
From Modeling to Deployment of Component-Based Vehicular Distributed
Real-Time Systems

Alessio Bucaioni∗, Saad Mubeen†∗, John Lundbäck†, Kurt-Lennart Lundbäck†, Jukka Mäki-Turja†∗ and Mikael Sjödin∗
∗ Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden

† Arcticus Systems AB, Järfälla, Sweden
∗{alessio.bucaioni, saad.mubeen, jukka.maki-turja, mikael.sjodin}@mdh.se
†{saad.mubeen, john.lundback, kurt.lundback}@arcticus-systems.com

Abstract—We present complete model- and component-
based approach for the development of vehicular distributed
real-time systems. Within this context, we model and timing
analyze these systems using one of the state-of-the-practice
modeling and timing analysis techniques that is implemented
in the existing industrial model the Rubus Component Model
and accompanying tool suite. As a proof of concept, we conduct
a case study by developing an intelligent parking assist system
which is a distributed real-time application from the vehicular
domain. The case study shows various stages during the devel-
opment such as modeling of software architecture, performing
timing analysis, simulation, testing, automatic synthesis of code
from the software architecture, deployment, and execution.

I. INTRODUCTION
Development strategies for vehicular real-time embedded

systems are to an increasing extent based on a model- and
component-based development approach. Such an approach
uses models to describe functions, structures and other de-
sign artifacts. It supports the development of large software
systems by integration of software components. It raises the
level of abstraction for software development and aims to
reuse software components and their architectures.
A. Paper Contribution

In this paper1 we provide a complete model- and
component-based development approach for vehicular dis-
tributed real-time systems. Using this approach, we model
and timing analyze these systems using an existing modeling
and timing analysis technique [2], [3] that is implemented
in the industrial tool suite Rubus Integrated Component
development Environment (Rubus-ICE) [4]. As a proof of
concept, we demonstrate various steps from modeling to de-
ployment during the development of the Intelligent Parking
Assist (IPA) system. These steps include the following.

1) Modeling: Developing component-based software ar-
chitecture of distributed real-time application with the
Rubus modeling language.

2) Analysis: Analyzing the modeled application with
Rubus-ICE using different types of analysis including
the end-to-end response-time and delay analysis.

3) Synthesis: Automatically generating the code for the
run-time infrastructure, i.e., the execution framework.

4) Simulation and testing: Executing the modeled appli-
cation in a simulated environment from Simulink and
testing at various hierarchical levels.

5) Deployment: Downloading the synthesized software of
the application on a hardware platform.

6) Execution: Demonstrating the functionality of the ap-
plication by configuring its inputs and outputs.

1The work in this paper is the complete version of the abstract [1].

In our previous works [2], [3], [5], we developed modeling
and timing analysis techniques for distributed real-time sys-
tems. However, the validators for these techniques addressed
only subsets of the above steps. This paper provides the
first published validation for the modeling and analysis
techniques in [2], [3], [5] by addressing all of the above
development steps. As a case study we use an industrially
inspired application for an intelligent parking assist func-
tion. While the function is somewhat simplified, we have
structured it to mimic the design-patterns and requirements
used by our industrial partners

B. Paper Organization
The rest of the paper is organized as follows. Sections II

and III present the background and related works. Section
IV describes the development approach. Section V presents
the case study. Section VI concludes the paper.

II. BACKGROUND – THE RUBUS CONCEPT
Rubus [4] is a collection of methods, theories and tools

for model- and component-based development of resource-
constrained embedded real-time systems. Rubus is devel-
oped by Arcticus Systems in collaboration with Mälardalen
University. It is today mainly used for development of
control functionality in vehicles by several international
companies. The Rubus concept is based around the Rubus
Component Model (RCM) [6] and its development envi-
ronment Rubus-ICE (Integrated Component development
Environment) [7] which includes modeling tools, code gen-
erators, analysis tools and run-time infrastructure.

A. The Rubus Component Model
RCM expresses the infrastructure for software functions,

i.e., the interaction between the software functions in terms
of data and control flow separately. The control flow is de-
fined by triggering objects, e.g., clocks and events. In RCM,
a Software Circuit (SWC) is the lowest-level hierarchical
element, i.e., the basic component, which encapsulates ba-
sic functions. SWCs have the run-to-completion semantics.
They communicate each other via data ports. They may be
encapsulated into software assembly (ASM) for constructing
the system at different hierarchical levels. RCM facilitates
analysis and reuse of components in different contexts
by separating functional code from the infrastructure that
implements the execution environment.

