
A method for analyzing architectural drivers when
engineering a system architecture

Applied in a case of developing an automotive drive system platform

Joakim Fröberg, Stig Larsson
School of Innovation, Design and Engineering

Mälardalen University
Sweden

[joakim.froberg,stig.larsson]@mdh.se

Per-Åke Nordlander
BAE Systems AB

Örnsköldsvik, Sweden
per-ake.nordlander@baesystems.se

Abstract— A very important task in systems architecting is to
understand the needs of the system and identify which ones have
architectural ramifications, i.e., architectural drivers. The
understanding of architectural drivers enables the later
engineering tasks including evaluation of architectural
alternatives. Systems engineering guidelines provide models and
advice for what information entities to consider, but only limited
proposals of how to proceed. In this paper, we device and present
a method to perform analysis of architectural drivers and we
apply it to an industrial case of developing a hybrid electric drive
system for heavy automotive applications. We present data on
what practitioners expect from such a method, we present the
method and rationale, and preliminary results from applying the
method to the case. We note that the process and information
model are fairly general and could be considered useful for any
developer of a complex system. We believe the proposed method
closes some of the gap between the general models described in
the system engineering guidelines and an industrially applicable
method.

 Keywords—system architecture; architecture analysis;
architectural requirements; automotive systems

I. INTRODUCTION
Engineering the architecture of a system involves some of

the decisions that, more than others, affect the outcome of a
development effort in terms of meeting system goals, achieving
system qualities and overall project success. Inadequate
definition of system architecture accounts for a large portion of
the rework costs [1] and a flawed architecture is generally
considered to be one of the reasons that a system fails to meet
its goals [2]. The system architecting process include many of
the key elements of the systems engineering process and span
from identifying needs and crucial design considerations to
performing decision-making among alternatives. A very
important task in systems architecting is to understand the
needs of the system and identify which ones have architectural
ramifications, i.e., architectural drivers. The understanding of
architectural drivers enables the later engineering tasks
including decision-making. Therefor it becomes very important
to have an effective method identify and structure the
architectural drivers for a particular system under development.

Systems engineering guidelines [3][4][5] do provide
models describing the involvement of artefacts, information

entities and concepts, but provide limited guidance of how to
proceed and perform the actual activities of architectural driver
analysis.

The system engineering guides are limited both in
preciseness of definition e.g., what defines an architectural
requirement, and in defining the relations between the
information entities. The guidance is also limited in process
description, e.g., what order to proceed through the work tasks.
Knowing what information to search for and how to proceed is
central. Such questions need to be considered by any
development team that faces an architectural driver analysis in
an actual case.

In this paper, we present a method to perform analysis of
architectural drivers and we apply it to an industrial case of
developing a hybrid electric drive system for heavy automotive
applications. The empirical findings of data on what
practitioners expect from such a method are presented together
with a detailed method description and rationale. Also, we
present preliminary results from the case study.

The objective of this study is to define a method for
eliciting and defining architectural drivers, that is practically
useful in the studied case. We have earlier studied what
information is critical in a pre-study phase [6] and the results
from that phase are now used as a part of the input for
architectural driver analysis. The study includes finding the
expectations and criteria for method usefulness by the
architecture team involved in the case. The goal of analyzing
architectural drivers is to define architectural knowledge
enough to drive the later phases of analysis and decision-
making. We label all these activities as “analyzing architectural
drivers” in this paper and in the title.

The paper is structured as follows. Section II introduces the
central literature we have used to propose a method. Section III
describe the case that we have studied; the problems faced, and
the demands on a useful method as expressed by practitioners.
Section IV describes the considerations in forming the method.
Section V defines the proposed method and section VI outlines
results from using the method and discuss future work. Section
VII summarize and conclude the paper.

