
Reducing pessimism in CAN response time analysis

Thomas Nolte
Mälardalen Real-Time Research Centre
Department of Computer Engineering

Mälardalen University, Västerås, SWEDEN
http://www.mrtc.mdh.se

Abstract

This paper investigates the level of pessimism in the traditional schedulability analysis for the Controller Area
Network (CAN). Specifically, we investigate the effects of considering bit-stuffing distributions instead of worst
case bit-stuffing. This allows us to obtain bus utilisation values more close to reality. On the other hand, since our
analysis is based on assumptions concerning distributions of stuff-bits, our response times will only be met with
some probability.

We introduce a model and some methods, that relax the pessimism of the worst case analysis, and we show
the effect of our methods by considering both an artificial traffic model and samples of real CAN traffic. Also, we
propose a simple coding scheme that substantially reduces the number of stuff-bits in the considered real traffic.

Delay variations (jitter) in computations and communications cause degradation of performance in control
applications. There are many sources of jitter, including variations in execution time and bus contention. By
introducing some restrictions when using CAN, such as a small reduction of available frame priorities, we are
able to reduce the number of stuff-bits in the worst case. We also combine this with the methods mentioned above
that reduces the number of stuff-bits in the data part of the frame. We show the actual penalty introduced by
forbidding priorities and we show the overall improvement by using these techniques together in a small case
study.

1 Introduction

During the last decade, real-time researchers have extended schedulability analysis to a mature tech-
nique which for non-trivial systems can be used to determine whether a set of tasks executing on a
single CPU or in a distributed system will meet their deadlines or not [1][3][16] [22]. The essence of this
analysis is to investigate if deadlines are met in a worst case scenario. Whether this worst case actually
will occur during execution, or if it is likely to occur, is not normally considered.

In contrast with schedulability analysis, reliability modelling involves study of fault models, charac-
terisation of distribution functions of faults and development of methods and tools for composing these
distributions and models in estimating an overall reliability figure for the system.

This separation of deterministic (0/1) schedulability analysis and stochastic reliability analysis is a
natural simplification of the total analysis. This deterministic schedulability analysis is unfortunately
quite pessimistic, since it assumes that a missed deadline in the worst case is equivalent to always
missing the deadline whereas the stochastic analysis extends the knowledge of the system by telling

1

how often a deadline is violated. Furthermore, the failure semantics could be extended allowing the
system to miss some deadlines and still not classify it as a failure [21].

There are many other sources of pessimism in the analysis, including considering worst-case execu-
tion times and worst-case phasings of executions, as well as the usage of pessimistic fault models.

Related work have been presented in [14], where the authors proposed a model for calculating worst-
case latencies of Controller Area Network (CAN) [15] frames (messages) under error assumptions. This
model is pessimistic, in the sense that there are systems that the analysis determines unschedulable,
even though deadlines will only be missed in extremely rare situations with pathological combinations
of errors. In [10][11] the level of pessimism was reduced by the introduction of a better fault model,
and in [9] they also consider variable phasings between message queuings, in order to make the model
more realistic.

The work presented in this paper is based on the work presented in [13], where further reduction
of the pessimism introduced by the worst-case analysis of CAN message response times has been
achieved. This by using distributions of stuff-bits instead of the traditional worst-case frame sizes. We
will use distributions of frame lengths after stuffing instead of the traditional worst-case stuffed frames.
We will look into two different scenarios:

1. Bit-stuffing distributions based on assuming independent bit-values of the data before encoding,
i.e., equal probability of a bit having value

�
or � . With this information we create a model for

making assumptions about the number of stuff-bits in a packet of data.

2. Bit-stuffing distributions extracted from real CAN-bus traffic.

Since the number of stuff-bits in the real traffic is substantially larger than that of our model, we addi-
tionally propose a simple (and efficient) method to align the real traffic data with the model. The result
is a substantial reduction of the number of stuff-bits in the real traffic.

Also, by using this method, we provide a method that will minimise the variations of frame length
caused by bit-stuffing. The number of extra stuff-bits in a CAN frame can vary between 0 and 24,
depending on the frame length (the number of data bytes in the frame) and the frame bit pattern. This
variation of frame length is problematic for control applications based on event-triggered architectures.
Problems and degradation of performance caused by jitter in control applications have been shown in
[5][12][17].

Hence, it is desirable to minimize this variation of frame lengths, as shown in [8]. To do this, we
make use of previous work done in [13] where the authors presented a method to reduce the number
of stuff-bits in the data part of the CAN frame. This work is now extended by also considering the rest
of the CAN frame, not only the data part. We show how bit-stuffing can be eliminated in the header
part of the CAN frame and we show how to combine this with our previous work, in order to have a
method that minimizes the variations in frame length for the whole CAN frame.

There has been work done to reduce jitter caused by variations in queuing times for CAN frames
[2][6][7] using genetic algorithms. This is done by giving periodic messages initial phasings, found by
using genetic algorithms, to reduce/eliminate queuing jitter. These phasings can be set both offline
and online, although the technique requires a relatively high computational overhead. Our method, on
the other hand, focuses on the jitter caused by variations of frame lengths. Our approach can be done
mostly offline, and the online part requires very little CPU-time.

The outline of this work is as follows: Section 2 specifically discusses the scheduling of frame sets
in Controller Area Networks under a general fault model, and describes the theory behind bit-stuffing.
Section 2.3 introduces a model to describe the number of stuff-bits in a CAN frame, based on some
assumptions. In Section 3 we investigate the occurrence of bit-stuffing in the data part of some real

2

CAN traffic and in Section 4 we give a proposal of how to align the real traffic to our model. In Section 5
we show how we can eliminate the occurrence of stuff-bits in the header part of the CAN frame and in
Section 6 we combine the techniques described in Section 5 and Section 4, and in Section 7 we show the
result of using all our methods and models in a case-study. Finally Section 8 presents our conclusions
and outlines future work.

2 Traditional Schedulability Analysis of CAN frames

The Controller Area Network (CAN) [15] is a broadcast bus designed to operate at speeds of up to 1
Mbps. CAN is extensively used in automotive systems, as well as in other applications. CAN transmit
data in frames containing between 0 and 8 bytes of data and 47 control bits, as shown in Figure 1. (There
is also an extended format, which contains 20 more control bits. The main difference is that the extended
format has 29 identifier bits instead of 11 bits. Please consult [4] for more details.)

Arbitration field

S
O
F

0

11-bit identifier
R
T
R

DLC 4-
bit

Control field Data field

0-8 bytes 15 bit CRC

0

r
0

1

CRC field

I
D
E

0

Ack End of frame

1 1 1 1 1 1 1

Int

1 1 11

Bits exposed to bit-stuff ing (34 control bits and 0-8 bytes of data -> 34-98 bits)

0 0 CRC delimiter bit

Known bit-values (standard format data frame)

Figure 1. CAN frame layout (standard format data frame).

Among the control bits there is an 11-bit identifier associated with each frame (plus another 18 when
using the extended format). The identifier is required to be unique, in the sense that two simultaneously
active frames originating from different sources must have distinct identifiers. The identifier serves two
purposes: (1) assigning a priority to the frame, and (2) enabling receivers to filter frames. For a more
detailed explanation of the different fields in the CAN frame, please consult [15] or [4].

CAN is a collision-detect broadcast bus, which uses deterministic collision resolution to control access
to the bus. The basis for the access mechanism is the electrical characteristics of a CAN bus: if multiple
stations are transmitting concurrently and one station transmits a ‘0’ then all stations monitoring the
bus will see a ‘0’. Conversely, only if all stations transmit a ‘1’ will all processors monitoring the bus
see a ‘1’. During arbitration, competing stations are simultaneously putting their identifiers, one bit at
the time, on the bus. By monitoring the resulting bus value, a station detects if there is a competing
higher priority frame and stops transmission if this is the case. Because identifiers are required to be
unique within the system, a station transmitting the last bit of the identifier without detecting a higher
priority frame must be transmitting the highest priority queued frame, and hence can start transmitting
the body of the frame.

2.1 Classical CAN bus analysis

Tindell et al. [18] [19] [20] present analysis to calculate the worst-case latencies of CAN frames. This
analysis is based on the standard fixed priority response time analysis for CPU scheduling [1].

Calculating the response times requires a bounded worst case queuing pattern of frames. The stan-
dard way of expressing this is to assume a set of traffic streams, each generating frames with a fixed
priority. The worst-case behaviour of each stream, in the sense of network load, is to send as many

3

frames as they are allowed, i.e., to periodically queue frames. In analogue with CPU scheduling, we ob-
tain a model with a set � of streams (corresponding to CPU tasks). Each ������� is a triple �	����
����
������ ,
where ��� is the priority (defined by the frame identifier), ��� is the period and ��� the worst case trans-
mission time of frames sent on stream ��� . The worst-case latency ��� of a CAN frame sent on stream ���
is, if we assume the minimum variation in queuing time relative ��� to be 0, defined by�����������! "�#�$��� (1)

where ��� is the queuing jitter of the frame, i.e., the maximum variation in queuing time relative �%� ,
inherited from the sender task which queues the frame, and &� represents the effective queuing time,
given by: ('*) +� �-,��#�/.0"1&243&5 �76

8 '� �	� 0 �:9"; �=<� 0 > � 0 �!?A@B "�#�$���DC (2)

where the term ,E� is the worst-case blocking time of frames sent on ��� , F&G�@IH�C is the set of streams with
priority higher than ��� , 9"; �=< (the bit-time) caters for the difference in arbitration start times at the different
nodes due to propagation delays and protocol tolerances, and ?A@B *�J�	���DC is an error term denoting the
time required for error signalling and recovery. The reason for the blocking factor is that transmissions
are non-preemptive, i.e., after a bus arbitration has started the frame with the highest priority among
competing frames will be transmitted till completion, even if a frame with higher priority gets queued
before the transmission is completed. However, in case of errors a frame can be interrupted/preempted
during transmission, requiring a complete retransmission of the entire frame. The extra cost for this is
catered for in the error term ? above.

Note that (2) is a recurrence relation, where the approximation to the value of K'*) +� is found in terms of
the nth approximation, with the first approximation set to zero. A solution is reached when L'*) +� �- '� .

