
Minimizing CAN response-time jitter by message manipulation

Thomas Nolte, Hans Hansson and Christer Norström
Mälardalen Real-Time Research Centre
Department of Computer Engineering

Mälardalen University, Västerås, SWEDEN
http://www.mrtc.mdh.se

Abstract

Delay variations (jitter) in computations and communications cause degradation of performance in control
applications. There are many sources of jitter, including variations in execution time and bus contention.

This paper presents methods to reduce the jitter caused by the bit-stuffing mechanism in the Controller Area
Network (CAN). By introducing some restrictions, such as a small reduction of available frame priorities, we
are able to reduce the number of stuffed bits in the worst case. We also combine this with some of our previous
work that reduces the number of stuffed bits in the data part of the frame. We show the actual penalty introduced
by forbidding priorities, and we show the overall improvement by using these techniques together in a small
case study.

1 Introduction

During the last decade real-time researchers have extended schedulability analysis to a mature
technique which for non-trivial systems can be used to determine whether a set of tasks executing on
a single CPU or in a distributed system will meet their deadlines or not [1][3][16] [21]. The essence
of this analysis is to investigate if deadlines are met in a worst case scenario. Whether this worst case
actually will occur during execution, or if it is likely to occur, is not normally considered.

In contrast with schedulability analysis, reliability modelling involves study of fault models, char-
acterisation of distribution functions of faults and development of methods and tools for composing
these distributions and models in estimating an overall reliability figure for the system.

This separation of deterministic (0/1) schedulability analysis and stochastic reliability analysis is
a natural simplification of the total analysis. This because the deterministic schedulability analysis
unfortunately is quite pessimistic, since it assumes that a missed deadline in the worst case is equiv-
alent to always missing the deadline whereas the stochastic analysis extend the knowledge of the
system by telling how often a deadline is violated.

There are many other sources of pessimism in the analysis, including considering worst-case exe-
cution times and worst-case phasings of executions, as well as the usage of pessimistic fault models.

In our previous work [15], we have proposed a model for calculating worst-case latencies of Con-
troller Area Network (CAN) [13] frames (messages) under error assumptions. This model is pes-
simistic, in the sense that there are systems that the analysis determines unschedulable, even though
deadlines will only be missed in extremely rare situations with pathological combinations of errors.
In [9][10] we have reduced the level of pessimism by introducing a better fault model, and in [8]
we also consider variable phasings between message queuings, in order to make the model more
realistic. In [14] we reduced the pessimism introduced by the worst-case analysis of CAN message
response-times, by using bit-stuffing distributions instead of the traditional worst-case frame sizes.

1

In this paper we provide a method that will minimise the variations of frame lengths caused by
bit-stuffing. The number of stuffed extra bits in a CAN frame can, for a normal CAN frame, vary
between 0 and 24, depending on the frame length (the number of data bytes in the frame) and the
frame bit pattern. This variation of frame length is problematic for control applications based on
event-triggered architectures. Problems and degradation of performance caused by jitter in control
applications have been shown in [7][11][17].

Hence, it is desirable to minimize this variation of frame lengths, as shown in [6]. To do this, we
make use of our previous work [14] where we presented a method to reduce the number of stuffed
bits in the data part of the CAN frame. Now we have extended this work by also considering the
control part of the CAN frame. We show how bit-stuffing can be eliminated in the header part of the
CAN frame and we show how to combine this with our previous work, in order to have a method
that minimizes the variations in frame length for the whole CAN frame.

There has been work done to reduce jitter caused by variations in queuing times for CAN frames
[2][4][5] using genetic algorithms. This is done by giving periodic messages initial phasings, found by
using genetic algorithms, to reduce/eliminate queuing jitter. These phasings can be set both offline
and online, although the technique requires a relatively high computational overhead. Our method,
on the other hand, focuses on the jitter caused by variations of frame lengths. Our approach is done
mostly offline, and the online part requires a very little CPU-time.

