 42010 [12] is of interest. It concerns how architectural
descriptions should be expressed to facilitate communication around, and the
development of, the architecture. ISO/IEC 15288 [13] describes the life cy-
cle processes associated with human-made systems, and also processes
needed for support of the life cycle processes. It is aligned with ISO/IEC
12207 [14] which is more concerned with the development of software sys-
tems. IEEE 1220 [15] gives a more detailed description of the life cycle pro-
cesses than the other two. There are also a number of books in the area of
system architecting, such as “The method framework for engineering system
architectures” by Firesmith et al. [16], “Software architecture in practice” by
by Bass et al. [7] or “System Architecting” by Muller [17].



All these standards and books mostly concentrate on the development of
new products or new features, and contain only some smaller elements of
processes for system evolution. Despite the extensive literature, there is a
lack of descriptions of activities in the system refactoring process. Most lit-
erature and research focus on new product development.

This gap between existing development knowledge and the system refac-
toring process causes problems for the system architects at Volvo CE and at
other companies. It is not easy to understand the benefits and costs, and to
explain how it will affect the company in terms of reduced costs and hence
motivate management about the proposed changes. When the system archi-
tect detects the need of refactoring the system, he needs to argue why extra
resources are required on system architecture activities. He needs to investi-
gate how the changes affect the system and the organization, and how the
organization should be prepared. During this process many decisions must
be made under time constrained conditions. The problems that may occur
are:

e Poor predictions of effects on development effort and costs, due to sys-
tem adjustments, education needs, new test environment etc.

¢ Risk of important stakeholders missed or involved late, from aftermar-
ket, product planning, production etc.

e Risk of unwanted or unplanned technical effects when performing refac-
toring, e.g. quality problems, and supplier compatibility.

e Risk of unwanted or unplanned organizational effects when performing
refactoring, e.g. undefined roles, responsibilities, and processes.

e Lack of organizational support, due to poor communication between
system architects and management, and between co-workers.

o Risk of delayed time-to-market, due to poor planning and unexpected
effects.

The purpose of our research is to find out how we can help the system ar-
chitect in the work of refactoring a system and from that create a guideline.
The guideline will assist the system architect in preparing and explaining
system refactoring to the organization. This thesis describes the initial re-
search where the guideline is outlined by exploring the system refactoring
process.



2.2  Research questions

Three research questions have been stated to explore the system refactoring
process.

2.2.1 RQ 1: Which effects can be expected from a system
refactoring?

We believe that system refactoring causes effects on both system properties
and on the principles for its development and evolution. We also believe that
system refactoring causes effects throughout the whole life cycle of the
product, and the corresponding processes in the company.

By answering this question we will understand the consequences of a sys-
tem refactoring, in terms of impacts on system properties, on the company
and on their intra- and interrelationships. This is important for decisions
relating to the choice of the technical solution, and to planning and prepara-
tions of system refactoring changes.

2.2.2 RQ2: What are the drivers of system refactoring
decisions?

We believe that the drivers behind refactoring of embedded systems are both
business-related and technical. We also believe that practicing system archi-
tects tend to analyze the technical aspects more than the business aspects.

By answering this question we can guide the system architect when col-
lecting information and performing analyses, that will be used as decision-
support by management.

2.2.3 RQ3: What would a guideline need to contain to support
system refactoring?

We believe that certain activities are more important than others, in the sys-
tem refactoring process. We also believe that the characteristics of the pro-
cess differ from the normal system architecting process. We also believe
there is a difference in the need of guidance to succeed with an activity.

By answering this question we will understand what activities need to be
described in a guideline for the system refactoring process.

2.3  Research method

The starting point was to help Volvo CE prepare themselves for a system
refactoring, but we saw a knowledge gap of the system refactoring process



and its effects. Therefore, we chose to gather information from companies
developing products with similar systems. To answer our research questions,
we have chosen to look at the system refactoring process in companies pro-
ducing distributed embedded systems, especially for automotive systems.

Most of our studies have been in Swedish companies. In total, 15 compa-
nies and 44 respondents have been involved in our studies. This is because
of availability, and because they are representative of other similar compa-
nies in the world. The studied companies have their operations or parts of
operations spread around the globe, with activities in Europe, Asia, North
America, and South America. However, three companies have their devel-
opment organization located only in Sweden. We have studied system refac-
toring from the perspective of electronics systems development as spectators
that tried to penetrate into the process from outside to collect data from the
visited companies or from other studies.

