
Mälardalen University Press Dissertations
No. 147

FORMAL APPROACHES FOR BEHAVIORAL
MODELING AND ANALYSIS OF DESIGN-TIME

SERVICES AND SERVICE NEGOTIATIONS

Aida Čaušević

2014

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 147

FORMAL APPROACHES FOR BEHAVIORAL
MODELING AND ANALYSIS OF DESIGN-TIME

SERVICES AND SERVICE NEGOTIATIONS

Aida Čaušević

2014

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 147

FORMAL APPROACHES FOR BEHAVIORAL MODELING AND
ANALYSIS OF DESIGN-TIME SERVICES AND SERVICE NEGOTIATIONS

Aida Čaušević

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen

försvaras onsdagen den 15 januari 2014, 09.00 i Pi, Högskoleplan 1, Västerås.

Fakultetsopponent: Professor Ina Schieferdecker, Fraunhofer Fokus

Akademin för innovation, design och teknik

Copyright © Aida Čaušević, 2014
ISBN 978-91-7485-128-1
ISSN 1651-4238
Printed by Arkitektkopia, Västerås, Sweden

Mälardalen University Press Dissertations
No. 147

FORMAL APPROACHES FOR BEHAVIORAL MODELING AND
ANALYSIS OF DESIGN-TIME SERVICES AND SERVICE NEGOTIATIONS

Aida Čaušević

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen

försvaras onsdagen den 15 januari 2014, 09.00 i Pi, Högskoleplan 1, Västerås.

Fakultetsopponent: Professor Ina Schieferdecker, Fraunhofer Fokus

Akademin för innovation, design och teknik

Mälardalen University Press Dissertations
No. 147

FORMAL APPROACHES FOR BEHAVIORAL MODELING AND
ANALYSIS OF DESIGN-TIME SERVICES AND SERVICE NEGOTIATIONS

Aida Čaušević

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen

försvaras onsdagen den 15 januari 2014, 09.00 i Pi, Högskoleplan 1, Västerås.

Fakultetsopponent: Professor Ina Schieferdecker, Fraunhofer Fokus

Akademin för innovation, design och teknik

Abstract
During the past decade service-orientation has become a popular design paradigm, offering anapproach
in which services are the functional building blocks. Services are self-containedunits of composition,
built to be invoked, composed, and destroyed on (user) demand.Service-oriented systems (SOS) are a
collection of services that are developed based onseveral design principles such as: (i) loose coupling
between services (e.g., inter-servicecommunication can involve either simple data passing or two
or more connected servicescoordinating some activity) that allows services to be independent, yet
highly interoperablewhen required; (ii) service abstraction, which emphasizes the need to hide as
manyimplementation details as possible, yet still exposing functional and extra-functionalcapabilities
that can be offered to service users; (iii) service reusability provided bythe existing services in a
rapid and flexible development process; (iv) service composabilityas one of the main assets of SOS
that provide a design platform for services to be composed anddecomposed, etc.One of the main
concerns in such systems is ensuring service quality per se, but alsoguaranteeing the quality of newly
composed services. To accomplish the above, we consider two system perspectives: the developer's and
the user's view, respectively.In the former, one can be assumed to have access to the internal service
representation:functionality, enabled actions, resource usage, and interactions with other services.In
the second, one has information primarily on the service interface and exposed capabilities(attributes/
features).Means of checking that services and service compositions meet the expected requirements,the
so-called correctness issue, can enable optimization and possibility toguarantee a satisfactory level of a
service composition quality.In order to accomplish exhaustive correctness checks of design-time SOS,we
employ model-checking as the main formal verification technique, which eventually providesnecessary
information about quality-of-service (QoS), already at early stages of system development.~As opposed
to the traditional approach of software system construction,in SOS the same service may be offered
at various prices, QoS, and other conditions,depending on the user needs.In such a setting, the
interactionbetween involved parties requires the negotiation of what is possible at request time,aiming
at meeting needs on demand.The service negotiation process often proceeds with timing, price, and
resource constraints,under which users and providers exchange information on their respective goals,
until reachinga consensus. Hence, a mathematically driven technique to analyze a priori various ways
to achieve such goals isbeneficial for understanding what and how can particular goals be achieved.

This thesis presents the research that we have been carrying out over the past few years, which resulted
in developingmethods and tools for the specification, modeling, and formal analysisof services and
service compositions in SOS. The contributions of the thesis consist of: (i)constructs for the formal
description of services and servicecompositions using the resource-aware timed behavioral language
called REMES; (ii) deductive andalgorithmic approaches for checking correctness of services and
service compositions;(iii) a model of service negotiation that includes different negotiation strategies,
formally analyzedagainst timing and resource constraints; (iv) a tool-chain (REMES SOS IDE) that
provides aneditor and verification support (by integration with the UPPAAL model-checker) to REMES-
based service-oriented designs;(v) a relevant case-study by which we exercise the applicability of our
framework.The presented work has also been applied on other smaller examples presented in the
published papers.

ISBN 978-91-7485-128-1
ISSN 1651-4238

Abstract

During the past decade service-orientation has become a popular de-
sign paradigm, offering an approach in which services are the functional
building blocks. Services are self-contained units of composition, built
to be invoked, composed, and destroyed on (user) demand. Service-
oriented systems (SOS) are a collection of services that are developed
based on several design principles such as: (i) loose coupling between
services (e.g., inter-service communication can involve either simple data
passing or two or more connected services coordinating some activity)
that allows services to be independent, yet highly interoperable when
required; (ii) service abstraction, which emphasizes the need to hide as
many implementation details as possible, yet still exposing functional
and extra-functional capabilities that can be offered to service users;
(iii) service reusability provided by the existing services in a rapid and
flexible development process; (iv) service composability as one of the
main assets of SOS that provide a design platform for services to be
composed and decomposed, etc. One of the main concerns in such sys-
tems is ensuring service quality per se, but also guaranteeing the quality
of newly composed services. To accomplish the above, we consider two
system perspectives: the developer’s and the user’s view, respectively.
In the former, one can be assumed to have access to the internal ser-
vice representation: functionality, enabled actions, resource usage, and
interactions with other services. In the second, one has information pri-
marily on the service interface and exposed capabilities (attributes/fea-
tures). Means of checking that services and service compositions meet
the expected requirements, the so-called correctness issue, can enable
optimization and possibility to guarantee a satisfactory level of a ser-
vice composition quality. In order to accomplish exhaustive correctness
checks of design-time SOS, we employ model-checking as the main formal

i

Abstract

During the past decade service-orientation has become a popular de-
sign paradigm, offering an approach in which services are the functional
building blocks. Services are self-contained units of composition, built
to be invoked, composed, and destroyed on (user) demand. Service-
oriented systems (SOS) are a collection of services that are developed
based on several design principles such as: (i) loose coupling between
services (e.g., inter-service communication can involve either simple data
passing or two or more connected services coordinating some activity)
that allows services to be independent, yet highly interoperable when
required; (ii) service abstraction, which emphasizes the need to hide as
many implementation details as possible, yet still exposing functional
and extra-functional capabilities that can be offered to service users;
(iii) service reusability provided by the existing services in a rapid and
flexible development process; (iv) service composability as one of the
main assets of SOS that provide a design platform for services to be
composed and decomposed, etc. One of the main concerns in such sys-
tems is ensuring service quality per se, but also guaranteeing the quality
of newly composed services. To accomplish the above, we consider two
system perspectives: the developer’s and the user’s view, respectively.
In the former, one can be assumed to have access to the internal ser-
vice representation: functionality, enabled actions, resource usage, and
interactions with other services. In the second, one has information pri-
marily on the service interface and exposed capabilities (attributes/fea-
tures). Means of checking that services and service compositions meet
the expected requirements, the so-called correctness issue, can enable
optimization and possibility to guarantee a satisfactory level of a ser-
vice composition quality. In order to accomplish exhaustive correctness
checks of design-time SOS, we employ model-checking as the main formal

i

ii

verification technique, which eventually provides necessary information
about quality-of-service (QoS), already at early stages of system devel-
opment. As opposed to the traditional approach of software system con-
struction, in SOS the same service may be offered at various prices, QoS,
and other conditions, depending on the user needs. In such a setting, the
interaction between involved parties requires the negotiation of what is
possible at request time, aiming at meeting needs on demand. The ser-
vice negotiation process often proceeds with timing, price, and resource
constraints, under which users and providers exchange information on
their respective goals, until reaching a consensus. Hence, a mathemat-
ically driven technique to analyze a priori various ways to achieve such
goals is beneficial for understanding what and how can particular goals
be achieved.

This thesis presents the research that we have been carrying out
over the past few years, which resulted in developing methods and tools
for the specification, modeling, and formal analysis of services and ser-
vice compositions in SOS. The contributions of the thesis consist of: (i)
constructs for the formal description of services and service composi-
tions using the resource-aware timed behavioral language called Remes;
(ii) deductive and algorithmic approaches for checking correctness of
services and service compositions; (iii) a model of service negotiation
that includes different negotiation strategies, formally analyzed against
timing and resource constraints; (iv) a tool-chain (Remes SOS IDE)
that provides an editor and verification support (by integration with
the Uppaal model-checker) to Remes-based service-oriented designs;
(v) a relevant case-study by which we exercise the applicability of our
framework. The presented work has also been applied on other smaller
examples presented in the published papers.

Populärvetenskaplig

sammanfattning

Under det senaste årtiondet har ett tjänstorienterat paradigm blivit allt-
mer populärt i utvecklingen av datorsystem. I detta paradigm utgör så
kallade tjänster den minsta funktionella systemenheten. Dessa tjänster
är konstruerade så att de kan skapas, användas, sammansättas och avs-
lutas separat. De ska vara oberoende av varandra samtidigt som de ska
kunna fungera effektivt tillsammans och i samarbete med andra system
när så behövs. Vidare ska tjänsterna dölja sina interna implementa-
tionsdetaljer i så stor grad som möjligt, samtidigt som deras fulla funk-
tionalitet ska exponeras för systemdesignern. Tjänsterna ska också på
ett enkelt sätt kunna återanvändas och sammansättas i en snabb och
flexibel utvecklingsprocess.

En av de viktigaste aspekterna i tjänsteorienterade datorsystem är
att kunna säkerställa systemens kvalitet. För att åstadkomma detta är
det viktigt att få en djupare insikt om tjänstens interna funktionalitet,
i termer av möjliga operationer, resursinformation, samt tänkbar inter-
aktion med andra tjänster. Detta är speciellt viktigt när utvecklaren
har möjlighet att välja mellan två funktionellt likvärda tjänster som
är olika med avseende på andra egenskaper, såsom responstid eller an-
dra resurskrav. I detta sammanhang kan en matematisk beskrivning av
en tjänsts beteende ge ökad förståelse av tjänstemodellen, samt hjälpa
användaren att koppla ihop tjänster på ett korrekt sätt. En matema-
tisk beskrivning öppnar också upp för ett sätt att matematiskt resonera
kring tjänster. Metoder för att kontrollera att komponerade tjänster
möter ställda resurskrav möjliggör också resursoptimering av tjänster
samt verifiering av ställda kvalitetskrav.

iii

ii

verification technique, which eventually provides necessary information
about quality-of-service (QoS), already at early stages of system devel-
opment. As opposed to the traditional approach of software system con-
struction, in SOS the same service may be offered at various prices, QoS,
and other conditions, depending on the user needs. In such a setting, the
interaction between involved parties requires the negotiation of what is
possible at request time, aiming at meeting needs on demand. The ser-
vice negotiation process often proceeds with timing, price, and resource
constraints, under which users and providers exchange information on
their respective goals, until reaching a consensus. Hence, a mathemat-
ically driven technique to analyze a priori various ways to achieve such
goals is beneficial for understanding what and how can particular goals
be achieved.

This thesis presents the research that we have been carrying out
over the past few years, which resulted in developing methods and tools
for the specification, modeling, and formal analysis of services and ser-
vice compositions in SOS. The contributions of the thesis consist of: (i)
constructs for the formal description of services and service composi-
tions using the resource-aware timed behavioral language called Remes;
(ii) deductive and algorithmic approaches for checking correctness of
services and service compositions; (iii) a model of service negotiation
that includes different negotiation strategies, formally analyzed against
timing and resource constraints; (iv) a tool-chain (Remes SOS IDE)
that provides an editor and verification support (by integration with
the Uppaal model-checker) to Remes-based service-oriented designs;
(v) a relevant case-study by which we exercise the applicability of our
framework. The presented work has also been applied on other smaller
examples presented in the published papers.

Populärvetenskaplig

sammanfattning

Under det senaste årtiondet har ett tjänstorienterat paradigm blivit allt-
mer populärt i utvecklingen av datorsystem. I detta paradigm utgör så
kallade tjänster den minsta funktionella systemenheten. Dessa tjänster
är konstruerade så att de kan skapas, användas, sammansättas och avs-
lutas separat. De ska vara oberoende av varandra samtidigt som de ska
kunna fungera effektivt tillsammans och i samarbete med andra system
när så behövs. Vidare ska tjänsterna dölja sina interna implementa-
tionsdetaljer i så stor grad som möjligt, samtidigt som deras fulla funk-
tionalitet ska exponeras för systemdesignern. Tjänsterna ska också på
ett enkelt sätt kunna återanvändas och sammansättas i en snabb och
flexibel utvecklingsprocess.

En av de viktigaste aspekterna i tjänsteorienterade datorsystem är
att kunna säkerställa systemens kvalitet. För att åstadkomma detta är
det viktigt att få en djupare insikt om tjänstens interna funktionalitet,
i termer av möjliga operationer, resursinformation, samt tänkbar inter-
aktion med andra tjänster. Detta är speciellt viktigt när utvecklaren
har möjlighet att välja mellan två funktionellt likvärda tjänster som
är olika med avseende på andra egenskaper, såsom responstid eller an-
dra resurskrav. I detta sammanhang kan en matematisk beskrivning av
en tjänsts beteende ge ökad förståelse av tjänstemodellen, samt hjälpa
användaren att koppla ihop tjänster på ett korrekt sätt. En matema-
tisk beskrivning öppnar också upp för ett sätt att matematiskt resonera
kring tjänster. Metoder för att kontrollera att komponerade tjänster
möter ställda resurskrav möjliggör också resursoptimering av tjänster
samt verifiering av ställda kvalitetskrav.

iii

iv

I denna avhandling presenteras forskning som har bedrivits under
de senaste åren. Forskningen har resulterat i metoder och verktyg för
att specificera, modellera och formellt analysera tjänster och samman-
sättning av tjänster. Arbetet i avhandlingen består av (i) en formell
definition av tjänster och sammansättning av tjänster med hjälp av
ett resursmedvetet formellt specifikationsspråk kallat Remes; (ii) två
metoder för att analysera tjänster och kontrollera korrektheten i sam-
mansättning av tjänster, både deduktivt och algoritmiskt; (iii) en modell
av förhandlingsprocessen vid sammansättning av tjänster som inklud-
erar olika förhandlingsstrategier; (iv) ett antal verktyg som stödjer dessa
metoder. Metoderna har använts i ett antal fallstudier som är presen-
terade i de publicerade artiklarna.

To my family

iv

I denna avhandling presenteras forskning som har bedrivits under
de senaste åren. Forskningen har resulterat i metoder och verktyg för
att specificera, modellera och formellt analysera tjänster och samman-
sättning av tjänster. Arbetet i avhandlingen består av (i) en formell
definition av tjänster och sammansättning av tjänster med hjälp av
ett resursmedvetet formellt specifikationsspråk kallat Remes; (ii) två
metoder för att analysera tjänster och kontrollera korrektheten i sam-
mansättning av tjänster, både deduktivt och algoritmiskt; (iii) en modell
av förhandlingsprocessen vid sammansättning av tjänster som inklud-
erar olika förhandlingsstrategier; (iv) ett antal verktyg som stödjer dessa
metoder. Metoderna har använts i ett antal fallstudier som är presen-
terade i de publicerade artiklarna.

To my family

Acknowledgments

Almost six years ago when I decided to start with my Ph.D. studies,
someone told me that getting a Ph.D. degree is a long and tedious jour-
ney. But no matter what that person has told me, I have decided to
take the chance and accept the challenge. Through the past six years
I have really learned that it is not the easiest job in the world to be a
Ph.D. student, but I have to say, for me it was the best. It was very
exciting and vibrating to learn new stuff, to have opportunity to publish
my work, present it at international conferences and workshops, to share
my knowledge and thoughts with fellow Ph.D. students, to learn from
seniors (professors, lecturers, etc.). I have got not only a chance to meet
new people, but also to see new countries, cultures, learn new languages.
All of the sudden all became close, and the most important possible to
reach. I have learned that the whole joy is not in the final destination,
the Ph.D. title, but along the way towards completing Ph.D. studies.

There are many people that have made this journey to be as it was
for me. The most important figures are of course my supervisors. First
of all I would like to thank to my main supervisor Paul Pettersson, for
giving me the opportunity to become a Ph.D. student and believing that
I have lived up to the challenges that this position has carried. Second,
I want to thank to my assistant supervisor Cristina Seceleanu who has
not only served as my supervisor, but also as friend, always there with
a warm word of praise and encouragement. I am grateful to you for all
challenges that you have put me through. I owe you a great debt of
gratitude for your guidance and for never accepting less than my best
efforts.

Also I would like to thank to colleagues from my research group Aneta
Vulgarakis, Jagadish Suryadevara, Leo Hatvani, Eduard Paul Enoiu, and
Raluca Marinescu for all support, discussions, reviews and comments.

vii

Acknowledgments

Almost six years ago when I decided to start with my Ph.D. studies,
someone told me that getting a Ph.D. degree is a long and tedious jour-
ney. But no matter what that person has told me, I have decided to
take the chance and accept the challenge. Through the past six years
I have really learned that it is not the easiest job in the world to be a
Ph.D. student, but I have to say, for me it was the best. It was very
exciting and vibrating to learn new stuff, to have opportunity to publish
my work, present it at international conferences and workshops, to share
my knowledge and thoughts with fellow Ph.D. students, to learn from
seniors (professors, lecturers, etc.). I have got not only a chance to meet
new people, but also to see new countries, cultures, learn new languages.
All of the sudden all became close, and the most important possible to
reach. I have learned that the whole joy is not in the final destination,
the Ph.D. title, but along the way towards completing Ph.D. studies.

There are many people that have made this journey to be as it was
for me. The most important figures are of course my supervisors. First
of all I would like to thank to my main supervisor Paul Pettersson, for
giving me the opportunity to become a Ph.D. student and believing that
I have lived up to the challenges that this position has carried. Second,
I want to thank to my assistant supervisor Cristina Seceleanu who has
not only served as my supervisor, but also as friend, always there with
a warm word of praise and encouragement. I am grateful to you for all
challenges that you have put me through. I owe you a great debt of
gratitude for your guidance and for never accepting less than my best
efforts.

Also I would like to thank to colleagues from my research group Aneta
Vulgarakis, Jagadish Suryadevara, Leo Hatvani, Eduard Paul Enoiu, and
Raluca Marinescu for all support, discussions, reviews and comments.

vii

viii

Outside of the thesis work I have also been involved in teaching.
Many thanks to people that I have had pleasure to work with: Ivica Crn-
ković, Frank Lüders, Jan Carlson, Séverine Sentilles, Andreas Johnsen,
Jiale Zhou, and Mehrdad Saadatman.

I wish to thank to teachers, lectures, and professors at MDH: Hans
Hansson, Sasikumar Punnekkat, Gordana Dodig-Crnković, Mats Björk-
man, Eun-Young Kang, Thomas Nolte, Emma Nehrenheim, Dag Nys-
tröm, Lars Asplund, Radu Dobrin, Damir Isović, Björn Lisper, Kristina
Lundqvist, Mikael Sjödin, Jan Carlson, and Daniel Sundmark, for giving
me the knowledge and vision to become a better Ph.D. student.

I would like to thank to the whole administrative and research coor-
dination staff at the department for making my life easier, in particular
Carola Ryttersson, Gunnar Widforss, Susanne Fronnå, Malin Rosqvist,
Anna Juto Andersson, Jenny Hägglund, Malin Åshuvud, Ingrid Run-
nérus, Sofia Jäderén, and Malin Swanström.

A Ph.D. position does not include work only, but also a lot of fun at
coffee breaks, lunches, and travels. I would like to thank to Abhilash,
Alessio, Andreas G., Aneta, Anita, Anton, Antonio, Barbara, Batu, Bob,
Cristina, Dag, Damir, Daniel, Eddie, Federico, Frank, Fredrik, Gabriel,
Giacomo, Guillermo, Hüseyin, Irfan, Jagadish, Jan, Josip, Juraj, Lars,
Leo, Luka, Mehrdad, Meng, Mikael, Mohammad, Moris, Nikola, Nima,
Omar, Radu, Rafia, Raluca, Saad, Sara Abbaspour, Sara Afshar, Svet-
lana, Thomas, Tibi, Saad, Séverine, and many others for making life at
MDH more interesting and enjoyable.

Thanks to my Bosnian friend, Ajla Ćerimagić, for being always there
despite the distance between us. For encouraging me to never give up
and to follow my dreams.

To my dear brother Adnan and his wife Belma. Thank you for be-
lieving in me, for your love, support, and encouragement.

Veliko hvala mojim roditeljima, Edini i Mujagi. Ono što danas jesam,
osoba koja sam postala, mogu zahvaliti samo vama. Vi ste bili uvijek oni
koji su mi govorili da sve što poželim mogu samo upornošću i trudom
postići. Hvala Vam što ste mi uvijek vjerovali i podupirali moje namjere,
bez obzira koliko se sulude u tom momentu činile. Znam da je mami
oduvijek bila želja da budem doktorica, evo želja joj se ispunila. Doduše,
ne liječim ljude, ali mogu pomoći oko računara.

Finally, my deepest gratitude goes for my dear husband Adnan and
daughter Alina. Adnan, thank you for supporting, maybe at that point
in time, a crazy idea to leave all we have had before coming to Sweden

ix

and joining me at this journey. Thank you for your unselfish and uncon-
ditional love, your understanding, simply thank you for being around.
Alina, I thought I have had everything in my life, before you entered
into it. With you, all my life has completely changed, in a positive way.
You have thought me to be organized, to prioritize my time, to cherish
each moment spent together. Now, I cannot imagine my life without
you, your smile, your love, your eyes. I love you my child!

Aida Čaušević
Västerås, October, 2013

viii

Outside of the thesis work I have also been involved in teaching.
Many thanks to people that I have had pleasure to work with: Ivica Crn-
ković, Frank Lüders, Jan Carlson, Séverine Sentilles, Andreas Johnsen,
Jiale Zhou, and Mehrdad Saadatman.

I wish to thank to teachers, lectures, and professors at MDH: Hans
Hansson, Sasikumar Punnekkat, Gordana Dodig-Crnković, Mats Björk-
man, Eun-Young Kang, Thomas Nolte, Emma Nehrenheim, Dag Nys-
tröm, Lars Asplund, Radu Dobrin, Damir Isović, Björn Lisper, Kristina
Lundqvist, Mikael Sjödin, Jan Carlson, and Daniel Sundmark, for giving
me the knowledge and vision to become a better Ph.D. student.

I would like to thank to the whole administrative and research coor-
dination staff at the department for making my life easier, in particular
Carola Ryttersson, Gunnar Widforss, Susanne Fronnå, Malin Rosqvist,
Anna Juto Andersson, Jenny Hägglund, Malin Åshuvud, Ingrid Run-
nérus, Sofia Jäderén, and Malin Swanström.

A Ph.D. position does not include work only, but also a lot of fun at
coffee breaks, lunches, and travels. I would like to thank to Abhilash,
Alessio, Andreas G., Aneta, Anita, Anton, Antonio, Barbara, Batu, Bob,
Cristina, Dag, Damir, Daniel, Eddie, Federico, Frank, Fredrik, Gabriel,
Giacomo, Guillermo, Hüseyin, Irfan, Jagadish, Jan, Josip, Juraj, Lars,
Leo, Luka, Mehrdad, Meng, Mikael, Mohammad, Moris, Nikola, Nima,
Omar, Radu, Rafia, Raluca, Saad, Sara Abbaspour, Sara Afshar, Svet-
lana, Thomas, Tibi, Saad, Séverine, and many others for making life at
MDH more interesting and enjoyable.

Thanks to my Bosnian friend, Ajla Ćerimagić, for being always there
despite the distance between us. For encouraging me to never give up
and to follow my dreams.

To my dear brother Adnan and his wife Belma. Thank you for be-
lieving in me, for your love, support, and encouragement.

Veliko hvala mojim roditeljima, Edini i Mujagi. Ono što danas jesam,
osoba koja sam postala, mogu zahvaliti samo vama. Vi ste bili uvijek oni
koji su mi govorili da sve što poželim mogu samo upornošću i trudom
postići. Hvala Vam što ste mi uvijek vjerovali i podupirali moje namjere,
bez obzira koliko se sulude u tom momentu činile. Znam da je mami
oduvijek bila želja da budem doktorica, evo želja joj se ispunila. Doduše,
ne liječim ljude, ali mogu pomoći oko računara.

Finally, my deepest gratitude goes for my dear husband Adnan and
daughter Alina. Adnan, thank you for supporting, maybe at that point
in time, a crazy idea to leave all we have had before coming to Sweden

ix

and joining me at this journey. Thank you for your unselfish and uncon-
ditional love, your understanding, simply thank you for being around.
Alina, I thought I have had everything in my life, before you entered
into it. With you, all my life has completely changed, in a positive way.
You have thought me to be organized, to prioritize my time, to cherish
each moment spent together. Now, I cannot imagine my life without
you, your smile, your love, your eyes. I love you my child!

Aida Čaušević
Västerås, October, 2013

Contents

1 Introduction 5

1.1 Thesis Outline . 11
1.2 Publications related to the thesis 16

2 Preliminaries 19

2.1 Service-Oriented Systems 19
2.2 Remes: A Resource Model for Embedded Systems 21
2.3 Formal Modeling and Analysis of Software Systems 24

2.3.1 Timed Automata 27
2.3.2 Priced Timed Automata 30
2.3.3 Formal Analysis of Remes Models 32

3 Research Goals and Methodology 35

3.1 Problem Description . 35
3.2 Research Subgoals . 36
3.3 Research Methodology . 40

4 Research Contributions 43

5 Related Work 55

5.1 Modeling and Analysis of SOS 55
5.2 Checking Properties of Isolated and

Composed Services . 57
5.3 Service Negotiation . 57

6 Conclusions and Future Work 61

6.1 Summary of Thesis Contributions 61
6.2 Future Research Directions 64

xi

Contents

1 Introduction 5

1.1 Thesis Outline . 11
1.2 Publications related to the thesis 16

2 Preliminaries 19

2.1 Service-Oriented Systems 19
2.2 Remes: A Resource Model for Embedded Systems 21
2.3 Formal Modeling and Analysis of Software Systems 24

2.3.1 Timed Automata 27
2.3.2 Priced Timed Automata 30
2.3.3 Formal Analysis of Remes Models 32

3 Research Goals and Methodology 35

3.1 Problem Description . 35
3.2 Research Subgoals . 36
3.3 Research Methodology . 40

4 Research Contributions 43

5 Related Work 55

5.1 Modeling and Analysis of SOS 55
5.2 Checking Properties of Isolated and

Composed Services . 57
5.3 Service Negotiation . 57

6 Conclusions and Future Work 61

6.1 Summary of Thesis Contributions 61
6.2 Future Research Directions 64

xi

xii Contents

Bibliography 67

II Included Papers 76

7 Paper A:

Towards a Unified Behavioral Model for Component-

Based and Service-Oriented Systems 79

7.1 Introduction . 81
7.2 Characteristics of CBSE and SOSE 82
7.3 Behavioral Modeling in CBS and SOS 85

7.3.1 Component-Based Modeling 86
7.3.2 Service-oriented Modeling 89

7.4 Discussion and Related Work 91
7.5 Conclusions and Future Work 92
Bibliography . 95

8 Paper B:

Modeling and Reasoning about Service Behaviors and

their Compositions 99

8.1 Introduction . 101
8.2 Preliminaries . 102

8.2.1 Remes modeling language 102
8.2.2 Guarded command language 103

8.3 Behavioral Modeling of Services in Remes 104
8.4 Hierarchical Language for Dynamic Service Composition:

Syntax and Semantics . 109
8.5 Example: An Autonomous Shuttle System 113

8.5.1 Modeling the Shuttle System in Remes 114
8.5.2 Applying the Hierarchical Language 115

8.6 Discussion and Related Work 117
8.7 Conclusions . 118
Bibliography . 121

9 Paper C:

Checking Correctness of Services Modeled as Priced Timed

Automata 125

9.1 Introduction . 127
9.2 Preliminaries . 128

Contents xiii

9.2.1 Remes modeling language 128
9.2.2 Priced Timed Automata 130
9.2.3 Symbolic Optimal Reachability 132

9.3 Algorithms for Calculating Strongest
Postconditions of Services 134
9.3.1 Strongest Postcondition 134
9.3.2 Strongest postcondition calculation and minimum

cost reachability 135
9.3.3 Strongest postcondition calculation and maximum

cost reachability 139
9.4 Discussion and Related Work 141
9.5 Conclusions . 142
Bibliography . 145

10 Paper D:

An Analyzable Model of Automated Service Negotiation149

10.1 Introduction . 151
10.2 Preliminaries . 153

10.2.1 Remes Hdcl modeling language 153
10.2.2 Timed Automata 155

10.3 Our Service Negotiation Model 158
10.3.1 Modeling Service Negotiation in Remes Hdcl . . 158
10.3.2 Analysis of the Proposed Negotiation Model 163

10.4 Example: An Insurance Scenario 164
10.4.1 Negotiation strategies 165
10.4.2 Modeling Negotiation for the Insurance Scenario . 167
10.4.3 Analyzing the TA Model of the Insurance Scenario 171

10.5 Discussion and Related Work 176
10.6 Conclusions . 178
10.7 Acknowledgments . 178
Bibliography . 181

11 Paper E:

Distributed Energy Management Case Study: A Formal

Approach to Analyzing Utility Functions 185

11.1 Introduction . 187
11.2 Background . 188

11.2.1 Remes - a language for behavioral modeling of SOS188
11.2.2 Timed automata 189

xii Contents

Bibliography 67

II Included Papers 76

7 Paper A:

Towards a Unified Behavioral Model for Component-

Based and Service-Oriented Systems 79

7.1 Introduction . 81
7.2 Characteristics of CBSE and SOSE 82
7.3 Behavioral Modeling in CBS and SOS 85

7.3.1 Component-Based Modeling 86
7.3.2 Service-oriented Modeling 89

7.4 Discussion and Related Work 91
7.5 Conclusions and Future Work 92
Bibliography . 95

8 Paper B:

Modeling and Reasoning about Service Behaviors and

their Compositions 99

8.1 Introduction . 101
8.2 Preliminaries . 102

8.2.1 Remes modeling language 102
8.2.2 Guarded command language 103

8.3 Behavioral Modeling of Services in Remes 104
8.4 Hierarchical Language for Dynamic Service Composition:

Syntax and Semantics . 109
8.5 Example: An Autonomous Shuttle System 113

8.5.1 Modeling the Shuttle System in Remes 114
8.5.2 Applying the Hierarchical Language 115

8.6 Discussion and Related Work 117
8.7 Conclusions . 118
Bibliography . 121

9 Paper C:

Checking Correctness of Services Modeled as Priced Timed

Automata 125

9.1 Introduction . 127
9.2 Preliminaries . 128

Contents xiii

9.2.1 Remes modeling language 128
9.2.2 Priced Timed Automata 130
9.2.3 Symbolic Optimal Reachability 132

9.3 Algorithms for Calculating Strongest
Postconditions of Services 134
9.3.1 Strongest Postcondition 134
9.3.2 Strongest postcondition calculation and minimum

cost reachability 135
9.3.3 Strongest postcondition calculation and maximum

cost reachability 139
9.4 Discussion and Related Work 141
9.5 Conclusions . 142
Bibliography . 145