II. RELATED WORK
The method framework for engineering system

architectures, MFESA [3], is a framework for tailoring
methods for engineering a system architecture for a specific
development endeavor. Based on the context of the system, a
set of steps, and work products can be instantiated to form a
specialized method tailored for the particular case. The
MFESA framework gives a complete view of the field of
engineering a system architecture and divide the field into areas
covering ten different types of activities, as shown in Figure 1.
The framework gives an indication of the order in which tasks
are typically executed. Task number two, “Identify the
architectural drivers”, covers guidance for the activities related
to eliciting and analyzing the system requirements that have
architectural ramifications, i.e., architectural drivers. In this
study, we instantiate task 2, and add elements of other theories
to provide a workable method in the development project.

Figure 1. MFESA Architecting Tasks (figure from the MFESA framework)

The CAFCR model by Muller [4] describe a wide range of
aspects of the system architecting process including advice for
understanding customer objectives and application. The model
proposes the use of stories and use cases for utilization in a
context of system architecting.

The Architecture tradeoff analysis method, ATAM [7],
provides a usable method to elicit usage scenarios by using a
technique of utility trees. You start with a stakeholder
expression of a utility, e.g., maintainability, and then break it
down into scenarios that are prioritized. These act as statements
against which the quality goals of the system will be judged.

The Quality Attribute Workshop, QAW [8] provide a
procedure to identify important quality attributes for software
architectures. The procedure utilizes scenarios to express
system usage, and provide a stepwise process for refining
scenarios.

Riedemann and Freitag [9] describe an overview of how to
utilize techniques for modeling system usage. Alexander and
Maiden [10] describe a classification of scenarios used for
system development and describe stories and use cases as two
types of scenarios. Cockburn [11] describe a full guide on how
and when to use a use case effectively.

III. CASE DESCRIPTION
The company we have studied, BAE Systems, has

previously developed a customizable hybrid electric drive
system intended for a few similar heavy automotive
applications. The goal of the development effort is now to
develop customizable hybrid electric drive systems to a large
number of products with a wider scope of applications. A
hybrid drive system should typically accommodate some of the
following functionalities: re- generation of motion energy,
optimized performance of motion actuators, optimized
combustion engine control, productivity enhancement. The
increased ability to control electric components compared to
conventional automotive components provide the possibility to
develop new functions that improve or optimize performance.
The success and quality of such a drive system is heavily
dependent on what fuel effectiveness and performance can be
achieved for each product in particular applications.

The drive system is intended for use in many automotive
applications and involves problems of adaptation and system
boundary. The design needs variability and flexibility enough
to accommodate vehicles that may have different architectures,
system decomposition and design philosophy. Examples of
design solutions that may well differ is paradigms for fault
handling, diagnostics, and modes of operation. Design of an
automotive subsystem will involve these types of complexity.

Developing a drive system platform may be performed at
the same time and coordinated with development of several
drive systems for specific applications. Platform development
is inter-twined with each individual development project and
provides and receives information and assets. As the
development progress, more automotive applications will be
considered.

In summary, the development effort that is studied in this
paper can be categorized as a complex mechatronic platform
for adaptation to a range of automotive applications.

A. The problem of engineering a workable method
When used, the MFESA produces a tailored system

architecting method for the specific effort that is being
undertaken. This tailored method does provide a model for how
to engineer system architectures. It describes which
information entities are useful and to some extent how they
relate to each other. It says, for instance, that architecturally
significant requirements can be classified into architectural
concerns, and from there architectural risks can be derived and
so on. But, it doesn’t say how. In order to achieve an
engineering procedure, we would need to decide on an ordered
process, and criteria for what to classify into different
information entities, and their relations. Looking into the task 2
of the MFESA, we note that definitions of the used information
entities and their relationships are lacking. It is left to the user
to tailor definitions of information entities, relations, and

process. So, for instance, it is not clear to a practitioner what
criteria to use to find the architectural risks or architectural
concerns, and furthermore it is left to the user to define how
these concepts relate to each other in the particular case. This
means we can choose to have each architectural risk derived
from architectural requirements, concerns or other things, with
one to many relationships if we judge useful. These choices
affect the procedure greatly.

In summary, the problem that the project group of our case
is facing is to define how to perform analysis of architectural
drivers in the case. A stepwise process is needed and
definitions of work products that fulfill the needs of later stages
of analysis and decision-making.