2.2 Effects of Bit-stuffing, worst case

In CAN, six consecutive bits of the same polarity (
� � � � � �

or � � � � � �) is used for error and protocol
control signalling. To avoid these special bit patterns in transmitted frames, a bit of opposite polarity is
inserted after five consecutive bits of the same polarity. By reversing the procedure, these bits are then
removed at the receiver side. This technique, which is called bit-stuffing, implies that the actual number
of transmitted bits may be larger than the size of the original frame, corresponding to an additional
transmission delay which needs to be considered in the analysis.

According to the CAN standard [15], the total number of bits in a CAN frame before bit-stuffing is:M*N �POQ� �SR
(3)

where
N

is the number of bytes of payload data (
N �UT �K
 MWV) and OX� �SR

is the number of bits in the control
part of the CAN frame. The frame layout is defined such that only O of these OY� �SR

bits are subject to
bit-stuffing (see Figure 1). In the standard format OZ� R([

and in the extended format OZ�]\ [. Therefore
the total number of bits after bit-stuffing can be no more than:M*N �POQ� �SR �_^ OQ� M*NX` �[a (4)

Intuitively the above formula captures the number of stuff-bits in the worst case scenario, shown in
Figure 2.

Let 9"; �=< be the worst-case time taken to transmit a bit on the bus – the so-called bit time (including the
inter-frame space). The worst-case time taken to transmit a given frame H is therefore:

4

111110000111100001111....before stuffing

stuffed bits

11111000001111100000111110....after stuffing

Figure 2. The worst case scenario when stuffing bits.

������� M*N �#�POQ� �SR �_^ OQ� M*N � ` �[a�� 9"; �=< (5)

If we put
N � � M

into the equation, and assume a bus speed of 1Mbit/sec (9&; �=< = 1 � s), we get ��� ��SR \�� N . This is a good figure to remember: the largest frame takes 135 bit times to send.

2.3 Independent bit-stuffing model

If we look into how bit-stuffing actually transforms the data instead of using the worst-case method
as presented above, we will get a very different result. The length of a frame (standard format), before
bit-stuffing, can be at most 111 bits (8 bytes data and 47 control bits), and among them 98 bits are exposed

0

0,1

0,2

0,3

0,4

1 5 9 13 17 21 25 29 34 42 50 58 66 74 82 90 98

Size of frame in bits

P
ro

ba
b

ili
ty

 (%
)

Number of data bytes in frame

0 1 2 3 4 5 6 7 8

Exactly 1 bit stuffed

Exactly 2 bits stuffed

Exactly 4 bits stuffed

Exactly 3 bits stuffed

...

Figure 3. Probability of a specific number of stuff-bits in a frame, assuming our probabilistic frame
model. The 9 lengths are marked as vertical lines.

5

to bit-stuffing. By assuming equal probability of bit-value 1 and 0 among the bits and no dependency
among bits, we can calculate the actual probabilities of having a certain frame length after bit-stuffing.
These probabilities are for different frame sizes (number of bits) shown in Figure 3. The nine different
frame lengths (0-8 bytes of data) are visualised in the graph as vertical lines. Note that only the first 8
cases of stuff-bits (1-8 bits stuffed in the frame) are visible in the graph, since the probability of getting
more than 8 stuff-bits is very low. For example, the probability of getting exactly 10, 15 and 20 stuff-bits
never exceeds

� ���
�
,

� ���
�
, and

� ���
+��

, respectively. Figure 3 is the result of an exhaustive analysis of
all possible frame patterns. The result of this analysis can be found in Appendix A and Appendix B
where Appendix A contains the probability of having exactly � stuff-bits in � bits of data. Appendix B
contains the number of combinations with exactly � stuff-bits in � bits of data (where the total number
of combinations for a � bit data is

	�

).

3 Case study: Real CAN traffic

In real industrial applications the 50/50 ratio does not apply, since we can not always assume in-
dependence among bits. In order to make the above reasoning more realistic we have gathered some
traffic from a real automotive system developed by one of our industrial partners.

What we know by experience is that the probability of having consecutive 0:s or 1:s in real frames is
quite high, since the data sent often are low integer numbers or frames used for control, e.g. coded as
0 or -1, thus leaving a large number of consecutive bits with the same polarity. For example if we use a
16 bit integer representation and send a ’1’, we will send “0000000000000001”, i.e., 15 consecutive 0:s.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of stuffed bits

P
ro

ba
b

ili
ty

 (%
)

50/50
Real traffic

Real traffic using XOR

Figure 4. Probability density functions, PDF:s, showing the number of stuff-bits in a 64 bit frame. We
show here our independent 50/50 model, the real CAN traffic and the manipulated real CAN traffic.

6

The conclusion of this is that the actual number of stuff-bits in our real traffic is higher compared to
the previous section where we assumed a 50/50 ratio between 1:s and 0:s.

In our investigation of real CAN traffic, we considered some 25 000 frames. Due to the format of the
obtained data, we investigated only the data part of the frames, which in this case were 8 bytes for all
frames. The other parts of the CAN frames (control fields and so on) were not considered. The obtained
distribution of stuff-bits is shown in Figure 4 (”Real traffic”). Worth noticing is that the actual worst
case is here 13 bits, to be compared with the analytic worst-case result of 15 stuff-bits when applying
traditional analysis for a frame size of 64 bits. The figure also shows the distribution obtained with
our 50/50 model (”50/50”), as well as the distribution obtained for the real-traffic when applying the
coding (”Real traffic using XOR”) that we will present next.

4 A simple coding scheme to reduce bit-stuffing

In order to reduce the number of stuff-bits in the real-CAN traffic, we can use some kind of bit-
operation on the original data to remove consecutive 1:s and 0:s. The general idea of this transformation
is to align the real-traffic distribution with that of our 50/50 model.

For example, we can use a simple coding scheme in which the original frame is XORed with a par-
ticular bit-pattern, the bit mask. XOR is a logical operation performed in a single operation by most
CPUs. In our case we use the bit-pattern 101010101010... in order to kill sequences of 1:s and 0:s. On
the receiving side, the same XOR operation is performed, with the same bit mask, to decode the data.
Figure 5 illustrates the encoding/decoding process.

original frame

bit mask

encoded frame

transmitted frame

encoded frame

bit-mask

original frame1111100001101010

1010101010101010

0101001011000000

01010010110000010

1111100001101010

1010101010101010

0101001011000000

bit-

stuffing
de

-
st

uf
fin

g
XOR operation

XOR operation

stuffed
bit

Figure 5. Encoding/decoding process for the proposed method.

Our choice of bit pattern is just an example. The actual bit-pattern needed to get the maximum
reduction in the number of stuff-bits is dependent on the characteristics of the transferred data. In fact,
it may even be desirable to use different bit-patterns for different frames. The details of how this can be
realised is however outside the scope of this paper.

We have applied the simple XOR-coding to our 25 000 automotive CAN frames. The result is pre-
sented in Figure 4 (”Real traffic using XOR”). Here we compare the number of stuff-bits in a frame of
size 64 bits, i.e., 8 bytes. Our 50/50 independent model gives us quite good results, since we will seldom
(probability in the order of

� � �
�

) have frames extended with more than 8 bits, i.e., 46% smaller than the
traditional worst-case figure. For the frames obtained after the XOR transformation we did not find any
frame with more than 3 extra bits, i.e., 80% smaller than the worst case. Compared to the original real

7

traffic, we will now transmit one byte less. (All of this should of course be compared with the worst-case
analysis result of 15 bits.) It should be noted that with the XOR we now have even better performance
than our previously suggested 50/50 model. The reason is that our real CAN data contains many long
sequences of consecutive 1:s and 0:s, and by masking this data using our bit pattern we will almost
eliminate the occurrence of bit-stuffing. But in the general case, we will get a performance closer to the
50/50 model.

5 Careful priority usage

In this section we will investigate how it is possible to avoid/minimize stuff-bits in the header part
of the CAN frame. For simplicity we will focus on the standard format, but the same reasoning holds
for the extended format. The obtained data for the extended format is shown in the end of this section.

Arbitration field

S
O
F

0

11-bit identifier
R
T
R

DLC 4-
bit

Control f ield

0

r
0

I
D
E

0 0
Known bit-values (standard

format data frame)

Figure 6. CAN frame header, the first 6 fields of the CAN frame (standard format).

Number of Number of bytes of data in the CAN message frame
stuff-bits � � 	�`:R [Q`�� M

0 � � � �W[\ � �SR �

1
�SR*R�	 � [R�� � [�� � � � ��\ ��� \

2
�*R([\ � � \ 	 � 	���� � [\

3
M � \ � R*M ��� �

4
� � � � �

Table 1. Amount of remaining priorities for various data lengths and their corresponding number of
stuff-bits (standard format).

The priority of the standard format CAN frame, which is also the arbitration field, consists of 11 bits
(as can be seen in Figure 6), which are subject to bit-stuffing before the frame is actually transmitted.

By carefully selecting priorities we can avoid the effect of stuff-bits in the frame header, i.e., by ex-
cluding the identifiers that lead to bit-stuffing we can à priori make sure that there will be no stuff-bits in
any of the fields shown in Figure 6. The drawback of this is that we have forbidden the usage of some
selected priorities, which obviously comes at a cost, since originally we could use all 11 bits to represent
the priority and identity of the CAN frame, which gave us

	 + +
(2048) different priorities, and after the

removal of selected priorities, it turns out that we have either of the following two scenarios: (1) we can
eliminate the number of stuff-bits in the CAN header, or (2) we can minimize the number of stuff-bits
in the CAN header to 1.