10 Paper D:

An Analyzable Model of Automated Service Negotiation149

10.1 Introduction . 151
10.2 Preliminaries . 153

10.2.1 Remes Hdcl modeling language 153
10.2.2 Timed Automata 155

10.3 Our Service Negotiation Model 158
10.3.1 Modeling Service Negotiation in Remes Hdcl . . 158
10.3.2 Analysis of the Proposed Negotiation Model 163

10.4 Example: An Insurance Scenario 164
10.4.1 Negotiation strategies 165
10.4.2 Modeling Negotiation for the Insurance Scenario . 167
10.4.3 Analyzing the TA Model of the Insurance Scenario 171

10.5 Discussion and Related Work 176
10.6 Conclusions . 178
10.7 Acknowledgments . 178
Bibliography . 181

11 Paper E:

Distributed Energy Management Case Study: A Formal

Approach to Analyzing Utility Functions 185

11.1 Introduction . 187
11.2 Background . 188

11.2.1 Remes - a language for behavioral modeling of SOS188
11.2.2 Timed automata 189

xiv Contents

11.3 Energy negotiation model in Remes Hdcl 191
11.4 Remes Hdcl - based energy negotiation model 193
11.5 Formal analysis of the negotiation model 195

11.5.1 The analysis goals 195
11.5.2 A TA semantic translation of the Remes model

and analysis results 196
11.6 Related work . 201
11.7 Conclusions . 202
Bibliography . 205

12 Paper F:

A Design Tool for Service-oriented Systems 209

12.1 Introduction . 211
12.2 The SOS Design Tool: Workflow and User Interface . . . 212

12.2.1 Workflow . 212
12.2.2 User Interface . 213
12.2.3 Model Traceability and Verification Condition Gen-

erator . 215
12.3 Conclusions . 216
12.4 Acknowledgment . 216
Bibliography . 217

List of Figures

1.1 An illustration of an applied service-oriented architecture
(SOA) on a business model (Source: Tieto AB) 6

1.2 A model of the negotiation process 10

2.1 A Remes mode . 22
2.2 Verification methodology of model checking [1] 26
2.3 A timed automata . 30
2.4 A priced timed automaton 32

3.1 Research process steps . 41

4.1 A user and developer perspective in a Remes composite
service. 44

4.2 An illustration of an AND/OR Remes mode 48
4.3 An example of the algorithmic strongest postcondition

calculation . 51

7.1 CBSE development process 84
7.2 SOSE overview . 85
7.3 Component based ATM system as a ProCom-based de-

scription . 87
7.4 Remes modes for ATM and Bank 88

8.1 A service modeled in Remes 105
8.2 An AND/OR Remes mode. 108
8.3 An example overview. 114
8.4 The model of Shuttle1 given as a Remes service. 115

1

xiv Contents

11.3 Energy negotiation model in Remes Hdcl 191
11.4 Remes Hdcl - based energy negotiation model 193
11.5 Formal analysis of the negotiation model 195

11.5.1 The analysis goals 195
11.5.2 A TA semantic translation of the Remes model

and analysis results 196
11.6 Related work . 201
11.7 Conclusions . 202
Bibliography . 205

12 Paper F:

A Design Tool for Service-oriented Systems 209

12.1 Introduction . 211
12.2 The SOS Design Tool: Workflow and User Interface . . . 212

12.2.1 Workflow . 212
12.2.2 User Interface . 213
12.2.3 Model Traceability and Verification Condition Gen-

erator . 215
12.3 Conclusions . 216
12.4 Acknowledgment . 216
Bibliography . 217

List of Figures

1.1 An illustration of an applied service-oriented architecture
(SOA) on a business model (Source: Tieto AB) 6

1.2 A model of the negotiation process 10

2.1 A Remes mode . 22
2.2 Verification methodology of model checking [1] 26
2.3 A timed automata . 30
2.4 A priced timed automaton 32

3.1 Research process steps . 41

4.1 A user and developer perspective in a Remes composite
service. 44

4.2 An illustration of an AND/OR Remes mode 48
4.3 An example of the algorithmic strongest postcondition

calculation . 51

7.1 CBSE development process 84
7.2 SOSE overview . 85
7.3 Component based ATM system as a ProCom-based de-

scription . 87
7.4 Remes modes for ATM and Bank 88

8.1 A service modeled in Remes 105
8.2 An AND/OR Remes mode. 108
8.3 An example overview. 114
8.4 The model of Shuttle1 given as a Remes service. 115

1

2 List of Figures

9.1 An example of a Remes service 129
9.2 The PTAn model of the Remes service of Fig. 9.1 131
9.3 Symbolic states for minimum reachability cost 138
9.4 Symbolic states for maximum reachability cost 140

10.1 The TAn model of a Remes service 155
10.2 The timed automata model of DSC and RS01 172

11.1 An energy demand over a day 193
11.2 TA models of the negotiation participants 197
11.3 Utility function change over a day for scenario 2 198
11.4 Some illustrated analysis results 200

12.1 The tool workflow . 213
12.2 A screenshot of the tool. A composite service (1) can be

created by using the Palette (2) and can have a number
of associated service attributes (7) , constants, variables,
and resources (8), displayed in separate compartments.
The services are entered via their init-,or entry points (3).
They can be described using the Remes language (4),
connected by edges and conditional connectors (5), and
exited through their exit points (6). After each diagram
composition, one can check whether the given requirement
is satisfied (9). 214

List of Tables

8.1 An illustration of the Remes language 115

10.1 Values of the minimized utility function of the DSC . . . 174
10.2 Values of the utility function of the respective repair shops

for the same price values as in Table 10.1 174
10.3 Values of the maximized utility function of the respective

repair shops . 175
10.4 Values of the utility function of DSC for the same price

values as in Table 10.3 . 175

11.1 A service declaration . 194

3

2 List of Figures

9.1 An example of a Remes service 129
9.2 The PTAn model of the Remes service of Fig. 9.1 131
9.3 Symbolic states for minimum reachability cost 138
9.4 Symbolic states for maximum reachability cost 140

10.1 The TAn model of a Remes service 155
10.2 The timed automata model of DSC and RS01 172

11.1 An energy demand over a day 193
11.2 TA models of the negotiation participants 197
11.3 Utility function change over a day for scenario 2 198
11.4 Some illustrated analysis results 200

12.1 The tool workflow . 213
12.2 A screenshot of the tool. A composite service (1) can be

created by using the Palette (2) and can have a number
of associated service attributes (7) , constants, variables,
and resources (8), displayed in separate compartments.
The services are entered via their init-,or entry points (3).
They can be described using the Remes language (4),
connected by edges and conditional connectors (5), and
exited through their exit points (6). After each diagram
composition, one can check whether the given requirement
is satisfied (9). 214

List of Tables

8.1 An illustration of the Remes language 115

10.1 Values of the minimized utility function of the DSC . . . 174
10.2 Values of the utility function of the respective repair shops

for the same price values as in Table 10.1 174
10.3 Values of the maximized utility function of the respective

repair shops . 175
10.4 Values of the utility function of DSC for the same price

values as in Table 10.3 . 175

11.1 A service declaration . 194

3

Chapter 1

Introduction

Over the past decade the service-oriented paradigm has become a pop-
ular software development approach that provides a way to implement
distributed, loosely coupled, and platform independent systems. The
paradigm has been introduced as an answer to the need of handling a
significant growth of software functionality, by packing it into services
and making it accessible through a networked infrastructure. A service
is assumed to be an autonomous piece of software providing its function-
ality via well-defined interfaces that expose the services’ characteristics,
such as, response time, capacity, etc. Services have become available
via either open or proprietary network protocols, and accessible within
closed corporate Intranets, or throughout open protocols using Inter-
net. The service-oriented approach has also brought a way to integrate
and connect heterogeneous applications and available resources, in most
cases on demand. Constructs to build systems in such a way can be seen
as means to support complex and dynamic interactions among possibly
large numbers of parties that interact in order to achieve well-defined
goals.

One can view service-oriented systems (SOS) as a solution to bridge
the gap between business models and existing technical solutions. From
a technical perspective, SOS enable the use of services that provide
reusable functionality via a well-defined interface, which are discoverable,
and capable of being invoked and composed when needed. Moreover,
SOS promote development of new applications based on the functional-
ity available in already existing services. From a business perspective,

5

Chapter 1

Introduction

Over the past decade the service-oriented paradigm has become a pop-
ular software development approach that provides a way to implement
distributed, loosely coupled, and platform independent systems. The
paradigm has been introduced as an answer to the need of handling a
significant growth of software functionality, by packing it into services
and making it accessible through a networked infrastructure. A service
is assumed to be an autonomous piece of software providing its function-
ality via well-defined interfaces that expose the services’ characteristics,
such as, response time, capacity, etc. Services have become available
via either open or proprietary network protocols, and accessible within
closed corporate Intranets, or throughout open protocols using Inter-
net. The service-oriented approach has also brought a way to integrate
and connect heterogeneous applications and available resources, in most
cases on demand. Constructs to build systems in such a way can be seen
as means to support complex and dynamic interactions among possibly
large numbers of parties that interact in order to achieve well-defined
goals.

One can view service-oriented systems (SOS) as a solution to bridge
the gap between business models and existing technical solutions. From
a technical perspective, SOS enable the use of services that provide
reusable functionality via a well-defined interface, which are discoverable,
and capable of being invoked and composed when needed. Moreover,
SOS promote development of new applications based on the functional-
ity available in already existing services. From a business perspective,

5

6 Chapter 1. Introduction

��������������������

�������

�������

�������

�������

�������

������������

�������������

�����

��������������������������

��������������������������

���������������������������

���������������������
���

��������������

�����

���	����

Figure 1.1: An illustration of an applied service-oriented architecture
(SOA) on a business model (Source: Tieto AB)

SOS are expected to provide a way to expose legacy functionality to
remote clients throughout existing or third-party software assets and at
the same time to reduce the overall IT expenses [2, 3].

Figure 1.1 depicts a solution in which a business model is structured
and exposed to the user using a service-oriented architecture (SOA).
SOA organizes such a system as a set of capabilities that are offered as
services. A service is available for use by multiple service consumers,
and at the same time it is able to serve multiple business processes.
It virtualizes how a specific capability is performed, and where and by
whom the resources are provided, enabling multiple service providers to
participate together in shared business activities.

SOS assume services as their basic functional units, independent of
any specific implementation platform, capable of being published, in-
voked, composed and destroyed on demand. In such systems, it is chal-
lenging to ensure the expected level of quality-of-service (QoS) required
in case the user needs to select one of many functionally similar services.
To guarantee the required level of QoS, some of the existing SOS frame-
works provide formal analysis of a mathematical model of the SOS [4–7].
In most cases building the formal model to be analyzed is not a straight-
forward process and it requires a user to master not only specification,
but also transformation techniques.

7

The design and analysis of SOS needs to cater for two different per-
spectives: the developer’s and the user’s. Assuming the former, one
needs to gain insight into the service functionality representation, en-
abled actions, resource annotations, and possible interactions with other
services, all represented as a service behavioral description. For the user’s
view, such a description is not needed, instead the service interface needs
to be visible. The SOS paradigm assumes that new systems and applica-
tions are built by reusing already existing services, providing the reusable
functionality via well-defined interfaces. Once systems and applications
are built, it becomes crucial to be able to check the fulfilment of defined
requirements of the employed services, both in isolation, as well as in
the context of the newly created service compositions. An important as-
pect, many times ignored, is the service’s resource usage. Any analysis
approach that abstracts from service resource constraints might produce
analysis results that are insufficiently correct, or reliable.

The goal of this thesis is to provide methods and tools for the speci-
fication, modeling, and formal analysis of services and service composi-
tions in SOS. Relying on the fact that SOS have similar characteristics
with component-based systems (CBS), one could think of reusing an
existing component-based framework for designing service-oriented soft-
ware. Embracing this view, in this thesis we introduce an extension
of the existing behavioral modeling language Remes, which has been
designed to fit a component-based design perspective [8, 9]. Our ex-
tension enhances Remes to enable the graphical description of internal
service behavior, in terms of actions, resource annotations, timing con-
straints, possible interactions with other services, etc., but also lets the
designer to specify its interface as a set of service attributes (i.e., service
type, service capacity, time-to-serve, status, service precondition, and
postcondition, respectively). Remes is a state-machine based behavioral
language suitable for abstract modeling, with support for hierarchical
modeling, has an input/output distinction, a well-defined formal seman-
tics, and tool support for modeling and formal analysis of SOS [10, 11].
A Remes service can be described in terms of modes that can be either
atomic if they do not contain any submode, or composite if they con-
tain a number of submodes, but can also be employed in various types of
compositions, resulting in more complex services. The language supports
sequential, parallel, or synchronized composition of services that is en-
abled through the special type of Remes mode, called AND/OR mode.
In CBS the system architecture is imposed by the component model’s

6 Chapter 1. Introduction

��������������������

�������

�������

�������

�������

�������

������������

�������������

�����

��������������������������

��������������������������

���������������������������

���������������������
���

��������������

�����

���	����

Figure 1.1: An illustration of an applied service-oriented architecture
(SOA) on a business model (Source: Tieto AB)

SOS are expected to provide a way to expose legacy functionality to
remote clients throughout existing or third-party software assets and at
the same time to reduce the overall IT expenses [2, 3].

Figure 1.1 depicts a solution in which a business model is structured
and exposed to the user using a service-oriented architecture (SOA).
SOA organizes such a system as a set of capabilities that are offered as
services. A service is available for use by multiple service consumers,
and at the same time it is able to serve multiple business processes.
It virtualizes how a specific capability is performed, and where and by
whom the resources are provided, enabling multiple service providers to
participate together in shared business activities.

SOS assume services as their basic functional units, independent of
any specific implementation platform, capable of being published, in-
voked, composed and destroyed on demand. In such systems, it is chal-
lenging to ensure the expected level of quality-of-service (QoS) required
in case the user needs to select one of many functionally similar services.
To guarantee the required level of QoS, some of the existing SOS frame-
works provide formal analysis of a mathematical model of the SOS [4–7].
In most cases building the formal model to be analyzed is not a straight-
forward process and it requires a user to master not only specification,
but also transformation techniques.

7

The design and analysis of SOS needs to cater for two different per-
spectives: the developer’s and the user’s. Assuming the former, one
needs to gain insight into the service functionality representation, en-
abled actions, resource annotations, and possible interactions with other
services, all represented as a service behavioral description. For the user’s
view, such a description is not needed, instead the service interface needs
to be visible. The SOS paradigm assumes that new systems and applica-
tions are built by reusing already existing services, providing the reusable
functionality via well-defined interfaces. Once systems and applications
are built, it becomes crucial to be able to check the fulfilment of defined
requirements of the employed services, both in isolation, as well as in
the context of the newly created service compositions. An important as-
pect, many times ignored, is the service’s resource usage. Any analysis
approach that abstracts from service resource constraints might produce
analysis results that are insufficiently correct, or reliable.

The goal of this thesis is to provide methods and tools for the speci-
fication, modeling, and formal analysis of services and service composi-
tions in SOS. Relying on the fact that SOS have similar characteristics
with component-based systems (CBS), one could think of reusing an
existing component-based framework for designing service-oriented soft-
ware. Embracing this view, in this thesis we introduce an extension
of the existing behavioral modeling language Remes, which has been
designed to fit a component-based design perspective [8, 9]. Our ex-
tension enhances Remes to enable the graphical description of internal
service behavior, in terms of actions, resource annotations, timing con-
straints, possible interactions with other services, etc., but also lets the
designer to specify its interface as a set of service attributes (i.e., service
type, service capacity, time-to-serve, status, service precondition, and
postcondition, respectively). Remes is a state-machine based behavioral
language suitable for abstract modeling, with support for hierarchical
modeling, has an input/output distinction, a well-defined formal seman-
tics, and tool support for modeling and formal analysis of SOS [10, 11].
A Remes service can be described in terms of modes that can be either
atomic if they do not contain any submode, or composite if they con-
tain a number of submodes, but can also be employed in various types of
compositions, resulting in more complex services. The language supports
sequential, parallel, or synchronized composition of services that is en-
abled through the special type of Remes mode, called AND/OR mode.
In CBS the system architecture is imposed by the component model’s

8 Chapter 1. Introduction

rules of inter-connection, yet for SOS there is no assumed underlying
component model to define an architecture, so composition can be han-
dled by operators (beside parallel composition) with formal semantics,
which can be used to model service compositions. Our extensions in-
troduce service-oriented features, aiming at making Remes suitable for
behavioral modeling and analysis of SOS, too. Thomas Erl recognizes
two stages during service life-cycle [12]. The first deals with service can-
didates, at design-time, where a developer can change and improve both
functional and extra-functional properties of a service [12]. The second
assumes a service that is already visible to service users and ready to
be deployed. In this thesis we focus on service candidates that can still
be analyzed in order to predict their possible future behavior. How-
ever, in the remainder of the thesis we call them services, assuming only
design-time services.

Nowadays, one of the best known and most used formal analysis
technique is model-checking [1]. The essence of model-checking is its
ability to automatically verify finite-state system properties for all sys-
tem behaviors. The analysis process starts with an automata model of
a system describing possible system behaviors fed into a model-checking
tool or a verifier, together with a desired property. Properties to be
examined are typically expressed in a temporal logic. The tool automat-
ically passes through the system’s state space in an exhaustive manner,
and provides an answer regarding the defined property. In case that
the property is satisfied, the tool finishes the verification successfully,
otherwise, it reports one of the traces that violates the property as a
counter-example to the model. For reachability properties that check
whether a given state formula possibly can be satisfied by any reachable
state, a trace is reported when the property is satisfied. The benefit
of such an analysis process is the fact that one can refine the model
and reapply model-checking as many times as needed. In this thesis we
apply model-checking techniques for the formal analysis of services and
service compositions, given that the formal semantics of Remes language
is defined in terms of timed automata (TA) and priced timed automata
(PTA).

One of the main principles of SOS is the idea of composing services
by discovering and selectively invoking them rather than building the
whole application from scratch, at design-time. Therefore, as soon as
services are connected, the validity and correctness of the result need to
be analyzed. For instance, let us assume that a user needs a service that

9

is composed from several navigation services, where some services return
a route length in miles and some in kilometers. If the developer omits to
introduce a service that converts length from one metrics to the other,
the error can be detected by formally checking the correctness of the
actual composition, as soon as the composition is formed. Also, services
that are functionally similar might differ in extra-functional attributes,
such as time and resource-usage making them more (or less) suitable for
particular users and applications. In such cases, it is also beneficial to be
able to provide information regarding the minimum (or maximum) time
needed for a service or a service composition to finish the given task, or
the minimum (or maximum) total resource consumption of a service or
service composition. In order to make services (or service compositions)
comparable with respect to resource consumption, we assume a cost
modeled by a weighted sum of the consumed resources.

To verify the correctness and quality of services and service composi-
tions we use the forward analysis technique based on the computation of
the strongest postcondition of a Remes service with respect to a given
precondition [13]. To prove the correctness of a Remes service in iso-
lation, we check that the calculated strongest postcondition is no more
than the given requirement. The strongest postcondition technique as-
sumes Dijkstra’s and Sholten’s strongest postcondition semantics [13]
that lets us reduce proving correctness of services and service compo-
sitions to boolean implications. The actual strongest postcondition is
then calculated algorithmically, with services modeled as PTA. We con-
sider the service resource consumption in Remes as a cost variable in
PTA, and alongside our strongest postcondition calculation, we include,
in our algorithms, well known approaches for computing the minimum
and maximum reachability cost [14].

In SOS the same service may be offered at various prices, QoS and
other conditions, depending on the customer needs. In such a setting,
the interaction between parties involves the negotiation of what is pos-
sible at request time, aiming at meeting needs on demand. Therefore,
the a priori analysis of possible negotiation strategies facilitates insights
into what can be achieved under each strategy, and possibly compute
optimal values of price, resource consumption, etc., or maximized value
of the utility function (a weighted sum of negotiation preferences) for
all possible behaviors of the involved parties. Within SOS, services can
act as clients, mediators, or providers, respectively, as depicted in Fig-
ure 1.2. The role of a client service is to require a service that performs

8 Chapter 1. Introduction

rules of inter-connection, yet for SOS there is no assumed underlying
component model to define an architecture, so composition can be han-
dled by operators (beside parallel composition) with formal semantics,
which can be used to model service compositions. Our extensions in-
troduce service-oriented features, aiming at making Remes suitable for
behavioral modeling and analysis of SOS, too. Thomas Erl recognizes
two stages during service life-cycle [12]. The first deals with service can-
didates, at design-time, where a developer can change and improve both
functional and extra-functional properties of a service [12]. The second
assumes a service that is already visible to service users and ready to
be deployed. In this thesis we focus on service candidates that can still
be analyzed in order to predict their possible future behavior. How-
ever, in the remainder of the thesis we call them services, assuming only
design-time services.

Nowadays, one of the best known and most used formal analysis
technique is model-checking [1]. The essence of model-checking is its
ability to automatically verify finite-state system properties for all sys-
tem behaviors. The analysis process starts with an automata model of
a system describing possible system behaviors fed into a model-checking
tool or a verifier, together with a desired property. Properties to be
examined are typically expressed in a temporal logic. The tool automat-
ically passes through the system’s state space in an exhaustive manner,
and provides an answer regarding the defined property. In case that
the property is satisfied, the tool finishes the verification successfully,
otherwise, it reports one of the traces that violates the property as a
counter-example to the model. For reachability properties that check
whether a given state formula possibly can be satisfied by any reachable
state, a trace is reported when the property is satisfied. The benefit
of such an analysis process is the fact that one can refine the model
and reapply model-checking as many times as needed. In this thesis we
apply model-checking techniques for the formal analysis of services and
service compositions, given that the formal semantics of Remes language
is defined in terms of timed automata (TA) and priced timed automata
(PTA).

One of the main principles of SOS is the idea of composing services
by discovering and selectively invoking them rather than building the
whole application from scratch, at design-time. Therefore, as soon as
services are connected, the validity and correctness of the result need to
be analyzed. For instance, let us assume that a user needs a service that

9

is composed from several navigation services, where some services return
a route length in miles and some in kilometers. If the developer omits to
introduce a service that converts length from one metrics to the other,
the error can be detected by formally checking the correctness of the
actual composition, as soon as the composition is formed. Also, services
that are functionally similar might differ in extra-functional attributes,
such as time and resource-usage making them more (or less) suitable for
particular users and applications. In such cases, it is also beneficial to be
able to provide information regarding the minimum (or maximum) time
needed for a service or a service composition to finish the given task, or
the minimum (or maximum) total resource consumption of a service or
service composition. In order to make services (or service compositions)
comparable with respect to resource consumption, we assume a cost
modeled by a weighted sum of the consumed resources.

To verify the correctness and quality of services and service composi-
tions we use the forward analysis technique based on the computation of
the strongest postcondition of a Remes service with respect to a given
precondition [13]. To prove the correctness of a Remes service in iso-
lation, we check that the calculated strongest postcondition is no more
than the given requirement. The strongest postcondition technique as-
sumes Dijkstra’s and Sholten’s strongest postcondition semantics [13]
that lets us reduce proving correctness of services and service compo-
sitions to boolean implications. The actual strongest postcondition is
then calculated algorithmically, with services modeled as PTA. We con-
sider the service resource consumption in Remes as a cost variable in
PTA, and alongside our strongest postcondition calculation, we include,
in our algorithms, well known approaches for computing the minimum
and maximum reachability cost [14].

In SOS the same service may be offered at various prices, QoS and
other conditions, depending on the customer needs. In such a setting,
the interaction between parties involves the negotiation of what is pos-
sible at request time, aiming at meeting needs on demand. Therefore,
the a priori analysis of possible negotiation strategies facilitates insights
into what can be achieved under each strategy, and possibly compute
optimal values of price, resource consumption, etc., or maximized value
of the utility function (a weighted sum of negotiation preferences) for
all possible behaviors of the involved parties. Within SOS, services can
act as clients, mediators, or providers, respectively, as depicted in Fig-
ure 1.2. The role of a client service is to require a service that performs

10 Chapter 1. Introduction

Figure 1.2: A model of the negotiation process

a specific task within given resource limits. The mediator initiates and
steers the communication, that is, the negotiation process between the
client and provider, helping them to reach the agreement. The service
provider creates a counteroffer, based on the client’s request and on the
available services.

The negotiation process is an iterative process that, if successful, ends
up with service level agreement (SLA). SLA is a contract between the
client and the provider that sets boundaries on both the functional and
extra-functional properties of a service, which are to be guaranteed, de-
fines the cost of a service delivery and possible penalties in case that the
contract is broken. In this thesis we propose an analyzable negotiation
model between service clients and service providers. The model is based
on the set of Remes interface operations that support Remes service
composition, which we have recently proposed [15].

In brief, the contribution of this thesis is a framework for specifi-
cation, modeling and formal analysis of services and service composi-
tions in SOS, which includes: (i) an extension of a suitable behavioral
language, called Remes [8], to describe functional and extra-functional
properties (i.e., timing-, and resource-wise behavior) of services and ser-
vice compositions (via hierarchical composition textual language), asso-
ciated with analysis techniques for various properties (functional, extra-
functional, timing, etc.); (ii) a Hoare-triple model of service correct-
ness equipped with correctness check via model-checking algorithms of
networks of PTA, which compute the strongest postcondition of given
automata networks together with the minimum (or maximum) cost of
the service resource consumption; (iii) an analyzable negotiation model
between service clients and service providers; (iv) a design tool for graph-
ical modeling of service-based systems accompanied with textual service
description supporting modeling in our proposed behavioral language;
(iv) validation of the framework on relevant case-studies;

In the rest of this chapter, we provide the outline of the thesis (Sec-

1.1 Thesis Outline 11

tion 1.2).

1.1 Thesis Outline

The thesis is organized in two parts. The first part provides a summa-
rized description of the research. Chapter 1 describes the motivation
for the conducted research. Chapter 2 introduces important technical
concepts used throughout the remainder of this thesis. Chapter 3 for-
mulates the main research goal, introduces the research subgoals, and the
research method that we use. Chapter 4 describes the research results
and recapitulates the research goals. Chapter 5 surveys related work.
Finally, Chapter 6 concludes the thesis, summarizes the contributions
and outlines future work.

The second part consists of a collection of peer-reviewed conference,
and workshop papers, presented below, contributing to the research re-
sults.

Paper A. “Towards a Unified Behavioral Model for Component-Based
and Service-Oriented Systems”. Aida Čaušević, Aneta Vulgarakis. In
Proceedings of 2nd IEEE International Workshop on Component-Based
Design of Resource-Constrained Systems (CORCS2009), pages 497-503,
IEEE Computer Society Press, Seattle, USA, July, 2009.

Summary: This paper overviews the general characteristics of both
SOS and CBS, pointing out the similarities and differences between
them. We show how an existing component framework could be ef-
fectively used to model and analyze SOS constituent services. We as-
sume the existing model Remes as being the underlying model of model-
ing functional and extra-functional behavior of services, as well as their
interface assumptions and guarantees. For this to become applicable,
we first identify the specific constructs that we need to equip Remes

with, such that our goal is achieved. The benefit of Remes language
is mainly the fact that it is abstract enough and ready to use even
when no detailed system description exists. The modeling part in-
cludes also resource annotations on corresponding edges and modes. By
transforming Remes to PTA, one can conduct rigorous, formal analysis
on Remes models against functional as well as extra-functional (timing,
resource-aware) properties. The model also benefits from a recently im-

10 Chapter 1. Introduction

Figure 1.2: A model of the negotiation process

a specific task within given resource limits. The mediator initiates and
steers the communication, that is, the negotiation process between the
client and provider, helping them to reach the agreement. The service
provider creates a counteroffer, based on the client’s request and on the
available services.

The negotiation process is an iterative process that, if successful, ends
up with service level agreement (SLA). SLA is a contract between the
client and the provider that sets boundaries on both the functional and
extra-functional properties of a service, which are to be guaranteed, de-
fines the cost of a service delivery and possible penalties in case that the
contract is broken. In this thesis we propose an analyzable negotiation
model between service clients and service providers. The model is based
on the set of Remes interface operations that support Remes service
composition, which we have recently proposed [15].

In brief, the contribution of this thesis is a framework for specifi-
cation, modeling and formal analysis of services and service composi-
tions in SOS, which includes: (i) an extension of a suitable behavioral
language, called Remes [8], to describe functional and extra-functional
properties (i.e., timing-, and resource-wise behavior) of services and ser-
vice compositions (via hierarchical composition textual language), asso-
ciated with analysis techniques for various properties (functional, extra-
functional, timing, etc.); (ii) a Hoare-triple model of service correct-
ness equipped with correctness check via model-checking algorithms of
networks of PTA, which compute the strongest postcondition of given
automata networks together with the minimum (or maximum) cost of
the service resource consumption; (iii) an analyzable negotiation model
between service clients and service providers; (iv) a design tool for graph-
ical modeling of service-based systems accompanied with textual service
description supporting modeling in our proposed behavioral language;
(iv) validation of the framework on relevant case-studies;

In the rest of this chapter, we provide the outline of the thesis (Sec-

1.1 Thesis Outline 11

tion 1.2).

1.1 Thesis Outline

The thesis is organized in two parts. The first part provides a summa-
rized description of the research. Chapter 1 describes the motivation
for the conducted research. Chapter 2 introduces important technical
concepts used throughout the remainder of this thesis. Chapter 3 for-
mulates the main research goal, introduces the research subgoals, and the
research method that we use. Chapter 4 describes the research results
and recapitulates the research goals. Chapter 5 surveys related work.
Finally, Chapter 6 concludes the thesis, summarizes the contributions
and outlines future work.

The second part consists of a collection of peer-reviewed conference,
and workshop papers, presented below, contributing to the research re-
sults.

Paper A. “Towards a Unified Behavioral Model for Component-Based
and Service-Oriented Systems”. Aida Čaušević, Aneta Vulgarakis. In
Proceedings of 2nd IEEE International Workshop on Component-Based
Design of Resource-Constrained Systems (CORCS2009), pages 497-503,
IEEE Computer Society Press, Seattle, USA, July, 2009.