B. Practitioners expectations on method properties
The architecture team involved in the case expresses what

properties the envisioned method must exhibit. By depth
interviews in the pre-study phase and open discussions with the
team members we have listed a number of method properties,
MPs, that are desired in order to be considered useful in the
case.

• MP1: The method must produce a result that can be
used to compare alternative architectural solutions, and
evaluate suitability according to known criteria. Later
stages of architectural work must be provided with
good enough artifacts and information to support
decision-making.

• MP2: The project group of engineers wants a relatively
lightweight solution. The footprint of the method must
be in accordance with the project team size.

• MP3: The method must be simple in the sense that it is
explainable and structurally understandable. A method
that is difficult to explain would risk being distrusted.

• MP4: It is preferable to the greatest extent possible to
achieve a divide and conquer method where stepwise
results are achieved that can be individually addressed.
The method should not use a model where many
complex relations exist between the used artifacts.

• MP5: The method should select abstraction of artifacts
so that there is a manageable amount of artifacts.

• MP6: The method should avoid incomplete results that
need further elaboration in later stages, or at least a
way to clearly define criteria for how good is good
enough for the next stage. Preferably also a notion of
how complete the result is before advancing to later
stages.

IV. STEPS AND CONSIDERATIONS IN FORMING THE METHOD
We propose a method for architectural driver analysis. This

includes a structure and process for how to proceed with the
engineering activities. The goal of the method is to identify and
list the important system requirements with system architecture
ramifications. The method should exhibit, if possible, the
characteristics specified by the method properties, MPs. Here,
we describe how we selected each element of the method and
explain the choices we made when forming it.

A. Steps in defining the method
We have instantiated and tailored the MFESA guidelines

for performing the architectural driver analysis. We did this for
our context in the studied project. This work produced a list of
steps, and work products that should be used in the process of
architectural driver analysis. On top of this we have developed
the method by some additions and clarifications.

1. We altered the use of architecturally significant
requirements to the use of architecturally significant
use-cases as Muller proposes [4].

2. We defined concepts proposed by MFESA to a larger
extent and defined their relationships. We present a
UML diagram depicting concepts and their
relationships.

3. We proposed a stepwise process for carrying out the
work. We present an overview of the process with
steps and work products in a sequential procedure.

B. Adding a story and a use case
We want the architectural drivers developed as early as

possible in the development process. We want a low footprint.
We also want them to support later decision-making. The
stakeholder stories should be expressed so as to achieve these
goals. In order to define the architectural drivers, we can
choose to express the stakeholder statements in different ways.

The ATAM produce scenarios that are prioritized. These
act as statements against which the quality goals of the system
will be judged. In the same way, we want a list of statements
whose fulfillment can individually be estimated when
considering an architectural solution. The MFESA propose that
architecturally significant requirements are specified during the
requirements analysis phase and then propagated to a later
phase where they should be further elaborated and updated.
Considering, the MP1 and MP6 statements of our practitioners,
we decided to diverge from this suggestion of specifying needs
as exact requirements and then proceed to identify the
architecturally significant ones. Instead, we use the idea of
stories proposed in section 4.3 in Muller [4]. This would enable
judgments of fulfillment in much the same way as the ATAM
approach.

The stakeholder statements on what the system need to be
able to do needs to be analyzed, elaborated, and eventually
expressed as requirements. For the early phase of the
architecting process though, this will not suffice and complete
set of requirements will be finished too late. We choose to view
the statements as user stories. This enables interviewees to
express freely their statements and us to quickly interview and
document a large number of stories. A requirement is a more
formal statement that either will or will not be fulfilled. The
system shall follow a standard, shall exhibit a physical
property, shall perform a function. Architectural considerations
are not aimed at meeting the shall requirements. Architecting
needs to weigh together information on system use and
determine what architectural alternatives accommodate the
system qualities that are most important to the system usage.
The idea of architecture analysis is to aid in this difficult task.
A use-case or scenario lends itself to expressing a need in a

format where the stakeholder need can be described in a less
normative way.