The actual numbers of stuff-bits, by forbidding priorities, are described in Table 1. Worth noticing
is that the number of stuff-bits depends on the number of data bytes in the frame. This since the DLC

8

Number of Number of bytes of data in the CAN message frame
stuff-bits � � 	E`PR [Q`�� M

0 � � � � \�� � � 	�	
�

� �

1
	��

�

�*M 	��
�

�*M R ��� �SM R \�� � � R*M
�

���

2
[��� � � [��� �W[[�

� � R R �
�

[�� 	��
� \ �

3
	([

� � � 	�	
�

� \ 	 �
�

�([�SR
�

�*R �
�

��	

4
�
�

[�� �
�

[*[\�� �*R R
�

R�� �
�

���

5
�
�

R � �
� � � ��� M�� ��� [�� ��� 	*R

6 ��� �SR � ��� � � ��� � � ��� � R ��� � �

7 ��� � � � ��� � � � ��� � � � ��� � � � ��� � �

8 � ��� � � � ��� � � � ��� � � � ��� � � � ��� � �

9 � ��� � � � � � �

Table 2. Amount of remaining priorities for various data lengths and their corresponding number
of stuff-bits (extended format). Due to large numbers, only percentages are shown (percentages of
	 + +) +��).

field, see Figure 6, consists of 4 bits describing the number of bytes of data in the frame. Thus, this bit
pattern will affect the number of stuff-bits generated in the frame header (all frame fields before the
data part of the CAN frame, as shown in Figure 6).

What we can see in Table 1 is that we have 3 different groups of scenarios:

1. The first group is when we have 0-3 bytes of data. Here it is impossible to eliminate the occurrence
of stuff-bits in the CAN header, but we can make sure that we will only have at most one stuff-bit.
However, by forbidding priorities, the number of priorities that we can use decrease to 1332 (0
bytes of data), 1436 (1 byte of data) or 1490 (for 2-3 bytes of data).

2. The second scenario is when we have 4-7 bytes of data. Here we can eliminate the number of
stuff-bits in the CAN header by forbidding priorities, leaving 745 usable priorities. One can argue
that forbidding priorities would be the same as to use redundant bits as “virtual stuff-bits” (since
the number of usable priorities require less bits for representation compared to the number of bits
that are allocated for describing the priority; some bits are left “unused”). Although there is some
truth in this reasoning, the CAN header has a fixed number of bits. Hence, even if we are using
fewer priorities, the number of bits in the CAN header stays the same.

3. The third and final scenario is when we have 8 bytes of data. Also here we can eliminate the
stuff-bits by forbidding priorities. The number of usable priorities is then 1131.

Conclusions of what is presented in Table 1 is that we can eliminate the occurrences of stuff-bits in
the CAN header (when the message contains 4-8 bytes of data) by forbidding priorities, and the cost
for this is a reduction of the number of available priorities. Therefore we believe that this method can
be used, depending on the application’s need of priorities, to eliminate the effect of bit-stuffing in the
header part of the CAN message frame.

Corresponding values for the extended format are shown in Table 2.

9

6 Combination of techniques

The methods described in Section 4 and Section 5 can be combined in order to significantly reduce
the variation of CAN message frame lengths, i.e., reducing the jitter. We will in this section additionally
integrate the last field in the CAN frame, the CRC field, in the jitter reduction.

With the first method, we reduced the worst-case number of stuff-bits in the frame header to 0 or 1
(depending on the number of data bytes in the CAN frame) from 4, which is the theoretical value that
we have to use in a safe worst-case analysis.

Combining this with the second method we further reduce the number of stuff-bits. As can be seen
in Figure 4 we have reduced the number of stuff-bits in an 8 byte data part of a frame to 3 from 13
(analytically 15).

Finally, the last part of the CAN frame to investigate is the CRC field at the end of the frame, shown in
Figure 1. We believe, since CRC-generation essentially coincides with pseudo random binary sequence
generation, that the 50/50 model described in [13] and in Section 2.3 is suitable for describing these bits,
i.e., we assume that the CRC essentially is a sequence of bits with equal and independent probability
for bit value 0 and 1, respectively. The model assumes independence among bits and equal probability
for having bit-value 0 or 1. What we do then is that we use our model for both the data part and the
CRC field of the CAN frame. According to the model, the number of stuff-bits and their corresponding
probabilities for the data and the CRC part of the frame are described in Table 3.

Nof bytes of data 0 1 2 3 4 5 6 7 8
Nof bits 0 8 16 24 32 40 48 56 64
Total (CRC+data) 15 23 31 39 47 55 63 71 79�

6.76E-01 4.85E-01 3.61E-01 2.69E-01 2.00E-01 1.49E-01 1.11E-01 8.25E-02 6.14E-02+
2.29E-01 3.88E-01 4.07E-01 3.91E-01 3.57E-01 3.15E-01 2.71E-01 2.29E-01 1.90E-01�
3.23E-02 1.12E-01 1.84E-01 2.41E-01 2.78E-01 2.96E-01 2.99E-01 2.90E-01 2.73E-01�
6.10E-04 1.41E-02 4.23E-02 8.10E-02 1.24E-01 1.64E-01 1.98E-01 2.23E-01 2.40E-01�

6.93E-04 5.18E-03 1.62E-02 3.46E-02 5.90E-02 8.73E-02 1.17E-01 1.45E-01
�

3.20E-04 1.96E-03 6.31E-03 1.45E-02 2.70E-02 4.37E-02 6.35E-02�
8.27E-06 1.38E-04 7.54E-04 2.48E-03 6.04E-03 1.21E-02 2.09E-02�
4.94E-08 5.11E-06 5.76E-05 2.94E-04 9.82E-04 2.50E-03 5.29E-03

�
8.01E-08 2.65E-06 2.38E-05 1.16E-04 3.91E-04 1.03E-03�
2.27E-10 6.54E-08 1.27E-06 9.80E-06 4.60E-05 1.57E-04+��

6.76E-10 4.11E-08 5.77E-07 4.02E-06 1.84E-05+ +
1.46E-12 7.16E-10 2.26E-08 2.56E-07 1.65E-06+��

5.17E-12 5.43E-10 1.15E-08 1.12E-07+��
7.44E-15 7.00E-12 3.45E-10 5.56E-09+ �

3.68E-14 6.36E-12 1.96E-10+ �
3.66E-17 6.25E-14 4.64E-12+��

2.46E-16 6.75E-14+��
1.76E-19 5.19E-16+��

1.57E-18+ �
8.30E-22

Table 3. Number of stuff-bits, with corresponding probability of occurrence. (�J?�� equals �	� � ��
).

By using our model we can see, when for example using 8 bytes of data, that the number of stuff-bits
is reduced from, analytically 24 to 11 when the acceptable probability of exceeding the maximum frame
size is in the order of

� � �
�
, since � + +� � �+ � ����� � ���

�
where ��� � probability of having exactly H stuff-

bits. Therefore, we have significantly reduced the maximum number of stuff-bits and thus, the interval
between maximum and minimum number of stuff-bits is smaller, i.e., we have reduced the considered
jitter.

We must also remember that these values are based on our model. When using our method to de-

10

crease the number of stuff-bits in a real system the actual number of stuff-bits can be even smaller, as
shown in Figure 4.

7 Case-study

In order to validate our method and model, we make use of samples taken from one of our industrial
partners. Firstly, we investigate the actual number of stuff-bits in some 25 000 CAN frames (extended
format). This result is then compared with the same CAN frames, both with and without the usage of
the methods described in this paper.

The number of stuff-bits in the CAN frame, both with the XOR manipulation as described in Sec-
tion 2.3, and without manipulation, are shown in Figure 7. What we can read from the figure is that the
actual worst-case number of stuff-bits has dropped from 17 to 7, this as a result of removing patterns
of consecutive bits in the data part of the CAN frame. We used the same bit-pattern for the mask, as
shown in Figure 5. Note that we have not used the method for selecting priorities yet.

In order to further reduce the number of stuff-bits in the CAN frame we also make use of the method
based on forbidding some priorities, as described in Section 5 The result of this is shown in Figure 8
along with the independent model described in Section 2.3 (also shown as the right most column of
Table 3). Note here that with the knowledge of elimination of stuff-bits in the CAN header, we use the
50/50 model only for the data part and the CRC part of the CAN frame. The result of carefully selecting
priorities gives us even less stuff-bits. We have now reduced the actual worst-case number of stuff-bits

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Number of stuff-bits

P
ro

b
ab

ili
ty

Real traffic

Real traffic using XOR

Figure 7. Probability density functions, PDF:s, showing the number of stuff-bits in a CAN frame
(extended format). We show here real traffic along with the same traffic but manipulated with XOR.

11

Nof bits Head Data CRC Entire frame Entire w prio. Data XOR New CRC Entire XOR Entire w XOR+prio
0 0 0 0.36618 0 0 0.78605 0.87834 0 0.69409
1 0 0 0.41301 0 0 0.14786 0.11973 0 0.21820
2 0.59550 0 0.22081 0 0 0.01449 0.00193 0.51457 0.02668
3 0.38962 0.00020 0 0 0 0.05160 0 0.23032 0.06047
4 0.00469 0.00341 0 0 0.00225 0 0 0.17338 0.00056
5 0.01019 0.01505 0 0 0.00678 0 0 0.01942 0
6 0 0.01613 0 0.00225 0.02291 0 0 0.06211 0
7 0 0.04057 0 0.00325 0.01677 0 0 0.00020 0
8 0 0.22984 0 0.00863 0.09020 0 0 0 0
9 0 0.22972 0 0.03419 0.11608 0 0 0 0

10 0 0.18682 0 0.02387 0.30644 0 0 0 0
11 0 0.00389 0 0.18076 0.16419 0 0 0 0
12 0 0.21551 0 0.22410 0.11556 0 0 0 0
13 0 0.05886 0 0.07700 0.07696 0 0 0 0
14 0 0 0 0.26021 0.05622 0 0 0 0
15 0 0 0 0.07824 0.02564 0 0 0 0
16 0 0 0 0.05132 0 0 0 0 0
17 0 0 0 0.05618 0 0 0 0 0

Table 4. Number of stuff-bits in the samples, with corresponding probability of occurrence.

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Number of stuff-bits

P
ro

b
ab

ili
ty

50/50 model with prio-select

Real traffic using XOR with prio-select

Figure 8. Probability density functions, PDF:s, showing the number of stuff-bits in a CAN frame
(extended format). We show here real traffic manipulated with XOR and careful priority selecting.
Our independent model is also shown with respect to the careful priority select.

from 17 to 4, as can be seen in Figure 8.
The results from all experiments within the case-study are shown in Table 4. Here we can see the

12

number of stuff-bits in the header, data and CRC part of the original frame as well as the number of
stuff-bits in the whole CAN frame. Furthermore, the number of stuff-bits in the data and CRC part of
the frame after the XOR method are shown. Finally, the number of stuff-bits in the whole CAN frame,
after applying both the XOR method and the priority selection, is shown.

