
Demonstrator for modeling and development of component-based distributed

real-time systems with Rubus-ICE

Alessio Bucaioni⇤, Saad Mubeen†⇤, John Lundbäck†, Kurt-Lennart Lundbäck†, Jukka Mäki-Turja†⇤ and Mikael Sjödin⇤
⇤

M¨alardalen Real-Time Research Centre (MRTC), M¨alardalen University, V¨aster˚as, Sweden

†
Arcticus Systems AB, J¨arf¨alla, Sweden

⇤{alessio.bucaioni, saad.mubeen, jukka.maki-turja, mikael.sjodin}@mdh.se

†{saad.mubeen, john.lundback, kurt.lundback}@arcticus-systems.com

Abstract—We present a demonstrator for modeling and

development of component-based vehicular distributed real-

time systems using the industrial model Rubus Component

Model (RCM) and its development environment Rubus-ICE

(Integrated Component development Environment). It demon-

strates various stages during the development process of these

systems such as modeling of software architecture, performing

timing analysis, automatic synthesis of code from the software

architecture, simulation, testing, and deployment.

I. BACKGROUND – THE RUBUS CONCEPT
Development strategies for real-time embedded systems

in the automotive and other vehicular applications domain
are to an extent based on model- and component-based de-
velopment approach. This approach uses models to describe
functions, structures and other design artifacts; and supports
the development of large software systems by integration of
software components. It raises the level of abstraction for
software development and aims to reuse software compo-
nents and their architectures. Rubus [1], [2] is a collection of
methods, theories and tools for model- and component-based
development of predictable, timing analyzable and synthe-
sizable control functions in resource-constrained embedded
systems. Rubus is developed by Arcticus Systems in close
collaboration with Mälardalen University and is used by
several international companies. The Rubus concept is based
around RCM and Rubus-ICE which includes the following.

• Designer: A graphical tool for modeling a system based
on RCM. It creates a set of XML-files containing
the design including deployment information related to
selected Run-Time Environment (RTE) and target.

• Analyzer: A graphical off-line and on-line analysis
tool. The off-line analysis consists of response-time
analysis of tasks and network messages, shared stack
analysis, and end-to-end distributed response-time and
delay analysis [3]. Whereas, the on-line analysis reads
execution trace from the target via a communication
channel. The Rubus Analyzer gives a possibility to feed
back information from the target.

• Inspector: A graphical component test tool for software
as well as hardware in the loop tests.

• Simulator: It builds a simulated environment around the
application to allow the control of its execution from a

high-level tool such as LabView or Matlab/Simulink.
• Build tools: compiler, linker, and plug-ins launcher.
• Synthesizer: A tool to generate the execution frame-

work for a specific RTE-platform.
An example of software architecture modeled in RCM is
shown in Figure 1. The organization and screen shots of
Rubus-ICE are shown on the next page.

Clock
Input 

trigger port
Output 

trigger port

Input data port Output data portSoftware Circuit
Actuation 

signalSensor signal

Trigger 
terminator

Figure 1. Architecture of a system modeled in RCM

II. DEMONSTRATION OF DEVELOPMENT PROCESS
We demonstrate the methodology and usage of Rubus

tools by modeling and developing a distributed real-time
application which is the simplified Intelligent Parking Assist
System. It consists of two nodes that run the Rubus operating
system and are connected via Controller Area Network. We
demonstrate the following steps during the development.

1) Modeling: Developing component-based software ar-
chitecture of the application with Rubus modeling language.

2) Analysis: Performing different types of analysis avail-
able in Rubus-ICE such as the end-to-end response-time and
delay analysis and stack-memory analysis.

3) Synthesis: Automatically generating the code for the
run-time infrastructure (execution framework).

4) Simulation and Testing: Executing the modeled appli-
cation in a simulated environment from Simulink and testing
at various hierarchical levels.

5) Deployment: Downloading the synthesized software
on hardware platform and demonstrating the functionality.

REFERENCES

[1] “Rubus models, methods and tools,” http://www.arcticus-
systems.com.

[2] K. Hänninen et.al., “The Rubus Component Model for Re-
source Constrained Real-Time Systems,” in 3rd IEEE Interna-

tional Symposium on Industrial Embedded Systems, June 2008.
[3] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-

to-end response-time and delay analysis in the industrial tool
suite: Issues, experiences and a case study,” Computer Science

and Information Systems, vol. 10, no. 1, 2013.



 

Screen Shots of the Tools 

 
Organization of Rubus-ICE 

 

 
Rubus Designer 

 

 
Rubus Inspector 