We propose a stakeholder requirements workshop and
interviews where stakeholders from the complete lifecycle of
the platform system get to state their needs of the system. All
the statements are to be recorded in a list of stories.
Subsequently, we can elaborate on the list and identify the
architecturally significant stories. Having identified the
architecturally significant ones, we can proceed and develop
those into a set of corresponding, properly described, use cases.
We choose to refine user stories into use-cases and progress by
elaborating the architecturally significant ones by defining
detailed scenarios.

The ATAM propose the use of utility trees. On the system
architecture, as opposed to the software architecture level, we
do not want to restrict the stakeholder elicitation to encompass
only quality attributes and therefor we adopt the same
fundamental listing of stakeholder statements where fulfillment
can be estimated, but we do not adopt the structure of utility
trees. Rather, we let the stakeholder tell their story without too
much structure, and then elaborate to find the architecturally
significant stories and develop them into use-cases that act as
the need against which to judge fulfillment.

In later phases of architecting, when choosing between
alternative architectural mechanisms, we would rather have a

use-case description where an experienced engineer can judge
each alternative as supportive of the use-case in a continuous
scale. We choose to avoid using full requirements for the
purpose of architecting because it would delay the process and
they would provide non-optimal support for decision-making.

V. A METHOD FOR ANALYZING ARCHITECTURAL DRIVERS
We use three views to describe the proposed method of

analyzing architectural drivers.

• A process description with steps and work products.

• Definitions of the involved concepts.

• A concept relation diagram for the method.

1) Process description
The process for analyzing architectural drivers that we

propose includes the activities and work products as depicted
in Figure 2. Previous work indicates what information is
important in phases prior to the phase of analyzing architectural
drivers [6]. We assume that the system boundary and the
system stakeholders are identified. The MFESA model
describe a general set of advice showing process steps together
with input and output work products that should be considered
when planning an engineering architecture effort.

Figure 2. A process for architectural driver analysis.

The method for analysis of architectural drivers, that we
propose, start with the activity of eliciting stakeholder user
stories. Stakeholders tell user stories as a narrated description
of a sequence of events. These user stories can be elicited by
interviews or small workshops and should generate a list of
stakeholder user stories. Some level of quality control is
needed here and the list should be made free of stories that are
1, incomprehensible or 2, technical jargon is central or 3, no
sequence of events identifiable, e.g., a simple shall
requirement. The next step is to identify those stories that are
architecturally significant. We distinguish which ones are

architecturally significant based on the same principle as
proposed by the MFESA. The architecture team must identify
the architecturally significant product or process stories by
experienced discussion. The engineers judge what will have
architectural ramifications and affect the engineering of the
system architecture. Now, there is a list of architecturally
significant user stories, and the next step is to develop each into
a use-case.

A use case is a description of how the system is used in its
context including both functions and quantitative statements on
performance and other qualities. Typically a use-case needs

elaboration from the simpler style of a story. Each use case
should be elaborated until it has a success scenario that
includes potential variations, and the expected result. Any
system qualities that are involved should hold quantitative
statements. This step ends with having a use-case model of the
system in its complete life cycle.

For each use-case, the architecture team brainstorms, and
identifies architectural risks and opportunities, each with
estimates of probability and severity. Those are used to remove
too risky use-cases. Assigning architectural risk and
architectural opportunity was based on team judgment. In
effect, this step can reduce the scope and boundary of what the
system is to do.

Based on the use-cases, the architectural concerns should
be defined. An architectural concern is in our method, just like
in the MFESA, a cohesive set of architectural drivers; in our
case the drivers that are the architecturally significant use-
cases. Use cases that seem related to the same area of design
space are grouped together to form architectural concerns. The
architecture team analyzes the use-case and identifies
architectural concerns that are defined by a set of related use-
cases. The architectural concerns will be used in later phases to
identify architectural candidate solutions.