This case-study shows that we can, by using the methods described in this paper, substantially reduce
the worst-case number of stuff-bits in a message; in our case from 17 to 4. This should be compared to
the analytical value of 29, which is the theoretical value that we must use in a worst-case analysis. Also
worth noticing is that the variation of frame length has decreased a lot, i.e., the jitter is substantially
reduced.

8 Conclusions

In dimensioning safety critical systems, a central activity is to validate that sufficient resources are
allocated to provide required behavioural, timing, and reliability guarantees. The method we present
here provides information on distributions of stuff-bits in transmitted CAN-frames. This information
can be used to obtain a more accurate reliability analysis, which by allowing occasional deadline misses
may substantially reduce the resource demands, without violating the system requirements. Reducing
resource utilisation is essential, since it may allow the use of cheaper solutions.

Since the validation of a system or a product typically is based on a model of a system, it is important
to reduce the modelled utilisation, i.e., the utilisation given by the model. This can be achieved either
by more accurate modelling, or by reducing the actual utilisation of the system. Focusing on bit-stuffing
in CAN, we have in this paper presented both a method to increase the accuracy in the modelling, and
a coding method which reduces the actual bus utilisation.

We achieved increased accuracy in the modelling by taking bit-stuffing distributions into consider-
ation. This allowed us to reduce the frame size used when performing timing analysis of the CAN
bus. This may have dramatic effects on the calculated response time, e.g., a system that with traditional
worst-case analysis is deemed unschedulable may be shown to, with a very high probability, meet its
deadlines.

We have shown with a case study, including 25 000 messages from a real automotive system, that
the observed worst case number of stuff-bits, in the data part of the frame, is 13 compared to the worst
case of 15 bits derived by traditional worst-case analysis. Furthermore, our model indicated that it
is relatively safe to assume at most 8 stuff-bits because the probability for more stuff-bits is very low.
Additionally, by using our XOR-coding scheme we can reduce the number of stuff-bits to 3.

We have also carefully selected a number of valid priorities, among all possible priorities, in order to
eliminate the number of stuff-bits in the frame header. The combination of these two methods gives us
a method to decrease the number of stuff-bits in the whole CAN frame.

Furthermore, we achieve, by applying these methods, an improvement in terms of jitter. We have
significantly reduced the jitter caused by the variations of the number of stuff-bits in a CAN frame. This
has been achieved by lowering the maximum number of stuff-bits that can occur in a frame.

From a strict hard real-time perspective, our contribution is that we illustrate the level of inherent
pessimism in such analysis. From a more pragmatic industrial perspective, our results indicate the
feasibility of sufficiently safe analysis methods which at the penalty of just a slight and controllable
optimism has a potential to substantially reduce the system resource requirements, compared to the
resource requirements suggested by the hard real-time analysis.

In our future work we plan to investigate the exact effects of this further, including the integration
of bit-stuffing effects in the framework for analysing reliability and timing trade-offs presented in [9].
It would be interesting to see if it is possible to completely eliminate the occurrence of stuff-bits in the

13

data part of the frame. Furthermore, it would be interesting to see the result by combining this method
with the work done in [2][6][7] in order to reduce the jitter caused by the blocking of other messages.

Our ultimate goal is of course to combine all of this into a complete engineering method for making
well founded trade offs between levels of timing guarantees and reliability.

Acknowledgements

The author wishes to express his gratitude to Hans Hansson and Christer Norström for their support
and useful discussions.

The work presented in this paper was supported by the Swedish Foundation for Strategic Research
(SSF) via the programme ARTES, the Swedish Foundation for Knowledge and Competence Develop-
ment (KK-stiftelsen), and Mälardalen University.

References

[1] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J. Wellings. Applying New Schedul-
ing Theory to Static Priority Pre-emptive Scheduling. Software Engineering Journal, 8(5):284–292,
September 1993.

[2] J. Barreiros, E. Costa, J. A. Fonseca, and F. Coutinho. Jitter Reduction in a Real-Time Message Trans-
mission System Using Genetic Algorithms. Proceedings of CEC’2000 - IEEE Congress on Evolutionary
Computation, 2:1095–1102, July 2000.

[3] A. Burns. Preemptive Priority Based Scheduling: An Appropriate Engineering Approach. Techni-
cal Report YCS 214, University of York, 1993.

[4] CAN Specification 2.0, Part-A and Part-B. CAN in Automation (CiA), Am Weichselgarten 26, D-
91058 Erlangen. http://www.can-cia.de/, 2002.

[5] CAN Specification Version 2.0. Robert Bosch GmbH, Postfach 50, D-7000 Stuttgart 1, Germany.
1991.

[6] F. Coutinho, J. A. Fonseca, J. Barreiros, and E. Costa. Jitter Minimization with Genetic Algorithms.
Proceedings of WFCS’2000 -

R����
IEEE International Workshop on Factory Communication Systems, pages

267–273, September 2000.

[7] F. Coutinho, J. A. Fonseca, J. Barreiros, and E. Costa. Using Genetic Algorithms to Reduce Jitter in
Control Variables Transmitted over CAN. Proceedings of ICC’2000 -

� < 2 International CAN Conference,
October 2000.

[8] J.D. Decotignie. Some Future Directions in Fieldbus Research and Development. Proceedings of
FeT’99 - Fieldbus Systems and Applications Conference, September 1999.

[9] H. Hansson, T. Nolte, C. Norström, and S. Punnekkat. Integrating Reliability and Timing Analysis
of CAN-based Systems. IEEE Transaction on Industrial Electronics, 49(6), December 2002.

[10] H. Hansson, C. Norström, and S. Punnekkat. Integrating Reliability and Timing Analysis of CAN-
based Systems. Proceedings of WFCS’2000 -

R����
IEEE International Workshop on Factory Communication

Systems, pages 165–172, September 2000.

14

[11] H. Hansson, C. Norström, and S. Punnekkat. Reliability Modelling of Time-Critical Distributed
Systems. In M. Joseph, editor, Formal Techniques in Real-Time and Fault-Tolerant Systems, volume
1926 of Lecture Notes in Computer Science (LNCS),

� < 2 International Symposium, FTRTFT 2000, Pune,
India, September 2000. Springer-Verlag.

[12] S. H. Hong. Scheduling Algorithm of Data Sampling Times in the Integrated Communication and
Control Systems. IEEE Transactions on Control Systems Technology, 3(2):225–230, June 1995.

[13] T. Nolte, H. Hansson, C. Norström, and S. Punnekkat. Using Bit-Stuffing Distributions in CAN
Analysis. IEEE/IEE Real-Time Embedded Systems Workshop (RTES’01), December 2001.

[14] S. Punnekkat, H. Hansson, and C. Norström. Response Time Analysis under Errors for CAN. In
Proceedings of IEEE Real-Time Technology and Applications Symposium (RTAS 2000), pages 258–265.
IEEE Computer Society, June 2000.

[15] Road Vehicles - Interchange of Digital Information - Controller Area Network (CAN) for High-
Speed Communication. International Standards Organisation (ISO). ISO Standard-11898, Nov
1993.

[16] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Protocols: An Approach to Real-Time
Synchronization. IEEE Transactions on Computers, 39(9):1175–1185, September 1990.

[17] A. Stothert and I.M. MacLeod. Effect of Timing Jitter on Distributed Computer Control System
Performance. Proceedings of DCCS’98 -

� \ < 2 IFAC Workshop on Distributed Computer Control Systems,
September 1998.

[18] K. W. Tindell and A. Burns. Guaranteed Message Latencies for Distributed Safety-Critical Hard
Real-Time Control Networks. Technical Report YCS229, Dept. of Computer Science, University of
York, June 1994.

[19] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area Network (CAN) Message
Response Times. Control Engineering Practice, 3(8):1163–1169, 1995.

[20] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing Real-Time Communications: Controller
Area Network (CAN). In Proceedings 15th IEEE Real-Time Systems Symposium, pages 259–265. IEEE
Computer Society, December 1994.

[21] M. Törngren. Fundamentals of implementing real-time control applications in distributed com-
puter systems. Real-Time Systems Journal, 14(3):219–250, May 1998.

[22] J. Xu and D. L. Parnas. Priority Scheduling Versus Pre-Run-Time Scheduling. Real-Time Systems
Journal, 18(1):7–23, January 2000.

15

A Probability of having exactly � stuff-bits when data is � bit long

Number of bits Probability of having exactly ' stuff-bits
in data 0 1 2 3 4 5 6 7 8