Our research process can be described as a cycle, oscillating between the-
ory and reality. We had a purpose and knew what to achieve, which raised a
first question. To answer this question, we chose relevant methods of data
collection and analysis. Using the knowledge we received from reality we
were able to start fill the theory knowledge gap and identify new issues that
were needed to be answered to fill the gap completely. This research process
is illustrated in Figure 2

Objective THEORY
’ Y
Analysis .
Validation Question
Data collection Method

REALITY &=

Figure 2. An illustration of the research process oscillating between theory and
reality.

10



The research described in this thesis can be described as a first step to-
wards achieving our ultimate goal, which is to create a guideline for the sys-
tem refactoring process to be used by system architects. Therefore the first
part is descriptive, where different phenomena have been explored, with the
purpose to describe the reality today. The questions we have been asking are
of the exploring type “What?”. We have chosen to look at the characteristics
that describe the system refactoring process, i.e. what starts the process, what
is included in the process and what the outcome of the process is.

SYSTEM REFACTORING PROCESS
N

L J \ J
i |
STUDYC STUDY D STUDY A & STUDY B

Figure 3. The relation between the four conducted studies and the system refactor-
ing process.

The empirical collecting of data has been mainly qualitative. The methods
used for collecting data are case studies [18, 19], systematic literature re-
views [18, 20], interviews [18], and survey questionnaires [18]. Both qualita-
tive and quantitative analyses have been performed on the collected data.
This inductive approach is suitable when we try to create general theories
from human experiences and from environments where a lot of complex
relationships reign [21].

Four studies were conducted to answer our three stated research ques-
tions. The relationships between the studies and the investigated parts of the
process are illustrated in Figure 3. Below, we will present the four studies in
terms of purpose, method, analysis and validity threats. For one conducted
case study, the context is further explained to give background of the com-
pany situation. The validity threats [18], we are discussing in this section are
against:

Construct validity is related to the ability of the results to be generalized to
theory and concerns the design of the experiment.

Internal validity is related to the fact that the results are a causal effect of the
used methodology.

11



External validity is related to the ability to be generalized into practice.

Conclusion validity is related to the ability to draw the correct conclusion
about relations between the treatment and outcome.

2.3.1 Study A. An explorative case study of system
refactoring effects

Purpose

To answer the first research question an explorative case study was per-
formed in a company that was going to perform a major system refactoring.
The study aimed to investigate the introduction phase of the software archi-
tecture at Volvo CE, a producer of construction equipment. We wanted to
see how the company was affected by changes in different architectural ele-
ments in terms of costs and benefits.

Context

Volvo CE is part of the Volvo group, which is one of the world’s leading
suppliers of commercial transport solutions with products like trucks, busses,
construction equipment, drive systems for marine and industrial applications,
and aircraft engine components. Today the Volvo group has customers all
over the world, mainly in Europe, Asia and Northern America.

Volvo 3P is responsible for product planning and global vehicle devel-
opment for the global truck operations of the entire VVolvo group. In order to
manage the increasing complexity of the electronics systems in new genera-
tion vehicles, Volvo 3P has performed a radical system refactoring on the
electrical and electronic architecture and introduced AUTOSAR (see Section
1.3). Volvo 3P hopes that this will reduce the development cost, give more
flexibility to meet new technologies and standards, to be able to be first on
the market with new features, to meet brand differentiation while maintain-
ing a high degree of commonality, and to achieve multi-site development.

Volvo CE is a producer of construction equipment. Their product range
includes 150 different machines, such as wheel loaders, excavators, haulers,
and road machinery. The electronics system constitutes an increasingly im-
portant part of the functionality in a modern construction machine. In order
to meet the demands on business, safety, and development time Volvo CE
adapts the development method to a more product-line oriented approach
based wholly on an electronics system platform. This includes working on
development processes, architecture, tools, and system modeling.

By sharing tools and components, such as engines, within the Volvo
group, the companies can take advantage of higher volumes and reduced
costs. Therefore, Volvo CE will also adapt to the new Volvo 3P architecture.
The architecture consists of a common software platform which includes

12



communication, diagnostics, logging, mode management and power state
management.