2) Definitions of the involved concepts
A method to analyze architectural drivers, require us to

identify and structure information on architectural concepts. A
model of analysis elements is chosen to represent the relevant
information. In order to perform the analysis, we must have
workable criteria for how observations from the case fall into
the model structure so as to properly describe the case. Here,
we describe the definitions and interpretation of the analysis
elements that we use for our proposed method. The definitions
are adopted from literature, and our interpretation is stated
explicitly.

Alexander [10] proposes that a scenario is a common term
that entails different specialized formats including, stories, use-
cases, and more. Muller [4] propose that user needs can be
expressed both as a story and as a use-case and that they can be
developed and interchanged to be understandable by different
stakeholders and used for different purposes. For the purposes
of analyzing architectural drivers, we propose to use the
concepts of user stories to capture the needs expressed by the
stakeholders, and to develop some of them into more
descriptive use cases that better detail the flow and success
criteria.

The story and use case are concepts that we add on top of
the MFESA proposed method. For the rest of the concepts that
we use for analyzing architectural drivers definitions, we use
the MFESA definitions.

User story: There are many texts stating different things on
what a story is. We use the Wikipedia definition as we find it
captures the essence of the most common definitions.
Wikipedia defines a user story: “a user story is one or more
sentences in the everyday or business language of the user of a
system that captures what the user does or needs to do as part
of his or her job function”. It seems relevant for describing
needs of a system in a development effort.

In our method, we interpret the concept of a user story as a
free form description of a stakeholder to explain a story of how
their work will be done and results will be achieved. The story
seems a natural choice as it enables free sentences on the use
expressed in the business language of the stakeholder.

Use-Case: Cockburn [11] defines: “A use case is a
description of the possible sequences of interactions between
the system under discussion and its external actors, related to a
particular goal”. We choose to interpret this in a broad sense as
proposed by Muller [4]: “A use-case is a description of how the
system is used in its context with a combination of functions
and a quantitative description of performance and other
qualities. The analysis results are used to explore the design
options.” We select this definition because we, like Muller,
want the use-case to specify a broad use of the system and to
support later phases of exploring design options.

Architecturally significant: A scenario (a story or a use-
case) is architecturally significant when a solution likely affect
the architecture as judged by the architecture team. The
architecture is considered the most important structure and
principles of the system with high impact on the development
effort outcome.

Architectural Concern: An architectural concern is an
aggregate of related architecturally significant use cases. It
identifies an area of the design space that all the use cases
relate to.

The architecture team identifies architectural concerns by
grouping use cases into cohesive sets and categorizes them
according to the MFESA: Quality concerns, Constraint
concerns, Functional concerns, Process concerns, Interface
concerns, and Data concerns.

We let the architecture team identify architectural concern
based on the use cases. The idea is to identify a set of concerns
that are directly related to the architecturally significant use
cases. The list of architectural concerns will later be used to
drive candidate solution identification.

Architectural Risk: Any risk primarily related with the
architecture. A risk has a harm severity and a probability
associated.

With this rather vague definition, we let the architecture
team identify, based on experience, any risks that are
associated with each architecturally significant use case.

3) An concept relation diagram for the method
One thing that is missing from system engineering

guidelines on the topic of system architecting is a precise
information structure and a description of how method
operators would operate on this structure. Many concepts and
good advice are presented, but lacks a fundamental preciseness
in their advice.

For the effort of analyzing architectural drivers, we propose
an information model that entails enough elements to address
the wanted characteristics of the practitioners as described in
section III.B. The elements are defined in the previous section.
In Figure 3. we show the relations between elements here we
describe the rationale for selecting this relation structure.

Figure 3. Information structure for analyzing architectural drivers.

Each stakeholder need is described in a user story. Each
user story that is deemed significant is developed into a use
case. The use case includes at least a main scenario and the
description of a successful result, and possibly also variant
scenarios, and quantifiable system qualities. An architectural
concern is an aggregate of use cases with a common theme that
identifies an area of concern in the design space. Architectural
risks and architectural opportunities are derived from
discussions around the use cases. A use case can involve
several risks and opportunities, and those can in turn be related
to other use cases. For each architectural concern there should
be a number of alternative architectural solutions identified.