B. The Rubus Analysis Framework
The Rubus model allows expressing real-time require-

ments and properties on the architectural level. To this end,
the designer has to express real-time properties of SWCs,

such as worst-case execution times and stack usage; this can
be done with external static-analysis tools, or Rubus-ICE
provides tools to measure these properties from executing
code. An off-line scheduler is used for time-triggered tasks,
which considers these real-time constraints when construct-
ing a schedule. For event-triggered tasks, response-time
analysis is performed and the calculated response times
are compared with the specified deadlines. The supported
analysis includes distributed end-to-end response-time and
delay analyses [3] and shared stack analysis [8].

C. The Rubus Code Generator and Run-Time System
Based on the resulting component architecture, func-

tions are mapped to tasks which are the run-time entities.
Each external event trigger defines a task; accordingly,
each triggered SWC, within a trigger chain, is allocated
to the corresponding task. Within trigger-chains, inter-SWC
communication is aggressively optimized to use the most
efficient means of communication possible for each com-
munication link. All clock triggered chains are allocated
to an automatically generated static schedule, which fulfills
the precedence order and temporal requirements. There are
several criteria for the allocation of SWCs to tasks and
construction of schedule, e.g., response times or memory
usage. The run-time system executes all tasks on a shared
stack, avoiding the need for static allocation of stack memory
to each individual task.

D. The Rubus Simulation Model
The Rubus SIMulation Model (RSIM) and accompanying

tools enable simulation and testing of applications modeled
with RCM at various hierarchical levels, e.g., SWCs, ASMs,
Electronic Control Units (ECUs), and complete distributed
system. Within RSIM, the testing is carried out in an auto-
matic generated framework based on the Rubus Operating
System (OS) simulator. The input data is read from external
tools or files, e.g., Matlab, and fed to the simulation and
test processes, which in turn stimulates input ports and state
variables using probes. The output data can be fed back
to the external tools or files. The simulated environment
is build on top of the application to be simulated. Hence,
the application can be controlled from high-level tools such
as LabView or Matlab/Simulink. These tools control the
application by means of commands to run and stop the
target clock for a specified number of ticks. This allows
the execution flow to be visualized in each time increment.

E. The Rubus Execution Platform
While the RCM and Rubus-ICE are operating-system

(OS) independent, code generators are OS-dependent. In
this paper we assume the usage of the Rubus OS designed
for predictable and dependable execution of Rubus tasks. It
supports both time- and event-triggered execution of threads.
It optimizes the run-time architecture by using the hybrid
scheduling [9] which combines the static cyclic scheduling
with the fixed priority preemptive scheduling. It can run
on various hardware platforms. In order to support the
simulation in other OSs, a version of Rubus OS is adapted
to host environment that runs under Windows or Linux.

III. RELATED WORKS
We focus on the component technologies that are targeted

towards the development of resource-constrained embedded
real-time systems in the vehicular domain.

AUTOSAR [10] is an industrial initiative to provide
standardized software architecture for the development of
embedded software. When it was being developed, there was
no focus placed on its ability to specify and handle timing-
related information. Whereas this capability was taken into
account right from the beginning during the development of
the Rubus concept. AUTOSAR describes the software devel-
opment at a higher level of abstraction compared to RCM.
Unlike RCM, it does not separate control and data flows
among components within a node. It does not differentiate
between the modeling of intra- and inter-node communica-
tion which is opposite to the modeling of communication in
RCM. Despite these differences, there are some similarities
between AUTOSAR and RCM, e.g., the sender receiver
communication mechanism in AUTOSAR is very similar
to the pipe-and-filter communication mechanism in RCM.
In short, AUTOSAR is more focussed on the functional
and structural abstractions, hiding the implementation details
about execution and communication. Whereas, RCM sup-
ports the modeling, analysis and synthesis of the execution
environment of software functions. AUTOSAR hides the
details that RCM highlights.