Outline: Section 2 specifically discusses the scheduling of frame sets in Controller Area Networks
under a general fault model, and describes the theory behind bit-stuffing. In Section 3 we show how
we can eliminate the occurrence of stuff-bits in the header part of the CAN frame and in Section 4
we present our independent bit-stuffing model along with a method for data transformation which
significantly reduces the number of stuff-bits in the data part of the CAN frame. In Section 5 we
combine the techniques described in Section 3 and Section 4, and in Section 6 we show the result
of using our methods and models in a case-study. Finally Section 7 presents our conclusions and
outlines future work.

2 Traditional Schedulability Analysis of CAN frames

The Controller Area Network (CAN) [13] is a broadcast bus designed to operate at speeds of up
to 1 Mbps. CAN is extensively used in automotive systems, as well as in other applications. CAN
transmit data in frames containing between 0 and 8 bytes of data and 47 control bits, as shown in
Figure 1. (There is also an extended format, which contains bit fields we will not consider here, even
though our reasoning extends also to this format. The main difference is that the extended format
has 29 identifier bits instead of 11 bits. Please consult [12] for more details.)

Arbitration field

S
O
F

0

11-bit identifier
R
T
R

DLC 4-
bit

Control field Data field

0-8 bytes 15 bit CRC

0

r
0

1

CRC field

I
D
E

0

Ack End of frame

1 1 1 1 1 1 1

Int

1 1 11

Bits exposed to bit-stuff ing (34 control bits and 0-8 bytes of data -> 34-98 bits)

0 0 CRC delimiter bit

Known bit-values (standard format data frame)

Figure 1. CAN frame layout (standard format data frame).

Among the control bits there is an 11-bit identifier associated with each frame. The identifier is
required to be unique, in the sense that two simultaneously active frames originating from different
sources must have distinct identifiers. The identifier serves two purposes: (1) assigning a priority to
the frame, and (2) enabling receivers to filter frames. For a more detailed explanation of the different
fields in the CAN frame, please consult [13] or [12].

2

CAN is a collision-detect broadcast bus, which uses deterministic collision resolution to control
access to the bus. The basis for the access mechanism is the electrical characteristics of a CAN bus:
if multiple stations are transmitting concurrently and one station transmits a ‘0’ then all stations
monitoring the bus will see a ‘0’. Conversely, only if all stations transmit a ‘1’ will all processors
monitoring the bus see a ‘1’. During arbitration, competing stations are simultaneously putting their
identifiers, one bit at the time, on the bus. By monitoring the resulting bus value, a station detects if
there is a competing higher priority frame and stops transmission if this is the case. Because identi-
fiers are unique within the system, a station transmitting the last bit of the identifier without detecting
a higher priority frame must be transmitting the highest priority queued frame, and hence can start
transmitting the body of the frame.

2.1 Classical CAN bus analysis
Tindell et al. [18] [19] [20] present analysis to calculate the worst-case latencies of CAN frames.

This analysis is based on the standard fixed priority response time analysis for CPU scheduling [1].
Calculating the response times requires a bounded worst case queuing pattern of frames. The

standard way of expressing this is to assume a set of traffic streams, each generating frames with a
fixed priority. The worst-case behaviour of each stream, in terms of network load, is to send as many
frames as they are allowed, i.e., to periodically queue frames. In analogue with CPU scheduling,
we obtain a model with a set

�
of streams (corresponding to CPU tasks). Each ����� � is a triple��� �
	����	������ , where � � is the priority (defined by the frame identifier), ��� is the period and ��� the

worst case transmission time of frames sent on stream ��� . The worst-case latency ��� of a CAN frame
sent on stream �� is, if we assume the minimum variation in queuing time relative ��� to be 0, defined
by

����������� �!�"�#��� (1)

where ��� is the queuing jitter of the frame, i.e., the maximum variation in queuing time relative �$� ,
inherited from the sender task which queues the frame, and �%� represents the effective queuing time,
given by: �!���'&��"�)(*!+%,.-%/ �10