VI. PRELIMINARY RESULTS FROM USING THE METHOD
The stakeholder workshop was performed with 29 persons

representing 11 roles involved in the life cycle of the drive
system platform. Most roles were represented by one or two
people, whereas developers where represented by 16 people. A
total number of 1090 user stories were recorded.

All were categorized by using a number of type
descriptions. There were 200 process related stories, 314
stories that relate to the platform system, 518 that were
considered product specific. Each story was also categorized
by the role and life cycle phase. We used the life-cycle model
“High-tech commercial integrator” from the INCOSE systems
engineering handbook. 21 stories were deemed invalid and 153
were considered as needing more clarification to be
understood. Out of the total 1090 stories, less than 10% were
considered to have architectural ramifications. We elaborated
on the ones that were deemed architecturally important and
developed a descriptive use case for each one of them. We
grouped the architecturally significant use-cases together into
cohesive sets that define the architectural concerns as proposed
by the MFESA framework. In later stages, we plan to use the
architectural concerns to drive a discussion on potential
solutions, and generate different candidates for architectural
mechanisms that could solve the needs. For each use case, we
elaborate on what risks and opportunities could be foreseen.

Sometimes these risks and opportunities showed to link to
more than one use case.

A. Analysis of MP fulfillment.
To test the proposition that the method is usable, we would

need more studies, but we discuss the indications from the case
and analyze each property requirement of the method (MP).

MP1: By using the two types of scenarios; less formal
stories and more descriptive use cases, the method should
provide a result that can later be used as a base for evaluating
architectural decisions.

MP2: The method was possible to carry out and there was
no specific comments about it being too resource heavy.
Achieving a lightweight solution is a relative goal and we are
not able to test the demand in any precise way.

MP3: By using stories, we got stakeholders to talk rather
freely and this part of the method was considered
understandable. Also, we got a first list of statements quickly.

MP4: The stories, architectural use cases, and architectural
concerns relate in a simple way and enable the engineers to do
one thing at a time. The architectural risks and opportunities
involve many-to-many relations to the use cases and that seems
to hinder the practice of considering one thing at a time.

MP5: Using the given definitions and interpretations of the
architectural driver elements in our method, there turned out to
be less than 50 architectural use cases and architectural
concerns identified on the system level.

MP6: The process turned out to iteratively refine
stakeholder statements of use until the use case was considered
understandable. No immediate need was seen to refine the use
cases later, but more work and possibly more use cases will be
required for coming break down into subsystems. We find no
way of estimating completeness of the definition of
architectural drivers. This is a general weakness of the method.

All MPs considered, we believe we see an indication of that
two things turned out that were wanted by practitioners in the

studied case. First, we get a list of the needs more quickly than
if we would try to define requirements. Secondly, the method
produces use cases that can effectively act as supporting the
evaluation of architectural candidates.

B. Analysis of the method and future work
We note that the MPs are general in nature. Based on

experience from the field, we would say that they are not
specific to the studied case. If so, then a method that addresses
them would be a general one.

An architecture evolves during iterations of system
analysis, and the understanding of the architecture becomes
clearer as the effort progresses. With this in mind, it is easy to
see how an engineering task of finding the architectural drivers
can yield a result whose completeness is unknown. If it is
impossible to estimate completeness, a method is surely
questionable. It seems very difficult to address this issue in
system architecting, where issues vary from case to case.

We see that our method, like the systems engineering
guidelines, does not provide a completely specified procedure.
There is still some interpretation to be done by a practitioner
looking to implement a procedure for architectural drivers
analysis in his or her development effort. But we argue that the
proposed method closes some of the gap between the general
models described in the system engineering guidelines and an
industrially applicable method.