Summary: This paper overviews the general characteristics of both
SOS and CBS, pointing out the similarities and differences between
them. We show how an existing component framework could be ef-
fectively used to model and analyze SOS constituent services. We as-
sume the existing model Remes as being the underlying model of model-
ing functional and extra-functional behavior of services, as well as their
interface assumptions and guarantees. For this to become applicable,
we first identify the specific constructs that we need to equip Remes

with, such that our goal is achieved. The benefit of Remes language
is mainly the fact that it is abstract enough and ready to use even
when no detailed system description exists. The modeling part in-
cludes also resource annotations on corresponding edges and modes. By
transforming Remes to PTA, one can conduct rigorous, formal analysis
on Remes models against functional as well as extra-functional (timing,
resource-aware) properties. The model also benefits from a recently im-

12 Chapter 1. Introduction

plemented tool-chain for simulation and automatic transformation into
PTA. The paper’s small case-study is used to illustrate the modeling
process within Remes.

Contribution: This paper was written with equal contribution from
both authors. My responsibility was related to the description of SOS,
identifying their characteristics, and the necessary concepts that would
be needed for SOS modeling in behavioral language called Remes . With
Aneta Vulgarakis I have shared responsibility for modeling an illustra-
tive example of an ATM machine in Remes.

Paper B. “Modeling and Reasoning about Service Behaviors and their
Compositions”. Aida Čaušević, Cristina Seceleanu, Paul Pettersson. In
Proceedings of 4th International Symposium On Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISOLA2010); For-
mal Methods in Model-Driven Development for Service-Oriented and
Cloud Computing track, pages 82-96, Lecture Notes in Computer Sci-
ence, Springer, Heraklion, Greece, October, 2010.

Summary: In this paper, we introduce necessary extensions to the
already existing behavioral language, called Remes, to make it fit to
the service-oriented paradigm. In Remes, the smallest unit used to rep-
resent a single service, is a mode. We add to a Remes mode service
specific attributes deemed useful for service discovery, and we also de-
fine and describe the semantics of Remes service compositions. The
notion of mode is extended with attributes such as: service type, service
capacity, time-to-serve, service status, service pre-, and postcondition.
When all these attributes are published, a service becomes visible and
ready to be used or composed with other services to achieve the given
user requirement. To provide means for service composition, the pa-
per proposes a hierarchical textual service composition language. The
language facilitates modeling of sequential, parallel or synchronized ser-
vices. It takes into account the services to be composed, type of binding
between them, and a requirement given by the service user. For a small
case-study described in this paper, we show the service composition cor-
rectness checking by manually calculating the strongest postcondition of
a program model expressed in terms of guarded commands language.

Contribution: This paper was written as equal contribution of all

1.1 Thesis Outline 13

three authors. I have particulary worked on the development of the
hierarchical language for service composition, and specified, modeled,
and analyzed the correctness of service compositions for an autonomous
shuttle system presented as the example in the paper.

Paper C. “Checking Correctness of Services Modeled as Priced Timed
Automata”. Aida Čaušević, Cristina Seceleanu, Paul Pettersson. In
Proceedings 5th International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation (ISOLA2012); Quan-
titative Modeling and Analysis track, pages 308-322, Lecture Notes in
Computer Science, Springer, Heraklion, Greece, October, 2012.

Summary: In this paper, we describe an algorithm for checking the
correctness of services formally defined as PTA, by employing forward
analysis technique that assumes computation of the strongest postcondi-
tion of automata, with respect to a given precondition. Our algorithm is
inspired by already existing approaches for computing the minimum and
maximum reachability costs, respectively [16]. Proving the correctness
of a service reduces to showing that the calculated strongest postcondi-
tion and minimum (or maximum) cost of resource consumption implies a
requirement defined by a user. Hence, our algorithm provide automation
to calculating the strongest postcondition of a service, such that only the
boolean implication remains to be discharged. The approach is demon-
strated on a small accompanying example. Also, we illustrate resource
consumption calculation using priced zones for a service modeled in the
example.

Contribution: I was the main driver and principal author of this
paper. I have contributed with developing algorithms for checking the
correctness of services. All the coauthors have contributed with valuable
discussions and reviews.

Paper D. “An Analyzable Model of Automated Service Negotiation”.
Aida Čaušević, Cristina Seceleanu, Paul Pettersson. In Proceedings of
7th International Symposium on Service Oriented System Engineering
(IEEESOSE13); Service Runtime and Management track, pages 125-136,
IEEE Computer Society Press, San Francisco, USA, March, 2013.

Summary: In this paper, we have introduced an approach for model-

12 Chapter 1. Introduction

plemented tool-chain for simulation and automatic transformation into
PTA. The paper’s small case-study is used to illustrate the modeling
process within Remes.

Contribution: This paper was written with equal contribution from
both authors. My responsibility was related to the description of SOS,
identifying their characteristics, and the necessary concepts that would
be needed for SOS modeling in behavioral language called Remes . With
Aneta Vulgarakis I have shared responsibility for modeling an illustra-
tive example of an ATM machine in Remes.

Paper B. “Modeling and Reasoning about Service Behaviors and their
Compositions”. Aida Čaušević, Cristina Seceleanu, Paul Pettersson. In
Proceedings of 4th International Symposium On Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISOLA2010); For-
mal Methods in Model-Driven Development for Service-Oriented and
Cloud Computing track, pages 82-96, Lecture Notes in Computer Sci-
ence, Springer, Heraklion, Greece, October, 2010.

Summary: In this paper, we introduce necessary extensions to the
already existing behavioral language, called Remes, to make it fit to
the service-oriented paradigm. In Remes, the smallest unit used to rep-
resent a single service, is a mode. We add to a Remes mode service
specific attributes deemed useful for service discovery, and we also de-
fine and describe the semantics of Remes service compositions. The
notion of mode is extended with attributes such as: service type, service
capacity, time-to-serve, service status, service pre-, and postcondition.
When all these attributes are published, a service becomes visible and
ready to be used or composed with other services to achieve the given
user requirement. To provide means for service composition, the pa-
per proposes a hierarchical textual service composition language. The
language facilitates modeling of sequential, parallel or synchronized ser-
vices. It takes into account the services to be composed, type of binding
between them, and a requirement given by the service user. For a small
case-study described in this paper, we show the service composition cor-
rectness checking by manually calculating the strongest postcondition of
a program model expressed in terms of guarded commands language.

Contribution: This paper was written as equal contribution of all

1.1 Thesis Outline 13

three authors. I have particulary worked on the development of the
hierarchical language for service composition, and specified, modeled,
and analyzed the correctness of service compositions for an autonomous
shuttle system presented as the example in the paper.

Paper C. “Checking Correctness of Services Modeled as Priced Timed
Automata”. Aida Čaušević, Cristina Seceleanu, Paul Pettersson. In
Proceedings 5th International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation (ISOLA2012); Quan-
titative Modeling and Analysis track, pages 308-322, Lecture Notes in
Computer Science, Springer, Heraklion, Greece, October, 2012.

Summary: In this paper, we describe an algorithm for checking the
correctness of services formally defined as PTA, by employing forward
analysis technique that assumes computation of the strongest postcondi-
tion of automata, with respect to a given precondition. Our algorithm is
inspired by already existing approaches for computing the minimum and
maximum reachability costs, respectively [16]. Proving the correctness
of a service reduces to showing that the calculated strongest postcondi-
tion and minimum (or maximum) cost of resource consumption implies a
requirement defined by a user. Hence, our algorithm provide automation
to calculating the strongest postcondition of a service, such that only the
boolean implication remains to be discharged. The approach is demon-
strated on a small accompanying example. Also, we illustrate resource
consumption calculation using priced zones for a service modeled in the
example.

Contribution: I was the main driver and principal author of this
paper. I have contributed with developing algorithms for checking the
correctness of services. All the coauthors have contributed with valuable
discussions and reviews.

Paper D. “An Analyzable Model of Automated Service Negotiation”.
Aida Čaušević, Cristina Seceleanu, Paul Pettersson. In Proceedings of
7th International Symposium on Service Oriented System Engineering
(IEEESOSE13); Service Runtime and Management track, pages 125-136,
IEEE Computer Society Press, San Francisco, USA, March, 2013.

Summary: In this paper, we have introduced an approach for model-

14 Chapter 1. Introduction

ing and analysis of service negotiation between two or more parties based
on an iterative form of the Contract Net Protocol for web services. Our
model is an analyzable high-level description of the negotiation between
service clients and providers, which characterizes SOS. The model has
an implicit notion of time, and supports annotations in terms of price,
quality, or other parameters, all modeled by the Remes textual service
composition language, called Hdcl. The crux of the model is that it has
a formal timed automata semantics, which lets one verify various model
properties, for all possible executions, which is not achievable in princi-
ple by any simulation or testing technique. The model is illustrated in
the car insurance example, for which we have shown how to analyze the
negotiation model against safety properties, but also against specified
timing and utility constraints.

Contribution: I was the main driver and principal author of this
paper. I have contributed with specifying the negotiation model and
later on applying and analyzing it within the given example. All the
coauthors have contributed with valuable discussions and reviews.

Paper E. “Distributed Energy Management Case Study: A Formal Ap-
proach to Analyzing Utility Functions”. Aida Čaušević, Cristina Sece-
leanu, Paul Pettersson. MRTC technical report, ISSN 1404-3041, ISRN
MDH-MRTC-279/2013-1-SE, Mälardalen Real-Time Research Centre,
Mälardalen University, October, 2013.

Summary: In this paper, we present a case-study where our recently
introduced approach for automated service negotiation in Remes has
been applied to model and analyze distributed energy management. We
have modeled one energy consumer, two energy providers and one medi-
ator that represents the interests of all negotiation participants. In the
study we have observed a single day at the energy market in which the
energy supply is based on a negotiation carried out between consumers
and providers in possibly more than one round, assuming a certain strat-
egy. We have focused on three scenarios: (i) a client cannot exceed a
fixed maximum price bound; (ii) a client does not have an imposed max-
imum price value; (iii) a client adapts the maximum price trying to get
as close as possible to the offered price, but without paying more than
the initial price’s double. The provided study has been analyzed by se-
mantically translating the Remes-based models into a network of TA to

1.1 Thesis Outline 15

enable model-checking in the Uppaal tool. As the result of the analysis,
we have calculated the value of the optimal utility function described as
a as a weighted sum of negotiation preferences, i.e., price and the energy
reliability, given as a number. By model-checking, we have obtained
the trace that leads to such state. The negotiation model is time con-
strained, which lets one get an insights in the duration of a negotiation,
under specific strategies, which can form a base for strategy comparison.
Based on the verification results, the participants have spent the most
time to converge towards the final agreed price in scenario 3, possibly
due to the fact that the client needed to recalculate new prices compared
to the previous offers, and further, the mediator had to ask for the new
offers, always from all providers. Also, verification shows that in scenario
1, there exists a case in which no agreement has been reached, since the
initial requested and offered prices were too far from each other, and
since the customer had an upper bound on the price. We were also able
to see who owns the market in which scenario based on the collected
analysis results. In scenario 1, despite the introduced maximum price
bound, the providers were able to force the final prices in their favor.
Similar situation was in scenario 2, but this time with more freedom with
respect to the maximum acceptable price on consumer’s side. In scenario
3, the price gain was in favor of consumer. Based on these finding, we
were able to conclude that overall, the total amount of money spent in
the energy negotiation process is very close to the participants’ budgets,
with an average increase of less than 10% of the initially requested price.

Contribution: I was the main driver and principal author of this
paper. I have contributed with specification, modeling, and formal anal-
ysis of the case-study. All the coauthors have contributed with valuable
discussions and reviews.

Paper F. “A Design Tool for Service-oriented Systems”. Eduard Paul
Enoiu, Raluca Marinescu, Aida Čaušević, Cristina Seceleanu, In Pro-
ceedings of 9th International Workshop on Formal Engineering appro-
aches to Software Components and Architectures (FESCA12), volume
295, pages 95-100, Electronic Notes in Theoretical Computer Science,
Elsevier, Tallinn, Estonia, May, 2013.

Summary: In this paper, we present a modeling and analysis tool
for service-oriented systems. The tool enables the graphical modeling

14 Chapter 1. Introduction

ing and analysis of service negotiation between two or more parties based
on an iterative form of the Contract Net Protocol for web services. Our
model is an analyzable high-level description of the negotiation between
service clients and providers, which characterizes SOS. The model has
an implicit notion of time, and supports annotations in terms of price,
quality, or other parameters, all modeled by the Remes textual service
composition language, called Hdcl. The crux of the model is that it has
a formal timed automata semantics, which lets one verify various model
properties, for all possible executions, which is not achievable in princi-
ple by any simulation or testing technique. The model is illustrated in
the car insurance example, for which we have shown how to analyze the
negotiation model against safety properties, but also against specified
timing and utility constraints.

Contribution: I was the main driver and principal author of this
paper. I have contributed with specifying the negotiation model and
later on applying and analyzing it within the given example. All the
coauthors have contributed with valuable discussions and reviews.

Paper E. “Distributed Energy Management Case Study: A Formal Ap-
proach to Analyzing Utility Functions”. Aida Čaušević, Cristina Sece-
leanu, Paul Pettersson. MRTC technical report, ISSN 1404-3041, ISRN
MDH-MRTC-279/2013-1-SE, Mälardalen Real-Time Research Centre,
Mälardalen University, October, 2013.

Summary: In this paper, we present a case-study where our recently
introduced approach for automated service negotiation in Remes has
been applied to model and analyze distributed energy management. We
have modeled one energy consumer, two energy providers and one medi-
ator that represents the interests of all negotiation participants. In the
study we have observed a single day at the energy market in which the
energy supply is based on a negotiation carried out between consumers
and providers in possibly more than one round, assuming a certain strat-
egy. We have focused on three scenarios: (i) a client cannot exceed a
fixed maximum price bound; (ii) a client does not have an imposed max-
imum price value; (iii) a client adapts the maximum price trying to get
as close as possible to the offered price, but without paying more than
the initial price’s double. The provided study has been analyzed by se-
mantically translating the Remes-based models into a network of TA to

1.1 Thesis Outline 15

enable model-checking in the Uppaal tool. As the result of the analysis,
we have calculated the value of the optimal utility function described as
a as a weighted sum of negotiation preferences, i.e., price and the energy
reliability, given as a number. By model-checking, we have obtained
the trace that leads to such state. The negotiation model is time con-
strained, which lets one get an insights in the duration of a negotiation,
under specific strategies, which can form a base for strategy comparison.
Based on the verification results, the participants have spent the most
time to converge towards the final agreed price in scenario 3, possibly
due to the fact that the client needed to recalculate new prices compared
to the previous offers, and further, the mediator had to ask for the new
offers, always from all providers. Also, verification shows that in scenario
1, there exists a case in which no agreement has been reached, since the
initial requested and offered prices were too far from each other, and
since the customer had an upper bound on the price. We were also able
to see who owns the market in which scenario based on the collected
analysis results. In scenario 1, despite the introduced maximum price
bound, the providers were able to force the final prices in their favor.
Similar situation was in scenario 2, but this time with more freedom with
respect to the maximum acceptable price on consumer’s side. In scenario
3, the price gain was in favor of consumer. Based on these finding, we
were able to conclude that overall, the total amount of money spent in
the energy negotiation process is very close to the participants’ budgets,
with an average increase of less than 10% of the initially requested price.

Contribution: I was the main driver and principal author of this
paper. I have contributed with specification, modeling, and formal anal-
ysis of the case-study. All the coauthors have contributed with valuable
discussions and reviews.

Paper F. “A Design Tool for Service-oriented Systems”. Eduard Paul
Enoiu, Raluca Marinescu, Aida Čaušević, Cristina Seceleanu, In Pro-
ceedings of 9th International Workshop on Formal Engineering appro-
aches to Software Components and Architectures (FESCA12), volume
295, pages 95-100, Electronic Notes in Theoretical Computer Science,
Elsevier, Tallinn, Estonia, May, 2013.

Summary: In this paper, we present a modeling and analysis tool
for service-oriented systems. The tool enables the graphical modeling

16 Chapter 1. Introduction

of service-based systems, within the resource-aware timed behavioral
language Remes, as well as the textual system description. We have
developed a graphical environment where services can be composed as
possibly desired by the user, together with a textual service composition
interface in which compositions can also be checked for correctness. We
also provide automated traceability between the two design interfaces,
which results in a tool that enhances the potential of system design by
intuitive service manipulation. The paper presents the design principles,
infrastructure, and the user interface of our tool.

Contribution: This paper is a result from the master thesis work
conducted by Eduard Paul Enoiu and Raluca Marinescu, which were
the main contributors to this paper. I have been the thesis supervisor,
while Cristina Seceleanu has been the examiner. Together with Cristina
Seceleanu I have been a driver for the thesis work. All the coauthors
have contributed with writing, discussions and reviews.

1.2 Publications related to the thesis

Licentiate Thesis

• Formal Approaches to Service-Oriented Design: From Behavioral
Modeling to Service Analysis. Aida Čaušević. Licentiate Thesis,
ISBN 978-91-7485-012-3, Mälardalen University Press, June, 2011.

Journals

• Applying Remes Behavioral Modeling to PLC Systems. Aneta Vul-
garakis and Aida Čaušević. Mechatronic Systems, volume 1, num-
ber 1, pages 40-49, Faculty Of Electrical Engineering, University
Sarajevo, December, 2009.

Conferences and workshops

• Analyzing Resource-Usage Impact on Component-Based Systems
Performance and Reliability. Aida Čaušević, Paul Pettersson, and
Cristina Seceleanu. Proceedings of International Conference on In-
novation in Software Engineering (ISE2008), pages 302-308, IEEE
Computer Society, Vienna, Austria, December, 2008.

1.2 Publications related to the thesis 17

• Applying Remes Behavioral Modeling to PLC Systems. Aneta Vul-
garakis and Aida Čaušević. 22nd International Symposium on In-
formation, Communication and Automation Technologies (ICAT
2009), IEEE Xplore, Sarajevo, Bosnia and Herzegovina, October,
2009.

• Behavioral Modeling and Refinement of Services. Aida Čaušević,
Cristina Secelanu, and Paul Pettersson. Proceedings of 21st Nordic
Workshop on Programming Theory (NWPT2009), pages 98-102,
Lyngby, Denmark, October, 2009.

MRTC reports

• Formal Reasoning of Resource-Aware Services. Aida Čaušević,
Cristina Secelanu, and Paul Pettersson. MRTC report, ISSN 1404-
3041, ISRN MDH-MRTC-245/2010-1-SE, Mälardalen Real-Time
Research Centre, Mälardalen University, June, 2010

• Algorithmic Computation of Strongest Postconditions of Services
as Priced Timed Automata. Aida Čaušević, Cristina Secelanu, and
Paul Pettersson. MRTC report, ISSN 1404-3041, ISRN MDH-
MRTC-263/2012-1-SE, Mälardalen Real-Time Research Centre, Mä-
lardalen University, April, 2012.

16 Chapter 1. Introduction

of service-based systems, within the resource-aware timed behavioral
language Remes, as well as the textual system description. We have
developed a graphical environment where services can be composed as
possibly desired by the user, together with a textual service composition
interface in which compositions can also be checked for correctness. We
also provide automated traceability between the two design interfaces,
which results in a tool that enhances the potential of system design by
intuitive service manipulation. The paper presents the design principles,
infrastructure, and the user interface of our tool.

Contribution: This paper is a result from the master thesis work
conducted by Eduard Paul Enoiu and Raluca Marinescu, which were
the main contributors to this paper. I have been the thesis supervisor,
while Cristina Seceleanu has been the examiner. Together with Cristina
Seceleanu I have been a driver for the thesis work. All the coauthors
have contributed with writing, discussions and reviews.

1.2 Publications related to the thesis

Licentiate Thesis

• Formal Approaches to Service-Oriented Design: From Behavioral
Modeling to Service Analysis. Aida Čaušević. Licentiate Thesis,
ISBN 978-91-7485-012-3, Mälardalen University Press, June, 2011.

Journals

• Applying Remes Behavioral Modeling to PLC Systems. Aneta Vul-
garakis and Aida Čaušević. Mechatronic Systems, volume 1, num-
ber 1, pages 40-49, Faculty Of Electrical Engineering, University
Sarajevo, December, 2009.

Conferences and workshops

• Analyzing Resource-Usage Impact on Component-Based Systems
Performance and Reliability. Aida Čaušević, Paul Pettersson, and
Cristina Seceleanu. Proceedings of International Conference on In-
novation in Software Engineering (ISE2008), pages 302-308, IEEE
Computer Society, Vienna, Austria, December, 2008.

1.2 Publications related to the thesis 17

• Applying Remes Behavioral Modeling to PLC Systems. Aneta Vul-
garakis and Aida Čaušević. 22nd International Symposium on In-
formation, Communication and Automation Technologies (ICAT
2009), IEEE Xplore, Sarajevo, Bosnia and Herzegovina, October,
2009.

• Behavioral Modeling and Refinement of Services. Aida Čaušević,
Cristina Secelanu, and Paul Pettersson. Proceedings of 21st Nordic
Workshop on Programming Theory (NWPT2009), pages 98-102,
Lyngby, Denmark, October, 2009.

MRTC reports

• Formal Reasoning of Resource-Aware Services. Aida Čaušević,
Cristina Secelanu, and Paul Pettersson. MRTC report, ISSN 1404-
3041, ISRN MDH-MRTC-245/2010-1-SE, Mälardalen Real-Time
Research Centre, Mälardalen University, June, 2010

• Algorithmic Computation of Strongest Postconditions of Services
as Priced Timed Automata. Aida Čaušević, Cristina Secelanu, and
Paul Pettersson. MRTC report, ISSN 1404-3041, ISRN MDH-
MRTC-263/2012-1-SE, Mälardalen Real-Time Research Centre, Mä-
lardalen University, April, 2012.

Chapter 2

Preliminaries

2.1 Service-Oriented Systems

The service-oriented paradigm has been around for almost two decades
now. The first recorded successful implementation of service-oriented
principles was within Wells Fargo Bank, that in 1995 became the world’s
first internet bank [17] and that proved the competitive advantages of
service-oriented architectures. The paradigm has become very popu-
lar since it has offered features such as interoperability, platform inde-
pendence, access and communication via well-defined interfaces, and in
many cases tool support to ease the process of integration for legacy sys-
tems [2, 3]. Since then we have witnessed the significant growth in soft-
ware and system functionality packed in form of services and accessible
throughout the network infrastructure, be it open or proprietary network
environment. During these years the use of SOS has been spread within
telecommunication, health, government domain, car industry and many
more [18–22]. All of these domains have easily adopted a newly intro-
duced concept and coped successfully with limitation such as security,
verification and validation of the newly composed system, application
ownership, issues related to the existing internet protocols, etc., that
SOS brought in.

So far, we have seen a gradual evolution from the first generation
of SOS, based on monolithic services capable to be reconfigured only at
compile time. They have been followed by second generation of services
that have brought even more flexibility being able to provide adaptation

19

Chapter 2

Preliminaries

2.1 Service-Oriented Systems

The service-oriented paradigm has been around for almost two decades
now. The first recorded successful implementation of service-oriented
principles was within Wells Fargo Bank, that in 1995 became the world’s
first internet bank [17] and that proved the competitive advantages of
service-oriented architectures. The paradigm has become very popu-
lar since it has offered features such as interoperability, platform inde-
pendence, access and communication via well-defined interfaces, and in
many cases tool support to ease the process of integration for legacy sys-
tems [2, 3]. Since then we have witnessed the significant growth in soft-
ware and system functionality packed in form of services and accessible
throughout the network infrastructure, be it open or proprietary network
environment. During these years the use of SOS has been spread within
telecommunication, health, government domain, car industry and many
more [18–22]. All of these domains have easily adopted a newly intro-
duced concept and coped successfully with limitation such as security,
verification and validation of the newly composed system, application
ownership, issues related to the existing internet protocols, etc., that
SOS brought in.

So far, we have seen a gradual evolution from the first generation
of SOS, based on monolithic services capable to be reconfigured only at
compile time. They have been followed by second generation of services
that have brought even more flexibility being able to provide adaptation

19

20 Chapter 2. Preliminaries

and reconfiguration at installation. The third generation has introduced
in an autonomic and ad-hoc reconfiguration possibilities [23].

In SOS, services are utilized to offer rapid and low-cost development
of distributed applications in heterogeneous environments. Services are
assumed to be self-contained (i.e., being able to maintain its own state
independently of the application that uses it), platform independent (i.e.,
being capable to be invoked by any client no matter what network, hard-
ware, and software platform the client uses, but also to have well-defined
interfaces that are distinct from service implementation), and dynami-
cally discoverable, invocable, and composable [24].

In the literature there is many informal definitions for the term “soft-
ware service”. In the OASIS Service-oriented Architecture Reference
model [25] it is defined as:

A mechanism to enable access to one or more capabilities,
where the access is provided using a prescribed interface and
is exercised consistent with constraints and policies as spec-
ified by the service description. A service is provided by an
entity - the service provider - for use by others, but the even-
tual consumers of the service may not be known to the service
provider and may demonstrate uses of the service beyond the
scope originally conceived by the provider.

One may say that SOS offer cost-efficient software development by
reusing functionality from available services. Also, a service becomes a
single point of maintenance for a common functionality. Using discov-
ery mechanisms that are dedicated service discovery protocols used to
enable automatic detection of the available services based on their pub-
lished interface information, developers can find and take advantage of
existing services, significantly reducing time to develop new systems. If
the quality of the already existing and reused services is already guar-
anteed, the verification process for a newly established services might
require a lower effort and less time. Services can be seen as adaptable
units, thanks to the clear separation between the service interface and
service behavior, making it possible to employ incremental deployment
of services.

Although SOS promise huge gains as it is based on principles of
coarse-grained, loosely coupled, interoperable, and reusable services, there
is also a number of challenges related to design and analysis of such soft-
ware units. It still remains a challenging task to predict QoS, since the

2.2 Remes: A Resource Model for Embedded Systems 21

system’s QoS is not a function of the QoS of the services only. It also
involves interdependencies between services, resource constraints of the
environment, and network capabilities. Additionally, checking the cor-
rectness of service compositions lacks appropriate methods and tools es-
pecially for extra-functional properties like resource-wise behavior. With
a growing number of services, offered by different service providers/ven-
dors, the need to formally define and analyze the service negotiation
process has increased. The services available in a service repository
might have the same functionality but differ in extra-functional quali-
ties response time, time-to-serve, or price. Assuming that the service
is negotiated upon the client’s request, establishing guarantees on the
provided QoS, under changing conditions of service composition, and
possible negotiation constraints, becomes a difficult task.

Nowdays a number of service-oriented approaches exist [4–6, 26–28].
All of them have the basic service-oriented concepts incorporated like
discovery mechanisms, support for orchestration and choreography, some
predictability for service performance, reliability, etc., but only few can
deliver the whole process from creating single service to system develop-
ment, including some means for analysis. It is obvious that this paradigm
of SOS still remains to be fully explored, developed, and utilized.

2.2 Remes: A Resource Model for Embed-

ded Systems

REsource Model for Embedded Systems (Remes), introduced in [8],
describes the resource-aware behavior of interacting embedded compo-
nents. The language was initially designed to fit a component-based de-
sign perspective [9]. It is a dense-time state-based hierarchical modeling
language, suitable to address functional and extra-functional behavior
of components or services.

In Remes, the internal component behavior is described by a mode
that can be either atomic (does not contain submode(s)), or composite
(contains submode(s)) (see Figure 2.1). Additionally, there is also a spe-
cial type of mode called non-lazy whose semantics will be described in
the following. The language supports hierarchy of the arbitrary depth,
however in this chapter we show the implementation of a two-level hier-
archy only.

The data transfer between modes is done through the data interface

20 Chapter 2. Preliminaries

and reconfiguration at installation. The third generation has introduced
in an autonomic and ad-hoc reconfiguration possibilities [23].

In SOS, services are utilized to offer rapid and low-cost development
of distributed applications in heterogeneous environments. Services are
assumed to be self-contained (i.e., being able to maintain its own state
independently of the application that uses it), platform independent (i.e.,
being capable to be invoked by any client no matter what network, hard-
ware, and software platform the client uses, but also to have well-defined
interfaces that are distinct from service implementation), and dynami-
cally discoverable, invocable, and composable [24].

In the literature there is many informal definitions for the term “soft-
ware service”. In the OASIS Service-oriented Architecture Reference
model [25] it is defined as:

A mechanism to enable access to one or more capabilities,
where the access is provided using a prescribed interface and
is exercised consistent with constraints and policies as spec-
ified by the service description. A service is provided by an
entity - the service provider - for use by others, but the even-
tual consumers of the service may not be known to the service
provider and may demonstrate uses of the service beyond the
scope originally conceived by the provider.

One may say that SOS offer cost-efficient software development by
reusing functionality from available services. Also, a service becomes a
single point of maintenance for a common functionality. Using discov-
ery mechanisms that are dedicated service discovery protocols used to
enable automatic detection of the available services based on their pub-
lished interface information, developers can find and take advantage of
existing services, significantly reducing time to develop new systems. If
the quality of the already existing and reused services is already guar-
anteed, the verification process for a newly established services might
require a lower effort and less time. Services can be seen as adaptable
units, thanks to the clear separation between the service interface and
service behavior, making it possible to employ incremental deployment
of services.

Although SOS promise huge gains as it is based on principles of
coarse-grained, loosely coupled, interoperable, and reusable services, there
is also a number of challenges related to design and analysis of such soft-
ware units. It still remains a challenging task to predict QoS, since the

2.2 Remes: A Resource Model for Embedded Systems 21

system’s QoS is not a function of the QoS of the services only. It also
involves interdependencies between services, resource constraints of the
environment, and network capabilities. Additionally, checking the cor-
rectness of service compositions lacks appropriate methods and tools es-
pecially for extra-functional properties like resource-wise behavior. With
a growing number of services, offered by different service providers/ven-
dors, the need to formally define and analyze the service negotiation
process has increased. The services available in a service repository
might have the same functionality but differ in extra-functional quali-
ties response time, time-to-serve, or price. Assuming that the service
is negotiated upon the client’s request, establishing guarantees on the
provided QoS, under changing conditions of service composition, and
possible negotiation constraints, becomes a difficult task.

Nowdays a number of service-oriented approaches exist [4–6, 26–28].
All of them have the basic service-oriented concepts incorporated like
discovery mechanisms, support for orchestration and choreography, some
predictability for service performance, reliability, etc., but only few can
deliver the whole process from creating single service to system develop-
ment, including some means for analysis. It is obvious that this paradigm
of SOS still remains to be fully explored, developed, and utilized.

2.2 Remes: A Resource Model for Embed-

ded Systems

REsource Model for Embedded Systems (Remes), introduced in [8],
describes the resource-aware behavior of interacting embedded compo-
nents. The language was initially designed to fit a component-based de-
sign perspective [9]. It is a dense-time state-based hierarchical modeling
language, suitable to address functional and extra-functional behavior
of components or services.

In Remes, the internal component behavior is described by a mode
that can be either atomic (does not contain submode(s)), or composite
(contains submode(s)) (see Figure 2.1). Additionally, there is also a spe-
cial type of mode called non-lazy whose semantics will be described in
the following. The language supports hierarchy of the arbitrary depth,
however in this chapter we show the implementation of a two-level hier-
archy only.