2 �!�"�3� * � 4!5 �76� * 8 � * � 9;:<�!���#���>= (2)

where the term &?� is the worst-case blocking time of frames sent on ��� , @%A�:CB�= is the set of streams
with priority higher than �D� , 4!5 �76 (the bit-time) caters for the difference in arbitration start times at the
different nodes due to propagation delays and protocol tolerances, and 9;:<�����E���>= is an error term
denoting the time required for error signalling and recovery. The reason for the blocking factor is that
transmissions are non-preemptive, i.e., after a bus arbitration has started the frame with the highest
priority among competing frames will be transmitted until completion, even if a frame with higher
priority gets queued before the transmission is completed. However, in case of errors a frame can
be interrupted/preempted during transmission, requiring a complete retransmission of the entire
frame. The extra cost for this is catered for in the error term 9 above.

2.2 Effects of Bit-stuffing, worst case
In CAN, six consecutive bits of the same polarity (FGFGFGFGFGF or HGHGHGHGHGH) is used for error and protocol

control signalling. To avoid these special bit patterns in transmitted frames, a bit of opposite polarity
is inserted after five consecutive bits of the same polarity. By reversing the procedure, these bits are
then removed at the receiver side. This technique, which is called bit-stuffing, implies that the actual
number of transmitted bits may be larger than the size of the original frame, corresponding to an
additional transmission delay which needs to be considered in the analysis.

According to the CAN standard [13], the total number of bits in a CAN frame before bit-stuffing
is:

3

��� ����� (3)

where
�

is the number of bytes of payload data (
� ��� H 	 �
) and ��� is the number of control bits in a

CAN frame. The frame layout is defined such that only ��� of these ��� bits are subject to bit-stuffing
(see Figure 1). Therefore the total number of bits after bit-stuffing can be no more than:��� ����� � ���?� ����� F� � (4)

Intuitively the above formula captures the number of stuffed bits in the worst case scenario, shown
in Figure 2.

111110000111100001111....before stuffing

stuffed bits

11111000001111100000111110....after stuffing

Figure 2. The worst case scenario when stuffing bits.

Let 4!5 �76 be the worst-case time taken to transmit a bit on the bus – the so-called bit time (including
the inter-frame space). The worst-case time taken to transmit a given frame B is therefore:

������� ��� �"����� � ���?� ��� � � F� ��� 4!5 �76 (5)

If we put
� � � �

into the equation, and assume a bus speed of 1Mbit/sec (4%5 �76 = 1 � s), we get����� F������ � . This is a good figure to remember: the largest frame takes 135 bit times to send.

3 Careful priority usage

The priority of a CAN frame, which is also the arbitration field, consists of 11 bits (as can be seen
in Figure 3), which are subject to bit-stuffing before the frame is actually transmitted.

Arbitration field

S
O
F

0

11-bit identifier
R
T
R

DLC 4-
bit

Control f ield

0

r
0

I
D
E

0 0
Known bit-values (standard

format data frame)

Figure 3. CAN frame header, the first 6 fields of the CAN frame.

By carefully selecting priorities we can avoid the effect of stuffed bits in the frame header, i.e.,
by excluding the identifiers that lead to bit-stuffing we can à priori make sure that there will be no
bits stuffed in any of the fields shown in Figure 3. The drawback of this is that we have forbidden
the usage of some selected priorities, which obviously comes at a cost, since originally we could
use all 11 bits to represent the priority and identity of the CAN frame, which gave us ����� (2048)
different priorities, and after the removal of selected priorities, it turns out that we have either of the
following two scenarios: (1) we can eliminate the number of stuff bits in the CAN header, or (2) we
can minimize the number of stuff bits in the CAN header to 1.