The case shows some complexity in the sense that the
system under development is a platform intended to be used as
a base of a series of customized sub systems seems to affect the
method needs to some extent. A platform is a set of reusable
assets that should be optimized for a different life-cycle than
that of a typical product. Previous activities of defining the
system scope and identifying system stakeholders seem extra
critical. The life-cycle of a platform can involve non-intuitive
users and needs. We believe that the difficulty of specifying
requirements is accentuated in such an effort. Future work
includes studying the possibility of specialized analyses for
platforms and product-line theory.

VII. CONCLUSION
In this paper we have presented a method for analyzing

architectural drivers within an effort of engineering a system
architecture. This includes; a process description with steps and
work products, definitions of the involved concepts, and a
concept relation diagram for the method.

We present a set of general demands on such a method as
expressed by the architecture team in the studied case. Based
on the practitioners demand, we have instantiated and tailored
the MFESA guidelines for performing the architectural driver
analysis. In addition, we developed the method by some
additions and clarifications. We propose the use of
architecturally significant use-cases as Muller proposes them in
his book Systems Architecting: A Business Perspective.
Definitions of the concepts proposed by MFESA are presented
and their relationship defined. We present a UML diagram

depicting concepts and their relationships and a stepwise
process for carrying out the work.

We characterize the case of developing a hybrid electrical
drive system and apply the method in the case. We analyze the
use of the method and conclude that the process and
information model are fairly general and could be considered
and also useful for any developer of a complex system. The
method does not fully define the procedure, but we argue that
the proposed method closes some of the gap between the
general models described in the system engineering guidelines
and an industrially applicable method.

We find that there are no simple rules of thumb for what is
to be considered in a system architecture analysis method. The
architectural issues are context dependent and does not allow
for the same approach for different systems. But the same
difficulty does not apply when defining information concepts
and their relationships. It may be possible to define a general
information model with relationships between information
entities and populate it differently for widely different systems.

We propose a method that can be used together with the
MFESA framework, and we argue that it is not necessarily a
specialization that disqualifies any particular system context
from using it, rather any complex development effort could
benefit from the added clarifications.

ACKNOWLEDGEMENTS
This work has been supported by Swedish Energy Agency.

REFERENCES
[1] B. Boehm, R. Valerdi, E. Honour, “The ROI of Systems Engineering:

Some Quantitative Results for Software-Intensive Systems,” Systems
Engineering, 2008, 11, (3), pp. 221-234.

[2] P Wallin, S Larsson, J Fröberg, J Axelsson, “Problems and their
mitigation in system and software architecting,” Information and
Software Technology, 2012

[3] Firesmith, D.G., Capell, P., Hammons, C.B., Latimer, D.W., and
Merendino, T.: “The Method Framework for Engineering System
Architectures,” Taylor & Francis, 2008.

[4] Muller, G., “Systems Architecting: A Business Perspective,” CRC Press,
2011.

[5] INCOSE, “Systems Engineering Handbook - A Guide for System Life
Cycle Processes and Activities,” Version 3.2.2, 2011.

[6] Fröberg, J., Cedergren, S., Larsson, S., “Eliciting Critical Information in
a Pre-Study Phase of Developing a Drive System Platform for
Automotive Applications,” Proceedings of the International Conference
on Industrial Engineering, Systems Engineering and Engineering
Management, September, 2011.

[7] P. Clements, R. Kazman, M. Klein, “Evaluating Sotware Architectures –
Methods and Case Studies,” SEI Series in Software Engineering,
Addison-Wesley, 2002.

[8] Barbacci, Mario; Ellison, Robert; Lattanze, Anthony; Stafford, Judith;
Weinstock, Charles; Wood, William. "Quality Attribute Workshops
(Qaws), Third Edition, Technical Report Cmu/Sei-2003-Tr-016." 2003.

[9] C. Riedemann, R. Freitag, “Modelling Usage: Techniques and Tools,”
IEEE Software 26(2). 20-24, 2009.

[10] Alexander, I., and N. Maiden. "Scenarios, Stories, and Use Cases: The
Modern Basis for System Development." Computing & Control
Engineering Journal 15 (2004).

[11] Cockburn, A., Writing Effective Use Cases. Vol. 1: Addison-Wesley
Boston, 2001.