The data transfer between modes is done through the data interface

22 Chapter 2. Preliminaries

� ����

������

Figure 2.1: A Remes mode

(i.e., typed global variables), while the (discrete) control is passed via the
control interface (i.e., entry and exit points). A Remes mode has a “run-
to-completion” semantics, meaning that no interruptions are supported,
and internal loops are not allowed. However, a special type of variable
called history variable is used to control possible interleavings between
computation of two composite modes. On the other hand, iteration is
enabled by introducing two kinds of exit points: Write and Exit. The first
kind of exit point is used for modeling both internal mode computations
that are resumed until the Exit is reached, which signals the termination,
but also continuously active behaviors, which might never terminate. A
mode describing active behavior can also be exited through the Exit point.
Remes assumes local or global variables that can be of types boolean,
natural, integer, array, string, list, clock (continuous variables evolving at

2.2 Remes: A Resource Model for Embedded Systems 23

rate 1), and of type resource, which are nonnegative real-valued variables
that model continuous resource behavior. Resource variables are of type
energy (eng), processor load (CPU), bandwidth (bdw), memory (mem),
or communication ports. The submode Atomic mode 1 in Figure 2.1
is annotated with its resource-wise continuous behavior, assuming that
the corresponding component consumes resources (r1 : eng, r2 : CPU).
Such consumption is expressed by the first time derivative of the typed
resource variables, respectively r1’, r2’, which give the rates at which the
composite mode consumes resources in time, depending on the executing
submode.

The control flow in a composite mode is given by a set of directed
edges. Edges connect the control points of the submodes, or the compos-
ite mode and its submodes. In Figure 2.1, the composite mode takes the
edge from control point Init to enter Atomic mode 1, after initialization,
and in similar manner, edge from Atomic mode 1 to exit the mode.

The Remes language supports two types of actions, delay (or timed)
actions and discrete actions. The first describe the continuous behavior
of the mode, and its execution does not change the mode, while the lat-
ter are instantaneous actions, whose execution results in a mode change.
A mode can be marked as an urgent mode, decorated with letter U, if it
is exited instantaneously when possible (Atomic mode 2 in Figure 2.1).

A composite mode executes by performing a sequence of discrete
steps, via actions that, once executed, pass the control from the current
submode to a different submode. An action, A = (g, S) (e.g., (y == b, d

:= u) in the figure), is a statement S (in our case d := u), preceded by
a boolean condition, the guard (y == b), which must hold in order for
the action to be executed and the corresponding outgoing edge taken.
A Remes composite mode may contain conditional connectors (deco-
rated with letter C) that allow a possibly nondeterministic selection of
one discrete outgoing action to execute, out of many possible ones. In
Figure 2.1, via C, one of the empty statement actions, (x ≤ a ∧ d == v)
or (d ≥ v) can be chosen for execution. Modes may also be annotated
with invariants (e.g., y ≤ b in Atomic mode 1), which bound from above
the current mode’s delay/execution time. Before the invariant stops to
hold, the current mode is exited.

To enable formal analysis, Remes models can be semantically trans-
formed into timed automata (TA) [29], or PTA [30], depending on the

22 Chapter 2. Preliminaries

� ����

������

Figure 2.1: A Remes mode

(i.e., typed global variables), while the (discrete) control is passed via the
control interface (i.e., entry and exit points). A Remes mode has a “run-
to-completion” semantics, meaning that no interruptions are supported,
and internal loops are not allowed. However, a special type of variable
called history variable is used to control possible interleavings between
computation of two composite modes. On the other hand, iteration is
enabled by introducing two kinds of exit points: Write and Exit. The first
kind of exit point is used for modeling both internal mode computations
that are resumed until the Exit is reached, which signals the termination,
but also continuously active behaviors, which might never terminate. A
mode describing active behavior can also be exited through the Exit point.
Remes assumes local or global variables that can be of types boolean,
natural, integer, array, string, list, clock (continuous variables evolving at

2.2 Remes: A Resource Model for Embedded Systems 23

rate 1), and of type resource, which are nonnegative real-valued variables
that model continuous resource behavior. Resource variables are of type
energy (eng), processor load (CPU), bandwidth (bdw), memory (mem),
or communication ports. The submode Atomic mode 1 in Figure 2.1
is annotated with its resource-wise continuous behavior, assuming that
the corresponding component consumes resources (r1 : eng, r2 : CPU).
Such consumption is expressed by the first time derivative of the typed
resource variables, respectively r1’, r2’, which give the rates at which the
composite mode consumes resources in time, depending on the executing
submode.

The control flow in a composite mode is given by a set of directed
edges. Edges connect the control points of the submodes, or the compos-
ite mode and its submodes. In Figure 2.1, the composite mode takes the
edge from control point Init to enter Atomic mode 1, after initialization,
and in similar manner, edge from Atomic mode 1 to exit the mode.

The Remes language supports two types of actions, delay (or timed)
actions and discrete actions. The first describe the continuous behavior
of the mode, and its execution does not change the mode, while the lat-
ter are instantaneous actions, whose execution results in a mode change.
A mode can be marked as an urgent mode, decorated with letter U, if it
is exited instantaneously when possible (Atomic mode 2 in Figure 2.1).

A composite mode executes by performing a sequence of discrete
steps, via actions that, once executed, pass the control from the current
submode to a different submode. An action, A = (g, S) (e.g., (y == b, d

:= u) in the figure), is a statement S (in our case d := u), preceded by
a boolean condition, the guard (y == b), which must hold in order for
the action to be executed and the corresponding outgoing edge taken.
A Remes composite mode may contain conditional connectors (deco-
rated with letter C) that allow a possibly nondeterministic selection of
one discrete outgoing action to execute, out of many possible ones. In
Figure 2.1, via C, one of the empty statement actions, (x ≤ a ∧ d == v)
or (d ≥ v) can be chosen for execution. Modes may also be annotated
with invariants (e.g., y ≤ b in Atomic mode 1), which bound from above
the current mode’s delay/execution time. Before the invariant stops to
hold, the current mode is exited.

To enable formal analysis, Remes models can be semantically trans-
formed into timed automata (TA) [29], or PTA [30], depending on the

24 Chapter 2. Preliminaries

analysis goals. The Remes language benefits from a set of tools1 for
modeling, simulation and transformation into TA and PTA, which could
assist the designer during system development. For a more thorough
description of the Remes model, we refer the reader to [8].

Analysis Model for the Remes language

Let us assume that each Remes service has access to a set of resources
R1, . . . , Rn. In order to analyze various scenarios of the service and
service compositions resource consumption, in this thesis we encode the
service resource as a weighted sum as shown in Eq. 2.1, and presented
in [31].

rtotal = w1 × r1 + w2 × r2 + . . . + wn × rn, (2.1)

in which variable rtotal stands for the total consumption of resources
R1, . . . , Rn, and variables r1, . . . , rn denote the accumulated consump-
tion of R1, . . . , Rn, respectively. The constants, w1, . . . , wn (weights),
denote the relative importance of r1, . . . , rn. The choice of values for the
weights is subjective matter and depends both on the application and
the analysis goals.

In order to be able to formally analyze Remes services and service
compositions, we need a semantic translation of the model. Assuming
the rules of transforming Remes models into TA or PTA networks, in-
troduced in previous work on Remes [10, 32–34], then r1, . . . , rn can
be modeled as cost variables c1, . . . , cn and analyzed within the PTA
framework with Uppaal or its variant Cora [35–37].

2.3 Formal Modeling and Analysis of Soft-

ware Systems

Formal methods are a particular kind of mathematically rigorous tech-
niques, described as well-formed statements in a mathematically precise
way, in many cases supported by tools, which enable specification, de-
velopment, and verification of software and hardware systems. Formal
verification is a technique that provides means to prove or disprove a
system model’s correctness with respect to a formally specified property.

1The Remes tool-chain is available at http://www.fer.hr/dices/remes-ide.

2.3 Formal Modeling and Analysis of Software Systems 25

This means that, by formally verifying a system model, one checks that
the latter indeed behaves according to a specified property. As a result
of formal analysis conducted using formal verification, one can get either
qualitative answers (yes/no) that are a result of verification of properties
that can be either satisfied, or not; or quantitative analysis results (num-
bers) that, in our case, represent the minimum (or maximum) value of
the accumulated resource usage for reaching a given goal, but in a more
general context, could mean reliability estimates, performance estimates,
or similar.

Today the two most popular formal analysis methods are model-
checking and theorem-proving. In theorem proving a system that is
about to be verified is modeled as a set of mathematical definitions in
some formal logic. The desired properties of such system are derived as
theorems that follow from these definitions. The process of properties
derivation can be long and tedious, therefore techniques have been de-
veloped to automate much of this process by using computers to handle
steps in the proof. On the other hand, model-checking is a verification
technique that enables exploration of all possible system states, for a
given model. The result of such a exploration for a defined property is
returned in a form of “satisfied/not satisfied” answer. It can also often
provide a run of the model showing how a given property is satisfied
or violated, which brings more insight into the model and provides a
chance to improve it if found necessary. A model that describes all the
possible system behaviors is represented in terms of an automata model
while properties to be verified are expressed in a temporal logic. The
essence of model-checking is its ability to automatically verify finite-state
system properties for all possible system behaviors. The properties to
be examined have to be precisely and unambiguously defined. Since
the technique is completely automatic and capable of detecting counter
examples, model-checking is also suited for uncovering and correcting
errors, if a given model fails to satisfy the specified property. In case
that counter example is detected, one might modify the system model
and run the model-checking again. Furthermore, in cases when the sys-
tem’s desired behavior is satisfied, one can refine the model and reapply
model-checking. Figure 2.2 depicts a generic example of model-checking
and includes all steps that the technique follows.

The properties to be examined can be specified using of Computation
Tree Logic(CTL) [38]. CTL is a specification language for finite-state
systems (Kripke structures) that enable reasoning about sequences of

24 Chapter 2. Preliminaries

analysis goals. The Remes language benefits from a set of tools1 for
modeling, simulation and transformation into TA and PTA, which could
assist the designer during system development. For a more thorough
description of the Remes model, we refer the reader to [8].

Analysis Model for the Remes language

Let us assume that each Remes service has access to a set of resources
R1, . . . , Rn. In order to analyze various scenarios of the service and
service compositions resource consumption, in this thesis we encode the
service resource as a weighted sum as shown in Eq. 2.1, and presented
in [31].

rtotal = w1 × r1 + w2 × r2 + . . . + wn × rn, (2.1)

in which variable rtotal stands for the total consumption of resources
R1, . . . , Rn, and variables r1, . . . , rn denote the accumulated consump-
tion of R1, . . . , Rn, respectively. The constants, w1, . . . , wn (weights),
denote the relative importance of r1, . . . , rn. The choice of values for the
weights is subjective matter and depends both on the application and
the analysis goals.

In order to be able to formally analyze Remes services and service
compositions, we need a semantic translation of the model. Assuming
the rules of transforming Remes models into TA or PTA networks, in-
troduced in previous work on Remes [10, 32–34], then r1, . . . , rn can
be modeled as cost variables c1, . . . , cn and analyzed within the PTA
framework with Uppaal or its variant Cora [35–37].

2.3 Formal Modeling and Analysis of Soft-

ware Systems

Formal methods are a particular kind of mathematically rigorous tech-
niques, described as well-formed statements in a mathematically precise
way, in many cases supported by tools, which enable specification, de-
velopment, and verification of software and hardware systems. Formal
verification is a technique that provides means to prove or disprove a
system model’s correctness with respect to a formally specified property.

1The Remes tool-chain is available at http://www.fer.hr/dices/remes-ide.

2.3 Formal Modeling and Analysis of Software Systems 25

This means that, by formally verifying a system model, one checks that
the latter indeed behaves according to a specified property. As a result
of formal analysis conducted using formal verification, one can get either
qualitative answers (yes/no) that are a result of verification of properties
that can be either satisfied, or not; or quantitative analysis results (num-
bers) that, in our case, represent the minimum (or maximum) value of
the accumulated resource usage for reaching a given goal, but in a more
general context, could mean reliability estimates, performance estimates,
or similar.

Today the two most popular formal analysis methods are model-
checking and theorem-proving. In theorem proving a system that is
about to be verified is modeled as a set of mathematical definitions in
some formal logic. The desired properties of such system are derived as
theorems that follow from these definitions. The process of properties
derivation can be long and tedious, therefore techniques have been de-
veloped to automate much of this process by using computers to handle
steps in the proof. On the other hand, model-checking is a verification
technique that enables exploration of all possible system states, for a
given model. The result of such a exploration for a defined property is
returned in a form of “satisfied/not satisfied” answer. It can also often
provide a run of the model showing how a given property is satisfied
or violated, which brings more insight into the model and provides a
chance to improve it if found necessary. A model that describes all the
possible system behaviors is represented in terms of an automata model
while properties to be verified are expressed in a temporal logic. The
essence of model-checking is its ability to automatically verify finite-state
system properties for all possible system behaviors. The properties to
be examined have to be precisely and unambiguously defined. Since
the technique is completely automatic and capable of detecting counter
examples, model-checking is also suited for uncovering and correcting
errors, if a given model fails to satisfy the specified property. In case
that counter example is detected, one might modify the system model
and run the model-checking again. Furthermore, in cases when the sys-
tem’s desired behavior is satisfied, one can refine the model and reapply
model-checking. Figure 2.2 depicts a generic example of model-checking
and includes all steps that the technique follows.

The properties to be examined can be specified using of Computation
Tree Logic(CTL) [38]. CTL is a specification language for finite-state
systems (Kripke structures) that enable reasoning about sequences of

26 Chapter 2. Preliminaries

events. The model-checking problem reduces to checking that for a given
model M, initial state s ∈ S, where S is the set of all model states, and
CTL-formula φ, M, s |= φ is satisfied.

Real system Requirements

modeling formalizing

Model of system

(possible behaviors)

Requirementsspec.

(desired behaviors)

Verifier

Counter-

example

Yes

done

modify check

next

refine

Figure 2.2: Verification methodology of model checking [1]

Services in SOS are assumed to be invoked, composed, and decom-
posed on a user demand, in many cases in an automatic and ad-hoc
manner. Due to such constraints, a designer of such systems is in need
to have available methods and tools that support modeling and veri-
fication of the system behavior, as soon as it is constructed. In this
thesis, we have chosen the framework of TA and PTA as our modeling
framework, and the Uppaal-based tools 2 as the model-checkers for ver-
ifying the system’s property specified in Timed Computation Tree Logic
(TCTL) [39], an extension of CTL [38] with clocks.

In the following, we briefly describe the models of TA [29] and PTA [16,
40], an extension of TA with prices on both location and edges.

2For more information about the Uppaal tool, visit the web page www.uppaal.org.

2.3 Formal Modeling and Analysis of Software Systems 27

2.3.1 Timed Automata

The model of timed automata was introduced by Alur and Dill in 1990s [29],
as a model for real-time systems. A timed automaton (TAn) is a finite-
state machine enriched with a set of clocks. All clocks in a system are
synchronized and assumed to be real-valued variables, measuring the
time elapsed since their last reset. The Uppaal tool set extend the
standard framework of TA, by introducing data variables. In this thesis
we use TA defined in terms of Uppaal framework [35, 41].

Formally, let us assume a finite set of real valued variables C rang-
ing over x, y, etc., standing for clocks and V a finite set of all data
(i.e., array, boolean, or integer). A clock constraint is a conjunctive
formula of atomic constraints of the form x ∼ n or x − y ∼ n for
x, y ∈ C, ∼∈ {<, ≤, =, ≥, >} and n ∈ N . The elements of B(C) are
called clock constraints over C. Similarly, we use B(V) to stand for the
set of non-clock constraints that are conjunctive formulas of i ∼ j or
i ∼ k, where i, j ∈ V , k ∈ Z and ∼ ∈ {<, ≤, =, �=, ≥, >}. We use
B(C, V) to denote the set of formulas that are conjunctions of clock
constraints and non-clock constraints.

Definition 1 (Formal Definition of a Timed Automaton). A
Timed Automaton A is a tuple (L, l0, C, V, I, Act, E) where:

• L is a finite set of locations,

• l0 is the initial location in L,

• C is a finite set of clocks,

• V is a finite set of data variables,

• I : L → B(C) assigns invariants to locations,

• Act = Σ ∪ {τ} is a finite set of actions, where Σ is a finite set
of synchronizing actions, and τ �∈ Σ denotes internal or empty
actions without synchronization,

• E ⊆ L×B(C, V)×Σ×R×L is a finite set of edges, where B(C, V)
denote the set of guards and R denotes the (clock) reset set i.e.,
assignments to manipulate clock- and data variables.

In the case of (l, g, a, r, l′) ∈ E, we write l
g,a,r
→ l′, where l is the source

location, l′ is the target location, g is a guard, a boolean condition that

26 Chapter 2. Preliminaries

events. The model-checking problem reduces to checking that for a given
model M, initial state s ∈ S, where S is the set of all model states, and
CTL-formula φ, M, s |= φ is satisfied.

Real system Requirements

modeling formalizing

Model of system

(possible behaviors)

Requirementsspec.

(desired behaviors)

Verifier

Counter-

example

Yes

done

modify check

next

refine

Figure 2.2: Verification methodology of model checking [1]

Services in SOS are assumed to be invoked, composed, and decom-
posed on a user demand, in many cases in an automatic and ad-hoc
manner. Due to such constraints, a designer of such systems is in need
to have available methods and tools that support modeling and veri-
fication of the system behavior, as soon as it is constructed. In this
thesis, we have chosen the framework of TA and PTA as our modeling
framework, and the Uppaal-based tools 2 as the model-checkers for ver-
ifying the system’s property specified in Timed Computation Tree Logic
(TCTL) [39], an extension of CTL [38] with clocks.

In the following, we briefly describe the models of TA [29] and PTA [16,
40], an extension of TA with prices on both location and edges.

2For more information about the Uppaal tool, visit the web page www.uppaal.org.

2.3 Formal Modeling and Analysis of Software Systems 27

2.3.1 Timed Automata

The model of timed automata was introduced by Alur and Dill in 1990s [29],
as a model for real-time systems. A timed automaton (TAn) is a finite-
state machine enriched with a set of clocks. All clocks in a system are
synchronized and assumed to be real-valued variables, measuring the
time elapsed since their last reset. The Uppaal tool set extend the
standard framework of TA, by introducing data variables. In this thesis
we use TA defined in terms of Uppaal framework [35, 41].

Formally, let us assume a finite set of real valued variables C rang-
ing over x, y, etc., standing for clocks and V a finite set of all data
(i.e., array, boolean, or integer). A clock constraint is a conjunctive
formula of atomic constraints of the form x ∼ n or x − y ∼ n for
x, y ∈ C, ∼∈ {<, ≤, =, ≥, >} and n ∈ N . The elements of B(C) are
called clock constraints over C. Similarly, we use B(V) to stand for the
set of non-clock constraints that are conjunctive formulas of i ∼ j or
i ∼ k, where i, j ∈ V , k ∈ Z and ∼ ∈ {<, ≤, =, �=, ≥, >}. We use
B(C, V) to denote the set of formulas that are conjunctions of clock
constraints and non-clock constraints.

Definition 1 (Formal Definition of a Timed Automaton). A
Timed Automaton A is a tuple (L, l0, C, V, I, Act, E) where:

• L is a finite set of locations,

• l0 is the initial location in L,

• C is a finite set of clocks,

• V is a finite set of data variables,

• I : L → B(C) assigns invariants to locations,

• Act = Σ ∪ {τ} is a finite set of actions, where Σ is a finite set
of synchronizing actions, and τ �∈ Σ denotes internal or empty
actions without synchronization,

• E ⊆ L×B(C, V)×Σ×R×L is a finite set of edges, where B(C, V)
denote the set of guards and R denotes the (clock) reset set i.e.,
assignments to manipulate clock- and data variables.

In the case of (l, g, a, r, l′) ∈ E, we write l
g,a,r
→ l′, where l is the source

location, l′ is the target location, g is a guard, a boolean condition that

28 Chapter 2. Preliminaries

must hold in order for the edge to be taken, a is an action, and r is a
simple clock reset.

The semantics of a TAn is defined in terms of a labeled transition
system. A state of a TAn depends on its current location and on the
current values of its clocks. So, a state of a TAn is a pair (l, u), where l is
a location, and u : C → R+ is a clock valuation. The initial state (l0, u0)
is the starting state where all clocks are zero. There are two kinds of
transitions: delay transitions and discrete transitions.

Delay transitions are the result of time passage and do not cause a
change of location. More formally, we have

(l, u) d
→ (l, u ⊕ d)

if u ⊕ d′ |= I(l) for 0 ≤ d′ ≤ d. The assignment u ⊕ d is the result
obtained by incrementing all clocks of the automata with the delay d.

Discrete transitions are the result of following an enabled edge in a
TAn. Consequently, the destination location is changed from the source
location to the new target location, and clocks may be reset. More for-
mally, a discrete transition

(l, u) a
→ (l′, u′)

corresponds to taking an edge l
g,a,r
→ l′ for which the guard g is satisfied

by u. The clock valuation u′ of the target state is obtained by modifying
u according to updates r such that u′ |= I(l′).

Definition 2 (Run of a Timed Automaton). A run of a timed au-
tomaton A = (N, l0, E, I) with initial state (l0, u0) over a timed trace
ξ = (t1, a1)(t2, a2)(t3, a3) . . . (tn, an) is a sequence of transitions:

ξ = (l0, u0) d1−→
a1−→ (l1, u1) d2−→

a2−→ . . .
dn−→

an−−→ (ln, un)

satisfying the condition ti = ti−1 + di for all i ≥ 1.

To model a concurrent real-time system, several TA can be composed
by CCS parallel composition operator A1‖...‖An of a set of an individ-
ual automata A1, . . . An. CCS parallel composition operator allows an
individual automaton to carry out internal actions (i.e., interleaving) as
well as pairs of automata to perform hand-shake synchronization.

2.3 Formal Modeling and Analysis of Software Systems 29

Definition 3 (Network of Timed Automata). Let N = {1, . . . , n}
and let Ai = (Li, l0i

, Ci, Vi, Acti, Ei) be a timed automaton for i ∈ N . A
network of timed automata A1‖...‖An is defined as the parallel composi-
tion of n TA.

The hand-shake synchronization is carried out through input and
output actions using synchronization channels. Let us assume that S is
a set of channel names and that the set of synchronization actions of the
TA network is defined as Σ = {a? | a ∈ S} ∪ {a! | a ∈ S}. A discrete
transition with a synchronization action a! ∈ Σ (send synchronization) is
only enabled if another automaton in the network is able to perform si-
multaneously a complementary action a? ∈ Σ (receive synchronization).
The channels are divided into: binary channels used to synchronize one
send with one single receive synchronization, while broadcast channels
are used to synchronize one sender with an arbitrary number of receiv-
ing automata. A state of a network of TA is defined by the locations
of all automata in the network and the values of clocks and discrete
variables.

To model atomic sequences of actions, Uppaal supports a notion
of urgent and committed locations. If a location is marked as an urgent
location it must take the next transition as soon as it is enabled, i.e.,
no time passing is allowed, but this does not prevent other actions from
happening. On the other hand, when a committed location is active, a
transition from a committed location must be taken immediately, and
no other transition in other automaton can be taken in between.

The Uppaal model-checker provides an engine for verification of tem-
poral properties, such as safety and liveness properties, specified in a sub-
set of Timed Computation Tree Logic (TCTL) [39]. To visualize counter
examples produced by the model-checker, one can use the simulator.

An Illustrative Example of a Timed Automata

An example of a simple network of TA modeled in Uppaal is depicted
in Figure 2.3. Consider the timed automaton of Figure 2.3 b). It consists
of 2 locations l0 and l1, where one of the locations is marked as initial (l0).
The edge from location l0 to location l1 will only be taken if the guard x

≥ 1 holds. Additionally, clocks in the automata may be reset on edges.
For example, when following the edge from l1 to l0 both clocks x and y

are reset to 0. Real-valued clocks x and y, initially set to zero, evolve

28 Chapter 2. Preliminaries

must hold in order for the edge to be taken, a is an action, and r is a
simple clock reset.

The semantics of a TAn is defined in terms of a labeled transition
system. A state of a TAn depends on its current location and on the
current values of its clocks. So, a state of a TAn is a pair (l, u), where l is
a location, and u : C → R+ is a clock valuation. The initial state (l0, u0)
is the starting state where all clocks are zero. There are two kinds of
transitions: delay transitions and discrete transitions.

Delay transitions are the result of time passage and do not cause a
change of location. More formally, we have

(l, u) d
→ (l, u ⊕ d)

if u ⊕ d′ |= I(l) for 0 ≤ d′ ≤ d. The assignment u ⊕ d is the result
obtained by incrementing all clocks of the automata with the delay d.

Discrete transitions are the result of following an enabled edge in a
TAn. Consequently, the destination location is changed from the source
location to the new target location, and clocks may be reset. More for-
mally, a discrete transition

(l, u) a
→ (l′, u′)

corresponds to taking an edge l
g,a,r
→ l′ for which the guard g is satisfied

by u. The clock valuation u′ of the target state is obtained by modifying
u according to updates r such that u′ |= I(l′).

Definition 2 (Run of a Timed Automaton). A run of a timed au-
tomaton A = (N, l0, E, I) with initial state (l0, u0) over a timed trace
ξ = (t1, a1)(t2, a2)(t3, a3) . . . (tn, an) is a sequence of transitions:

ξ = (l0, u0) d1−→
a1−→ (l1, u1) d2−→

a2−→ . . .
dn−→

an−−→ (ln, un)

satisfying the condition ti = ti−1 + di for all i ≥ 1.

To model a concurrent real-time system, several TA can be composed
by CCS parallel composition operator A1‖...‖An of a set of an individ-
ual automata A1, . . . An. CCS parallel composition operator allows an
individual automaton to carry out internal actions (i.e., interleaving) as
well as pairs of automata to perform hand-shake synchronization.

2.3 Formal Modeling and Analysis of Software Systems 29

Definition 3 (Network of Timed Automata). Let N = {1, . . . , n}
and let Ai = (Li, l0i

, Ci, Vi, Acti, Ei) be a timed automaton for i ∈ N . A
network of timed automata A1‖...‖An is defined as the parallel composi-
tion of n TA.

The hand-shake synchronization is carried out through input and
output actions using synchronization channels. Let us assume that S is
a set of channel names and that the set of synchronization actions of the
TA network is defined as Σ = {a? | a ∈ S} ∪ {a! | a ∈ S}. A discrete
transition with a synchronization action a! ∈ Σ (send synchronization) is
only enabled if another automaton in the network is able to perform si-
multaneously a complementary action a? ∈ Σ (receive synchronization).
The channels are divided into: binary channels used to synchronize one
send with one single receive synchronization, while broadcast channels
are used to synchronize one sender with an arbitrary number of receiv-
ing automata. A state of a network of TA is defined by the locations
of all automata in the network and the values of clocks and discrete
variables.

To model atomic sequences of actions, Uppaal supports a notion
of urgent and committed locations. If a location is marked as an urgent
location it must take the next transition as soon as it is enabled, i.e.,
no time passing is allowed, but this does not prevent other actions from
happening. On the other hand, when a committed location is active, a
transition from a committed location must be taken immediately, and
no other transition in other automaton can be taken in between.

The Uppaal model-checker provides an engine for verification of tem-
poral properties, such as safety and liveness properties, specified in a sub-
set of Timed Computation Tree Logic (TCTL) [39]. To visualize counter
examples produced by the model-checker, one can use the simulator.

An Illustrative Example of a Timed Automata

An example of a simple network of TA modeled in Uppaal is depicted
in Figure 2.3. Consider the timed automaton of Figure 2.3 b). It consists
of 2 locations l0 and l1, where one of the locations is marked as initial (l0).
The edge from location l0 to location l1 will only be taken if the guard x

≥ 1 holds. Additionally, clocks in the automata may be reset on edges.
For example, when following the edge from l1 to l0 both clocks x and y

are reset to 0. Real-valued clocks x and y, initially set to zero, evolve

30 Chapter 2. Preliminaries

l0

a?

x:=0

x<=4

x>= 4

(a)

l1 x<=5 && y<=3

l0

x:=0,
y:=0

x>=1

a!

y:=0

(b)

Figure 2.3: A timed automata

continuously at the rate 1. A control node l1 is labeled with an invariant
(x ≤ 5 ∧ y ≤ 3) that defines the maximum time allowed to be spent
in that node. The TA in Figure 2.3 a) may stay in location l0 as long
as the invariant x ≤ 4 is satisfied. The automata shown in Figure 2.3
synchronize via synchronization actions, i.e., by sending and receiving
events through a channel a. Sending and receiving via a channel a is
denoted by a! and a?, respectively.

2.3.2 Priced Timed Automata

Priced (or weighted) timed automata are timed automata decorated with
prices (or costs) on both locations and edges. The cost that annotates
an active location represents the cost of a delay transition and it is the
product of the duration of the delay and the cost rate of the active
location. On the other hand, the cost that annotates an edge represents
the cost of the discrete transition and it is given by the cost of the edge.

Definition 4 (Formal Definition of a Priced Timed Automaton).
A linearly Priced Timed Automaton (PTA) over clocks C and actions
Act is a tuple (L, l0, C, V, I, Act, E, P), where (L, l0, C, V, I, Act, E) is a
TA and P : (L ∪ E) → N is a cost function that assigns price-rates (or
cost-rates) to locations and prices (or costs) to edges.

Each run in PTA has a global cost, which is the accumulated price
along the run of every delay and discrete transition.

2.3 Formal Modeling and Analysis of Software Systems 31

The semantics of PTA is defined in terms of priced transition systems
over states of the form (l, u), where l is a location, u ∈ RRC are clock
valuations, and the initial state is (l0, u0), where u0 assigns all clocks
in C to zero. In this model, there are two kinds of transitions: delay
transitions and discrete transitions. In delay transitions,

(l, u)
d,p
→ (l, u ⊕ d),

where u ⊕ d is the result obtained by incrementing all clocks of the
automata with delay d, and p = P (l) ∗ d is the cost of performing the
delay. Discrete transitions

(l, u)
a,p
→ (l′, u′)

correspond to taking an edge l
g,a,r
→ l′ for which the guard g is satisfied

by u. The clock valuation u′ of the target state is obtained by modifying
u according to updates r. The cost p = P ((l, g, a, r, l′)) is the price
associated with the edge.

Definition 5 (Run of a Priced Timed Automaton). A timed trace
of a PTA is a sequence of transitions:

ξ = (l0, u0)
a1,p1

−−−→ (l1, u1)
a2,p2

−−−→ . . .
an,pn
−−−−→ (ln, un)

and the cost of performing ξ =
n
∑

i=1

pi.

For a given goal state (l, u), the minimum cost of reaching (l, u) is
the infimum of the costs of the finite traces ending in the (l, u), while
the maximum cost of reaching the goal state (l, u) is the supremum of
the costs of the finite traces ending in (l, u).