The actual numbers of stuffed bits, by forbidding priorities, are described in Table 1 and their
relative (relative to the total number of data patterns) percentages are shown in Figure 4. Worth

4

noticing is that the number of stuff bits depends on the number of data bytes in the frame. This since
the DLC field, see Figure 3, consists of 4 bits describing the number of bytes of data in the frame.
Thus, this bit pattern will affect the number of stuff bits generated in the frame header (all frame
fields before the data part of the CAN frame, as shown in Figure 3).

Number of Number of bytes of data in the CAN message frame (selected)
stuff-bits H F � � � � � � �

0 H H H H ��� � ��� � ��� � ��� � F�� � �
1 F�� � � F
� H � F
����� F
����� F!H �%H F!H �%H F!H �%H F!H �%H � ���
2 � ��� ����� � � � � � � F��%H F��%H F��%H F��%H � �
3 � � F�� � � F F F F H

Table 1. Amount of remaining priorities for various data lengths and their corresponding number
of stuff-bits.

What we can see in Table 1 is that we have 3 different groups of scenarios:

1. The first group is when we have 0-3 bytes of data. Here it is impossible to eliminate the occur-
rence of stuff bits in the CAN header, but we can make sure that we will only have at most one
stuff bit. However, by forbidding priorities, the number of priorities that we can use decrease
to 1585 (0 bytes of data), 1703 (1 byte of data) or 1763 (for 2-3 bytes of data).

2. The second scenario is when we have 4-7 bytes of data. Here we can eliminate the number of
stuff bits in the CAN header by forbidding priorities, leaving 897 usable priorities. One can
argue that forbidding priorities would be the same as to use redundant bits as “virtual stuff
bits” (since the number of usable priorities require less bits for representation compared to
the number of bits that are allocated for describing the priority; some bits are left “unused”).
Although there is some truth in this reasoning, the CAN header has a fixed number of bits.
Hence, even if we are using fewer priorities, the number of bits in the CAN header stays the
same.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8
Bytes of data

3

2

1

0

Stuff-
bits

Figure 4. Relative number of remaining (usable) priorities in the header part of the CAN frame,
with a certain number of stuffed bits, for different number of bytes of data in the frame.

5

original frame

bit mask

encoded frame

transmitted frame

encoded frame

bit-mask

original frame1111100001101010

1010101010101010

0101001011000000

01010010110000010

1111100001101010

1010101010101010

0101001011000000

bit-

stuffing

de
-

st
uf

fin
g

XOR operation

XOR operation

stuffed
bit

Figure 5. Encoding/decoding process for the proposed method.

3. The third and final scenario is when we have 8 bytes of data. Also here we can eliminate the
stuff bits by forbidding priorities. The number of usable priorities is then 1585.

Conclusions of what is presented in Table 1 is that we can eliminate the occurrences of stuffed bits in
the CAN header (when the message contains 4-8 bytes of data) by forbidding priorities, and the cost
for this is a reduction of the number of available priorities. Therefore we believe that this method can
be used, depending on the application’s need of priorities, to eliminate the effect of bit-stuffing in the
header part of the CAN message frame.

4 Independent bit-stuffing model and a method for data transformation

In our previous paper [14] we propose a method to reduce the effect of bit-stuffing in the data part
of the CAN frame. The motivation is to investigate the level of pessimism of traditional schedulability
analysis for the Controller Area Network (CAN).

The method, show in Figure 5, reduces the actual number of stuffed bits in the CAN data frame by
transforming the message using an XOR operation on the data together with a bit-mask. By doing
this, we showed with a case-study that the actual number of stuffed bits was significantly reduced,
as can be seen in Figure 6. Here we can see (Real traffic) the number of stuff bits in an industrial
application (samples taken from one of our automotive partners). In relation to this, we also see the
number of stuff bits in artificial data generated by assuming independent and equal probability of a
”1” and ”0” in each bit position (50/50), and the number of stuffed bits in the same industrial data,
but after using the method described above (Real traffic using XOR).