1-4 1 0 0 0 0 0 0 0 0
5 0.9375 0.0625 0 0 0 0 0 0 0
6 0.90625 0.09375 0 0 0 0 0 0 0
7 0.875 0.125 0 0 0 0 0 0 0
8 0.84375 0.15625 0 0 0 0 0 0 0
9 0.8125 0.183594 0.003906 0 0 0 0 0 0
10 0.783203 0.208984 0.007813 0 0 0 0 0 0
11 0.754883 0.232422 0.012695 0 0 0 0 0 0
12 0.727539 0.253906 0.018555 0 0 0 0 0 0
13 0.701172 0.273438 0.025146 0.000244 0 0 0 0 0
14 0.675781 0.29126 0.032349 0.00061 0 0 0 0 0
15 0.651306 0.307434 0.0401 0.00116 0 0 0 0 0
16 0.627716 0.322052 0.048309 0.001923 0 0 0 0 0
17 0.60498 0.335205 0.056885 0.002914 1.53E-05 0 0 0 0
18 0.583069 0.346985 0.065758 0.004143 4.58E-05 0 0 0 0
19 0.561951 0.357471 0.07486 0.005619 9.92E-05 0 0 0 0
20 0.541597 0.366743 0.084127 0.007349 0.000183 0 0 0 0
21 0.521981 0.374874 0.093504 0.009335 0.000305 9.54E-07 0 0 0
22 0.503076 0.381935 0.102938 0.011576 0.000473 3.34E-06 0 0 0
23 0.484855 0.387993 0.112381 0.01407 0.000693 8.11E-06 0 0 0
24 0.467294 0.393111 0.121793 0.016813 0.000973 1.65E-05 0 0 0
25 0.450369 0.397349 0.131132 0.019798 0.001321 2.98E-05 5.96E-08 0 0
26 0.434057 0.400764 0.140367 0.023018 0.001744 4.98E-05 2.38E-07 0 0
27 0.418336 0.403411 0.149464 0.026464 0.002247 7.82E-05 6.41E-07 0 0
28 0.403184 0.405341 0.158397 0.030124 0.002836 0.000117 1.42E-06 0 0
29 0.388581 0.406601 0.16714 0.033988 0.003518 0.000169 2.76E-06 3.73E-09 0
30 0.374507 0.407238 0.175673 0.038045 0.004296 0.000236 4.94E-06 1.68E-08 0
31 0.360943 0.407296 0.183976 0.04228 0.005176 0.00032 8.27E-06 4.94E-08 0
32 0.34787 0.406816 0.192032 0.046682 0.006162 0.000425 1.31E-05 1.18E-07 0
33 0.33527 0.405836 0.199828 0.051237 0.007256 0.000552 2E-05 2.46E-07 2.33E-10
34 0.323127 0.404393 0.207351 0.055932 0.008462 0.000705 2.93E-05 4.69E-07 1.16E-09
35 0.311424 0.402522 0.214591 0.060752 0.009781 0.000887 4.18E-05 8.3E-07 3.73E-09
36 0.300144 0.400257 0.22154 0.065683 0.011216 0.001101 5.81E-05 1.39E-06 9.55E-09
37 0.289273 0.397627 0.22819 0.070712 0.012767 0.001348 7.89E-05 2.23E-06 2.13E-08
38 0.278796 0.394663 0.234538 0.075826 0.014435 0.001633 0.000105 3.43E-06 4.28E-08
39 0.268699 0.391392 0.240579 0.08101 0.016219 0.001958 0.000138 5.11E-06 8.01E-08
40 0.258967 0.38784 0.24631 0.086252 0.01812 0.002326 0.000177 7.41E-06 1.41E-07
41 0.249587 0.384032 0.25173 0.091538 0.020137 0.002739 0.000225 1.05E-05 2.36E-07
42 0.240547 0.379991 0.25684 0.096856 0.022267 0.0032 0.000283 1.45E-05 3.8E-07
43 0.231835 0.375739 0.26164 0.102194 0.02451 0.003711 0.000351 1.97E-05 5.91E-07
44 0.223438 0.371297 0.266131 0.107538 0.026862 0.004276 0.000431 2.63E-05 8.92E-07
45 0.215345 0.366683 0.270315 0.112879 0.029322 0.004895 0.000524 3.47E-05 1.31E-06
46 0.207546 0.361917 0.274197 0.118204 0.031885 0.005572 0.000631 4.5E-05 1.88E-06
47 0.200029 0.357015 0.27778 0.123504 0.03455 0.006308 0.000754 5.76E-05 2.65E-06
48 0.192784 0.351993 0.281068 0.128767 0.037311 0.007105 0.000895 7.3E-05 3.66E-06
49 0.185801 0.346867 0.284066 0.133985 0.040166 0.007965 0.001053 9.14E-05 4.98E-06
50 0.179072 0.34165 0.28678 0.139147 0.04311 0.008888 0.001232 0.000113 6.66E-06
51 0.172586 0.336356 0.289214 0.144246 0.046139 0.009877 0.001433 0.000139 8.8E-06
52 0.166335 0.330997 0.291377 0.149273 0.049248 0.010932 0.001656 0.00017 1.15E-05
53 0.160311 0.325586 0.293273 0.154219 0.052432 0.012055 0.001904 0.000206 1.48E-05
54 0.154504 0.320132 0.294909 0.159079 0.055686 0.013245 0.002178 0.000247 1.89E-05
55 0.148908 0.314646 0.296293 0.163845 0.059006 0.014504 0.002479 0.000294 2.38E-05
56 0.143515 0.309137 0.297431 0.16851 0.062386 0.015831 0.002809 0.000349 2.98E-05
57 0.138317 0.303615 0.298331 0.173069 0.065821 0.017228 0.003169 0.000411 3.7E-05
58 0.133307 0.298087 0.299 0.177517 0.069306 0.018693 0.00356 0.000481 4.55E-05

Table 5. Probability of having exactly 0-8 stuff-bits when data is 1-58 bit long.

16

Number of bits Probability of having exactly ' stuff-bits
in data 0 1 2 3 4 5 6 7 8

59 0.128479 0.292562 0.299445 0.181848 0.072835 0.020227 0.003985 0.00056 5.56E-05
60 0.123826 0.287045 0.299675 0.186058 0.076402 0.021829 0.004443 0.000649 6.75E-05
61 0.119341 0.281545 0.299695 0.190143 0.080004 0.023498 0.004938 0.000748 8.13E-05
62 0.115018 0.276066 0.299515 0.1941 0.083633 0.025234 0.005469 0.000859 9.74E-05
63 0.110853 0.270615 0.299141 0.197924 0.087286 0.027037 0.006037 0.000982 0.000116
64 0.106838 0.265197 0.298581 0.201613 0.090955 0.028904 0.006645 0.001117 0.000137
65 0.102968 0.259816 0.297843 0.205165 0.094637 0.030834 0.007293 0.001267 0.000162
66 0.099239 0.254477 0.296933 0.208577 0.098327 0.032827 0.007981 0.001431 0.000189
67 0.095644 0.249184 0.29586 0.211848 0.102018 0.03488 0.008712 0.00161 0.000221
68 0.09218 0.24394 0.29463 0.214976 0.105706 0.036992 0.009484 0.001806 0.000256
69 0.088842 0.238749 0.29325 0.21796 0.109386 0.039161 0.010301 0.00202 0.000296
70 0.085624 0.233615 0.291728 0.220799 0.113053 0.041386 0.011161 0.002251 0.000341
71 0.082523 0.228539 0.29007 0.223493 0.116703 0.043663 0.012066 0.002501 0.000391
72 0.079534 0.223524 0.288284 0.226042 0.12033 0.045992 0.013015 0.002772 0.000447
73 0.076653 0.218573 0.286376 0.228445 0.123932 0.048369 0.014011 0.003063 0.000509
74 0.073877 0.213688 0.284352 0.230703 0.127502 0.050793 0.015052 0.003375 0.000577
75 0.071201 0.208869 0.282218 0.232815 0.131037 0.053261 0.016138 0.00371 0.000652
76 0.068622 0.204119 0.279982 0.234784 0.134534 0.05577 0.017271 0.004068 0.000735
77 0.066137 0.199439 0.277649 0.23661 0.137988 0.058318 0.01845 0.004451 0.000826
78 0.063741 0.194831 0.275225 0.238294 0.141395 0.060902 0.019676 0.004858 0.000925
79 0.061433 0.190295 0.272715 0.239837 0.144752 0.063521 0.020947 0.005291 0.001034
80 0.059208 0.185831 0.270126 0.241241 0.148055 0.06617 0.022264 0.00575 0.001152
81 0.057063 0.181442 0.267463 0.242508 0.151302 0.068847 0.023626 0.006236 0.00128
82 0.054996 0.177126 0.264731 0.243639 0.15449 0.07155 0.025033 0.00675 0.001418
83 0.053005 0.172885 0.261935 0.244636 0.157614 0.074275 0.026485 0.007293 0.001568
84 0.051085 0.168719 0.259081 0.245502 0.160673 0.07702 0.027981 0.007864 0.00173
85 0.049235 0.164628 0.256172 0.246238 0.163665 0.079782 0.029521 0.008465 0.001904
86 0.047451 0.160612 0.253214 0.246847 0.166585 0.082557 0.031103 0.009097 0.002091
87 0.045733 0.156671 0.250211 0.247331 0.169434 0.085345 0.032727 0.009759 0.002292
88 0.044076 0.152805 0.247168 0.247694 0.172207 0.08814 0.034392 0.010452 0.002506
89 0.04248 0.149013 0.244089 0.247936 0.174904 0.090941 0.036097 0.011177 0.002736
90 0.040941 0.145296 0.240977 0.248062 0.177523 0.093745 0.037841 0.011934 0.00298
91 0.039458 0.141652 0.237837 0.248073 0.180061 0.096549 0.039623 0.012723 0.00324
92 0.038029 0.138082 0.234672 0.247973 0.182518 0.09935 0.041442 0.013545 0.003517
93 0.036652 0.134584 0.231486 0.247764 0.184892 0.102146 0.043297 0.0144 0.003811
94 0.035324 0.131159 0.228283 0.247449 0.187182 0.104933 0.045186 0.015287 0.004122
95 0.034045 0.127805 0.225065 0.247032 0.189387 0.10771 0.047108 0.016208 0.004451
96 0.032812 0.124522 0.221836 0.246514 0.191506 0.110473 0.049062 0.017163 0.004799
97 0.031623 0.12131 0.218599 0.245899 0.193539 0.113221 0.051047 0.01815 0.005165
98 0.030478 0.118166 0.215357 0.24519 0.195484 0.11595 0.05306 0.019171 0.005552

Table 6. Probability of having exactly 0-8 stuff-bits when data is 59-98 bit long.