TIMMO [11], a large EU research project, is an initiative
to provide AUTOSAR with a timing model [12]. It describes
a methodology and a language TADL [13] to express timing
requirements and constraints. TADL is inspired by MARTE
[14] which is the UML profile for model-driven development
of real-time and embedded systems. TIMMO methodology
uses EAST-ADL language [15] for structural modeling and
AUTOSAR for the implementation. TIMMO-2-USE [16],
a followup on the TIMMO project, includes a major re-
definition of TADL and supports the AUTOSAR extensions
regarding timing model. Arcticus Systems has been involved
in TIMMO-2-USE project as one of the industrial partners.
These projects are initiatives to annotate AUTOSAR with a
timing model. This will be hard to accomplish all the way
since AUTOSAR aims at hiding implementation details of
execution environment and communication. At the modeling
level, there is no information in AUTOSAR to express low-
level details, e.g., linking information. These details are
necessary to extract the timing model from the architecture.
There is no focus in this initiative on how to extract this
information from the model or perform timing analysis or
synthesize the run-time framework. In our view, timing
model means extracting enough information to be able to
perform certain type of timing analysis, e.g., end-to-end
response-time analysis.

ProCom [17] is a two-layered component model for the
development of distributed embedded systems. It is inspired
by RCM and there are a number of similarities between
the two, e.g., both have passive components, both separate
control flow from the data flow, and both use the pipe-and-
filter style of communication mechanism for components
interconnection. However, ProCom does not differentiate be-
tween intra- and inter-node communication which is unlike
RCM. It hides communication details, whereas RCM lifts
them up to the modeling level. It will be very hard in
ProCom to extract the timing model and perform the timing
analysis at the level where it is done in RCM.

IV. DEVELOPMENT APPROACH
In this section, we discuss our approach for the de-

velopment of component-based vehicular distributed real-

time systems. The proposed approach consists of five major
phases that range from modeling to deployment. These
phases along with the tools2 used at each phase are depicted
in Figure 1. The development at each phase, except for the
deployment, is carried out within the Rubus-ICE tool suite.
By supporting most of the development process with a single
tool suite, we avoid explicit interoperability management and
reduce time and cost overheads.

In the modeling phase, the Rubus Designer is used to
model software architecture in terms of components (de-
scribing software functions), their interactions, structures
and other design artifacts as shown in Figures 7 and 8.

In the analysis phase, the architecture is annotated
with real-time requirements, properties and constraints. The
Rubus Analysis Framework supports various types of anal-
ysis by means of plug-ins for the Rubus-ICE, e.g., Holistic
Response Time Analysis (HRTA) and End-to-End Delay
Analysis (E2EDA) plug-ins. These plug-ins calculate (1)
response-times of individual tasks and messages, (2) holistic
response times of trigger chains, data chains, and mixed
chains3, and (3) end-to-end delays of data and mixed chains.
The analysis results can be used for design space explo-
ration, i.e., the application architecture can be further refined
to meet the real-time requirements and constraints. In the

Modeling

Simulation
& Testing

Synthesis

Rubus Designer

HRTA, E2EDA plugins

Rubus Inspector

Rubus Code Generator

Phase (s) Tool (s)

Rubus-ICE

Simulink,
LabVIEW

Deployment
Software Platform Hardware Platform

Rubus RTOS, Host for
Windows and Linux

ECUs, PCs with
CAN controllers

Timing Analysis

Figure 1. Development phases and corresponding tools used

synthesis phase, the Rubus code generator automatically
generates the synthesizable code for the run-time framework,
allowing the designer to work on a platform independent
model and raising the productivity. A fragment of the
generated code is depicted in Figure 2 which shows the
data structures and functions for one of the SWCs (the
PathCalculator SWC in the IPAssistant ECU) in the case
study that will be discussed in Section V.

In the simulation and testing phase, the Rubus Inspector
(built on the RSIM) handles the component testing as well as
the application simulation. The model-based testing [18] can
be done at various hierarchical levels, e.g., the test object in
Figure 3 can be an SWCs, an ASMs, an ECU, or a complete
distributed system. Additionally, external high-level tools
such as LabVIEW or Simulink can be used for feeding the
simulation process with specific inputs.

The deployment phase involves both software and hard-
ware platforms. The Rubus RTOS provides the software

2In this paper, we do not look into the usage of the stack analyzer
3First task in a trigger chain is triggered independently, while the rest of

the tasks are triggered by their predecessors. Each task in a data chain is
triggered independently. A mixed chain is a combination of these chains.

platform. It should be noted that the software architecture
and corresponding synthesized code can be easily adapted
and deployed to any RTOS. Similarly, any ECU or processor
that runs the RTOS, e.g., IBM’s PowerPC can serve as the
hardware platform for deployment. Alternatively, a version
of Rubus OS that is adapted to host Windows or Linux can
be used as the software platform. In this case, a set of PCs
(each equipped with a CAN controller) can serve as the
hardware platform for the distributed real-time application
(see SectionV-E for details).