5 Combination of techniques

The methods described in Section 3 and Section 4 can be combined in order to significantly re-
duce the variation of CAN message frame lengths, i.e., reducing the jitter. We will in this section
additionally integrate the last field in the CAN frame, the CRC field, in the jitter reduction.

With the first method, we reduced the worst-case number of stuff bits in the frame header to 0 or
1 (depending on the number of data bytes in the CAN frame) from 3 (analytically 4, which is the
theoretical value that we have to use in a safe worst-case analysis).

Combining this with the second method we further reduce the number of stuff bits. As can be seen
in Figure 6 we have reduced the number of stuff bits in an 8 byte data part of a frame to 3 from 13
(analytically 15).

Finally, the last part of the CAN frame to investigate is the CRC field at the end of the frame,
shown in Figure 1. We believe, since CRC-generation essentially coincides with pseudo random

6

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of stuffed bits

P
ro

ba
b

ili
ty

 (%
)

50/50
Real traffic

Real traffic using XOR

Figure 6. Probability density functions, PDF:s, showing the number of stuffed bits in a 64 bit
frame. We show here our independent 50/50 model, the real CAN traffic and the manipulated real
CAN traffic.

binary sequence generation, that the 50/50 model described in [14] and in Section 4 is suitable for
describing these bits, i.e., the CRC is a sequence of bits with equal and independent probability for bit
value 0 and 1, respectively. The model assumes independence among bits and equal probability for
having bit-value 0 or 1. What we do then is that we use our model for both the data part and the CRC
field of the CAN frame. According to the model, the number of stuff bits and their corresponding
probabilities for the data and the CRC part of the frame are described in Table 2.

By using our model we can see, when for example using 8 bytes of data, that the number of
stuff bits are reduced from, analytically 24 to 11 when the acceptable probability of exceeding the
maximum frame size is in the order of F!H�� � , since

� ����� � � ��� � �	� F!H
� � where � � � probability of
having exactly B stuffed bits. Therefore, we have significantly reduced the maximum number of stuff
bits and thus, the interval between maximum and minimum number of stuff bits is smaller, i.e., we
have reduced the considered jitter.

We must also remember that these values are based on our model and in reality, by using our
method to decrease the number of stuff bits, the actual number of stuff bits can be even smaller, as
shown in Figure 6.

6 Case-study

In order to validate our method and model, we make use of samples taken from one of our indus-
trial partners. Firstly, we investigate the actual number of stuffed bits in some 25 000 CAN frames
(extended format). This result is then compared with the same CAN frames, both with and without
the usage of the methods described in this paper.

The number of stuffed bits in the CAN frame, both with the XOR manipulation as described in
Section 4, and without manipulation, are shown in Figure 7. What we can read from the figure is that

7

Nof bytes of data 0 1 2 3 4 5 6 7 8
Nof bits 0 8 16 24 32 40 48 56 64
Total (CRC+data) 15 23 31 39 47 55 63 71 79
�

6.76E-01 4.85E-01 3.61E-01 2.69E-01 2.00E-01 1.49E-01 1.11E-01 8.25E-02 6.14E-02� 2.29E-01 3.88E-01 4.07E-01 3.91E-01 3.57E-01 3.15E-01 2.71E-01 2.29E-01 1.90E-01�
3.23E-02 1.12E-01 1.84E-01 2.41E-01 2.78E-01 2.96E-01 2.99E-01 2.90E-01 2.73E-01�
6.10E-04 1.41E-02 4.23E-02 8.10E-02 1.24E-01 1.64E-01 1.98E-01 2.23E-01 2.40E-01�

6.93E-04 5.18E-03 1.62E-02 3.46E-02 5.90E-02 8.73E-02 1.17E-01 1.45E-01�
3.20E-04 1.96E-03 6.31E-03 1.45E-02 2.70E-02 4.37E-02 6.35E-02�
8.27E-06 1.38E-04 7.54E-04 2.48E-03 6.04E-03 1.21E-02 2.09E-02�
4.94E-08 5.11E-06 5.76E-05 2.94E-04 9.82E-04 2.50E-03 5.29E-03�

8.01E-08 2.65E-06 2.38E-05 1.16E-04 3.91E-04 1.03E-03

� 2.27E-10 6.54E-08 1.27E-06 9.80E-06 4.60E-05 1.57E-04� � 6.76E-10 4.11E-08 5.77E-07 4.02E-06 1.84E-05��� 1.46E-12 7.16E-10 2.26E-08 2.56E-07 1.65E-06� � 5.17E-12 5.43E-10 1.15E-08 1.12E-07� � 7.44E-15 7.00E-12 3.45E-10 5.56E-09� � 3.68E-14 6.36E-12 1.96E-10� � 3.66E-17 6.25E-14 4.64E-12� � 2.46E-16 6.75E-14� � 1.76E-19 5.19E-16� � 1.57E-18��� 8.30E-22

Table 2. Number of stuffed bits, with corresponding probability of occurrence. (� 9	� equals ��
F!H�).
the actual worst-case number of stuffed bits has dropped from 16 to 5, this as a result of removing
patterns of consecutive bits in the data part of the CAN frame. We used the same bit-pattern for the
mask, as shown in Figure 5. Note that we have not used the method for selecting priorities yet.

In order to further reduce the number of stuffed bits in the CAN frame we also make use of the
method based on forbidding some priorities, as described in Section 3 (although Section 3 covers
the standard format frame, the same reasoning holds for the extended format). The result of this is
shown in Figure 8 along with the independent model described in Section 4 (also shown as the right
most column of Table 2). Note here that with the knowledge of elimination of stuffed bits in the CAN
header, we use the 50/50 model only for the data part and the CRC part of the CAN frame. The

Nof bits Head Data CRC Entire frame Entire w prio. Data XOR New CRC Entire XOR Entire w XOR+prio
0 0 0 0,56336 0 0 0,80684 0,94539 0 0,76350
1 0,19513 0 0,34588 0 0 0,13964 0,05413 0,17956 0,17218
2 0,55441 0 0,09076 0 0 0,05333 0,00048 0,51284 0,06332
3 0,25046 0,00044 0 0 4E-05 0,00020 0 0,12956 0,00084
4 0 0,01729 0 4E-05 0,01625 0 0 0,12680 0,00016
5 0 0,06476 0 0,00538 0,01412 0 0 0,05124 0
6 0 0,19328 0 0,01392 0,23445 0 0 0 0
7 0 0,20420 0 0,02973 0,04402 0 0 0 0
8 0 0,11231 0 0,15657 0,21748 0 0 0 0
9 0 0,11925 0 0,21359 0,06966 0 0 0 0

10 0 0,03587 0 0,12038 0,15139 0 0 0 0
11 0 0,01404 0 0,00554 0,00389 0 0 0 0
12 0 0,23854 0 0,17924 0,17446 0 0 0 0
13 0 0 0 0,02303 0,04859 0 0 0 0
14 0 0 0 0,13229 0,02564 0 0 0 0
15 0 0 0 0,07170 0 0 0 0 0
16 0 0 0 0,04859 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0

Table 3. Number of stuffed bits in the samples, with corresponding probability of occurrence.
(� 9	� equals ��
 F!H�).

8

result of carefully selecting priorities gives us even less stuff-bits. We have now reduced the actual
worst-case number of stuffed bits from 16 to 4, as can be seen in Figure 8.

The results from all experiments within the case-study are shown in Table 3. Here we can see the
number of stuffed bits in the header, data and CRC part of the original frame as well as the number
of stuffed bits in the whole CAN frame. Furthermore, the number of stuffed bits in the data and CRC
part of the frame after the XOR method are shown. Finally, the number of stuffed bits in the whole
CAN frame, after applying both the XOR method and the priority selection, is shown.