Method

This study was based on interviews with 11 persons at different positions in
the electronics development department of Volvo CE. The new architecture
was also investigated through reading specifications. The interview ques-
tions had a life cycle perspective and were related to effects on system prop-
erties and the company when introducing the new system architecture. The
interviews were performed in a semi-structured way. Pre-defined questions
were constructed but also followed by deeper questions related to the given
answers. To ensure that all matters were covered the interviews ended by
giving the respondents the opportunity to share additional information. The
interviews were audio recorded and notes were taken. Each interview was
summarized in text and sent to the respondents for approval before analysis.

The method was chosen because of its explorative character. Interviews
gave the possibility to get the answers that were not expected when planning
the study.

Analysis
After data extraction, the identified effects were mapped into a matrix. The
matrix rows corresponded to the architecture element that caused the effect.
The columns were divided into two parts, capturing affected system proper-
ties and affected company functions, respectively.

In this way we were able to identify what in the company or in the elec-
tronics system that was affected by a change in a certain architecture ele-
ment, and also how it was affected.

Validity

When analyzing the extracted data from the answers we constructed an anal-
ysis matrix that helped us ensure that all relevant effects had been consid-
ered, which strengthened the construct validity of the study. The study re-
sults were based on expectations prior to performing the refactoring and
therefore the internal validity was not evaluated. The study was conducted at
a specific company and therefore the situation at another company could
differ and the results may not be directly applicable at a different company
or on a different architecture.

Presentation

The study was presented at the 36th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA) in Lille 2010.

13



2.3.2  Study B. A systemic literature review of AUTOSAR
effects

Purpose

Since the first study only investigated effects from system refactoring in one
company an additional study was conducted to help answer the first research
question. The AUTOSAR architecture will be adopted by almost the entire
automotive industry in Europe and Asia. Therefore AUTOSAR gave an op-
portunity to study the implementation of the same architecture in several
products and hence an opportunity to compare reported effects of system
refactoring with each other. Hence a systematic literature review of imple-
mentations of AUTOSAR gave the possibility to summarize these reported
effects. The results also strengthened the internal validity of Study A.

Method

A systematic literature search was made for papers describing experiences
from introducing AUTOSAR.

Analysis

The analysis was performed in a similar way as in Study A. An analysis
matrix was constructed where each identified reported effect was mapped to
the elements in AUTOSAR that caused the effect, and to the functions in the
company that were affected and properties of the system.

Validity

Since the architecture is introduced stepwise in products and so far only to
some extent, only a small sample was found, and which threatened the inter-
nal validity. To deal with construct validity a review protocol was devel-
oped, where background, objectives, research questions, strategy, sources,
and search criteria were pre-defined, according to the advices of Kitchenham
[20]. During the process all the found literature and the exclusion criteria
have been documented. As the implementation of a specific architecture was
studied the results might not be directly applicable for implementations of
other architecture. Still, this is an automotive standard and therefore there
might be a possibility to generalize the results to other implementations of
the same architecture in other automotive companies not covered by this
study. There are initiatives in other industrial domains, such as avionics [22],
that share similar features, and thus a possibility exists for some results to be
applicable in those domains.

Presentation

The result of the study was presented at the 37th EUROMICRO Conference
on Software Engineering and Advanced Applications in Oulu 2011.

14



2.3.3 Study C. Scenario-based interviews of system
refactoring drivers

Purpose

The aim of the third study was to find the drivers behind a decision of sys-
tem refactoring and to answer our second research question.

Method

14 interviews were conducted at eight companies that produce distributed
embedded systems. The respondents were persons used to make decisions
about the system architecture and amongst them were seven system archi-
tects and seven managers at different levels in electronics development. The
companies and respondents were chosen from their availability and willing-
ness to participate.

All interviews began by giving a start scenario to the respondent. The
start scenario represented a suggestion of a change to be made in the embed-
ded systems in the companies’ products. The respondent was then asked to
request the information he needed to complete the decision of whether the
system change should be performed or not. After the respondent answered,
additional pre-defined information related to the requested information was
given. The respondent was once again asked to request the information he
needed to complete the decision. This procedure was repeated until the re-
spondent answered that he was able to complete the decision or at least make
a recommendation.

If the respondent asked for information that was not pre-defined and nev-
er requested in the previous studies, new information was created