Properties of PTA can be specified in Weighted Computation Tree
Logic (WCTL) [42], which is an extension of TCTL with resetting and
testing cost variables. Let AP be a set of atomic propositions, a ∈ AP ,
P is a cost function, c ranges over N, and ∼∈ {<, ≤, =, ≥, >}. Then, a
WCTL formula φ is defined by the following grammar:

W CT L � φ ::= true | a | ¬φ | φ1 ∨ φ2 | Eφ UP ∼Cφ | Aφ UP ∼Cφ

(2.2)

30 Chapter 2. Preliminaries

l0

a?

x:=0

x<=4

x>= 4

(a)

l1 x<=5 && y<=3

l0

x:=0,
y:=0

x>=1

a!

y:=0

(b)

Figure 2.3: A timed automata

continuously at the rate 1. A control node l1 is labeled with an invariant
(x ≤ 5 ∧ y ≤ 3) that defines the maximum time allowed to be spent
in that node. The TA in Figure 2.3 a) may stay in location l0 as long
as the invariant x ≤ 4 is satisfied. The automata shown in Figure 2.3
synchronize via synchronization actions, i.e., by sending and receiving
events through a channel a. Sending and receiving via a channel a is
denoted by a! and a?, respectively.

2.3.2 Priced Timed Automata

Priced (or weighted) timed automata are timed automata decorated with
prices (or costs) on both locations and edges. The cost that annotates
an active location represents the cost of a delay transition and it is the
product of the duration of the delay and the cost rate of the active
location. On the other hand, the cost that annotates an edge represents
the cost of the discrete transition and it is given by the cost of the edge.

Definition 4 (Formal Definition of a Priced Timed Automaton).
A linearly Priced Timed Automaton (PTA) over clocks C and actions
Act is a tuple (L, l0, C, V, I, Act, E, P), where (L, l0, C, V, I, Act, E) is a
TA and P : (L ∪ E) → N is a cost function that assigns price-rates (or
cost-rates) to locations and prices (or costs) to edges.

Each run in PTA has a global cost, which is the accumulated price
along the run of every delay and discrete transition.

2.3 Formal Modeling and Analysis of Software Systems 31

The semantics of PTA is defined in terms of priced transition systems
over states of the form (l, u), where l is a location, u ∈ RRC are clock
valuations, and the initial state is (l0, u0), where u0 assigns all clocks
in C to zero. In this model, there are two kinds of transitions: delay
transitions and discrete transitions. In delay transitions,

(l, u)
d,p
→ (l, u ⊕ d),

where u ⊕ d is the result obtained by incrementing all clocks of the
automata with delay d, and p = P (l) ∗ d is the cost of performing the
delay. Discrete transitions

(l, u)
a,p
→ (l′, u′)

correspond to taking an edge l
g,a,r
→ l′ for which the guard g is satisfied

by u. The clock valuation u′ of the target state is obtained by modifying
u according to updates r. The cost p = P ((l, g, a, r, l′)) is the price
associated with the edge.

Definition 5 (Run of a Priced Timed Automaton). A timed trace
of a PTA is a sequence of transitions:

ξ = (l0, u0)
a1,p1

−−−→ (l1, u1)
a2,p2

−−−→ . . .
an,pn
−−−−→ (ln, un)

and the cost of performing ξ =
n
∑

i=1

pi.

For a given goal state (l, u), the minimum cost of reaching (l, u) is
the infimum of the costs of the finite traces ending in the (l, u), while
the maximum cost of reaching the goal state (l, u) is the supremum of
the costs of the finite traces ending in (l, u).

Properties of PTA can be specified in Weighted Computation Tree
Logic (WCTL) [42], which is an extension of TCTL with resetting and
testing cost variables. Let AP be a set of atomic propositions, a ∈ AP ,
P is a cost function, c ranges over N, and ∼∈ {<, ≤, =, ≥, >}. Then, a
WCTL formula φ is defined by the following grammar:

W CT L � φ ::= true | a | ¬φ | φ1 ∨ φ2 | Eφ UP ∼Cφ | Aφ UP ∼Cφ

(2.2)

32 Chapter 2. Preliminaries

Here, A and E are the universal and existential path quantifiers of
WCTL, respectively, and UP ∼C is the “until” temporal modality. The
first operator is either A (“for All paths”), or E (“there Exists a path”).
We interpret formulas of WCTL over labeled PTA, that is, PTA hav-
ing a labeling function that associates with every location l a subset of
atomic propositions. The satisfaction relation of WCTL is defined over
configurations of the labeled PTA. More details on WCTL can be found
in [42].

An Illustrative Example of a Priced Timed Automata

x<=4 && cost’ == 2

a!

l0

x:=0

x>=4

Figure 2.4: A priced timed automaton

Let us assume that the PTA in Figure 2.4 is a clock that periodically
synchronizes (every 4 time units, which represents the clock period) with
another PTA via channel a. Moreover, we assume that the periodic
synchronization consumes a certain amount of energy, modeled here as
the cost variable cost, which evolves at rate 2. The special variable cost

is increased by the price per time unit for staying in the location l0
(cost′ == 2 indicates that the energy consumption is 2 units per time
unit in location l0).

2.3.3 Formal Analysis of Remes Models

Based on the TA or PTA model as the semantic translation of Remes

models we are able to perform feasibility and optimal or worst-case re-
source consumption analysis. Feasibility analysis checks whether the
accumulated values of the resources consumed during all possible sys-
tem behaviors are within the available resource amounts provided by the
system platform. Optimal or worst-case resource consumption analysis
returns the cost of the “cheapest”, and/or most “expensive” trace of the

2.3 Formal Modeling and Analysis of Software Systems 33

TA network that will eventually reach some designated goal expressed
as TCTL property.

Considering the TA or PTA model of Remes models, one might
express possible analysis goals by the following WCTL properties that
TA or PTA networks can be checked against:

AFt≤tmax
final (2.3)

AG (v ⇒ AFcost≤nfinal) (2.4)

EFcost≤n final (2.5)

AG (v ⇒ EFcost≤nfinal) (2.6)

EF (t ≤ tmax ∧ contract ∧ u ≥ val) (2.7)

Properties (2.3), (2.4), (2.6) are liveness properties, while proper-
ties (2.5) and (2.7) are reachability properties. We say that the first
two properties specify strong feasibility of the model: property (2.3) re-
quires that for all execution paths, the target location final is eventually
reached within time t less or equal to the maximum allowed time tmax;
property (2.4) states that, for all paths, it is always the case that, once
in location v, the cost of eventually reaching location final will be no
more than n, regardless of how location final is reached. Property (2.5)
models weak feasibility, meaning that the target location final may be
reached within a total cost of n. Property (2.6) states that for all paths,
it is always the case that once location v is reached, there exists a way
by which location final will be eventually reached within cost n. The
last property (2.7) states that there exists a path in which a contract
can be signed (contract holds) within the given timing constraints, that
is, t ≤ tmax, and maximized utility function (u ≥ val). It is important
to point out that model-checking WCTL formulae is decidable just for
one-clock PTA [43]. For other PTA, one can only verify reachability
properties of the form given by property 2.5.

In this thesis we assume that the cost function is described as cost =
w1 × c1 + w2 × c2 + . . . + wn × cn, where c1, . . . , cn are constants, then in
our analysis the above presented properties involve a single cost variable
that stands for the accumulated resource consumption of all involved
resources. This means that, semantically, the different resources become
undistinguishable in these cases (the sum only accounts for all resource
values).

32 Chapter 2. Preliminaries

Here, A and E are the universal and existential path quantifiers of
WCTL, respectively, and UP ∼C is the “until” temporal modality. The
first operator is either A (“for All paths”), or E (“there Exists a path”).
We interpret formulas of WCTL over labeled PTA, that is, PTA hav-
ing a labeling function that associates with every location l a subset of
atomic propositions. The satisfaction relation of WCTL is defined over
configurations of the labeled PTA. More details on WCTL can be found
in [42].

An Illustrative Example of a Priced Timed Automata

x<=4 && cost’ == 2

a!

l0

x:=0

x>=4

Figure 2.4: A priced timed automaton

Let us assume that the PTA in Figure 2.4 is a clock that periodically
synchronizes (every 4 time units, which represents the clock period) with
another PTA via channel a. Moreover, we assume that the periodic
synchronization consumes a certain amount of energy, modeled here as
the cost variable cost, which evolves at rate 2. The special variable cost

is increased by the price per time unit for staying in the location l0
(cost′ == 2 indicates that the energy consumption is 2 units per time
unit in location l0).

2.3.3 Formal Analysis of Remes Models

Based on the TA or PTA model as the semantic translation of Remes

models we are able to perform feasibility and optimal or worst-case re-
source consumption analysis. Feasibility analysis checks whether the
accumulated values of the resources consumed during all possible sys-
tem behaviors are within the available resource amounts provided by the
system platform. Optimal or worst-case resource consumption analysis
returns the cost of the “cheapest”, and/or most “expensive” trace of the

2.3 Formal Modeling and Analysis of Software Systems 33

TA network that will eventually reach some designated goal expressed
as TCTL property.

Considering the TA or PTA model of Remes models, one might
express possible analysis goals by the following WCTL properties that
TA or PTA networks can be checked against:

AFt≤tmax
final (2.3)

AG (v ⇒ AFcost≤nfinal) (2.4)

EFcost≤n final (2.5)

AG (v ⇒ EFcost≤nfinal) (2.6)

EF (t ≤ tmax ∧ contract ∧ u ≥ val) (2.7)

Properties (2.3), (2.4), (2.6) are liveness properties, while proper-
ties (2.5) and (2.7) are reachability properties. We say that the first
two properties specify strong feasibility of the model: property (2.3) re-
quires that for all execution paths, the target location final is eventually
reached within time t less or equal to the maximum allowed time tmax;
property (2.4) states that, for all paths, it is always the case that, once
in location v, the cost of eventually reaching location final will be no
more than n, regardless of how location final is reached. Property (2.5)
models weak feasibility, meaning that the target location final may be
reached within a total cost of n. Property (2.6) states that for all paths,
it is always the case that once location v is reached, there exists a way
by which location final will be eventually reached within cost n. The
last property (2.7) states that there exists a path in which a contract
can be signed (contract holds) within the given timing constraints, that
is, t ≤ tmax, and maximized utility function (u ≥ val). It is important
to point out that model-checking WCTL formulae is decidable just for
one-clock PTA [43]. For other PTA, one can only verify reachability
properties of the form given by property 2.5.

In this thesis we assume that the cost function is described as cost =
w1 × c1 + w2 × c2 + . . . + wn × cn, where c1, . . . , cn are constants, then in
our analysis the above presented properties involve a single cost variable
that stands for the accumulated resource consumption of all involved
resources. This means that, semantically, the different resources become
undistinguishable in these cases (the sum only accounts for all resource
values).

Chapter 3

Research Goals and

Methodology

The research presented in this doctoral thesis is conducted in the area of
service-oriented software development, and it has been driven by prob-
lems coming from the domain of SOS. The list includes issues such as
service composition, service resource limitation, correctness checking for
services and their compositions, service negotiation, and formal analysis
of such systems. We tackle the problems at the design level only, so
services are design-time units. An important challenge is thus to de-
velop appropriate languages, algorithms, and tools to support modeling,
composition, negotiation, and formal analysis of service behaviors.

In this chapter we present the scope of our work by formulating the
main research goal, the set of smaller research goals that reflect the idea
behind the overall thesis goal, which we actually address in the thesis,
as well as the employed research methodology.

3.1 Problem Description

In Chapter 1, we have argued that the development of new applica-
tions out of existing or new services is a challenging task. This claim
is justified by the fact that new applications and systems are built on
demand, often using services provided from possibly different vendors,
which should in many cases be compatible with legacy systems. Ad-

35

Chapter 3

Research Goals and

Methodology

The research presented in this doctoral thesis is conducted in the area of
service-oriented software development, and it has been driven by prob-
lems coming from the domain of SOS. The list includes issues such as
service composition, service resource limitation, correctness checking for
services and their compositions, service negotiation, and formal analysis
of such systems. We tackle the problems at the design level only, so
services are design-time units. An important challenge is thus to de-
velop appropriate languages, algorithms, and tools to support modeling,
composition, negotiation, and formal analysis of service behaviors.

In this chapter we present the scope of our work by formulating the
main research goal, the set of smaller research goals that reflect the idea
behind the overall thesis goal, which we actually address in the thesis,
as well as the employed research methodology.

3.1 Problem Description

In Chapter 1, we have argued that the development of new applica-
tions out of existing or new services is a challenging task. This claim
is justified by the fact that new applications and systems are built on
demand, often using services provided from possibly different vendors,
which should in many cases be compatible with legacy systems. Ad-

35

36 Chapter 3. Research Goals and Methodology

ditionally, various available services might provide similar functionality,
but differ in resource consumption, price, or reliability. The functional
correctness (meeting requirements), but also QoS of selected services, as
well as service compositions should be predicted as early as possible in
order to prevent possible problems at run-time. Also, it is beneficial to
analyze negotiation with different vendors about the terms and condi-
tions of service provision, enabling the open competition between service
providers that in many cases leads to more favorable agreements for the
service users.

Based on the above arguments, we identify our main research goal
coming from the domain of SOS, as the follows:

Provide methods and tools for specification, modeling, and

formal analysis of services and service compositions in SOS.

The goal is broad and admits various answers, so in order to address
the goal we formulate four smaller research goals (see section 3.2) that
we focus on in this thesis.

3.2 Research Subgoals

In this section we present four research subgoals that serve our main
research goal, and which we address in this thesis.

Research subgoal 1.

The service-oriented paradigm is a design paradigm that relies on
a specific set of design principles such as: service-reusability, autonomy,
discoverability, abstraction, statelessness, etc. [12]. Services are the main
units of SOS, which can be created, invoked, composed, and decomposed
on a user request. Each service provides a predefined collection of ca-
pabilities that are grouped together and they relate to the functional
context (surrounding environment) in which a service can be invoked.
Consequently, all services should advertise their capabilities via well-
defined service interfaces that might include information such as type
of the service, time-to-serve, status, etc.. Also, since services are plat-
form independent and loosely coupled, it is possible to compose them in
more than one way, usually on user demand. In this thesis, we adopt

3.2 Research Subgoals 37

the developer-user perspective with respect to the information needed
for a service: the developer has access to the internal description of a
service behavior, whereas the user needs only the service interface de-
scription. Hence, our aim is to provide a complete and unambiguous
service behavior description that includes modeling both the internal
state changes of each specific entity of the system’s architecture, and the
external interface behavior.

An important target is to ensure the required QoS that is expected
by the user when deciding which service to select out of available services
(possibly delivering the same or similar functionality). Therefore, it is
essential to be able to apply formal analysis techniques (in particular
model-checking) on a complete behavioral model of a service, or con-
nected services, at design-time. Some of the existing SOS approaches
support formal analysis to guarantee the expected level of QoS [4–7],
but few cater for both functional as well as extra-functional (timing and
resource-usage) behavior. Accordingly, the first research subgoal can be
subdivided into the following two subgoals:

To provide a language for describing the relevant features of
SOS high-level models, and corresponding tool support.

(RSG1A)

To develop a formal model for services, amenable to formal
analysis, which provides support for describing the service
function, timing, and resource-usage aspects.

(RSG1B)

Research subgoal 2.

Developing systems that do not always have a predefined architec-
ture raises some concerns regarding the quality and correctness of the
employed services. When building new services from the scratch one
should be able to predict the future behavior of the service, even more
so if the service needs to interact with other services in order to carry
out the given task. It is obvious that in such a dynamic environment
it is not sufficient to check only the correctness of single services, but
also to be able to verify the functional and extra-functional correctness
of possible service compositions.

36 Chapter 3. Research Goals and Methodology

ditionally, various available services might provide similar functionality,
but differ in resource consumption, price, or reliability. The functional
correctness (meeting requirements), but also QoS of selected services, as
well as service compositions should be predicted as early as possible in
order to prevent possible problems at run-time. Also, it is beneficial to
analyze negotiation with different vendors about the terms and condi-
tions of service provision, enabling the open competition between service
providers that in many cases leads to more favorable agreements for the
service users.

Based on the above arguments, we identify our main research goal
coming from the domain of SOS, as the follows:

Provide methods and tools for specification, modeling, and

formal analysis of services and service compositions in SOS.

The goal is broad and admits various answers, so in order to address
the goal we formulate four smaller research goals (see section 3.2) that
we focus on in this thesis.

3.2 Research Subgoals

In this section we present four research subgoals that serve our main
research goal, and which we address in this thesis.

Research subgoal 1.

The service-oriented paradigm is a design paradigm that relies on
a specific set of design principles such as: service-reusability, autonomy,
discoverability, abstraction, statelessness, etc. [12]. Services are the main
units of SOS, which can be created, invoked, composed, and decomposed
on a user request. Each service provides a predefined collection of ca-
pabilities that are grouped together and they relate to the functional
context (surrounding environment) in which a service can be invoked.
Consequently, all services should advertise their capabilities via well-
defined service interfaces that might include information such as type
of the service, time-to-serve, status, etc.. Also, since services are plat-
form independent and loosely coupled, it is possible to compose them in
more than one way, usually on user demand. In this thesis, we adopt

3.2 Research Subgoals 37

the developer-user perspective with respect to the information needed
for a service: the developer has access to the internal description of a
service behavior, whereas the user needs only the service interface de-
scription. Hence, our aim is to provide a complete and unambiguous
service behavior description that includes modeling both the internal
state changes of each specific entity of the system’s architecture, and the
external interface behavior.

An important target is to ensure the required QoS that is expected
by the user when deciding which service to select out of available services
(possibly delivering the same or similar functionality). Therefore, it is
essential to be able to apply formal analysis techniques (in particular
model-checking) on a complete behavioral model of a service, or con-
nected services, at design-time. Some of the existing SOS approaches
support formal analysis to guarantee the expected level of QoS [4–7],
but few cater for both functional as well as extra-functional (timing and
resource-usage) behavior. Accordingly, the first research subgoal can be
subdivided into the following two subgoals:

To provide a language for describing the relevant features of
SOS high-level models, and corresponding tool support.

(RSG1A)

To develop a formal model for services, amenable to formal
analysis, which provides support for describing the service
function, timing, and resource-usage aspects.

(RSG1B)

Research subgoal 2.

Developing systems that do not always have a predefined architec-
ture raises some concerns regarding the quality and correctness of the
employed services. When building new services from the scratch one
should be able to predict the future behavior of the service, even more
so if the service needs to interact with other services in order to carry
out the given task. It is obvious that in such a dynamic environment
it is not sufficient to check only the correctness of single services, but
also to be able to verify the functional and extra-functional correctness
of possible service compositions.

38 Chapter 3. Research Goals and Methodology

Considering the fact that services and service compositions some-
times are embedded into larger systems that need to run on limited re-
sources, it could become important to ensure that the resource-usage of
a service, be it isolated or interconnected, is kept within existing bounds.
To address such requests at early design stages, one needs powerful anal-
ysis techniques that encompass both functional but also extra-functional
service behavior. Such motivation justifies our second research subgoal:

To provide means to formally analyze functional, and extra-
functional properties of services and service compositions within
our framework.

(RSG2)

Research subgoal 3.

In principle, services in SOS might be offered at various prices, QoS,
and other conditions depending on the customer needs. In such a setting,
the interaction between involved parties requires the negotiation of what
is possible at request time, aiming at meeting needs dynamically. SOS
assume the involved parties to have one of the following roles: client,
mediator, or provider. The role of a client service is to request a service
that has certain functionality and characteristics, which should deliver
its function within given resource limits. The mediator initiates and
steers the communication, that is, the negotiation process between the
client and the provider, helping them to reach an agreement. The service
provider creates a counteroffer, based on the client’s request and available
services.

For a negotiation to take a place, a negotiation mechanism should
exist. The mechanism must be public and defines the rules of the pos-
sible client-mediator-provider interaction, and the space of the possible
actions that the participants can take, assuming that each participant
adopts a private strategy in order to maximize the individual gain. The
negotiation process is an iterative process that, if successful, finishes with
a formal contract called Service Level Agreement (SLA). SLA is a con-
tract between the client and the provider, which sets boundaries on both
functional and extra-functional properties to be guaranteed, defines the
cost of a service delivery, and possible penalties in case that the contract
is broken.

As the number of services offered by different providers is growing,
the need to formally define and analyze the service negotiation process

3.2 Research Subgoals 39

has increased. Given that service provision is being negotiated upon the
client’s demand, establishing guarantees of provided QoS, under (most
likely) agile conditions of service composition and possible negotiation
constraints, becomes a challenging task.

Taking into account the above, a mathematically driven technique
to analyze various ways to achieve the client’s and provider’s goals is
beneficial. For instance, one can compute the minimum price for reach-
ing an agreement within a given time constraint, while maximizing the
utility function (a weighted sum of negotiation preferences) for all in-
volved parties. Such analysis might expose different configurations that
can provide valuable inputs to both service designers as well as service
users. Assuming particular offer and counter-offer, strategies of the in-
volved services, as well as a negotiation protocol, the formalization of the
negotiation between clients and providers basically results in a “negoti-
ation interface” that iterates until an agreement is reached. Our aim is
to provide an analyzable negotiation model between service clients and
providers fit to the above described needs. To meet these needs, we need
to address the subgoal below:

To provide an analyzable model that describes possible inter-
actions between services and their providers, through succes-
sive selection of actions.

(RSG3)

Research subgoal 4.

The usefulness, applicability, and scalability of modeling languages
and analysis methods for SOS can be exercised by performing their val-
idation against measured, quantified behavioral properties. To be able
to validate the applicability of our design framework, we must make sure
that it is suitable to real-life problems. Thus, our fourth research goal
is:

To apply the proposed design framework on a real-life service-
based system in order to check its suitability in practice.

(RSG4)

38 Chapter 3. Research Goals and Methodology

Considering the fact that services and service compositions some-
times are embedded into larger systems that need to run on limited re-
sources, it could become important to ensure that the resource-usage of
a service, be it isolated or interconnected, is kept within existing bounds.
To address such requests at early design stages, one needs powerful anal-
ysis techniques that encompass both functional but also extra-functional
service behavior. Such motivation justifies our second research subgoal:

To provide means to formally analyze functional, and extra-
functional properties of services and service compositions within
our framework.

(RSG2)

Research subgoal 3.

In principle, services in SOS might be offered at various prices, QoS,
and other conditions depending on the customer needs. In such a setting,
the interaction between involved parties requires the negotiation of what
is possible at request time, aiming at meeting needs dynamically. SOS
assume the involved parties to have one of the following roles: client,
mediator, or provider. The role of a client service is to request a service
that has certain functionality and characteristics, which should deliver
its function within given resource limits. The mediator initiates and
steers the communication, that is, the negotiation process between the
client and the provider, helping them to reach an agreement. The service
provider creates a counteroffer, based on the client’s request and available
services.

For a negotiation to take a place, a negotiation mechanism should
exist. The mechanism must be public and defines the rules of the pos-
sible client-mediator-provider interaction, and the space of the possible
actions that the participants can take, assuming that each participant
adopts a private strategy in order to maximize the individual gain. The
negotiation process is an iterative process that, if successful, finishes with
a formal contract called Service Level Agreement (SLA). SLA is a con-
tract between the client and the provider, which sets boundaries on both
functional and extra-functional properties to be guaranteed, defines the
cost of a service delivery, and possible penalties in case that the contract
is broken.

As the number of services offered by different providers is growing,
the need to formally define and analyze the service negotiation process

3.2 Research Subgoals 39

has increased. Given that service provision is being negotiated upon the
client’s demand, establishing guarantees of provided QoS, under (most
likely) agile conditions of service composition and possible negotiation
constraints, becomes a challenging task.

Taking into account the above, a mathematically driven technique
to analyze various ways to achieve the client’s and provider’s goals is
beneficial. For instance, one can compute the minimum price for reach-
ing an agreement within a given time constraint, while maximizing the
utility function (a weighted sum of negotiation preferences) for all in-
volved parties. Such analysis might expose different configurations that
can provide valuable inputs to both service designers as well as service
users. Assuming particular offer and counter-offer, strategies of the in-
volved services, as well as a negotiation protocol, the formalization of the
negotiation between clients and providers basically results in a “negoti-
ation interface” that iterates until an agreement is reached. Our aim is
to provide an analyzable negotiation model between service clients and
providers fit to the above described needs. To meet these needs, we need
to address the subgoal below:

To provide an analyzable model that describes possible inter-
actions between services and their providers, through succes-
sive selection of actions.

(RSG3)

Research subgoal 4.

The usefulness, applicability, and scalability of modeling languages
and analysis methods for SOS can be exercised by performing their val-
idation against measured, quantified behavioral properties. To be able
to validate the applicability of our design framework, we must make sure
that it is suitable to real-life problems. Thus, our fourth research goal
is:

To apply the proposed design framework on a real-life service-
based system in order to check its suitability in practice.

(RSG4)

40 Chapter 3. Research Goals and Methodology

3.3 Research Methodology

Research is a systematic, methodical and ethical process of enquiry and
investigation, which aims at solving practical problems and increases
knowledge about the topic of research [44]. In order to adequately ad-
dress the main research goal, it is vital to adopt an appropriate research
methodology and set of research methods, suitable for a given setting.
The research process that is used in this thesis includes the following
steps based on the ones proposed by Shaw [45]:

• Identification and formulation of a general research problem based
on the current trends and demands from the SOS community;

• Transferring the problem to a research setting, refining and narrow-
ing down the general problem by expressing it in terms of selected
research subgoals;

• Analysis of the current state-of-the-art with respect to the defined
research subgoals;

• Answering the research subgoals by presenting the achieved re-
search results;

• Validation of our research results in order to examine the validity
of conducted research in both research and real-life settings.

The research process that is used in this thesis is presented in Fig-
ure 3.1. It consist of seven steps described in the following. We have
considered the general research problem, the need to be able to specify,
design, and formally analyze services and service compositions, and have
transferred the problem to a research setting as described in section 3.1.
In order to understand the problem better, we have performed informa-
tion gathering and state-of-the-art investigation covering the previous
work conducted on the research problem (see paper A). Next, based on
the findings from the state-of-the-art investigation, we have been able
to identify research subgoals as presented in section 3.2. In the next
phase of our research we have moved to addressing the research subgoals
by developing solutions and presenting achieved research results through
several iterations where the achieved results have been improved through
discussions and analysis. In papers B, C, and D we have presented our

3.3 Research Methodology 41

research results on developing formal approaches for behavioral model-
ing and analysis of services and service compositions in SOS. In paper
F, we present a tool for modeling and analysis of SOS.

Problem identification

 Problem understanding -

state-of-the-art investigation

Research goal definition

Research subgoals definition

Research results

Research results analysis

Validation

Results refinement

Figure 3.1: Research process steps

The last stage of our research process is validation. All presented
results have been analyzed and exemplified as shown in the included
papers. In papers B, C, and D toy examples and a simplified example
motivated by reality, are used. The approach presented in paper B, is
demonstrated on an adapted version of an intelligent shuttle system, for
which we have computed resource consumptions, and performed a service
composition correctness verification for respective shuttle compositions.
Paper C includes an illustrative example of our proposed approach for
which we have analyzed resource usage/cost calculation using symbolic

40 Chapter 3. Research Goals and Methodology

3.3 Research Methodology

Research is a systematic, methodical and ethical process of enquiry and
investigation, which aims at solving practical problems and increases
knowledge about the topic of research [44]. In order to adequately ad-
dress the main research goal, it is vital to adopt an appropriate research
methodology and set of research methods, suitable for a given setting.
The research process that is used in this thesis includes the following
steps based on the ones proposed by Shaw [45]:

• Identification and formulation of a general research problem based
on the current trends and demands from the SOS community;

• Transferring the problem to a research setting, refining and narrow-
ing down the general problem by expressing it in terms of selected
research subgoals;

• Analysis of the current state-of-the-art with respect to the defined
research subgoals;

• Answering the research subgoals by presenting the achieved re-
search results;

• Validation of our research results in order to examine the validity
of conducted research in both research and real-life settings.

The research process that is used in this thesis is presented in Fig-
ure 3.1. It consist of seven steps described in the following. We have
considered the general research problem, the need to be able to specify,
design, and formally analyze services and service compositions, and have
transferred the problem to a research setting as described in section 3.1.
In order to understand the problem better, we have performed informa-
tion gathering and state-of-the-art investigation covering the previous
work conducted on the research problem (see paper A). Next, based on
the findings from the state-of-the-art investigation, we have been able
to identify research subgoals as presented in section 3.2. In the next
phase of our research we have moved to addressing the research subgoals
by developing solutions and presenting achieved research results through
several iterations where the achieved results have been improved through
discussions and analysis. In papers B, C, and D we have presented our

3.3 Research Methodology 41

research results on developing formal approaches for behavioral model-
ing and analysis of services and service compositions in SOS. In paper
F, we present a tool for modeling and analysis of SOS.

Problem identification

 Problem understanding -

state-of-the-art investigation

Research goal definition

Research subgoals definition

Research results

Research results analysis

Validation

Results refinement

Figure 3.1: Research process steps

The last stage of our research process is validation. All presented
results have been analyzed and exemplified as shown in the included
papers. In papers B, C, and D toy examples and a simplified example
motivated by reality, are used. The approach presented in paper B, is
demonstrated on an adapted version of an intelligent shuttle system, for
which we have computed resource consumptions, and performed a service
composition correctness verification for respective shuttle compositions.
Paper C includes an illustrative example of our proposed approach for
which we have analyzed resource usage/cost calculation using symbolic

42 Chapter 3. Research Goals and Methodology

states of the example service. In paper D, we illustrate the presented
approach of automated service negotiation in the car insurance example,
for which we have shown how to analyze the proposed negotiation model
against safety properties, but also against specified timing and utility
constraints. Finally, in paper E, we show how to model and formally
analyze a distributed energy management in an open energy market,
similar to one described by Mobach [46]. The salient point of our ne-
gotiation model, which enables its validation, is the fact that the model
can be analyzed against several requirements, such as price, time, and
reliability, in order to check whether the available energy and proposed
prices can satisfy a client’s needs. Also, we have been able to calculate
the value of the optimal utility function, described as a weighted sum of
energy price and energy reliability (modeled as a number), and model-
check the trace (a sequence of actions) that leads to such state. Our
behavioral language and the associated analysis techniques have been
compared to the existing related work and have been shown to be appli-
cable to modeling and analysis of a distributed energy management.

Chapter 4

Research Contributions

In this chapter, we present the contributions of this thesis, and we re-
late them to the subgoals formulated in Chapter 3. The details of each
contribution are presented in the appended papers, to be found in the
second part of this thesis.

Research subgoal 1.

The first subgoal is represented by two complementary subgoals, as
follows:

To provide a language for describing the relevant features of
SOS high-level models, and corresponding tool support.

(RSG1A)

To develop a formal model for services, amenable to formal
analysis, which provides support for describing the service
function, timing, and resource-usage aspects.