This case-study shows that we can, by using the methods described in this paper, substantially
reduce the worst-case number of stuffed bits in a message; in our case from 16 to 4. This should be
compared to the analytical value of 29, which is the theoretical value that we must use in a worst-case
analysis. Also worth noticing is that the variation of frame length has decreased a lot, i.e., the jitter is
substantially reduced.

7 Conclusions

In dimensioning safety critical systems, a central activity is to validate that sufficient resources are
allocated to provide required behavioural, timing, and reliability guarantees. Reducing utilisation is
essential, since it may allow the use of cheaper solutions in applications. Since the validation of a
system or a product typically is based on a model of a system, it is important to reduce the modelled
utilisation, i.e., the utilisation given by the model. This can be achieved either by more accurate
modelling, or by reducing the actual utilisation of the system. Focusing on bit-stuffing in CAN, we

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Number o f stuf fed b its

P
ro

ba
bi

lit
y

(%
)

Real
traffic

Real traffic
using XOR

Figure 7. Probability density functions, PDF:s, showing the number of stuffed bits in a CAN frame
(extended format). We show here real traffic along with the same traffic but manipulated with
XOR.

9

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

P
ro

ba
bi

lit
y

(%
)

Num ber of stu ffed bi ts

Real traffic
using XOR
with prio-
select

50/50
model with
prio-select

Figure 8. Probability density functions, PDF:s, showing the number of stuffed bits in a CAN frame
(extended format). We show here real traffic manipulated with XOR and careful priority selecting.
Our independent model is also shown with respect to the careful priority select.

have in this paper presented a method that both increases the accuracy of the modeling, and reduces
the actual bus utilisation. What we achieve by doing this is an improvement in terms of reducing
jitter. We have significantly reduced the jitter caused by the variations of the number of stuffed bits
in a CAN frame. This has been achieved by lowering the maximum number of stuffed bits that can
occur in a frame.

We achieved increased accuracy in the modelling by taking bit-stuffing distributions into consid-
eration. This allowed us to reduce the frame size used when performing timing analysis of the CAN
bus. This may have dramatic effects on the calculated response time, e.g., a system that with tradi-
tional worst case analysis is deemed unschedulable may be shown to with a very high probability
meet its deadlines.

We have also carefully selected a number of valid priorities, among all possible priorities, in order
to eliminate the number of stuff bits in the frame header. The combination of these two methods
gives us a method to decrease the number of stuff bits in the whole CAN frame. The true effects of
our methods have been shown in a case-study.

From a strict hard real-time perspective, our contribution is that we illustrate the level of inherent
pessimism in such analysis. From a more pragmatic industrial perspective, our results indicate the
feasibility of sufficiently safe analysis methods, which at the penalty of just a slight and controllable
optimism has a potential to substantially reduce the system resource requirements, compared to the
resource requirements suggested by the hard real-time analysis.

In our future work we plan to investigate this further, by examining if it is possible to completely

10

eliminate the occurrence of stuff bits in the data part of the frame. Furthermore, it would be interest-
ing to see the result by combining this method with the work done in [2][4][5] in order to reduce the
jitter caused by the blocking of other messages.

Our ultimate goal is of course to combine all of this into a complete engineering method for making
well founded trade offs between levels of timing guarantees and reliability.

Acknowledgements

The work presented in this paper was supported by the Swedish Foundation for Strategic Research
(SSF) via the research programme ARTES, the Swedish Foundation for Knowledge and Competence
Development (KK-stiftelsen), and Mälardalen University.

References

[1] N. C. Audsley, A. Burns, M.F. Richardson, K. Tindell, and A.J. Wellings. Applying New Schedul-
ing Theory to Static Priority Pre-emptive Scheduling. Software Engineering Journal, 8(5):284–292,
September 1993.

[2] J. Barreiros, E. Costa, J.A. Fonseca, and F. Coutinho. Jitter Reduction in a Real-Time Message
Transmission System Using Genetic Algorithms. Proceedings of the CEC - Evolutionary Computa-
tion, July 2000.