17

Number of bits Probability of having exactly ' stuff-bits
in data 9 10 11 12 13 14 15 16

1-36 0 0 0 0 0 0 0 0
37 1.46E-11 0 0 0 0 0 0 0
38 8E-11 0 0 0 0 0 0 0
39 2.76E-10 0 0 0 0 0 0 0
40 7.57E-10 0 0 0 0 0 0 0
41 1.79E-09 9.09E-13 0 0 0 0 0 0
42 3.8E-09 5.46E-12 0 0 0 0 0 0
43 7.46E-09 2.02E-11 0 0 0 0 0 0
44 1.38E-08 5.89E-11 0 0 0 0 0 0
45 2.41E-08 1.47E-10 5.68E-14 0 0 0 0 0
46 4.04E-08 3.29E-10 3.69E-13 0 0 0 0 0
47 6.54E-08 6.76E-10 1.46E-12 0 0 0 0 0
48 1.02E-07 1.3E-09 4.51E-12 0 0 0 0 0
49 1.56E-07 2.38E-09 1.19E-11 3.55E-15 0 0 0 0
50 2.32E-07 4.15E-09 2.78E-11 2.49E-14 0 0 0 0
51 3.38E-07 6.96E-09 5.98E-11 1.05E-13 0 0 0 0
52 4.82E-07 1.13E-08 1.2E-10 3.41E-13 0 0 0 0
53 6.75E-07 1.78E-08 2.28E-10 9.41E-13 2.22E-16 0 0 0
54 9.31E-07 2.74E-08 4.12E-10 2.31E-12 1.67E-15 0 0 0
55 1.27E-06 4.11E-08 7.16E-10 5.17E-12 7.44E-15 0 0 0
56 1.7E-06 6.04E-08 1.2E-09 1.08E-11 2.55E-14 0 0 0
57 2.25E-06 8.72E-08 1.96E-09 2.13E-11 7.36E-14 1.39E-17 0 0
58 2.94E-06 1.24E-07 3.11E-09 3.99E-11 1.88E-13 1.11E-16 0 0
59 3.82E-06 1.73E-07 4.8E-09 7.17E-11 4.4E-13 5.24E-16 0 0
60 4.89E-06 2.38E-07 7.27E-09 1.24E-10 9.53E-13 1.88E-15 0 0
61 6.22E-06 3.24E-07 1.08E-08 2.09E-10 1.94E-12 5.69E-15 8.67E-19 0
62 7.84E-06 4.35E-07 1.57E-08 3.41E-10 3.77E-12 1.52E-14 7.37E-18 0
63 9.8E-06 5.77E-07 2.26E-08 5.43E-10 7E-12 3.68E-14 3.66E-17 0
64 1.22E-05 7.59E-07 3.19E-08 8.45E-10 1.25E-11 8.26E-14 1.38E-16 0
65 1.5E-05 9.87E-07 4.45E-08 1.29E-09 2.17E-11 1.74E-13 4.35E-16 5.42E-20
66 1.83E-05 1.27E-06 6.12E-08 1.93E-09 3.64E-11 3.49E-13 1.2E-15 4.88E-19
67 2.23E-05 1.63E-06 8.32E-08 2.84E-09 5.95E-11 6.68E-13 3.03E-15 2.55E-18
68 2.69E-05 2.06E-06 1.12E-07 4.11E-09 9.52E-11 1.23E-12 7.04E-15 1E-17
69 3.24E-05 2.6E-06 1.49E-07 5.87E-09 1.49E-10 2.19E-12 1.53E-14 3.29E-17
70 3.87E-05 3.24E-06 1.96E-07 8.26E-09 2.29E-10 3.78E-12 3.17E-14 9.46E-17
71 4.6E-05 4.02E-06 2.56E-07 1.15E-08 3.45E-10 6.36E-12 6.25E-14 2.46E-16
72 5.44E-05 4.96E-06 3.32E-07 1.58E-08 5.11E-10 1.04E-11 1.18E-13 5.91E-16
73 6.41E-05 6.08E-06 4.26E-07 2.15E-08 7.46E-10 1.67E-11 2.17E-13 1.33E-15
74 7.51E-05 7.4E-06 5.43E-07 2.89E-08 1.07E-09 2.63E-11 3.84E-13 2.83E-15
75 8.77E-05 8.97E-06 6.87E-07 3.85E-08 1.53E-09 4.06E-11 6.62E-13 5.74E-15
76 0.000102 1.08E-05 8.63E-07 5.09E-08 2.14E-09 6.15E-11 1.11E-12 1.12E-14
77 0.000118 1.3E-05 1.08E-06 6.66E-08 2.98E-09 9.19E-11 1.83E-12 2.1E-14
78 0.000136 1.55E-05 1.34E-06 8.66E-08 4.09E-09 1.35E-10 2.94E-12 3.82E-14
79 0.000157 1.84E-05 1.65E-06 1.12E-07 5.56E-09 1.96E-10 4.64E-12 6.75E-14
80 0.000179 2.17E-05 2.02E-06 1.43E-07 7.49E-09 2.81E-10 7.2E-12 1.16E-13
81 0.000205 2.56E-05 2.47E-06 1.82E-07 1E-08 3.98E-10 1.1E-11 1.95E-13
82 0.000233 3E-05 3E-06 2.29E-07 1.32E-08 5.58E-10 1.65E-11 3.21E-13
83 0.000265 3.5E-05 3.62E-06 2.88E-07 1.74E-08 7.74E-10 2.45E-11 5.18E-13
84 0.000299 4.08E-05 4.35E-06 3.59E-07 2.26E-08 1.06E-09 3.58E-11 8.21E-13
85 0.000338 4.73E-05 5.21E-06 4.46E-07 2.93E-08 1.44E-09 5.16E-11 1.28E-12
86 0.00038 5.47E-05 6.2E-06 5.5E-07 3.77E-08 1.95E-09 7.37E-11 1.96E-12
87 0.000427 6.3E-05 7.36E-06 6.76E-07 4.81E-08 2.6E-09 1.04E-10 2.96E-12
88 0.000477 7.24E-05 8.71E-06 8.26E-07 6.1E-08 3.45E-09 1.46E-10 4.42E-12
89 0.000533 8.28E-05 1.03E-05 1E-06 7.69E-08 4.54E-09 2.01E-10 6.5E-12

Table 7. Probability of having exactly 9-16 stuff-bits when data is 1-89 bit long.

18

Number of bits Probability of having exactly ' stuff-bits
in data 9 10 11 12 13 14 15 16

90 0.000594 9.46E-05 1.2E-05 1.21E-06 9.65E-08 5.93E-09 2.76E-10 9.46E-12
91 0.00066 0.000108 1.41E-05 1.46E-06 1.2E-07 7.7E-09 3.76E-10 1.36E-11
92 0.000731 0.000122 1.64E-05 1.76E-06 1.49E-07 9.93E-09 5.07E-10 1.93E-11
93 0.000809 0.000138 1.9E-05 2.1E-06 1.84E-07 1.27E-08 6.78E-10 2.73E-11
94 0.000893 0.000156 2.2E-05 2.5E-06 2.27E-07 1.62E-08 9.01E-10 3.8E-11
95 0.000984 0.000176 2.54E-05 2.96E-06 2.77E-07 2.05E-08 1.19E-09 5.26E-11
96 0.001082 0.000198 2.93E-05 3.5E-06 3.37E-07 2.59E-08 1.56E-09 7.21E-11
97 0.001187 0.000221 3.36E-05 4.13E-06 4.09E-07 3.24E-08 2.03E-09 9.8E-11
98 0.001301 0.000248 3.84E-05 4.84E-06 4.94E-07 4.04E-08 2.62E-09 1.32E-10

Table 8. Probability of having exactly 9-16 stuff-bits when data is 90-98 bit long.

Number of bits Probability of having exactly ' stuff-bits
in data 17 18 19 20 21 22 23 24

1-68 0 0 0 0 0 0 0 0
69 3.39E-21 0 0 0 0 0 0 0
70 3.22E-20 0 0 0 0 0 0 0
71 1.76E-19 0 0 0 0 0 0 0
72 7.23E-19 0 0 0 0 0 0 0
73 2.47E-18 2.12E-22 0 0 0 0 0 0
74 7.35E-18 2.12E-21 0 0 0 0 0 0
75 1.98E-17 1.21E-20 0 0 0 0 0 0
76 4.9E-17 5.18E-20 0 0 0 0 0 0
77 1.14E-16 1.83E-19 1.32E-23 0 0 0 0 0
78 2.49E-16 5.66E-19 1.39E-22 0 0 0 0 0
79 5.19E-16 1.57E-18 8.3E-22 0 0 0 0 0
80 1.04E-15 4.02E-18 3.69E-21 0 0 0 0 0
81 2E-15 9.59E-18 1.35E-20 8.27E-25 0 0 0 0
82 3.73E-15 2.16E-17 4.32E-20 9.1E-24 0 0 0 0
83 6.74E-15 4.62E-17 1.24E-19 5.67E-23 0 0 0 0
84 1.19E-14 9.49E-17 3.26E-19 2.61E-22 0 0 0 0
85 2.04E-14 1.87E-16 7.99E-19 9.92E-22 5.17E-26 0 0 0
86 3.43E-14 3.57E-16 1.85E-18 3.27E-21 5.95E-25 0 0 0
87 5.66E-14 6.62E-16 4.06E-18 9.65E-21 3.85E-24 0 0 0
88 9.15E-14 1.19E-15 8.54E-18 2.61E-20 1.84E-23 0 0 0
89 1.45E-13 2.09E-15 1.73E-17 6.59E-20 7.22E-23 3.23E-27 0 0
90 2.27E-13 3.6E-15 3.37E-17 1.56E-19 2.45E-22 3.88E-26 0 0
91 3.5E-13 6.05E-15 6.39E-17 3.52E-19 7.46E-22 2.61E-25 0 0
92 5.32E-13 9.98E-15 1.18E-16 7.59E-19 2.08E-21 1.29E-24 0 0
93 7.97E-13 1.62E-14 2.11E-16 1.57E-18 5.38E-21 5.23E-24 2.02E-28 0
94 1.18E-12 2.58E-14 3.7E-16 3.14E-18 1.31E-20 1.83E-23 2.52E-27 0
95 1.73E-12 4.04E-14 6.34E-16 6.07E-18 3.02E-20 5.73E-23 1.76E-26 0
96 2.5E-12 6.26E-14 1.07E-15 1.14E-17 6.66E-20 1.64E-22 9.02E-26 0
97 3.58E-12 9.55E-14 1.76E-15 2.09E-17 1.41E-19 4.35E-22 3.77E-25 1.26E-29
98 5.08E-12 1.44E-13 2.86E-15 3.74E-17 2.88E-19 1.09E-21 1.36E-24 1.64E-28

Table 9. Probability of having exactly 17-24 stuff-bits when data is 1-98 bit long.