(RSG1B)

Contribution: A language for behavioral modeling of SOS. To
address RSG1A and RSG1B, we extend the already existing dense-time
hierarchical modeling language called Remes (a REsource Model for Em-
bedded Systems) initially designed to fit a component-based embedded
systems design perspective [8,9]. The main motivation for the extension
relies on the fact that SOS share similar characteristics with CBS, as pre-
sented in paper A. Our extensions exploit such advantages of the model,

43

42 Chapter 3. Research Goals and Methodology

states of the example service. In paper D, we illustrate the presented
approach of automated service negotiation in the car insurance example,
for which we have shown how to analyze the proposed negotiation model
against safety properties, but also against specified timing and utility
constraints. Finally, in paper E, we show how to model and formally
analyze a distributed energy management in an open energy market,
similar to one described by Mobach [46]. The salient point of our ne-
gotiation model, which enables its validation, is the fact that the model
can be analyzed against several requirements, such as price, time, and
reliability, in order to check whether the available energy and proposed
prices can satisfy a client’s needs. Also, we have been able to calculate
the value of the optimal utility function, described as a weighted sum of
energy price and energy reliability (modeled as a number), and model-
check the trace (a sequence of actions) that leads to such state. Our
behavioral language and the associated analysis techniques have been
compared to the existing related work and have been shown to be appli-
cable to modeling and analysis of a distributed energy management.

Chapter 4

Research Contributions

In this chapter, we present the contributions of this thesis, and we re-
late them to the subgoals formulated in Chapter 3. The details of each
contribution are presented in the appended papers, to be found in the
second part of this thesis.

Research subgoal 1.

The first subgoal is represented by two complementary subgoals, as
follows:

To provide a language for describing the relevant features of
SOS high-level models, and corresponding tool support.

(RSG1A)

To develop a formal model for services, amenable to formal
analysis, which provides support for describing the service
function, timing, and resource-usage aspects.

(RSG1B)

Contribution: A language for behavioral modeling of SOS. To
address RSG1A and RSG1B, we extend the already existing dense-time
hierarchical modeling language called Remes (a REsource Model for Em-
bedded Systems) initially designed to fit a component-based embedded
systems design perspective [8,9]. The main motivation for the extension
relies on the fact that SOS share similar characteristics with CBS, as pre-
sented in paper A. Our extensions exploit such advantages of the model,

43

44 Chapter 4. Research Contributions

Figure 4.1: A user and developer perspective in a Remes composite
service.

and also introduce service-oriented features, aiming at making Remes

suitable for behavioral modeling and analysis of SOS, too. Our choice
of Remes is also justified by its support for formal analysis, since the
Remes language has a formal semantics defined in terms of TA [29],
or PTA [30], and depending on the analysis type [33], one can choose
between analyzing networks of TA or PTA.

Remes language is well-suited for abstract modeling, it is hierarchi-
cal, has an input/ouput distinction, a well-defined formal semantics, and
tool support for both component-based 1 and service-oriented 2 system
modeling and analysis [10,11]. We extend the language with various con-
structs and features deemed necessary for a service-oriented perspective,
as described in the following. In service-oriented version of the Remes

language, we consider two system views: the users’s and the develop-
ers’s view, respectively, as depicted in Figure 4.1. In the former, one has

1The Remes tool-chain is available at http://www.fer.hr/dices/remes-id.
2More information available at http://www.idt.mdh.se/personal/eep/reseide/

45

information primarily on the service interface and exposed attributes
(or features). In the latter, one can be assumed to have access to the
internal service representation: functionality, enabled actions, resource
usage, and possible interactions with other services.

A Remes service can be described graphically (as a mode), or tex-
tually by a list of attributes (i.e., service type (a web, network, or embed-
ded service), capacity (the maximum number of messages per time unit),
time-to-serve (the worst-case time needed to respond and serve a given
request), status (the current service status, i.e., passive, idle, active), ser-

vice precondition, and postcondition exposed at the interface of the Remes

service (see Figure 4.1). A service precondition is a predicate that con-
strains the start of the service execution, and must be true at the time
a Remes service is invoked ((n == 2 and x == 0 and y == 0) in Figure 4.1).
A postcondition is the output guarantee, also a predicate, which must
hold at the end of a Remes service execution for a service to be correct
with respect to the function, timing, and resource usage requirements
((1 ≤ res ≤ 10 and y ≥ x) in Figure 4.1). A service modeled in Remes

can be atomic (Atomic service 1 and Atomic service 2 in Figure 4.1), com-
posite (Composite service in Figure 4.1) or employed in several types of
compositions, resulting in new and more complex services.

Let us assume an example of a composite service that models a web
service depicted in Figure 4.1. Composite service contains two subservices
Atomic service 1 and Atomic service 2. The service has two entry points,
Init and Entry point, where Init entry point is visited when the service
executes for the first time, and where all variables are initialized. Timed
behavior in Remes is modeled by global continuous variables of type
clock, evolving at rate 1 (variable x and y in Figure 4.1). Each service
can be annotated with the corresponding resource usage, modeled by the
first time derivative of the real-valued variables that denote resources and
that evolve at positive integer rates (variable res in Figure 4.1). Discrete
resources are allocated through updates, e.g., res += 1 in Figure 4.1. To
describe the continuous behavior of the service, delay (or timed) actions

are used, while the instantaneous actions are modeled via discrete actions.
The execution of the first type of actions do not change the mode in
a service, while the second are represented as annotations of the edges,
and their execution results in a mode change.

A composite service executes by performing a sequence of discrete
steps, via actions that, once executed, pass the control from the current
subservice to a different subservice. An action, A = (g, S) (e.g., (n > 0,

44 Chapter 4. Research Contributions

Figure 4.1: A user and developer perspective in a Remes composite
service.

and also introduce service-oriented features, aiming at making Remes

suitable for behavioral modeling and analysis of SOS, too. Our choice
of Remes is also justified by its support for formal analysis, since the
Remes language has a formal semantics defined in terms of TA [29],
or PTA [30], and depending on the analysis type [33], one can choose
between analyzing networks of TA or PTA.

Remes language is well-suited for abstract modeling, it is hierarchi-
cal, has an input/ouput distinction, a well-defined formal semantics, and
tool support for both component-based 1 and service-oriented 2 system
modeling and analysis [10,11]. We extend the language with various con-
structs and features deemed necessary for a service-oriented perspective,
as described in the following. In service-oriented version of the Remes

language, we consider two system views: the users’s and the develop-
ers’s view, respectively, as depicted in Figure 4.1. In the former, one has

1The Remes tool-chain is available at http://www.fer.hr/dices/remes-id.
2More information available at http://www.idt.mdh.se/personal/eep/reseide/

45

information primarily on the service interface and exposed attributes
(or features). In the latter, one can be assumed to have access to the
internal service representation: functionality, enabled actions, resource
usage, and possible interactions with other services.

A Remes service can be described graphically (as a mode), or tex-
tually by a list of attributes (i.e., service type (a web, network, or embed-
ded service), capacity (the maximum number of messages per time unit),
time-to-serve (the worst-case time needed to respond and serve a given
request), status (the current service status, i.e., passive, idle, active), ser-

vice precondition, and postcondition exposed at the interface of the Remes

service (see Figure 4.1). A service precondition is a predicate that con-
strains the start of the service execution, and must be true at the time
a Remes service is invoked ((n == 2 and x == 0 and y == 0) in Figure 4.1).
A postcondition is the output guarantee, also a predicate, which must
hold at the end of a Remes service execution for a service to be correct
with respect to the function, timing, and resource usage requirements
((1 ≤ res ≤ 10 and y ≥ x) in Figure 4.1). A service modeled in Remes

can be atomic (Atomic service 1 and Atomic service 2 in Figure 4.1), com-
posite (Composite service in Figure 4.1) or employed in several types of
compositions, resulting in new and more complex services.

Let us assume an example of a composite service that models a web
service depicted in Figure 4.1. Composite service contains two subservices
Atomic service 1 and Atomic service 2. The service has two entry points,
Init and Entry point, where Init entry point is visited when the service
executes for the first time, and where all variables are initialized. Timed
behavior in Remes is modeled by global continuous variables of type
clock, evolving at rate 1 (variable x and y in Figure 4.1). Each service
can be annotated with the corresponding resource usage, modeled by the
first time derivative of the real-valued variables that denote resources and
that evolve at positive integer rates (variable res in Figure 4.1). Discrete
resources are allocated through updates, e.g., res += 1 in Figure 4.1. To
describe the continuous behavior of the service, delay (or timed) actions

are used, while the instantaneous actions are modeled via discrete actions.
The execution of the first type of actions do not change the mode in
a service, while the second are represented as annotations of the edges,
and their execution results in a mode change.

A composite service executes by performing a sequence of discrete
steps, via actions that, once executed, pass the control from the current
subservice to a different subservice. An action, A = (g, S) (e.g., (n > 0,

46 Chapter 4. Research Contributions

x := 0, n -= 1, res += 1) in Figure 4.1), is a statement S (in our case
x := 0, n -= 1, res += 1), preceded by a boolean condition, the guard
(n > 0), which must hold in order for the action to be executed and
the corresponding outgoing edge taken. A Remes composite service
may contain conditional connectors (decorated with letter C) that allow
a possibly nondeterministic selection of one discrete outgoing action to
execute, out of many possible ones. In Figure 4.1, via C, one of the three
available actions can be chosen for execution. Services might also be
annotated with invariants (e.g., y ≤ 1 in Atomic service 1), which bound
from above the current service’s delay (or execution time). Before the
invariant stops to hold, the current mode is exited.

Service manipulation is supported via Remes interface operations
that include: service creation, deletion, composition, and replacement.
When composing services, it is also beneficial to form lists of services
a priori (s_list) that can be managed by similar interface operations as
for simple services such as: create, delete, or reorder list of services.
Examples of a service creation and adding a service to a list are shown
below. In the example of a service creation we assume that attributes
service capacity and service time-to-serve might be irrelevant for a given
service and therefore we allow in the service specification to omit their
definition (e.g., capacity == infinity).

Create service: create service_name

[pre] : service_name = NULL
create : T ype × N × N × ′′passive′′ × (Σ → bool) × (Σ → bool) → service_name
{post} : service_name �= NULL and T ype ∈ {web service, network service, embedded
service, ...} and capacity ≥ 0 and time − to − serve ≥ 0 and status = ′′passive′′

Add service to a list: add service_name, s_list

[pre] : service_name �∈ s_list

add : s_list → s_list

{post} : service_name ∈ s_list

To facilitate modeling of nested sequential, parallel or synchronized
services and their compositions, we also introduce a hierarchical textual
dynamic 3 composition language (HDCL).

DCL ::= (s_list, PROTOCOL, REQ)

HDCL ::= (((DCL+ , PROTOCOL, REQ)+, PROTOCOL, REQ)+, . . .) (4.1)

3Here the term dynamic should be understood as “on demand” or “on the fly”.

47

In Eq. 4.1, DCL (Dynamic Composition Language) describes the
basic service composition mechanism, while HDCL describes the hierar-
chical composition. Our service composition textual description requires
the existence of a service list (s_list), a service interaction protocol (PRO-

TOCOL), and a service requirement (REQ). To express the need that one
or more DCLs are required to form HDCL we use the positive closure op-
erator. PROTOCOL defines the type of binding between services, which
can be modeled by a unary or binary operator described in Eq. 4.2.

PROTOCOL ::= unary_operator service_name |

servicem binary_operator servicen (4.2)

The requirement REQ is a predicate (Σ → Bool) that might comprise
both functional and extra-functional properties of the composition. It
identifies the required attribute constraints, capabilities, characteristics,
or qualities of a system composed of services, such that it exhibits the
value and utility requested by the user. Σ is the polymorphic type of the
state that includes both local and global variables. HDCL allows cre-
ating new services by composing existing services via binary operators,
as well as adding and/or deleting services from lists. The unary and
binary operators supported by the language (as PROTOCOL) are defined
in Eq. 4.3.

Unary_operator ::= exec − first

Binary_operator ::= ; | ‖ | ‖SY NC−and | ‖SY NC−or (4.3)

The unary operator exec-first to specifies which service should be exe-
cuted first in a composition and only when that respective service finishes
and establishes its postcondition, other services can become active. To
model synchronized behavior in Remes we use a special kind of mode,
called an AND/OR mode. The mode is made of “paths” of interconnected
submodes that can be executed in parallel, as in Figure 4.2. By the se-
mantics of the mode, in such a mode, the services finish their execution
simultaneously, from an external observer’s point of view. However, if
the mode is employed in design as an AND mode, the subservices are
activated at the same time, while an OR mode assumes that one or at

46 Chapter 4. Research Contributions

x := 0, n -= 1, res += 1) in Figure 4.1), is a statement S (in our case
x := 0, n -= 1, res += 1), preceded by a boolean condition, the guard
(n > 0), which must hold in order for the action to be executed and
the corresponding outgoing edge taken. A Remes composite service
may contain conditional connectors (decorated with letter C) that allow
a possibly nondeterministic selection of one discrete outgoing action to
execute, out of many possible ones. In Figure 4.1, via C, one of the three
available actions can be chosen for execution. Services might also be
annotated with invariants (e.g., y ≤ 1 in Atomic service 1), which bound
from above the current service’s delay (or execution time). Before the
invariant stops to hold, the current mode is exited.

Service manipulation is supported via Remes interface operations
that include: service creation, deletion, composition, and replacement.
When composing services, it is also beneficial to form lists of services
a priori (s_list) that can be managed by similar interface operations as
for simple services such as: create, delete, or reorder list of services.
Examples of a service creation and adding a service to a list are shown
below. In the example of a service creation we assume that attributes
service capacity and service time-to-serve might be irrelevant for a given
service and therefore we allow in the service specification to omit their
definition (e.g., capacity == infinity).

Create service: create service_name

[pre] : service_name = NULL
create : T ype × N × N × ′′passive′′ × (Σ → bool) × (Σ → bool) → service_name
{post} : service_name �= NULL and T ype ∈ {web service, network service, embedded
service, ...} and capacity ≥ 0 and time − to − serve ≥ 0 and status = ′′passive′′

Add service to a list: add service_name, s_list

[pre] : service_name �∈ s_list

add : s_list → s_list

{post} : service_name ∈ s_list

To facilitate modeling of nested sequential, parallel or synchronized
services and their compositions, we also introduce a hierarchical textual
dynamic 3 composition language (HDCL).

DCL ::= (s_list, PROTOCOL, REQ)

HDCL ::= (((DCL+ , PROTOCOL, REQ)+, PROTOCOL, REQ)+, . . .) (4.1)

3Here the term dynamic should be understood as “on demand” or “on the fly”.

47

In Eq. 4.1, DCL (Dynamic Composition Language) describes the
basic service composition mechanism, while HDCL describes the hierar-
chical composition. Our service composition textual description requires
the existence of a service list (s_list), a service interaction protocol (PRO-

TOCOL), and a service requirement (REQ). To express the need that one
or more DCLs are required to form HDCL we use the positive closure op-
erator. PROTOCOL defines the type of binding between services, which
can be modeled by a unary or binary operator described in Eq. 4.2.

PROTOCOL ::= unary_operator service_name |

servicem binary_operator servicen (4.2)

The requirement REQ is a predicate (Σ → Bool) that might comprise
both functional and extra-functional properties of the composition. It
identifies the required attribute constraints, capabilities, characteristics,
or qualities of a system composed of services, such that it exhibits the
value and utility requested by the user. Σ is the polymorphic type of the
state that includes both local and global variables. HDCL allows cre-
ating new services by composing existing services via binary operators,
as well as adding and/or deleting services from lists. The unary and
binary operators supported by the language (as PROTOCOL) are defined
in Eq. 4.3.

Unary_operator ::= exec − first

Binary_operator ::= ; | ‖ | ‖SY NC−and | ‖SY NC−or (4.3)

The unary operator exec-first to specifies which service should be exe-
cuted first in a composition and only when that respective service finishes
and establishes its postcondition, other services can become active. To
model synchronized behavior in Remes we use a special kind of mode,
called an AND/OR mode. The mode is made of “paths” of interconnected
submodes that can be executed in parallel, as in Figure 4.2. By the se-
mantics of the mode, in such a mode, the services finish their execution
simultaneously, from an external observer’s point of view. However, if
the mode is employed in design as an AND mode, the subservices are
activated at the same time, while an OR mode assumes that one or at

48 Chapter 4. Research Contributions

Service a

Service b

*

*

A1

B1

in x

out x

...

...

A2

B2

Figure 4.2: An illustration of an AND/OR Remes mode

most all subservices are activated based on the truth value of the guards
of the actions on the incoming edges. Services that belong to this type
of Remes mode and that have to synchronize their behavior at the end
of their execution interact via the PROTOCOL expressed as either of the
following two operators:

• ‖SYNC-and - all services follow their exit edges at the same time when
the mode finishes its execution;

• ‖SYNC-or - the mode finishes its execution as soon as one service
traversed an exit edge.

The detailed description can be found in paper B.

Contribution: Tool support for designing SOS. The current tool
enables graphical modeling of service-based systems, with the resource-
aware timed behavioral language Remes, as well as the textual system
description (in the language presented above). The textual description
is an alternative to the graphical description, deemed useful especially
when the design tends to become complex. To enable the automated
design and analysis of our kinds of SOS, Remes is backed by a tool that
comprises: (i) a graphical editor used to display the service diagram,

49

where services can be created, composed, and displayed as desired by
the designer, (ii) a console view that is an alternative description of the
graphical design, which supports the textual description of the system,
including service declarations, list of services, and their compositions4,
and (iii) an automated traceability between the two design interfaces,
which provides support for tracing the error from one model to the
other [34, 47]. Using the textual description of the system and textual
service composition interface, service compositions can also be checked
for correctness with respect to given requirements. We have automated
the transformation of Remes models into TA networks in order to en-
able the formal verification and validation of given models, to reduce
error proneness in the design process. Another benefit is the fact that
the designer does not need to be a verification expert in order to verify
the modeled system. All details regarding the tool implementation can
be found in paper F.

4More information available a http://www.idt.mdh.se/personal/eep/reseide/

48 Chapter 4. Research Contributions

Service a

Service b

*

*

A1

B1

in x

out x

...

...

A2

B2

Figure 4.2: An illustration of an AND/OR Remes mode

most all subservices are activated based on the truth value of the guards
of the actions on the incoming edges. Services that belong to this type
of Remes mode and that have to synchronize their behavior at the end
of their execution interact via the PROTOCOL expressed as either of the
following two operators:

• ‖SYNC-and - all services follow their exit edges at the same time when
the mode finishes its execution;

• ‖SYNC-or - the mode finishes its execution as soon as one service
traversed an exit edge.

The detailed description can be found in paper B.

Contribution: Tool support for designing SOS. The current tool
enables graphical modeling of service-based systems, with the resource-
aware timed behavioral language Remes, as well as the textual system
description (in the language presented above). The textual description
is an alternative to the graphical description, deemed useful especially
when the design tends to become complex. To enable the automated
design and analysis of our kinds of SOS, Remes is backed by a tool that
comprises: (i) a graphical editor used to display the service diagram,

49

where services can be created, composed, and displayed as desired by
the designer, (ii) a console view that is an alternative description of the
graphical design, which supports the textual description of the system,
including service declarations, list of services, and their compositions4,
and (iii) an automated traceability between the two design interfaces,
which provides support for tracing the error from one model to the
other [34, 47]. Using the textual description of the system and textual
service composition interface, service compositions can also be checked
for correctness with respect to given requirements. We have automated
the transformation of Remes models into TA networks in order to en-
able the formal verification and validation of given models, to reduce
error proneness in the design process. Another benefit is the fact that
the designer does not need to be a verification expert in order to verify
the modeled system. All details regarding the tool implementation can
be found in paper F.

4More information available a http://www.idt.mdh.se/personal/eep/reseide/

50 Chapter 4. Research Contributions

Research subgoal 2.

To provide means to formally analyze functional, and extra-
functional properties of services and service compositions within
our framework.

(RSG2)

Contribution: A service and service composition correctness

check. To verify the service and service composition correctness, we use
the forward analysis technique based on the computation of the strongest
postcondition (sp) of a Remes service (Service) with respect to a given
precondition (s_pre) [13]. The correctness verification of a service with
respect to the service’s postcondition (s_post) and service precondition
(s_pre) reduces to the following boolean implication:

sp.Service.s_pre ⇒ s_post (4.4)

where (s_pre) is required by the service client, and (s_post) is offered
by the service provider, and should be guaranteed after the service is
executed. If the implication is verified and s_post is no more than the
given Service requirement, one can conclude (or guarantee) that the pro-
vided service fits with the client requirement, before the service has
been executed. To calculate the sp of a Remes service, we have used
two methods: (i) a well-known deductive method described in paper
B, starting from the guarded command language (GCL) [48] descrip-
tion of a Remes service [15], and (ii) an algorithmic method described
in paper C, which computes automatically the sp of a Remes service
described as PTA [49]. The algorithmic version includes also the mini-
mum (or maximum) resource-usage trace computation, while performing
strongest postcondition analysis.

In the algorithmic computation of the sp a service is described as a
set of priced symbolic states of form (A, π), where A is a set of states, and
π assigns non-negative costs to all states in A, as shown in Figure 4.3.
The algorithm employs two lists, Waiting (contains the states to be
examined) and Passed (populated with already examined states). At
each iteration, the algorithm selects a priced symbolic state (A, π) from
Waiting. If (A, π) is a goal state (note that in PTA describing a Remes

service, the goal state is determined by a unique location, (Af , πf) in
Figure 4.3) not contained in a goal state previously stored in the sp, it is
added to the calculated postcondition sp. Otherwise, if it is not a goal

51

��������

�������

��������

������ ��������

��������

��������

��������

��������

��������

��������

��������

��������

����������������

�������

�������� �������� �������� ���������������� ��������

��������� ����� ����� �����

Figure 4.3: An example of the algorithmic strongest postcondition cal-
culation

state and not contained in a symbolic state previously stored in Passed,
it is added to Passed, and all its successor states are added to Waiting.
When Waiting is empty, the strongest postconditions calculated for
each path reaching the goal state are returned. In Figure 4.3 we assume
that there exist four paths that reach the goal state, and their respective
strongest postconditions form the strongest postcondition of a Remes

service (sp == sp1 ∨ sp2 ∨ sp3 ∨ sp4).
To be able to verify service compositions, by the methods above, we

give semantics to sequential, parallel, and parallel with synchronization
service composition, respectively. The benefit of this language is that,
after each composition, we require that one checks whether the given
requirement is satisfied, by forward analysis, e.g., by calculating the
strongest postcondition of a given composition with respect to a given
precondition.

50 Chapter 4. Research Contributions

Research subgoal 2.

To provide means to formally analyze functional, and extra-
functional properties of services and service compositions within
our framework.

(RSG2)

Contribution: A service and service composition correctness

check. To verify the service and service composition correctness, we use
the forward analysis technique based on the computation of the strongest
postcondition (sp) of a Remes service (Service) with respect to a given
precondition (s_pre) [13]. The correctness verification of a service with
respect to the service’s postcondition (s_post) and service precondition
(s_pre) reduces to the following boolean implication:

sp.Service.s_pre ⇒ s_post (4.4)

where (s_pre) is required by the service client, and (s_post) is offered
by the service provider, and should be guaranteed after the service is
executed. If the implication is verified and s_post is no more than the
given Service requirement, one can conclude (or guarantee) that the pro-
vided service fits with the client requirement, before the service has
been executed. To calculate the sp of a Remes service, we have used
two methods: (i) a well-known deductive method described in paper
B, starting from the guarded command language (GCL) [48] descrip-
tion of a Remes service [15], and (ii) an algorithmic method described
in paper C, which computes automatically the sp of a Remes service
described as PTA [49]. The algorithmic version includes also the mini-
mum (or maximum) resource-usage trace computation, while performing
strongest postcondition analysis.

In the algorithmic computation of the sp a service is described as a
set of priced symbolic states of form (A, π), where A is a set of states, and
π assigns non-negative costs to all states in A, as shown in Figure 4.3.
The algorithm employs two lists, Waiting (contains the states to be
examined) and Passed (populated with already examined states). At
each iteration, the algorithm selects a priced symbolic state (A, π) from
Waiting. If (A, π) is a goal state (note that in PTA describing a Remes

service, the goal state is determined by a unique location, (Af , πf) in
Figure 4.3) not contained in a goal state previously stored in the sp, it is
added to the calculated postcondition sp. Otherwise, if it is not a goal

51

��������

�������

��������

������ ��������

��������

��������

��������

��������

��������

��������

��������

��������

����������������

�������

�������� �������� �������� ���������������� ��������

��������� ����� ����� �����

Figure 4.3: An example of the algorithmic strongest postcondition cal-
culation

state and not contained in a symbolic state previously stored in Passed,
it is added to Passed, and all its successor states are added to Waiting.
When Waiting is empty, the strongest postconditions calculated for
each path reaching the goal state are returned. In Figure 4.3 we assume
that there exist four paths that reach the goal state, and their respective
strongest postconditions form the strongest postcondition of a Remes

service (sp == sp1 ∨ sp2 ∨ sp3 ∨ sp4).
To be able to verify service compositions, by the methods above, we

give semantics to sequential, parallel, and parallel with synchronization
service composition, respectively. The benefit of this language is that,
after each composition, we require that one checks whether the given
requirement is satisfied, by forward analysis, e.g., by calculating the
strongest postcondition of a given composition with respect to a given
precondition.

52 Chapter 4. Research Contributions

Research subgoal 3.

To provide an analyzable model that describes possible inter-
actions between services and their providers, through succes-
sive selection of actions.

(RSG3)

Contribution: A service negotiation model with formal seman-

tics. To provide a systematic and an analyzable way to model a service
negotiation process, we propose the Remes HDCL negotiation model.
The model is based on the set of Remes interface operations and the hi-
erarchical language HDCL, which supports Remes service composition,
which we have recently proposed [15].

In the model described in paper D, we assume an iterative form
of the Contract Net Protocol (CNP) between web services, described
in Remes HDCL. In the CNP the roles of the manager that can be seen
as a negotiation mediator, and the contractor (a service provider) are
defined as assumptions. The manager gets a request from a client and
aims at finding an appropriate contractor to fulfill the request via call
for proposals (CFP). Furthermore, the CFP is evaluated by contractors
and a response is being sent back. The manager evaluates the received
proposals and based on the evaluation decides which proposals to accept
and which to reject. In the iterative CNP, the communication between
manager and possible contractors repeats until the consensus is reached.
In each round the contractors aim to improve on their previous proposals,
in order to make them more suitable to the manager. The goal is to settle
an agreement that will satisfy requirements of all involved parties.

The model’s benefit is that once the negotiation process is finished
and a service has been provided, one can easily check if the service de-
livers the original qualities by employing the service correctness check
previously described. Moreover, the model can be seen as a “negotiation
service” that iterates over client-provider choices, automatically, until a
consensus is reached. The fact that the Remes model can be translated
to TA and analyzed with the Uppaal model checker brings additional
insight into the negotiation process and its possible outcomes if com-
pared to a simulation-based approach [46].

53

Research subgoal 4.

To apply the proposed design framework on a real-life service-
based system in order to check its suitability in practice.

(RSG4)

Contribution: Validation of Remes language for SOS. Our ap-
proach has been applied on three simple, yet relevant research examples:
an ATM scenario (depicted in paper A), an intelligent shuttle system
(shown in paper B), and an insurance scenario (presented in paper D).
The examples an the application results enable a deeper understanding
of the service-based behavior in isolation, as well in more or less com-
plex service compositions, while also providing a basis to exercise the
applicability of our framework. In the given examples we have mod-
eled behavior of different types of services, analyzed their performance,
checked their correctness, and simulated a service negotiation process,
by translating Remes models into TA and PTA networks.

In paper E, we have provide a more detailed validation of the Remes-
based negotiation model on a more complex and realistic example of
distributed energy management. In the energy management system an
energy consumer (i.e., client) creates a request and communicates with
energy provider via a mediator in order to get a given request served. A
request carries information about an amount of energy to be provided,
expected price per unit of energy, and information regarding the accept-
able energy reliability. The supply of energy is based on a negotiation
carried out between consumers and providers in possibly more than one
round, assuming a certain scenario. The negotiation relies on providers’
advertisements that specify type of energy to be sold (i.e., energy coming
from diesel generators, wind turbines, etc.), available amount of energy,
its reliability, and price per unit of energy. The energy consumer is as-
sumed to have a varying energy demand over a day, while at the same
time providers have varying energy capacity available over a period of
time. In the case-study we have been able to analyze three different
scenarios of a service provision using a service negotiation process: (i)
a scenario in which a client uses maximum bound on the price, (ii) a
scenario in which there is no maximum bound on the client’s acceptable
price, and (iii) a scenario in which a client adapts the price based on the
offers given by a provider.

In this case-study we have modeled the described negotiation model
using our textual composition language Hdcl, and analyzed it against

52 Chapter 4. Research Contributions

Research subgoal 3.

To provide an analyzable model that describes possible inter-
actions between services and their providers, through succes-
sive selection of actions.

(RSG3)

Contribution: A service negotiation model with formal seman-

tics. To provide a systematic and an analyzable way to model a service
negotiation process, we propose the Remes HDCL negotiation model.
The model is based on the set of Remes interface operations and the hi-
erarchical language HDCL, which supports Remes service composition,
which we have recently proposed [15].

In the model described in paper D, we assume an iterative form
of the Contract Net Protocol (CNP) between web services, described
in Remes HDCL. In the CNP the roles of the manager that can be seen
as a negotiation mediator, and the contractor (a service provider) are
defined as assumptions. The manager gets a request from a client and
aims at finding an appropriate contractor to fulfill the request via call
for proposals (CFP). Furthermore, the CFP is evaluated by contractors
and a response is being sent back. The manager evaluates the received
proposals and based on the evaluation decides which proposals to accept
and which to reject. In the iterative CNP, the communication between
manager and possible contractors repeats until the consensus is reached.
In each round the contractors aim to improve on their previous proposals,
in order to make them more suitable to the manager. The goal is to settle
an agreement that will satisfy requirements of all involved parties.

The model’s benefit is that once the negotiation process is finished
and a service has been provided, one can easily check if the service de-
livers the original qualities by employing the service correctness check
previously described. Moreover, the model can be seen as a “negotiation
service” that iterates over client-provider choices, automatically, until a
consensus is reached. The fact that the Remes model can be translated
to TA and analyzed with the Uppaal model checker brings additional
insight into the negotiation process and its possible outcomes if com-
pared to a simulation-based approach [46].

53

Research subgoal 4.

To apply the proposed design framework on a real-life service-
based system in order to check its suitability in practice.

(RSG4)

Contribution: Validation of Remes language for SOS. Our ap-
proach has been applied on three simple, yet relevant research examples:
an ATM scenario (depicted in paper A), an intelligent shuttle system
(shown in paper B), and an insurance scenario (presented in paper D).
The examples an the application results enable a deeper understanding
of the service-based behavior in isolation, as well in more or less com-
plex service compositions, while also providing a basis to exercise the
applicability of our framework. In the given examples we have mod-
eled behavior of different types of services, analyzed their performance,
checked their correctness, and simulated a service negotiation process,
by translating Remes models into TA and PTA networks.