[3] A. Burns. Preemptive Priority Based Scheduling: An Appropriate Engineering Approach. Tech-
nical Report YCS 214, University of York, 1993.

[4] F. Coutinho, J.A. Fonseca, J. Barreiros, and E. Costa. Jitter Minimization with Genetic Algo-
rithms. Proceedings of WFCS’2000 - ��� � IEEE International Workshop on Factory Communication
Systems, September 2000.

[5] F. Coutinho, J.A. Fonseca, J. Barreiros, and E. Costa. Using Genetic Algorithms to Reduce Jitter
in Control Variables Transmitted over CAN. Proceedings of ICC’2000 - � 6 , International CAN
Conference, October 2000.

[6] J.D. Decotignie. Some Future Directions in Fieldbus Research and Development. Proceedings of
FeT’99 - Fieldbus Systems and Applications Conference, September 1999.

[7] Bosch GmbH. Can specification version 2.0 - techincal report. 1991.

[8] H. Hansson, T. Nolte, C. Norström, and S. Punnekkat. Integrating Reliability and Timing Analy-
sis of CAN-based Systems. IEEE Transaction on Industrial Electronics. To appear in a special issue
on factory communication systems.

[9] H. Hansson, C. Norström, and S. Punnekkat. Integrating Reliability and Timing Analysis of
CAN-based Systems. In Proc. 2000 IEEE International Workshop on Factory Communication Systems
(WFCS’2000), Porto, Portugal, September 2000. IEEE Industrial Electronics Society.

[10] H. Hansson, C. Norström, and S. Punnekkat. Reliability Modelling of Time-Critical Distributed
Systems. In M. Joseph, editor, Formal Techniques in Real-Time and Fault-Tolerant Systems, volume
1926 of Lecture Notes in Computer Science (LNCS), 6th International Symposium, FTRTFT 2000,
Pune, India, September 2000. Springer-Verlag.

[11] S. Hong. Scheduling Algorithm of Data Sampling Times in the Integrated Communication and
Control Systems. IEEE Transactions on Control Systems Technology, 3(2), June 1995.

11

[12] CAN in Automation (CiA). CAN Specifications 2.0 Part-A and Part-B. http://www/can-
cia.de/.

[13] International Standards Organisation (ISO). Road Vehicles- Interchange of digital information
-Controller Area Network (CAN) for high-speed communication. ISO Standard-11898, Nov
1993.

[14] T. Nolte, H. Hansson, C. Norström, and S. Punnekkat. Using bit-stuffing distributions in CAN
analysis. IEEE/IEE Real-Time Embedded Systems Workshop (RTES’01), December 2001.

[15] S. Punnekkat, H. Hansson, and C. Norström. Response Time Analysis under Errors for CAN. In
Proceedings of IEEE Real-Time Technology and Applications Symposium (RTAS 2000), pages 258–265.
IEEE Computer Society, June 2000.

[16] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Protocols: An Approach to Real-
Time Synchronization. IEEE Transactions on Computers, 39(9):1175–1185, September 1990.

[17] A. Stothert and I.M. MacLeod. Effect of Timing Jitter on Distributed Computer Control System
Performance. Proceedings of F�� 6 , IFAC Workshop DCCS’98 - Distributed Computer Control Systems,
September 1998.

[18] K. W. Tindell and A. Burns. Guaranteed message latencies for distributed safety-critical hard
real-time control networks. Technical Report YCS229, Dept. of Computer Science, University of
York, June 1994.

[19] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area Network (CAN) Mes-
sage Response Times. Control Engineering Practice, 3(8):1163–1169, 1995.

[20] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing Real-Time Communications: Controller
Area Network (CAN). In Proceedings 15th IEEE Real-Time Systems Symposium, pages 259–265.
IEEE Computer Society, December 1994.

[21] J. Xu and D. L. Parnas. Priority scheduling versus pre-run-time scheduling. Real-Time Systems
Journal, 18(1):7–23, January 2000.

12