19

B Number of combinations with exactly � stuff-bits when data is � bit long (where the
total number of combinations for a � bit data is

�

)

Number of bits Number of combinations with exactly ' stuff-bits
in data 1 2 3 4 5 6 7 8

1-4 0 0 0 0 0 0 0 0
5 2 0 0 0 0 0 0 0
6 6 0 0 0 0 0 0 0
7 16 0 0 0 0 0 0 0
8 40 0 0 0 0 0 0 0
9 94 2 0 0 0 0 0 0
10 214 8 0 0 0 0 0 0
11 476 26 0 0 0 0 0 0
12 1040 76 0 0 0 0 0 0
13 2240 206 2 0 0 0 0 0
14 4772 530 10 0 0 0 0 0
15 10074 1314 38 0 0 0 0 0
16 21106 3166 126 0 0 0 0 0
17 43936 7456 382 2 0 0 0 0
18 90960 17238 1086 12 0 0 0 0
19 187418 39248 2946 52 0 0 0 0
20 384558 88214 7706 192 0 0 0 0
21 786168 196092 19576 640 2 0 0 0
22 1601952 431752 48552 1982 14 0 0 0
23 3254720 942724 118028 5812 68 0 0 0
24 6595304 2043340 282076 16332 276 0 0 0
25 13332818 4400076 664324 44342 1000 2 0 0
26 26894846 9419844 1544732 117020 3340 16 0 0
27 54144944 20060704 3551884 301534 10496 86 0 0
28 1.09E+08 42519268 8086356 761304 31444 380 0 0
29 2.18E+08 89732710 18247372 1888524 90622 1484 2 0
30 4.37E+08 1.89E+08 40850188 4613114 252922 5306 18 0
31 8.75E+08 3.95E+08 90796504 11116360 687018 17752 106 0
32 1.75E+09 8.25E+08 2E+08 26465658 1823310 56366 506 0
33 3.49E+09 1.72E+09 4.4E+08 62331028 4742396 171530 2116 2
34 6.95E+09 3.56E+09 9.61E+08 1.45E+08 12118760 503876 8052 20
35 1.38E+10 7.37E+09 2.09E+09 3.36E+08 30487844 1436542 28532 128
36 2.75E+10 1.52E+10 4.51E+09 7.71E+08 75637968 3991624 95572 656
37 5.46E+10 3.14E+10 9.72E+09 1.75E+09 1.85E+08 10845968 305802 2922
38 1.08E+11 6.45E+10 2.08E+10 3.97E+09 4.49E+08 28896770 941834 11778
39 2.15E+11 1.32E+11 4.45E+10 8.92E+09 1.08E+09 75658748 2808282 44016
40 4.26E+11 2.71E+11 9.48E+10 1.99E+10 2.56E+09 1.95E+08 8143114 154944
41 8.44E+11 5.54E+11 2.01E+11 4.43E+10 6.02E+09 4.96E+08 23045000 519462
42 1.67E+12 1.13E+12 4.26E+11 9.79E+10 1.41E+10 1.24E+09 63835000 1672034
43 3.31E+12 2.3E+12 8.99E+11 2.16E+11 3.26E+10 3.09E+09 1.73E+08 5198738
44 6.53E+12 4.68E+12 1.89E+12 4.73E+11 7.52E+10 7.58E+09 4.64E+08 15688292
45 1.29E+13 9.51E+12 3.97E+12 1.03E+12 1.72E+11 1.84E+10 1.22E+09 46123526
46 2.55E+13 1.93E+13 8.32E+12 2.24E+12 3.92E+11 4.44E+10 3.16E+09 1.33E+08
47 5.02E+13 3.91E+13 1.74E+13 4.86E+12 8.88E+11 1.06E+11 8.11E+09 3.73E+08
48 9.91E+13 7.91E+13 3.62E+13 1.05E+13 2E+12 2.52E+11 2.05E+10 1.03E+09
49 1.95E+14 1.6E+14 7.54E+13 2.26E+13 4.48E+12 5.93E+11 5.15E+10 2.8E+09
50 3.85E+14 3.23E+14 1.57E+14 4.85E+13 1E+13 1.39E+12 1.28E+11 7.5E+09
51 7.57E+14 6.51E+14 3.25E+14 1.04E+14 2.22E+13 3.23E+12 3.14E+11 1.98E+10
52 1.49E+15 1.31E+15 6.72E+14 2.22E+14 4.92E+13 7.46E+12 7.65E+11 5.17E+10
53 2.93E+15 2.64E+15 1.39E+15 4.72E+14 1.09E+14 1.71E+13 1.85E+12 1.33E+11
54 5.77E+15 5.31E+15 2.87E+15 1E+15 2.39E+14 3.92E+13 4.45E+12 3.4E+11
55 1.13E+16 1.07E+16 5.9E+15 2.13E+15 5.23E+14 8.93E+13 1.06E+13 8.59E+11
56 2.23E+16 2.14E+16 1.21E+16 4.5E+15 1.14E+15 2.02E+14 2.51E+13 2.15E+12
57 4.38E+16 4.3E+16 2.49E+16 9.49E+15 2.48E+15 4.57E+14 5.92E+13 5.33E+12

Table 10. Number of combinations with exactly 0-8 stuff-bits when data is 1-57 bit long.

20

Number of bits Number of combinations with exactly ' stuff-bits
in data 1 2 3 4 5 6 7 8

58 8.59E+16 8.62E+16 5.12E+16 2E+16 5.39E+15 1.03E+15 1.39E+14 1.31E+13
59 1.69E+17 1.73E+17 1.05E+17 4.2E+16 1.17E+16 2.3E+15 3.23E+14 3.21E+13
60 3.31E+17 3.46E+17 2.15E+17 8.81E+16 2.52E+16 5.12E+15 7.48E+14 7.78E+13
61 6.49E+17 6.91E+17 4.38E+17 1.84E+17 5.42E+16 1.14E+16 1.73E+15 1.88E+14
62 1.27E+18 1.38E+18 8.95E+17 3.86E+17 1.16E+17 2.52E+16 3.96E+15 4.49E+14
63 2.5E+18 2.76E+18 1.83E+18 8.05E+17 2.49E+17 5.57E+16 9.05E+15 1.07E+15
64 4.89E+18 5.51E+18 3.72E+18 1.68E+18 5.33E+17 1.23E+17 2.06E+16 2.53E+15
65 9.59E+18 1.1E+19 7.57E+18 3.49E+18 1.14E+18 2.69E+17 4.67E+16 5.96E+15
66 1.88E+19 2.19E+19 1.54E+19 7.26E+18 2.42E+18 5.89E+17 1.06E+17 1.4E+16
67 3.68E+19 4.37E+19 3.13E+19 1.51E+19 5.15E+18 1.29E+18 2.38E+17 3.26E+16
68 7.2E+19 8.7E+19 6.34E+19 3.12E+19 1.09E+19 2.8E+18 5.33E+17 7.57E+16
69 1.41E+20 1.73E+20 1.29E+20 6.46E+19 2.31E+19 6.08E+18 1.19E+18 1.75E+17
70 2.76E+20 3.44E+20 2.61E+20 1.33E+20 4.89E+19 1.32E+19 2.66E+18 4.03E+17
71 5.4E+20 6.85E+20 5.28E+20 2.76E+20 1.03E+20 2.85E+19 5.91E+18 9.24E+17
72 1.06E+21 1.36E+21 1.07E+21 5.68E+20 2.17E+20 6.15E+19 1.31E+19 2.11E+18
73 2.06E+21 2.7E+21 2.16E+21 1.17E+21 4.57E+20 1.32E+20 2.89E+19 4.8E+18
74 4.04E+21 5.37E+21 4.36E+21 2.41E+21 9.59E+20 2.84E+20 6.38E+19 1.09E+19
75 7.89E+21 1.07E+22 8.8E+21 4.95E+21 2.01E+21 6.1E+20 1.4E+20 2.46E+19
76 1.54E+22 2.12E+22 1.77E+22 1.02E+22 4.21E+21 1.3E+21 3.07E+20 5.55E+19
77 3.01E+22 4.2E+22 3.58E+22 2.09E+22 8.81E+21 2.79E+21 6.73E+20 1.25E+20
78 5.89E+22 8.32E+22 7.2E+22 4.27E+22 1.84E+22 5.95E+21 1.47E+21 2.8E+20
79 1.15E+23 1.65E+23 1.45E+23 8.75E+22 3.84E+22 1.27E+22 3.2E+21 6.25E+20
80 2.25E+23 3.27E+23 2.92E+23 1.79E+23 8E+22 2.69E+22 6.95E+21 1.39E+21
81 4.39E+23 6.47E+23 5.86E+23 3.66E+23 1.66E+23 5.71E+22 1.51E+22 3.09E+21
82 8.57E+23 1.28E+24 1.18E+24 7.47E+23 3.46E+23 1.21E+23 3.26E+22 6.86E+21
83 1.67E+24 2.53E+24 2.37E+24 1.52E+24 7.18E+23 2.56E+23 7.05E+22 1.52E+22
84 3.26E+24 5.01E+24 4.75E+24 3.11E+24 1.49E+24 5.41E+23 1.52E+23 3.35E+22
85 6.37E+24 9.91E+24 9.53E+24 6.33E+24 3.09E+24 1.14E+24 3.27E+23 7.37E+22
86 1.24E+25 1.96E+25 1.91E+25 1.29E+25 6.39E+24 2.41E+24 7.04E+23 1.62E+23
87 2.42E+25 3.87E+25 3.83E+25 2.62E+25 1.32E+25 5.06E+24 1.51E+24 3.55E+23
88 4.73E+25 7.65E+25 7.67E+25 5.33E+25 2.73E+25 1.06E+25 3.23E+24 7.76E+23
89 9.22E+25 1.51E+26 1.53E+26 1.08E+26 5.63E+25 2.23E+25 6.92E+24 1.69E+24
90 1.8E+26 2.98E+26 3.07E+26 2.2E+26 1.16E+26 4.68E+25 1.48E+25 3.69E+24
91 3.51E+26 5.89E+26 6.14E+26 4.46E+26 2.39E+26 9.81E+25 3.15E+25 8.02E+24
92 6.84E+26 1.16E+27 1.23E+27 9.04E+26 4.92E+26 2.05E+26 6.71E+25 1.74E+25
93 1.33E+27 2.29E+27 2.45E+27 1.83E+27 1.01E+27 4.29E+26 1.43E+26 3.77E+25
94 2.6E+27 4.52E+27 4.9E+27 3.71E+27 2.08E+27 8.95E+26 3.03E+26 8.16E+25
95 5.06E+27 8.92E+27 9.79E+27 7.5E+27 4.27E+27 1.87E+27 6.42E+26 1.76E+26
96 9.87E+27 1.76E+28 1.95E+28 1.52E+28 8.75E+27 3.89E+27 1.36E+27 3.8E+26
97 1.92E+28 3.46E+28 3.9E+28 3.07E+28 1.79E+28 8.09E+27 2.88E+27 8.18E+26
98 3.74E+28 6.82E+28 7.77E+28 6.2E+28 3.67E+28 1.68E+28 6.08E+27 1.76E+27

Table 11. Number of combinations with exactly 0-8 stuff-bits when data is 58-98 bit long.