In paper E, we have provide a more detailed validation of the Remes-
based negotiation model on a more complex and realistic example of
distributed energy management. In the energy management system an
energy consumer (i.e., client) creates a request and communicates with
energy provider via a mediator in order to get a given request served. A
request carries information about an amount of energy to be provided,
expected price per unit of energy, and information regarding the accept-
able energy reliability. The supply of energy is based on a negotiation
carried out between consumers and providers in possibly more than one
round, assuming a certain scenario. The negotiation relies on providers’
advertisements that specify type of energy to be sold (i.e., energy coming
from diesel generators, wind turbines, etc.), available amount of energy,
its reliability, and price per unit of energy. The energy consumer is as-
sumed to have a varying energy demand over a day, while at the same
time providers have varying energy capacity available over a period of
time. In the case-study we have been able to analyze three different
scenarios of a service provision using a service negotiation process: (i)
a scenario in which a client uses maximum bound on the price, (ii) a
scenario in which there is no maximum bound on the client’s acceptable
price, and (iii) a scenario in which a client adapts the price based on the
offers given by a provider.

In this case-study we have modeled the described negotiation model
using our textual composition language Hdcl, and analyzed it against

54 Chapter 4. Research Contributions

price, time, and reliability requirements, in order to get information
whether the available energy and given prices can satisfy the client’s
needs. We have focused on calculating the optimal values of utility
function (a weighted sum of negotiation preferences) with respect to the
price and the energy reliability (modeled here as a number), and we
have also model-checked the trace that leads to such state. Since the
negotiation model is time constrained, we have been able to compute
time needed to reach an agreement for energy supply over a day, which
will satisfy expectations of all negotiation participants.

Chapter 5

Related Work

This chapter relates the work in this thesis to relevant research areas. It
is subdivided into a number of sections in which we provide comparisons
with work of fellow researchers, for each area, respectively.

5.1 Modeling and Analysis of SOS

Two popular commercial solutions for modeling SOS are SOMA [50] and
SOMF [51]. SOMA [50] is a method developed by IBM for designing and
building SOA-based solutions. The method includes techniques for de-
sign and analysis, implementation, testing, and deployment of services
and corresponding policies required for a successful design of reusable
SOA solutions. On the other hand, Service-Oriented Modeling Frame-
work (SOMF) has been introduced by Michael Bell as the modeling lan-
guage suitable for developing distributed software systems [51]. SOMF
is constructed around eight models of implementation such as: design,
discovery, analysis, quality assurance model, etc. Each of these models
identifies the methodology, process, platform, best practices, and disci-
plines by which a practitioner is able to accomplish a modeling task
during a project. A service in SOMF is classified by its contextual
and structural attributes into: an atomic, a composite, a cluster, and
a cloud service. The framework offers a number of modeling practices
that contribute to a successful service-oriented life cycle development
and modeling during a project. Compared to the described approaches,

55

54 Chapter 4. Research Contributions

price, time, and reliability requirements, in order to get information
whether the available energy and given prices can satisfy the client’s
needs. We have focused on calculating the optimal values of utility
function (a weighted sum of negotiation preferences) with respect to the
price and the energy reliability (modeled here as a number), and we
have also model-checked the trace that leads to such state. Since the
negotiation model is time constrained, we have been able to compute
time needed to reach an agreement for energy supply over a day, which
will satisfy expectations of all negotiation participants.

Chapter 5

Related Work

This chapter relates the work in this thesis to relevant research areas. It
is subdivided into a number of sections in which we provide comparisons
with work of fellow researchers, for each area, respectively.

5.1 Modeling and Analysis of SOS

Two popular commercial solutions for modeling SOS are SOMA [50] and
SOMF [51]. SOMA [50] is a method developed by IBM for designing and
building SOA-based solutions. The method includes techniques for de-
sign and analysis, implementation, testing, and deployment of services
and corresponding policies required for a successful design of reusable
SOA solutions. On the other hand, Service-Oriented Modeling Frame-
work (SOMF) has been introduced by Michael Bell as the modeling lan-
guage suitable for developing distributed software systems [51]. SOMF
is constructed around eight models of implementation such as: design,
discovery, analysis, quality assurance model, etc. Each of these models
identifies the methodology, process, platform, best practices, and disci-
plines by which a practitioner is able to accomplish a modeling task
during a project. A service in SOMF is classified by its contextual
and structural attributes into: an atomic, a composite, a cluster, and
a cloud service. The framework offers a number of modeling practices
that contribute to a successful service-oriented life cycle development
and modeling during a project. Compared to the described approaches,

55

56 Chapter 5. Related Work

our approach is more abstract yet rigorous, dealing purely with design
level services, without an actual relation to an implementation model.

There is a number of academic solutions that address modeling and
analysis of SOS. In the following, we mention several of them, point-
ing out their advantages and drawbacks with respect to their modeling
and analysis capabilities. The Sensoria Reference Modeling Language
(SRML) is a high level modeling language describes service-oriented ar-
chitectures [52]. The language enables modeling of composite services
via a distributed service orchestration that is given formal semantics
in terms of configuration graphs and state transition systems. The be-
havior of services is described by well-defined interfaces (requires-, and
provides-interfaces). In SRML, properties of required and provided ser-
vices are specified in temporal logic (UCTL branching time temporal
logic that is an action or state based logic, originally introduced to ex-
press properties of UML statecharts [53]) and can be analyzed over or-
chestrations defined in terms of state transition systems using the UMC
model-checker [54]. Time-related properties of services can be analyzed
using the stochastic process algebra PEPA [55]. The analysis of SRML
models provide timing analysis of possible delays that might occur while
providing a service, but also performance, responsiveness, and sensitivity
analysis are possible. The SRML language is equipped with constructs
for correctness check of the requested (or provided services). The model
also enables a static analysis of the existing services. The benefit of such
a language is the fact that it provides a rich set of constructs to enable
both qualitative and quantitative analysis, but the fact that the user
needs to master several techniques and formalisms to explore the full
potential of such an approach might become a disadvantage.

Rychlý describes the service behavior as a component-based system
for dynamic architectures [27]. The specification of services, their behav-
ior, and hierarchical composition are formalized within the π-calculus.
Similar to our approach, this work emphasizes the behavior in terms
of interfaces, (sub)service communication, and bindings, yet we can
also cater for service descriptions including timing and resource annota-
tions [56].

5.2 Checking Properties of Isolated and

Composed Services 57

5.2 Checking Properties of Isolated and

Composed Services

Beek at al. [57] present a comprehensive survey of relevant approaches
that accommodate modeling and analysis of service compositions [4–7].
Regarding service modeling, all these approaches are solid; however, with
respect to verifying service correctness [58–60] (usually by employing
formal methods), such approaches show limited capabilities to automat-
ically support these processes. Foster et al. present an approach for
modeling and analysis of web service compositions [28]. The approach
takes BPEL4WS service specification and translates it into Finite State
Processes (FSP), and Labeled Transition Systems (LTS), for analysis
purposes. The drawback of the approach is the tedious transformation
process necessary to obtain the analysis model, especially in cases when
the user is not familiar with different notations and approaches required
in this process. Díaz et al. describe a process of automatic translation
of BPEL and WS-CDL service models to TA in order to enable analysis
via Uppaal model-checker [58]. Even though the given model-checker
is a powerful analysis tool, the described approach is limited to checking
only service timing properties. Narayanan et al. show how semantics of
OWL-S, described using first-order logic, can be translated to Petri-nets
and then analyzed as such [59]. The analysis of such models includes
reachability analysis and some liveness properties checking, including
deadlock freedom of service compositions.

Compared to these approaches, compositions of Remes models, but
also atomic Remes services, can be deductively reasoned about (al-
though, as for now, we still miss the interface correctness tool support),
or can be automatically translated to TA [29] or PTA [30], and analyzed
with Uppaal, or Uppaal Cora tools, for functional but also extra-
functional behaviors (timing and resource-wise behaviors).

5.3 Service Negotiation

Lapadula et al. provide a description of modeling publication, discovery,
negotiation, deployment, and execution of service-oriented applications
in COWS [61]. COWS is a WS-BPEL-inspired process calculus, which
can be seen as a lower level modeling language suitable for specifying,
combining, analyzing services, while modeling their dynamic behavior.

56 Chapter 5. Related Work

our approach is more abstract yet rigorous, dealing purely with design
level services, without an actual relation to an implementation model.

There is a number of academic solutions that address modeling and
analysis of SOS. In the following, we mention several of them, point-
ing out their advantages and drawbacks with respect to their modeling
and analysis capabilities. The Sensoria Reference Modeling Language
(SRML) is a high level modeling language describes service-oriented ar-
chitectures [52]. The language enables modeling of composite services
via a distributed service orchestration that is given formal semantics
in terms of configuration graphs and state transition systems. The be-
havior of services is described by well-defined interfaces (requires-, and
provides-interfaces). In SRML, properties of required and provided ser-
vices are specified in temporal logic (UCTL branching time temporal
logic that is an action or state based logic, originally introduced to ex-
press properties of UML statecharts [53]) and can be analyzed over or-
chestrations defined in terms of state transition systems using the UMC
model-checker [54]. Time-related properties of services can be analyzed
using the stochastic process algebra PEPA [55]. The analysis of SRML
models provide timing analysis of possible delays that might occur while
providing a service, but also performance, responsiveness, and sensitivity
analysis are possible. The SRML language is equipped with constructs
for correctness check of the requested (or provided services). The model
also enables a static analysis of the existing services. The benefit of such
a language is the fact that it provides a rich set of constructs to enable
both qualitative and quantitative analysis, but the fact that the user
needs to master several techniques and formalisms to explore the full
potential of such an approach might become a disadvantage.

Rychlý describes the service behavior as a component-based system
for dynamic architectures [27]. The specification of services, their behav-
ior, and hierarchical composition are formalized within the π-calculus.
Similar to our approach, this work emphasizes the behavior in terms
of interfaces, (sub)service communication, and bindings, yet we can
also cater for service descriptions including timing and resource annota-
tions [56].

5.2 Checking Properties of Isolated and

Composed Services 57

5.2 Checking Properties of Isolated and

Composed Services

Beek at al. [57] present a comprehensive survey of relevant approaches
that accommodate modeling and analysis of service compositions [4–7].
Regarding service modeling, all these approaches are solid; however, with
respect to verifying service correctness [58–60] (usually by employing
formal methods), such approaches show limited capabilities to automat-
ically support these processes. Foster et al. present an approach for
modeling and analysis of web service compositions [28]. The approach
takes BPEL4WS service specification and translates it into Finite State
Processes (FSP), and Labeled Transition Systems (LTS), for analysis
purposes. The drawback of the approach is the tedious transformation
process necessary to obtain the analysis model, especially in cases when
the user is not familiar with different notations and approaches required
in this process. Díaz et al. describe a process of automatic translation
of BPEL and WS-CDL service models to TA in order to enable analysis
via Uppaal model-checker [58]. Even though the given model-checker
is a powerful analysis tool, the described approach is limited to checking
only service timing properties. Narayanan et al. show how semantics of
OWL-S, described using first-order logic, can be translated to Petri-nets
and then analyzed as such [59]. The analysis of such models includes
reachability analysis and some liveness properties checking, including
deadlock freedom of service compositions.

Compared to these approaches, compositions of Remes models, but
also atomic Remes services, can be deductively reasoned about (al-
though, as for now, we still miss the interface correctness tool support),
or can be automatically translated to TA [29] or PTA [30], and analyzed
with Uppaal, or Uppaal Cora tools, for functional but also extra-
functional behaviors (timing and resource-wise behaviors).

5.3 Service Negotiation

Lapadula et al. provide a description of modeling publication, discovery,
negotiation, deployment, and execution of service-oriented applications
in COWS [61]. COWS is a WS-BPEL-inspired process calculus, which
can be seen as a lower level modeling language suitable for specifying,
combining, analyzing services, while modeling their dynamic behavior.

58 Chapter 5. Related Work

For the analysis purposes, the language can be translated to the CMC
model-checker. In comparison to this approach, our approach offers a
service model with semantics defined in Uppaal’s TA, which allows in-
vestigating both functional as well as extra-functional negotiation prop-
erties. Sierra et al. describe a formal model for negotiation between
autonomous agents in service-oriented environments [62]. The service-
oriented model is a modified version of the general negotiation model
proposed by Faratin et al. [63]. The paper includes several negotiation
steps, such as generation of the initial offer, evaluation of the incoming
proposals, and generation of counter proposals. However, no analysis
support has been described. Comuzzi et al. present an automated ap-
proach to web service QoS negotiation [64]. The negotiation is performed
via a Negotiation Broker to which both a consumer and a service provider
notify their preferences on QoS attributes and negotiation strategies, by
specifying the value of a relatively small set of parameters. In some later
work Comuzzi et al. propose a semantic-based framework to support
negotiation processes in Service-Oriented Architectures (SOA) [65]. The
benefit of this approach is that the framework allows the service client
and a service provider to express their capabilities in terms of the ne-
gotiation protocols they are able to support and the actions they are
able to perform, and based on that the framework decides on a negotia-
tion protocol to be used. Again, both papers describe a rich theoretical
foundation for automated negotiation processes, but compared to our
approach lack the formal analysis of negotiated QoS.

Benkner et al. [22] describe the GEMSS Grid infrastructure, based
on standard Web services technology, that enables parallel application
available on clusters to be exposed as QoS-aware Grid services. The in-
frastructure enables clients to dynamically negotiate provided QoS con-
straints with respect to response time and price, using SLAs. The negoti-
ation is based on request-offer model where the central role in the process
is given to the QoS manager that receives requests from a client, checks
whether client’s request can be met using the application performance
model, and generates a corresponding offer. The model enables also re-
negotiation in cases that some parts of the requests are fit and some
need to be adjusted based on the client’s restrictions. The main benefit
of this infrastructure is recognized to be in medicine, where Grid technol-
ogy can provide medical practitioners with access to advanced simulation
and image processing services for improvement of pre-operative planning
and near real-time surgical support.

5.3 Service Negotiation 59

Resinas et al. provide a description of automated agreement negotia-
tion system based on a bargaining protocol called NegoFAST-Bargaining
[66]. The architecture includes a rich environment to first identify the
key element in the negotiation process, then model it together with its
corresponding processes, and finally create the scenarios to be validated.
The framework can be seen as a rich theoretical basis that developers can
use when building their negotiation processes, and might be extended
such that it supports validation of different negotiation scenarios with
respect to functional, and extra-functional properties as proposed in our
approach. Paurobally et al. describe a way to deploy multi-agent nego-
tiation techniques to facilitate dynamic negotiation for Grid resources in
order to provide an adaptive and autonomous Grid [67]. Moreover, they
describe the deployment of CNP and its corresponding strategies for ne-
gotiation between web services. The approach offers a rich environment
to model the negotiation process using CNP, but in terms of the analysis
it is limited to monitoring the modeled system.

Chhetri et al. describe an agent-based negotiation framework that
supports provision and maintenance of SLA for web service composi-
tions [68]. In this work they propose an approach to provide service
compositions during the service negotiation process in case that no sin-
gle service that can satisfy user demands exists. The concept includes
a third party agents, called Negotiators, that in case a single service
that can satisfy user demands look for suitable services that can create
service compositions. Such a composition is further analyzed by Coor-
dinator agent using implemented decision support strategies in order to
guarantee that the proposed composition is fit for a user requirement.
The overall idea behind this approach emphasizes the overall idea of
SOS, where services are discovered, composed, and provided on demand.
However, the approach could be improved by adding a stronger analy-
sis engine that would provide better environment to analyze proposed
service compositions.

58 Chapter 5. Related Work

For the analysis purposes, the language can be translated to the CMC
model-checker. In comparison to this approach, our approach offers a
service model with semantics defined in Uppaal’s TA, which allows in-
vestigating both functional as well as extra-functional negotiation prop-
erties. Sierra et al. describe a formal model for negotiation between
autonomous agents in service-oriented environments [62]. The service-
oriented model is a modified version of the general negotiation model
proposed by Faratin et al. [63]. The paper includes several negotiation
steps, such as generation of the initial offer, evaluation of the incoming
proposals, and generation of counter proposals. However, no analysis
support has been described. Comuzzi et al. present an automated ap-
proach to web service QoS negotiation [64]. The negotiation is performed
via a Negotiation Broker to which both a consumer and a service provider
notify their preferences on QoS attributes and negotiation strategies, by
specifying the value of a relatively small set of parameters. In some later
work Comuzzi et al. propose a semantic-based framework to support
negotiation processes in Service-Oriented Architectures (SOA) [65]. The
benefit of this approach is that the framework allows the service client
and a service provider to express their capabilities in terms of the ne-
gotiation protocols they are able to support and the actions they are
able to perform, and based on that the framework decides on a negotia-
tion protocol to be used. Again, both papers describe a rich theoretical
foundation for automated negotiation processes, but compared to our
approach lack the formal analysis of negotiated QoS.

Benkner et al. [22] describe the GEMSS Grid infrastructure, based
on standard Web services technology, that enables parallel application
available on clusters to be exposed as QoS-aware Grid services. The in-
frastructure enables clients to dynamically negotiate provided QoS con-
straints with respect to response time and price, using SLAs. The negoti-
ation is based on request-offer model where the central role in the process
is given to the QoS manager that receives requests from a client, checks
whether client’s request can be met using the application performance
model, and generates a corresponding offer. The model enables also re-
negotiation in cases that some parts of the requests are fit and some
need to be adjusted based on the client’s restrictions. The main benefit
of this infrastructure is recognized to be in medicine, where Grid technol-
ogy can provide medical practitioners with access to advanced simulation
and image processing services for improvement of pre-operative planning
and near real-time surgical support.

5.3 Service Negotiation 59

Resinas et al. provide a description of automated agreement negotia-
tion system based on a bargaining protocol called NegoFAST-Bargaining
[66]. The architecture includes a rich environment to first identify the
key element in the negotiation process, then model it together with its
corresponding processes, and finally create the scenarios to be validated.
The framework can be seen as a rich theoretical basis that developers can
use when building their negotiation processes, and might be extended
such that it supports validation of different negotiation scenarios with
respect to functional, and extra-functional properties as proposed in our
approach. Paurobally et al. describe a way to deploy multi-agent nego-
tiation techniques to facilitate dynamic negotiation for Grid resources in
order to provide an adaptive and autonomous Grid [67]. Moreover, they
describe the deployment of CNP and its corresponding strategies for ne-
gotiation between web services. The approach offers a rich environment
to model the negotiation process using CNP, but in terms of the analysis
it is limited to monitoring the modeled system.

Chhetri et al. describe an agent-based negotiation framework that
supports provision and maintenance of SLA for web service composi-
tions [68]. In this work they propose an approach to provide service
compositions during the service negotiation process in case that no sin-
gle service that can satisfy user demands exists. The concept includes
a third party agents, called Negotiators, that in case a single service
that can satisfy user demands look for suitable services that can create
service compositions. Such a composition is further analyzed by Coor-
dinator agent using implemented decision support strategies in order to
guarantee that the proposed composition is fit for a user requirement.
The overall idea behind this approach emphasizes the overall idea of
SOS, where services are discovered, composed, and provided on demand.
However, the approach could be improved by adding a stronger analy-
sis engine that would provide better environment to analyze proposed
service compositions.

Chapter 6

Conclusions and Future

Work

The objective of the research presented in this thesis is to develop meth-
ods and associated tools for the specification, modeling, and formal anal-
ysis of services and service compositions in SOS. Our main focus is on
the behavioral aspects of services and challenges associated with ana-
lyzing such models. In the thesis, we have extended the resource-wise
hierarchical timing behavioral language, called Remes, and provided as-
sociated analysis techniques aiming at supporting services and service
compositions in SOS. We have illustrated our approach on several small
examples, but also on a more realistic and complex case-study of dis-
tributed energy management. In the following section, we present a
brief overview of all thesis contributions.

6.1 Summary of Thesis Contributions

In this work, we have presented research that addresses the formulated
research goals of Chapter 3, and which can be summarized in the follow-
ing concrete lines of contribution:

Remes behavioral language for service-oriented environments.

To support modeling of independent services, we have extended the ex-
isting behavioral modeling language Remes, which has been designed

61

Chapter 6

Conclusions and Future

Work

The objective of the research presented in this thesis is to develop meth-
ods and associated tools for the specification, modeling, and formal anal-
ysis of services and service compositions in SOS. Our main focus is on
the behavioral aspects of services and challenges associated with ana-
lyzing such models. In the thesis, we have extended the resource-wise
hierarchical timing behavioral language, called Remes, and provided as-
sociated analysis techniques aiming at supporting services and service
compositions in SOS. We have illustrated our approach on several small
examples, but also on a more realistic and complex case-study of dis-
tributed energy management. In the following section, we present a
brief overview of all thesis contributions.

6.1 Summary of Thesis Contributions

In this work, we have presented research that addresses the formulated
research goals of Chapter 3, and which can be summarized in the follow-
ing concrete lines of contribution:

Remes behavioral language for service-oriented environments.

To support modeling of independent services, we have extended the ex-
isting behavioral modeling language Remes, which has been designed

61

62 Chapter 6. Conclusions and Future Work

to fit a component-based design perspective [8, 9]. A service in Remes

is described both graphically as a mode with explicit entry- and exit
points, and textually by a list of attributes within the service inter-
face that describes service characteristics in detail, and makes a service
discoverable by potential service users. We distinguish between two dif-
ferent service design perspectives: the developer’s and the user’s. In the
former, developers are assumed to have access to the service function-
ality representation, enabled actions, resource annotations, and possible
interactions with other services, all given as the service’s behavioral de-
scription; in the user’s view such a description is not needed, instead the
service interface needs to be visible. These described constructs set the
ground for formal analysis of services and their compositions, since the
language supports modeling both single and composed services. This can
be achieved via hierarchical composition language that allows to create
new services, using binary operators, as well as adding and/or deleting
services from lists. In addition, it allows serial, parallel and parallel with
synchronization service composition.

Checking the correctness of Remes services. To support the the
correctness check of Remes services we use the forward analysis tech-
nique based on the computation of the strongest postcondition of a Re-

mes service with respect to a given precondition [13]. To calculate the
strongest postcondition of a Remes service, we have used two meth-
ods: (i) a well-known deductive method that starts from the guarded
command language (GCL) [48] description of a Remes service, and (ii)
an algorithmic method that automatically computes the strongest post-
condition of a Remes service described as PTA. The algorithmic version
includes also the minimum (or maximum) resource-usage trace computa-
tion, while performing strongest postcondition analysis. The approach
makes checking the correctness of more complex services feasible, and
awaits implementation in the Uppaal Cora tool.

Service negotiation model in Remes. Available services might de-
liver similar or the same functionality but differ in extra-functional char-
acteristics. Moreover, they might be offered to service users at different
prices, time, or any other condition. Therefore, it is often the case that
service providers and clients need to negotiate in order to support a
systematic and analyzable way to model a service negotiation process,
we have introduced the Remes Hdcl negotiation model. The model

6.1 Summary of Thesis Contributions 63

is based on the set of Remes interface operations and the hierarchical
language (HDCL) that supports Remes service compositions. The main
benefit of such a model is that once the negotiation process is finished one
can easily check whether the service really delivers the original qualities
by employing the previously described service correctness methods. In
addition, the model can be seen as a “negotiation service” that iterates
over client-provider choices, automatically, until a satisfactory agreement
for all involved parties is reached. Additionally, the fact that the Remes

model can be translated to TA and analyzed with the Uppaal model
checker brings more insight into the negotiation process and its possible
outcomes.

In the proposed negotiation model, we have assumed an iterative form
of the Contract Net Protocol (CNP) between web services, described
in Remes Hdcl, but the model could be extended towards support-
ing other protocols, too. Moreover, in our model we have implemented
two negotiation strategies, price- and time-driven with marginal cost.
The model has been applied in a car insurance example, for which we
have shown how to analyze the model against safety properties, but also
against specified timing and utility constraints represented as a weighted
sum of negotiation preferences.

Tool support for modeling and analysis of services and service

compositions. In this thesis we have developed a Java-based, stand-
alone tool for describing Remes services and service compositions. The
tool enables graphical modeling of service-based systems, as well as a
textual service and service composition description, in Remes. The tool
consists of an editor for new service creation, as well as the design of ser-
vice compositions; in addition to the editor, a console view is provided
for the textual description of the system, including service declarations,
list of services, and their compositions. The tool enables the design of
service compositions as possibly desired by the user, together with a
textual service composition interface in which compositions can also be
checked for correctness. We also provide automated traceability between
the two design interfaces, which enhances the system design process with
intuitive service manipulation. With respect to the formal analysis, we
provide an automatic translation of the graphical service description into
TA networks, where described models can be formally analyzed.

The approach validation. The approach described in this thesis has

62 Chapter 6. Conclusions and Future Work

to fit a component-based design perspective [8, 9]. A service in Remes

is described both graphically as a mode with explicit entry- and exit
points, and textually by a list of attributes within the service inter-
face that describes service characteristics in detail, and makes a service
discoverable by potential service users. We distinguish between two dif-
ferent service design perspectives: the developer’s and the user’s. In the
former, developers are assumed to have access to the service function-
ality representation, enabled actions, resource annotations, and possible
interactions with other services, all given as the service’s behavioral de-
scription; in the user’s view such a description is not needed, instead the
service interface needs to be visible. These described constructs set the
ground for formal analysis of services and their compositions, since the
language supports modeling both single and composed services. This can
be achieved via hierarchical composition language that allows to create
new services, using binary operators, as well as adding and/or deleting
services from lists. In addition, it allows serial, parallel and parallel with
synchronization service composition.

Checking the correctness of Remes services. To support the the
correctness check of Remes services we use the forward analysis tech-
nique based on the computation of the strongest postcondition of a Re-

mes service with respect to a given precondition [13]. To calculate the
strongest postcondition of a Remes service, we have used two meth-
ods: (i) a well-known deductive method that starts from the guarded
command language (GCL) [48] description of a Remes service, and (ii)
an algorithmic method that automatically computes the strongest post-
condition of a Remes service described as PTA. The algorithmic version
includes also the minimum (or maximum) resource-usage trace computa-
tion, while performing strongest postcondition analysis. The approach
makes checking the correctness of more complex services feasible, and
awaits implementation in the Uppaal Cora tool.

Service negotiation model in Remes. Available services might de-
liver similar or the same functionality but differ in extra-functional char-
acteristics. Moreover, they might be offered to service users at different
prices, time, or any other condition. Therefore, it is often the case that
service providers and clients need to negotiate in order to support a
systematic and analyzable way to model a service negotiation process,
we have introduced the Remes Hdcl negotiation model. The model

6.1 Summary of Thesis Contributions 63

is based on the set of Remes interface operations and the hierarchical
language (HDCL) that supports Remes service compositions. The main
benefit of such a model is that once the negotiation process is finished one
can easily check whether the service really delivers the original qualities
by employing the previously described service correctness methods. In
addition, the model can be seen as a “negotiation service” that iterates
over client-provider choices, automatically, until a satisfactory agreement
for all involved parties is reached. Additionally, the fact that the Remes

model can be translated to TA and analyzed with the Uppaal model
checker brings more insight into the negotiation process and its possible
outcomes.

In the proposed negotiation model, we have assumed an iterative form
of the Contract Net Protocol (CNP) between web services, described
in Remes Hdcl, but the model could be extended towards support-
ing other protocols, too. Moreover, in our model we have implemented
two negotiation strategies, price- and time-driven with marginal cost.
The model has been applied in a car insurance example, for which we
have shown how to analyze the model against safety properties, but also
against specified timing and utility constraints represented as a weighted
sum of negotiation preferences.

Tool support for modeling and analysis of services and service

compositions. In this thesis we have developed a Java-based, stand-
alone tool for describing Remes services and service compositions. The
tool enables graphical modeling of service-based systems, as well as a
textual service and service composition description, in Remes. The tool
consists of an editor for new service creation, as well as the design of ser-
vice compositions; in addition to the editor, a console view is provided
for the textual description of the system, including service declarations,
list of services, and their compositions. The tool enables the design of
service compositions as possibly desired by the user, together with a
textual service composition interface in which compositions can also be
checked for correctness. We also provide automated traceability between
the two design interfaces, which enhances the system design process with
intuitive service manipulation. With respect to the formal analysis, we
provide an automatic translation of the graphical service description into
TA networks, where described models can be formally analyzed.

The approach validation. The approach described in this thesis has

64 Chapter 6. Conclusions and Future Work

been applied on three simple research examples: an ATM scenario, an
intelligent shuttle system, and a car insurance scenario. For these exam-
ples, we have analyzed the performance of service-based systems, have
carried out correctness checks, and simulated service negotiation pro-
cesses. However, we have applied our proposed negotiation model to a
more complex real-life case-study, that is, a distributed energy manage-
ment, where we have analyzed the proposed model with respect to the
optimal values of utility function (weighted sum of negotiation prefer-
ences) with respect to the price and the energy reliability. In this case,
we have been able to derive the time required to close an agreement for
different modeled scenarios. Each of these studies has helped us to better
understand the capabilities and limitations of our framework when ap-
plied to modeling of service behaviors, as well as of behaviors of service
compositions. We have also got insight into how to extend our work such
that it becomes more complete and adequate for modeling and analysis
of real SOS systems.

6.2 Future Research Directions

We have identified several possible directions that our research could fol-
low in the future. As we can see in the available literature, many of the
academic approaches have been enriched such that they enable transla-
tion or connection to WS-BPEL language [69]. Our aim is to provide
a connection to WS-BPEL language, too, such that the large analysis
spectrum covered by our approach reaches and becomes accessible to a
broader research community.

The current trend in SOS leads to service clouds, both private and
public. It would be interesting to investigate how our approach could
fit into modeling and more importantly analyzing available services in
service clouds. Another interesting direction might be connected to ap-
plying our negotiation model on a service provision process in service
clouds.

The analysis techniques presented in this thesis are based on formal
techniques, more specifically on service verification by model-checking,
where services are described as networks of TA and PTA. We are also
interested in applying other analysis techniques in order to uncover a
larger spectrum of possible errors, and also improve scalability. One of
the interesting techniques that we have in mind is software testing for

6.2 Future Research Directions 65

services.
At last, all the analysis presented in this thesis applies to the service

design-time models. We envision an increased value of our framework,
if we enhance it with capabilities to perform run-time SOS analysis too.
In such a context, we could get better insight into services and their
composition behavior, when already deployed and used in the target
environment.

64 Chapter 6. Conclusions and Future Work

been applied on three simple research examples: an ATM scenario, an
intelligent shuttle system, and a car insurance scenario. For these exam-
ples, we have analyzed the performance of service-based systems, have
carried out correctness checks, and simulated service negotiation pro-
cesses. However, we have applied our proposed negotiation model to a
more complex real-life case-study, that is, a distributed energy manage-
ment, where we have analyzed the proposed model with respect to the
optimal values of utility function (weighted sum of negotiation prefer-
ences) with respect to the price and the energy reliability. In this case,
we have been able to derive the time required to close an agreement for
different modeled scenarios. Each of these studies has helped us to better
understand the capabilities and limitations of our framework when ap-
plied to modeling of service behaviors, as well as of behaviors of service
compositions. We have also got insight into how to extend our work such
that it becomes more complete and adequate for modeling and analysis
of real SOS systems.

6.2 Future Research Directions

We have identified several possible directions that our research could fol-
low in the future. As we can see in the available literature, many of the
academic approaches have been enriched such that they enable transla-
tion or connection to WS-BPEL language [69]. Our aim is to provide
a connection to WS-BPEL language, too, such that the large analysis
spectrum covered by our approach reaches and becomes accessible to a
broader research community.

