
Fixed-Priority Preemptive Scheduling Semantics
of AADL in UPPAAL Timed Automata

Andreas Johnsen

School of Innovation, Design and Engineering
Mälardalen University

Väster̊as, Sweden
andreas.johnsen@mdh.se

The scheduling automaton providing the required thread execution semantics
is shown in Figure 1. The labels of the scheduling automaton are defined as
follows:

– (int)ready queue[x]: is a sorted queue of currently dispatched threads. The
queue is sorted according to a given scheduling policy where the first element
in the queue (x=0) is the (identifier of the) thread being processed and where
the second element is the next thread to be processed, and so forth.

– (clock)sch clocks[x][2]: is a list of clocks in sets of two, each set referenced
by an identifier x of a currently dispatched thread. Each dispatched thread
has two clocks, the first (sch clocks[x][0] of thread with identifier x) is used
to keep track of a thread’s execution time, and the second (sch clocks[x][1]
of thread with identifier x) is used to keep track of a thread’s deadline.

– (int)sch info[x][3]: is a list of threads’ scheduling properties (integers) in sets
of three, each set referenced by an identifier x of a currently dispatched
thread. Each dispatched thread has three scheduling properties, the first
(sch info[x][0] of thread with identifier x) is the execution time, the sec-
ond (sch info[x][1] of thread with identifier x) is the deadline, and the third
(sch info[x][2] of thread with identifier x) is the priority. Note that the re-
quired properties are related to a given scheduling policy. For example, we
consider priorities of threads since we assume a fixed priority scheduler in
this particular example.

– (int)preempt stack[x][2]: is a stack of sets of currently preempted threads
(integer identifiers) and the amount time each thread has been preempted.
Given a stack of preempted threads, the first set of elements in the stack
(preempt stack[0][0] is the thread identifier and preempt stack[0][1] is the
amount of time) corresponds to the thread that first was preempted.

– (int)nr preempted: number of currently preempted threads.
– (int)threads: number of currently dispatched threads.
– (int)check preempt: holds the identity of a thread that is dispatched at the

same time as another thread is running. It is used to check if the dispatched
thread preempts the running thread.

– (chan)dispatched[(int)x],(chan)run[(int)x],
(chan)complete[(int)x],(chan)preempt[(int)x]: are channels used to synchro-
nize every thread transition of every thread in the system. Synchronization



with a particular thread is done through its identity. For example, run[2] is
a synchronization channel with thread having identity equal to 2.

– (void)schprotocol((int)x): is a function sorting threads in the ready queue
according to a given scheduling policy. The function is called each time a
thread dispatches where the thread’s identity is given as argument to the
function. In this example, we assume fixed priority scheduling.

– (void)completion((int)x): is a function removing threads from the ready queue.
The function is called each time a thread completes its execution, where the
thread’s identity is given as argument to the function.

– (void)addTime(): is a function adding preempted time to the threads in the
preempt stack. The function is called when a preemption occurs, whereupon
the execution time of the thread causing the preemption is added to the
preemption time of every preempted thread.

– (void)checkTime((int)x): is a function adding preempted time to the threads
in the (int)preempt stack[x][2] stack. The function is called when a thread-
dispatch not causing any preemption occurs, to check if the dispatched thread
is prior to any preempted threads in the ready queue whereupon preemption
time is added.

MissedDeadline

PreemptionSchedule2

Running
sch_clocks[ready_queue[0]][0]<=
sch_info[ready_queue[0]][0]+preemptedTime()

Schedule1Empty

sch_clocks[ready_queue[0]][1]>sch_info[ready_queue[0]][1]

((nr_preempted==0) or (nr_preempted>0 and ready_queue[0]!=preempt_stack[nr_preempted-1][0]))
and sch_clocks[ready_queue[0]][0]>=sch_info[ready_queue[0]][0]

complete[ready_queue[0]]!

completion(ready_queue[0]),
threads--

(nr_preempted>0 and preempt_stack[nr_preempted-1][0]
!=ready_queue[0]) or nr_preempted==0

run[ready_queue[0]]!

sch_clocks[ready_queue[0]][0]=0

nr_preempted>0 and preempt_stack[nr_preempted-1][0]
==ready_queue[0]

run[ready_queue[0]]!

nr_preempted>0 and ready_queue[0]==preempt_stack[nr_preempted-1][0] and 
sch_clocks[ready_queue[0]][0]>=sch_info[ready_queue[0]][0]+preemptedTime()

complete[ready_queue[0]]!

completion(ready_queue[0]),
preempt_stack[--nr_preempted][1]=0,
threads--

run[ready_queue[0]]!

sch_clocks[ready_queue[0]][0]=0

ready_queue[0]==check_preempt
preempt[ready_queue[1]]!

preempt_stack[nr_preempted++][0]=ready_queue[1],
addTime()

ready_queue[0]!=check_preempt
checkTime(check_preempt)

i: int[0,N-1]
dispatched[i]?

schprotocol(i),
sch_clocks[i][1]=0,
threads++,
check_preempt = i

threads==0

threads>0

i: int[0,N-1]

dispatched[i]?

schprotocol(i),
sch_clocks[i][1]=0,
checkTime(i),
threads++

i: int[0,N-1]

dispatched[i]?

schprotocol(i),
sch_clocks[i][1]=0,
threads++

Fig. 1. The scheduler automaton.



runningready

awaiting_dispatch

cl <= Period

complete[Identifier]?

Connection_3 = OutputPort_1,
Connection_4 = OutputPort_2

preempt[Identifier]?

run[Identifier]?

cl >= Period
dispatched[Identifier]!

InputPort_1 = Connection_1,
InputPort_2 = Connection_2,
sch_info[Identifier][0]=C_E_T,
sch_info[Identifier][1]=C_D,
sch_info[Identifier][2]=Priority,
cl=0

Fig. 2. Example of a thread automaton controlled by the scheduler