21

Number of bits Number of combinations with exactly ' stuff-bits
in data 9 10 11 12 13 14 15 16

1-36 0 0 0 0 0 0 0 0
37 2 0 0 0 0 0 0 0
38 22 0 0 0 0 0 0 0
39 152 0 0 0 0 0 0 0
40 832 0 0 0 0 0 0 0
41 3930 2 0 0 0 0 0 0
42 16714 24 0 0 0 0 0 0
43 65644 178 0 0 0 0 0 0
44 242064 1036 0 0 0 0 0 0
45 847814 5170 2 0 0 0 0 0
46 2844270 23122 26 0 0 0 0 0
47 9198530 95150 206 0 0 0 0 0
48 28820970 366542 1270 0 0 0 0 0
49 87835110 1337798 6674 2 0 0 0 0
50 2.61E+08 4666882 31298 28 0 0 0 0
51 7.6E+08 15664902 134598 236 0 0 0 0
52 2.17E+09 50857094 540382 1536 0 0 0 0
53 6.08E+09 1.6E+08 2050750 8476 2 0 0 0
54 1.68E+10 4.93E+08 7423910 41574 30 0 0 0
55 4.56E+10 1.48E+09 25814542 186420 268 0 0 0
56 1.22E+11 4.35E+09 86686678 778388 1836 0 0 0
57 3.24E+11 1.26E+10 2.82E+08 3065608 10612 2 0 0
58 8.49E+11 3.57E+10 8.95E+08 11495900 54320 32 0 0
59 2.2E+12 9.97E+10 2.77E+09 41340858 253456 302 0 0
60 5.64E+12 2.75E+11 8.39E+09 1.43E+08 1098612 2172 0 0
61 1.43E+13 7.46E+11 2.49E+10 4.82E+08 4482608 13120 2 0
62 3.62E+13 2.01E+12 7.26E+10 1.57E+09 17384896 69946 34 0
63 9.04E+13 5.33E+12 2.08E+11 5.01E+09 64560430 338996 338 0
64 2.24E+14 1.4E+13 5.89E+11 1.56E+10 2.31E+08 1522846 2546 0
65 5.53E+14 3.64E+13 1.64E+12 4.76E+10 7.99E+08 6427516 16040 2
66 1.35E+15 9.39E+13 4.52E+12 1.42E+11 2.68E+09 25744200 88904 36
67 3.29E+15 2.4E+14 1.23E+13 4.19E+11 8.79E+09 98593988 446824 376
68 7.95E+15 6.09E+14 3.3E+13 1.21E+12 2.81E+10 3.63E+08 2077160 2960
69 1.91E+16 1.53E+15 8.79E+13 3.46E+12 8.79E+10 1.29E+09 9056444 19414
70 4.57E+16 3.83E+15 2.32E+14 9.75E+12 2.7E+11 4.47E+09 37413532 111690
71 1.09E+17 9.5E+15 6.05E+14 2.71E+13 8.13E+11 1.5E+10 1.48E+08 581264
72 2.57E+17 2.34E+16 1.57E+15 7.46E+13 2.41E+12 4.92E+10 5.59E+08 2792488
73 6.05E+17 5.74E+16 4.02E+15 2.03E+14 7.05E+12 1.58E+11 2.05E+09 12561300
74 1.42E+18 1.4E+17 1.03E+16 5.46E+14 2.03E+13 4.96E+11 7.26E+09 53460274
75 3.31E+18 3.39E+17 2.59E+16 1.46E+15 5.77E+13 1.53E+12 2.5E+10 2.17E+08
76 7.71E+18 8.16E+17 6.52E+16 3.84E+15 1.62E+14 4.65E+12 8.41E+10 8.45E+08
77 1.78E+19 1.96E+18 1.63E+17 1.01E+16 4.5E+14 1.39E+13 2.76E+11 3.17E+09
78 4.12E+19 4.67E+18 4.04E+17 2.62E+16 1.24E+15 4.09E+13 8.89E+11 1.15E+10
79 9.47E+19 1.11E+19 9.97E+17 6.75E+16 3.36E+15 1.19E+14 2.81E+12 4.08E+10
80 2.17E+20 2.63E+19 2.45E+18 1.73E+17 9.05E+15 3.4E+14 8.7E+12 1.4E+11
81 4.96E+20 6.18E+19 5.97E+18 4.39E+17 2.42E+16 9.63E+14 2.66E+13 4.72E+11
82 1.13E+21 1.45E+20 1.45E+19 1.11E+18 6.4E+16 2.7E+15 7.98E+13 1.55E+12
83 2.56E+21 3.39E+20 3.5E+19 2.79E+18 1.68E+17 7.48E+15 2.36E+14 5.01E+12
84 5.79E+21 7.89E+20 8.41E+19 6.95E+18 4.38E+17 2.05E+16 6.92E+14 1.59E+13
85 1.31E+22 1.83E+21 2.01E+20 1.73E+19 1.13E+18 5.58E+16 2E+15 4.95E+13
86 2.94E+22 4.23E+21 4.8E+20 4.26E+19 2.91E+18 1.51E+17 5.7E+15 1.52E+14
87 6.6E+22 9.75E+21 1.14E+21 1.05E+20 7.44E+18 4.02E+17 1.61E+16 4.59E+14
88 1.48E+23 2.24E+22 2.69E+21 2.56E+20 1.89E+19 1.07E+18 4.5E+16 1.37E+15
89 3.3E+23 5.13E+22 6.35E+21 6.21E+20 4.76E+19 2.81E+18 1.25E+17 4.02E+15

Table 12. Number of combinations with exactly 9-16 stuff-bits when data is 1-89 bit long.

22

Number of bits Number of combinations with exactly ' stuff-bits
in data 9 10 11 12 13 14 15 16

90 7.35E+23 1.17E+23 1.49E+22 1.5E+21 1.19E+20 7.34E+18 3.42E+17 1.17E+16
91 1.63E+24 2.66E+23 3.48E+22 3.62E+21 2.98E+20 1.91E+19 9.3E+17 3.37E+16
92 3.62E+24 6.05E+23 8.11E+22 8.7E+21 7.39E+20 4.92E+19 2.51E+18 9.58E+16
93 8.01E+24 1.37E+24 1.88E+23 2.08E+22 1.83E+21 1.26E+20 6.72E+18 2.7E+17
94 1.77E+25 3.09E+24 4.36E+23 4.95E+22 4.49E+21 3.21E+20 1.78E+19 7.53E+17
95 3.9E+25 6.97E+24 1.01E+24 1.17E+23 1.1E+22 8.13E+20 4.71E+19 2.08E+18
96 8.57E+25 1.57E+25 2.32E+24 2.78E+23 2.67E+22 2.05E+21 1.23E+20 5.71E+18
97 1.88E+26 3.51E+25 5.32E+24 6.54E+23 6.48E+22 5.13E+21 3.21E+20 1.55E+19
98 4.12E+26 7.85E+25 1.22E+25 1.53E+24 1.57E+23 1.28E+22 8.3E+20 4.19E+19

Table 13. Number of combinations with exactly 9-16 stuff-bits when data is 90-98 bit long.

Number of bits Number of combinations with exactly ' stuff-bits
in data 17 18 19 20 21 22 23 24

1-68 0 0 0 0 0 0 0 0
69 2 0 0 0 0 0 0 0
70 38 0 0 0 0 0 0 0
71 416 0 0 0 0 0 0 0
72 3416 0 0 0 0 0 0 0
73 23286 2 0 0 0 0 0 0
74 138846 40 0 0 0 0 0 0
75 747228 458 0 0 0 0 0 0
76 3705264 3916 0 0 0 0 0 0
77 17175924 27702 2 0 0 0 0 0
78 75227536 170962 42 0 0 0 0 0
79 3.14E+08 950266 502 0 0 0 0 0
80 1.26E+09 4858110 4462 0 0 0 0 0
81 4.84E+09 23182964 32710 2 0 0 0 0
82 1.8E+10 1.04E+08 208678 44 0 0 0 0
83 6.52E+10 4.47E+08 1196618 548 0 0 0 0
84 2.3E+11 1.83E+09 6300578 5056 0 0 0 0
85 7.9E+11 7.25E+09 30921548 38360 2 0 0 0
86 2.66E+12 2.77E+10 1.43E+08 252686 46 0 0 0
87 8.76E+12 1.02E+11 6.29E+08 1493268 596 0 0 0
88 2.83E+13 3.69E+11 2.64E+09 8089948 5700 0 0 0
89 9E+13 1.3E+12 1.07E+10 40795810 44704 2 0 0
90 2.81E+14 4.45E+12 4.18E+10 1.94E+08 303732 48 0 0
91 8.67E+14 1.5E+13 1.58E+11 8.73E+08 1848000 646 0 0
92 2.63E+15 4.94E+13 5.82E+11 3.76E+09 10292084 6396 0 0
93 7.9E+15 1.6E+14 2.09E+12 1.56E+10 53284330 51796 2 0
94 2.34E+16 5.1E+14 7.32E+12 6.21E+10 2.59E+08 362618 50 0
95 6.85E+16 1.6E+15 2.51E+13 2.4E+11 1.2E+09 2269456 698 0
96 1.98E+17 4.96E+15 8.45E+13 9.04E+11 5.28E+09 12982350 7146 0
97 5.68E+17 1.51E+16 2.79E+14 3.31E+12 2.23E+10 68950550 59692 2
98 1.61E+18 4.56E+16 9.07E+14 1.18E+13 9.12E+10 3.44E+08 430204 52

Table 14. Number of combinations with exactly 17-24 stuff-bits when data is 1-98 bit long.

23