The current trend in SOS leads to service clouds, both private and
public. It would be interesting to investigate how our approach could
fit into modeling and more importantly analyzing available services in
service clouds. Another interesting direction might be connected to ap-
plying our negotiation model on a service provision process in service
clouds.

The analysis techniques presented in this thesis are based on formal
techniques, more specifically on service verification by model-checking,
where services are described as networks of TA and PTA. We are also
interested in applying other analysis techniques in order to uncover a
larger spectrum of possible errors, and also improve scalability. One of
the interesting techniques that we have in mind is software testing for

6.2 Future Research Directions 65

services.
At last, all the analysis presented in this thesis applies to the service

design-time models. We envision an increased value of our framework,
if we enhance it with capabilities to perform run-time SOS analysis too.
In such a context, we could get better insight into services and their
composition behavior, when already deployed and used in the target
environment.

Bibliography

[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing (Representation and Mind Series). The MIT Press, 2008.

[2] Eric A. Marks and Michael Bell. Service-Oriented Architecture
(SOA): A planning and Implementation Guied for Bussiness and
Tchnology. John Wiley & Sons, Inc, Hoboken, New Jersey, April
2006.

[3] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju.
Web Services: Concepts, Architectures and Applications. Springer
Publishing Company, Incorporated, 1st edition, 2010.

[4] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,
Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug
Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana.
BPEL4WS, Business Process Execution Language for Web Services
Version 1.1. IBM, 2003.

[5] Nickolas Kavantzas, David Burdett, Greg Ritzinger, Tony Fletcher,
Yves Lafon, and Charlton Barreto. Web services choreography de-
scription language version 1.0. World Wide Web Consortium, Can-
didate Recommendation CR-ws-cdl-10-20051109, November 2005.

[6] Object Management Group (OMG). Business Process Modeling
Notation (BPMN) version 1.1., January 2008.

[7] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén
Lara, Michael Stollberg, Axel Polleres, Cristina Feier, Christoph
Bussler, and Dieter Fensel. Web service modeling ontology. Applied
Ontology, 1(1):77–106, 2005.

67

Bibliography

[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing (Representation and Mind Series). The MIT Press, 2008.

[2] Eric A. Marks and Michael Bell. Service-Oriented Architecture
(SOA): A planning and Implementation Guied for Bussiness and
Tchnology. John Wiley & Sons, Inc, Hoboken, New Jersey, April
2006.

[3] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju.
Web Services: Concepts, Architectures and Applications. Springer
Publishing Company, Incorporated, 1st edition, 2010.

[4] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,
Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug
Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana.
BPEL4WS, Business Process Execution Language for Web Services
Version 1.1. IBM, 2003.

[5] Nickolas Kavantzas, David Burdett, Greg Ritzinger, Tony Fletcher,
Yves Lafon, and Charlton Barreto. Web services choreography de-
scription language version 1.0. World Wide Web Consortium, Can-
didate Recommendation CR-ws-cdl-10-20051109, November 2005.

[6] Object Management Group (OMG). Business Process Modeling
Notation (BPMN) version 1.1., January 2008.

[7] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén
Lara, Michael Stollberg, Axel Polleres, Cristina Feier, Christoph
Bussler, and Dieter Fensel. Web service modeling ontology. Applied
Ontology, 1(1):77–106, 2005.

67

68 Bibliography

[8] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. Re-
mes: A resource model for embedded systems. In Proc. of the 14th
IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2009). IEEE Computer Society, June 2009.

[9] Aneta Vulgarakis, Cristina Seceleanu, Paul Pettersson, Ivan
Skuliber, and Darko Huljenic. Validation of embedded systems be-
havioral models on a component-based ericsson nikola tesla demon-
strator. In 11th InternationalConference on Quality Software (QSIC
2011). IEEE, July 2011.

[10] Dinko Ivanov, Marin Orlic, Cristina Seceleanu, and Aneta Vulgar-
akis. Remes tool-chain - a set of integrated tools for behavioral
modeling and analysis of embedded systems. In Proceedings of the
25th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2010), September 2010.

[11] Eduard Paul Enoiu, Raluca Marinescu, Aida Causevic, and Cristina
Seceleanu. A design tool for service-oriented systems. In 9th Inter-
national Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA 2012). ENTCS, March
2012.

[12] Erl Thomas. SOA Principles of Service Design. Prentice Hall PTR,
2008.

[13] Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus and
program semantics. Springer-Verlag New York, Inc., New York, NY,
USA, 1990.

[14] Kim Guldstrand Larsen and Jacob Rasmussen. Optimal conditional
reachability for multi-priced timed automata. In Vladimiro Sassone,
editor, Foundations of Software Science and Computational Struc-
tures, volume 3441 of Lecture Notes in Computer Science, pages
234–249. Springer Berlin / Heidelberg, 2005.

[15] Aida Causevic, Cristina Seceleanu, and Paul Pettersson. Mod-
eling and reasoning about service behaviors and their composi-
tions. In Proceedings of 4th International Symposium On Lever-
aging Applications of Formal Methods, Verification and Validation
(ISOLA 2010), Formal Methods in Model-Driven Development for

Bibliography 69

Service-Oriented and Cloud Computing track. Springer LNCS, Oc-
tober 2010.

[16] Kim Guldstrand Larsen and Jacob Illum Rasmussen. Optimal
reachability for multi-priced timed automata. Theor. Comput. Sci.,
390:197–213, January 2008.

[17] Michael L. Ronayane and Erik S. Townsend. A case study: Dis-
tributed object technology at wells fargo bank. White paper, A
Cushing Group, Inc., October 1996.

[18] Tzu-Hsiang Yang, Yeali S. Sun, and Feipei Lai. A scalable healthcare
information system based on a service-oriented architecture. J. Med.
Syst., 35(3):391–407, June 2011.

[19] Thomas Magedanz, Niklas Blum, and Simon Dutkowski. Evolution
of soa concepts in telecommunications. Computer, 40(11):46–50,
2007.

[20] G. Gehlen, E. Weiss, and A. Quadt. Service oriented middleware for
automotive applications and car maintenance. In Proceedings of the
1nd Workshop on Wireless Vehicular Communications and Services
for Breakdown Support and Car Maintenance, pages 42–46, Nicosia,
Cyprus, Apr 2005. RWTH Aachen University.

[21] Burbeck Steve. The tao of e-business services: the evolution of
web applications into service-oriented components with web ser-
vices. IBM DeveloperWorks, 2000.

[22] S. Benkner, G. Engelbrecht, S.E. Middleton, I Brandic, and
R Schmidt. End-to-end qos support for a medical grid service in-
frastructure. Journal of New Generation Computing, 2007.

[23] Fitzgerald Brian and Olsson Carl Magnus. The software and services
challenge. Technical report, Contribution to the preparation of the
Tehnology Pilar on ’Software Grids, Security, and Dependability’,
EU 7th Framework Programm, 2006.

[24] Dimitrios Georgakopoulos and Michael P. Papazoglou, editors.
Service-Oriented Computing. MIT Press, Cambridge, MA, 2008.

68 Bibliography

[8] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. Re-
mes: A resource model for embedded systems. In Proc. of the 14th
IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2009). IEEE Computer Society, June 2009.

[9] Aneta Vulgarakis, Cristina Seceleanu, Paul Pettersson, Ivan
Skuliber, and Darko Huljenic. Validation of embedded systems be-
havioral models on a component-based ericsson nikola tesla demon-
strator. In 11th InternationalConference on Quality Software (QSIC
2011). IEEE, July 2011.

[10] Dinko Ivanov, Marin Orlic, Cristina Seceleanu, and Aneta Vulgar-
akis. Remes tool-chain - a set of integrated tools for behavioral
modeling and analysis of embedded systems. In Proceedings of the
25th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2010), September 2010.

[11] Eduard Paul Enoiu, Raluca Marinescu, Aida Causevic, and Cristina
Seceleanu. A design tool for service-oriented systems. In 9th Inter-
national Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA 2012). ENTCS, March
2012.

[12] Erl Thomas. SOA Principles of Service Design. Prentice Hall PTR,
2008.

[13] Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus and
program semantics. Springer-Verlag New York, Inc., New York, NY,
USA, 1990.

[14] Kim Guldstrand Larsen and Jacob Rasmussen. Optimal conditional
reachability for multi-priced timed automata. In Vladimiro Sassone,
editor, Foundations of Software Science and Computational Struc-
tures, volume 3441 of Lecture Notes in Computer Science, pages
234–249. Springer Berlin / Heidelberg, 2005.

[15] Aida Causevic, Cristina Seceleanu, and Paul Pettersson. Mod-
eling and reasoning about service behaviors and their composi-
tions. In Proceedings of 4th International Symposium On Lever-
aging Applications of Formal Methods, Verification and Validation
(ISOLA 2010), Formal Methods in Model-Driven Development for

Bibliography 69

Service-Oriented and Cloud Computing track. Springer LNCS, Oc-
tober 2010.

[16] Kim Guldstrand Larsen and Jacob Illum Rasmussen. Optimal
reachability for multi-priced timed automata. Theor. Comput. Sci.,
390:197–213, January 2008.

[17] Michael L. Ronayane and Erik S. Townsend. A case study: Dis-
tributed object technology at wells fargo bank. White paper, A
Cushing Group, Inc., October 1996.

[18] Tzu-Hsiang Yang, Yeali S. Sun, and Feipei Lai. A scalable healthcare
information system based on a service-oriented architecture. J. Med.
Syst., 35(3):391–407, June 2011.

[19] Thomas Magedanz, Niklas Blum, and Simon Dutkowski. Evolution
of soa concepts in telecommunications. Computer, 40(11):46–50,
2007.

[20] G. Gehlen, E. Weiss, and A. Quadt. Service oriented middleware for
automotive applications and car maintenance. In Proceedings of the
1nd Workshop on Wireless Vehicular Communications and Services
for Breakdown Support and Car Maintenance, pages 42–46, Nicosia,
Cyprus, Apr 2005. RWTH Aachen University.

[21] Burbeck Steve. The tao of e-business services: the evolution of
web applications into service-oriented components with web ser-
vices. IBM DeveloperWorks, 2000.

[22] S. Benkner, G. Engelbrecht, S.E. Middleton, I Brandic, and
R Schmidt. End-to-end qos support for a medical grid service in-
frastructure. Journal of New Generation Computing, 2007.

[23] Fitzgerald Brian and Olsson Carl Magnus. The software and services
challenge. Technical report, Contribution to the preparation of the
Tehnology Pilar on ’Software Grids, Security, and Dependability’,
EU 7th Framework Programm, 2006.

[24] Dimitrios Georgakopoulos and Michael P. Papazoglou, editors.
Service-Oriented Computing. MIT Press, Cambridge, MA, 2008.

70 Bibliography

[25] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F.
Brown, and Rebekah Metz. Reference model for service oriented
architecture 1.0, October 2006.

[26] Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, and
Arthur H. M. ter Hofstede. Let’s dance: A language for service
behavior modeling. In Robert Meersman and Zahir Tari, editors,
OTM Conferences (1), volume 4275 of Lecture Notes in Computer
Science, pages 145–162. Springer, 2006.

[27] Marek Rychlý. Behavioural modeling of services: from service-
oriented architecture to component-based system. In Software En-
gineering Techniques in Progress, pages 13–27. Wroclaw University
of Technology, 2008.

[28] Howard Foster, Wolfgang Emmerich, Jeff Kramer, Jeff Magee,
David Rosenblum, and Sebastian Uchitel. Model checking service
compositions under resource constraints. In ESEC-FSE ’07: Pro-
ceedings of the the 6th joint meeting of the European software en-
gineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 225–234, New York, NY,
USA, 2007. ACM.

[29] Rajeev Alur and David Dill. A theory of timed automata. Theoret-
ical Computer Science, 126(2):183–235, 1994.

[30] Rajeev Alur. Optimal paths in weighted timed automata. In
HSCCć01: Hybrid Systems: Computation and Control, pages 49–
62. Springer, 2001.

[31] Aneta Vulgarakis. A Resource-Aware Framework for Designing Pre-
dictable Component-Based Embedded Systems. PhD thesis, Mäla-
rdalen University, June 2012.

[32] Marin Orlić. Resource usage prediction in component-based software
systems. Phd thesis, Faculty of electrical engineering and comput-
ing, University of Zagreb, November 2010.

[33] Dinko Ivanov. Integrating formal analysis methods in progress ide.
Master of science thesis, Malardalen Research and Technology Cen-
tre, Vasteras, Sweden, June 2011.

Bibliography 71

[34] Predrag Filipovikj. Connecting a design framework for service-
oriented systems with uppaal model-checker. Master of science the-
sis, Malardalen Research and Technology Centre, Vasteras, Sweden,
June 2013.

[35] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson,
and Wang Yi. Uppaal Ů a tool suite for automatic verification of
real-time systems. In Proceedings of the DIMACS/SYCON work-
shop on Hybrid systems III : verification and control: verification
and control, pages 232–243, Secaucus, NJ, USA, 1996. Springer-
Verlag New York, Inc.

[36] Uppaal tool. http://www.uppaal.com.

[37] Uppaal Cora tool. http://www.cs.aau.dk/~behrmann/cora/.

[38] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking
for real-time systems. In Logic in Computer Science, 1990. LICS
’90, Proceedings., Fifth Annual IEEE Symposium on e, pages 414
–425, jun 1990.

[39] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking
in dense real-time. Inf. Comput., 104:2–34, May 1993.

[40] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand
Larsen, Paul Pettersson, Judi Romijn, and Frits Vaandrager.
Minimum-Cost Reachability for Priced Timed Automata. In Maria
Domenica Di Benedetto and Alberto Sangiovanni-Vincentelli, edi-
tors, Proceedings of the 4th International Workshop on Hybris Sys-
tems: Computation and Control, number 2034 in Lecture Notes in
Computer Sciences, pages 147–161. Springer–Verlag, 2001.

[41] Johan Bengtsson, W.O. David Griffioen, Kåre J. Kristoffersen,
Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. Automated verification of an audio-control protocol us-
ing Uppaal. The Journal of Logic and Algebraic Programming,
(0):163 – 181, 2002.

[42] Thomas Brihaye, Veronique Bruyère, and Jean-Francois Raskin.
Model-checking for weighted timed automata. In Proceedings of
FORMATS04, number 3253 in Lecture Notes in Computer Science,
pages 277–292. Springer–Verlag, 2004.

70 Bibliography

[25] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F.
Brown, and Rebekah Metz. Reference model for service oriented
architecture 1.0, October 2006.

[26] Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, and
Arthur H. M. ter Hofstede. Let’s dance: A language for service
behavior modeling. In Robert Meersman and Zahir Tari, editors,
OTM Conferences (1), volume 4275 of Lecture Notes in Computer
Science, pages 145–162. Springer, 2006.

[27] Marek Rychlý. Behavioural modeling of services: from service-
oriented architecture to component-based system. In Software En-
gineering Techniques in Progress, pages 13–27. Wroclaw University
of Technology, 2008.

[28] Howard Foster, Wolfgang Emmerich, Jeff Kramer, Jeff Magee,
David Rosenblum, and Sebastian Uchitel. Model checking service
compositions under resource constraints. In ESEC-FSE ’07: Pro-
ceedings of the the 6th joint meeting of the European software en-
gineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 225–234, New York, NY,
USA, 2007. ACM.

[29] Rajeev Alur and David Dill. A theory of timed automata. Theoret-
ical Computer Science, 126(2):183–235, 1994.

[30] Rajeev Alur. Optimal paths in weighted timed automata. In
HSCCć01: Hybrid Systems: Computation and Control, pages 49–
62. Springer, 2001.

[31] Aneta Vulgarakis. A Resource-Aware Framework for Designing Pre-
dictable Component-Based Embedded Systems. PhD thesis, Mäla-
rdalen University, June 2012.

[32] Marin Orlić. Resource usage prediction in component-based software
systems. Phd thesis, Faculty of electrical engineering and comput-
ing, University of Zagreb, November 2010.

[33] Dinko Ivanov. Integrating formal analysis methods in progress ide.
Master of science thesis, Malardalen Research and Technology Cen-
tre, Vasteras, Sweden, June 2011.

Bibliography 71

[34] Predrag Filipovikj. Connecting a design framework for service-
oriented systems with uppaal model-checker. Master of science the-
sis, Malardalen Research and Technology Centre, Vasteras, Sweden,
June 2013.

[35] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson,
and Wang Yi. Uppaal Ů a tool suite for automatic verification of
real-time systems. In Proceedings of the DIMACS/SYCON work-
shop on Hybrid systems III : verification and control: verification
and control, pages 232–243, Secaucus, NJ, USA, 1996. Springer-
Verlag New York, Inc.

[36] Uppaal tool. http://www.uppaal.com.

[37] Uppaal Cora tool. http://www.cs.aau.dk/~behrmann/cora/.

[38] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking
for real-time systems. In Logic in Computer Science, 1990. LICS
’90, Proceedings., Fifth Annual IEEE Symposium on e, pages 414
–425, jun 1990.

[39] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking
in dense real-time. Inf. Comput., 104:2–34, May 1993.

[40] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand
Larsen, Paul Pettersson, Judi Romijn, and Frits Vaandrager.
Minimum-Cost Reachability for Priced Timed Automata. In Maria
Domenica Di Benedetto and Alberto Sangiovanni-Vincentelli, edi-
tors, Proceedings of the 4th International Workshop on Hybris Sys-
tems: Computation and Control, number 2034 in Lecture Notes in
Computer Sciences, pages 147–161. Springer–Verlag, 2001.

[41] Johan Bengtsson, W.O. David Griffioen, Kåre J. Kristoffersen,
Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. Automated verification of an audio-control protocol us-
ing Uppaal. The Journal of Logic and Algebraic Programming,
(0):163 – 181, 2002.

[42] Thomas Brihaye, Veronique Bruyère, and Jean-Francois Raskin.
Model-checking for weighted timed automata. In Proceedings of
FORMATS04, number 3253 in Lecture Notes in Computer Science,
pages 277–292. Springer–Verlag, 2004.

72 Bibliography

[43] Patricia Bouyer, Kim Guldstrand Larsen, and Nicolas Markey.
Model-checking one-clock priced timed automata. In Proceedings
of the 10th international conference on Foundations of software sci-
ence and computational structures, FOSSACS’07, pages 108–122,
Berlin, Heidelberg, 2007. Springer-Verlag.

[44] Colin Neville. Introduction to research and research methods. Uni-
versity of Bradford, School of Management, July 2007.

[45] Mary Shaw. The coming-of-age of software architecture research.
In ICSE ’01: Proceedings of the 23rd International Conference on
Software Engineering, page 656, Washington, DC, USA, 2001. IEEE
Computer Society.

[46] David Mobach. Agent-Based Mediated Service Negotiation. PhD
thesis, Vrije University, 2007.

[47] Raluca Marinescu and Eduard Enoiu. A design framework for
service-oriented systems. Master of science thesis, Malardalen Re-
search and Technology Centre, Vasteras, Sweden, July 2011.

[48] Edsger W. Dijkstra. Guarded commands, nondeterminacy and for-
mal derivation of programs. Commun. ACM, 18(8):453–457, 1975.

[49] Aida Causevic, Cristina Seceleanu, and Paul Pettersson. Check-
ing correctness of services modeled as priced timed automata. In
Proceedings of 5th International Symposium On Leveraging Appli-
cations of Formal Methods, Verification and Validation. LNCS Pro-
ceedings (Springer Verlag), October 2012.

[50] Norbert Bieberstein, Robert G. Laird, Keith Jones, and Tilak Mi-
tra. Executing SOA: A Practical Guide for the Service-Oriented
Architect. IBM Press books, Upper Saddie River, NJ, USA, 2008.

[51] Michael Bell. Introduction to Service-Oriented Modeling". Service-
Oriented Modeling: Service Analysis, Design, and Architecture. Wi-
ley and Sons publishing, Hoboken, NJ, USA, 2008.

[52] José Luiz Fiadeiro, Antónia Lopes, and Laura Bocchi. Algebraic
Semantics of Service Component Modules. In J. L. Fiadeiro and
P. Y. Schobbens, editors, Algebraic Development Techniques, vol-
ume 4409 of LNCS, pages 37–55. Springer, 2007.

Bibliography 73

[53] Stefania Gnesi and Franco Mazzanti. A model checking verification
environment for uml statecharts. In PROCEEDINGS OF XLIII
CONGRESSO ANNUALE AICA, 2005.

[54] João Abreu, Franco Mazzanti, José Luiz Fiadeiro, and Stefania
Gnesi. A model-checking approach for service component archi-
tectures. In Proceedings of the Joint 11th IFIP WG 6.1 Interna-
tional Conference FMOODS ’09 and 29th IFIP WG 6.1 Interna-
tional Conference FORTE ’09 on Formal Techniques for Distributed
Systems, FMOODS ’09/FORTE ’09, pages 219–224, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[55] Jane Hillston. A compositional approach to performance modelling.
Cambridge University Press, New York, NY, USA, 1996.

[56] Aida Causevic, Cristina Seceleanu, and Paul Pettersson. For-
mal reasoning of resource-aware services. Technical Report ISSN
1404-3041 ISRN MDH-MRTC-245/2010-1-SE, Mälardalen Univer-
sity, June 2010.

[57] Maurice H. Ter Beek, Antonio Bucchiarone, and Stefania Gnesi.
Formal methods for service composition. Annals of Mathematics,
Computing & Teleinformatics, 1(5):1 – 10, 2007. In: Annals of
Mathematics, Computing & Teleinformatics, vol. 1 (5) pp. 1 - 10.
Technological Education Institute of Larissa (TEIL), Greece, 2007.

[58] Gregorio Díaz, Juan José Pardo, María-Emilia Cambronero,
Valentin Valero, and Fernando Cuartero. Automatic translation
of ws-cdl choreographies to timed automata. In Mario Bravetti,
Leïla Kloul, and Gianluigi Zavattaro, editors, EPEW/WS-FM, vol-
ume 3670 of Lecture Notes in Computer Science, pages 230–242.
Springer, 2005.

[59] Srini Narayanan and Sheila A. McIlraith. Simulation, verification
and automated composition of web services. In WWW ’02: Pro-
ceedings of the 11th international conference on World Wide Web,
pages 77–88, New York, NY, USA, 2002. ACM.

[60] Gwen Salaün, Lucas Bordeaux, and Marco Schaerf. Describing and
reasoning on web services using process algebra. In ICWS ’04:
Proceedings of the IEEE International Conference on Web Services,
page 43, Washington, DC, USA, 2004. IEEE Computer Society.

72 Bibliography

[43] Patricia Bouyer, Kim Guldstrand Larsen, and Nicolas Markey.
Model-checking one-clock priced timed automata. In Proceedings
of the 10th international conference on Foundations of software sci-
ence and computational structures, FOSSACS’07, pages 108–122,
Berlin, Heidelberg, 2007. Springer-Verlag.

[44] Colin Neville. Introduction to research and research methods. Uni-
versity of Bradford, School of Management, July 2007.

[45] Mary Shaw. The coming-of-age of software architecture research.
In ICSE ’01: Proceedings of the 23rd International Conference on
Software Engineering, page 656, Washington, DC, USA, 2001. IEEE
Computer Society.

[46] David Mobach. Agent-Based Mediated Service Negotiation. PhD
thesis, Vrije University, 2007.

[47] Raluca Marinescu and Eduard Enoiu. A design framework for
service-oriented systems. Master of science thesis, Malardalen Re-
search and Technology Centre, Vasteras, Sweden, July 2011.

[48] Edsger W. Dijkstra. Guarded commands, nondeterminacy and for-
mal derivation of programs. Commun. ACM, 18(8):453–457, 1975.

[49] Aida Causevic, Cristina Seceleanu, and Paul Pettersson. Check-
ing correctness of services modeled as priced timed automata. In
Proceedings of 5th International Symposium On Leveraging Appli-
cations of Formal Methods, Verification and Validation. LNCS Pro-
ceedings (Springer Verlag), October 2012.

[50] Norbert Bieberstein, Robert G. Laird, Keith Jones, and Tilak Mi-
tra. Executing SOA: A Practical Guide for the Service-Oriented
Architect. IBM Press books, Upper Saddie River, NJ, USA, 2008.

[51] Michael Bell. Introduction to Service-Oriented Modeling". Service-
Oriented Modeling: Service Analysis, Design, and Architecture. Wi-
ley and Sons publishing, Hoboken, NJ, USA, 2008.

[52] José Luiz Fiadeiro, Antónia Lopes, and Laura Bocchi. Algebraic
Semantics of Service Component Modules. In J. L. Fiadeiro and
P. Y. Schobbens, editors, Algebraic Development Techniques, vol-
ume 4409 of LNCS, pages 37–55. Springer, 2007.

Bibliography 73

[53] Stefania Gnesi and Franco Mazzanti. A model checking verification
environment for uml statecharts. In PROCEEDINGS OF XLIII
CONGRESSO ANNUALE AICA, 2005.

[54] João Abreu, Franco Mazzanti, José Luiz Fiadeiro, and Stefania
Gnesi. A model-checking approach for service component archi-
tectures. In Proceedings of the Joint 11th IFIP WG 6.1 Interna-
tional Conference FMOODS ’09 and 29th IFIP WG 6.1 Interna-
tional Conference FORTE ’09 on Formal Techniques for Distributed
Systems, FMOODS ’09/FORTE ’09, pages 219–224, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[55] Jane Hillston. A compositional approach to performance modelling.
Cambridge University Press, New York, NY, USA, 1996.

[56] Aida Causevic, Cristina Seceleanu, and Paul Pettersson. For-
mal reasoning of resource-aware services. Technical Report ISSN
1404-3041 ISRN MDH-MRTC-245/2010-1-SE, Mälardalen Univer-
sity, June 2010.

[57] Maurice H. Ter Beek, Antonio Bucchiarone, and Stefania Gnesi.
Formal methods for service composition. Annals of Mathematics,
Computing & Teleinformatics, 1(5):1 – 10, 2007. In: Annals of
Mathematics, Computing & Teleinformatics, vol. 1 (5) pp. 1 - 10.
Technological Education Institute of Larissa (TEIL), Greece, 2007.

[58] Gregorio Díaz, Juan José Pardo, María-Emilia Cambronero,
Valentin Valero, and Fernando Cuartero. Automatic translation
of ws-cdl choreographies to timed automata. In Mario Bravetti,
Leïla Kloul, and Gianluigi Zavattaro, editors, EPEW/WS-FM, vol-
ume 3670 of Lecture Notes in Computer Science, pages 230–242.
Springer, 2005.

[59] Srini Narayanan and Sheila A. McIlraith. Simulation, verification
and automated composition of web services. In WWW ’02: Pro-
ceedings of the 11th international conference on World Wide Web,
pages 77–88, New York, NY, USA, 2002. ACM.

[60] Gwen Salaün, Lucas Bordeaux, and Marco Schaerf. Describing and
reasoning on web services using process algebra. In ICWS ’04:
Proceedings of the IEEE International Conference on Web Services,
page 43, Washington, DC, USA, 2004. IEEE Computer Society.

74 Bibliography

[61] Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. Ser-
vice discovery and negotiation with cows. Electron. Notes Theor.
Comput. Sci., 200:133–154, May 2008.

[62] Carles Sierra, Peyman Faratin, and Nicholas R. Jennings. A service-
oriented negotiation model between autonomous agents. In Pro-
ceedings of the 8th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World: Multi-Agent Rationality, pages 17–
35, London, UK, 1997. Springer-Verlag.

[63] Peyman Faratin, Carles Sierra, and Nick R. Jennings. Negotiation
decision functions for autonomous agents. International journal of
robotics and autonomous systems, 24:3–4, 1998.

[64] Marco Comuzzi and Barbara Pernici. An architecture for flexible
web service qos negotiation. In Proceedings of the Ninth IEEE In-
ternational EDOC Enterprise Computing Conference, EDOC ’05,
pages 70–82, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[65] Marco Comuzzi, Kyriakos Kritikos, and Pierluigi Plebani. A seman-
tic based framework for supporting negotiation in service oriented
architectures. In CEC, pages 137–145, 2009.

[66] Manuel Resinas, Pablo Fernandez, and Rafael Corchuelo. A
bargaining-specific architecture for supporting automated service
agreement negotiation systems. Science of Computer Programming,
77(1):4 – 28, 2012. System and Software Solution Oriented Archi-
tectures.

[67] Shamimabi Paurobally, Valentina A. M. Tamma, and Michael
Wooldridge. A framework for web service negotiation. TAAS, 2(4),
2007.

[68] Mohan Baruwal Chhetri, Jian Lin, SukKeong Goh, Jian Ying
Zhang, Ryszard Kowalczyk, and Jun Yan. A coordinated architec-
ture for the agent-based service level agreement negotiation ofweb
service composition. In Proceedings of the Australian Software En-
gineering Conference, ASWEC ’06, pages 90–99, Washington, DC,
USA, 2006. IEEE Computer Society.

Bibliography 75

[69] Organization for the Advancement of Structured Information Stan-
dards (OASIS). Web Services Business Process Execution Language
(WS-BPEL) Version 2.0, 2007.

74 Bibliography

[61] Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. Ser-
vice discovery and negotiation with cows. Electron. Notes Theor.
Comput. Sci., 200:133–154, May 2008.

[62] Carles Sierra, Peyman Faratin, and Nicholas R. Jennings. A service-
oriented negotiation model between autonomous agents. In Pro-
ceedings of the 8th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World: Multi-Agent Rationality, pages 17–
35, London, UK, 1997. Springer-Verlag.

[63] Peyman Faratin, Carles Sierra, and Nick R. Jennings. Negotiation
decision functions for autonomous agents. International journal of
robotics and autonomous systems, 24:3–4, 1998.

[64] Marco Comuzzi and Barbara Pernici. An architecture for flexible
web service qos negotiation. In Proceedings of the Ninth IEEE In-
ternational EDOC Enterprise Computing Conference, EDOC ’05,
pages 70–82, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[65] Marco Comuzzi, Kyriakos Kritikos, and Pierluigi Plebani. A seman-
tic based framework for supporting negotiation in service oriented
architectures. In CEC, pages 137–145, 2009.

[66] Manuel Resinas, Pablo Fernandez, and Rafael Corchuelo. A
bargaining-specific architecture for supporting automated service
agreement negotiation systems. Science of Computer Programming,
77(1):4 – 28, 2012. System and Software Solution Oriented Archi-
tectures.

[67] Shamimabi Paurobally, Valentina A. M. Tamma, and Michael
Wooldridge. A framework for web service negotiation. TAAS, 2(4),
2007.

[68] Mohan Baruwal Chhetri, Jian Lin, SukKeong Goh, Jian Ying
Zhang, Ryszard Kowalczyk, and Jun Yan. A coordinated architec-
ture for the agent-based service level agreement negotiation ofweb
service composition. In Proceedings of the Australian Software En-
gineering Conference, ASWEC ’06, pages 90–99, Washington, DC,
USA, 2006. IEEE Computer Society.

Bibliography 75

[69] Organization for the Advancement of Structured Information Stan-
dards (OASIS). Web Services Business Process Execution Language
(WS-BPEL) Version 2.0, 2007.