Figure 2. Fragment of the automatically generated code

Test Object

In
pu

t D
at

a

O
utput D

ata

Rubus OS Simulator

Execution Control – Simulink/LabVIEW

Figure 3. Testing at various hierarchical levels using the Rubus Inspector

V. CASE STUDY
In order to provide a proof of concept for our development

approach, we conduct a distributed real-time application
case study from the vehicular domain. We develop the
IPA system using our approach at various phases using the
corresponding models and tools as shown in Figure 1.
A. Intelligent Parking Assist (IPA) System

The IPA system, also known as Advanced Parking Guid-
ance System (APGS), is an automotive feature, which assists
drivers in parking their vehicles. It uses a set of ultrasonic
warning systems and a backup camera for detecting ob-
stacles and calculating the optimum maneuvers during the
parking operations. It has been divided into two subsystems
namely IPAssistant and Actuator. The subsystems commu-
nicate with each other via CAN messages. Figure 4 depicts
the block diagram of the IPA system.

1) IPAssistant subsystem: It reads inputs from the ultra-
sonic sensors, camera and manual button states. Further, it
receives vehicle status information via CAN messages from
the Actuator subsystem. If IPA is activated, it calculates the
optimal maneuvers based on the sensed location information.

Accordingly, it sends control information, as CAN messages,
to the Actuator subsystem for adjusting speed, steer and
brake of the vehicle during parking maneuvers. It also
displays status messages on the user interface.

Figure 4. Block diagram of the Intelligent Parking Assist system

2) Actuator subsystem: It reads vehicle control infor-
mation provided by the brake pedal and wheel sensors. It
receives maneuvers control information via CAN messages
from the IPAssistant subsystem. After processing the control
information, it produces actuation signals for the brake,
wheel, steer, gear and engine throttle controllers. It also
sends the fresh control information via CAN to the IPAssis-
tant subsystem for updating the maneuvers calculations.

B. Modeling of IPA System with RCM in Rubus-ICE
The component architecture of IPA System modeled with

RCM is shown in Figure 5. Each subsystem is modeled
as a separate ECU. The ECUs are connected to a single
CAN network. We select the standard frame format for
CAN messages. This means, each CAN frame uses 11-bit
identifier. The CAN speed is 500 kbps.

IPAssistant_ECU Actuator_ECU CAN_Network

Figure 5. RCM model of the IPA system: system-level view

Figure 6 shows the eight CAN messages that are ex-
changed among the ECUs. A message is denoted by m . Each
message is associated with one or more signals. The signal-
to-message mapping information is provided in the signal
database denoted by SignalDB in Figure 6. Table I lists the
extracted attributes of all messages. These attributes include
data size (sm), priority (Pm), transmission type (ξm), i.e.,
whether the message is periodic (P) or sporadic (S), period
or minimum inter-arrival time (Tm), and transmission time
(Cm) which is automatically calculated by the HRTA plug-in
based on the value of (sm).

m1: Gear&Throttle_msg m2: Speed_msg m3: RPM_msg

m4: ParkingBrake_msg m5: Steer_msg m6: IPA_State_msg

m7: IPA_msg m8: BrakePosition_msg SignalDB

Figure 6. CAN messages and signal database modeled with RCM
1) Internal model of IPAssistant ECU: The internal ar-

chitecture of the IPAssistant ECU modeled with RCM is
shown in Figure 7. It consists of nine SWC, six ISWCs
and two OSWCs. The SWCs denoted by UltrasonicInput1-4,
Camera, and IPA button read the inputs from the ultrasonic
sensors, the camera and the IPA button respectively. The
InputProcessingIPA SWC processes these inputs together
with the CAN messages m1 , m2 , m3 , m4 , m5 , and m8

received from the corresponding ISWCs. Based on the
processed inputs, the PathCalculator SWC calculates the
optimal maneuvers, whereas the DiplayController SWC dis-
plays the vehicle status information on the display screen.

Table I
MESSAGE ATTRIBUTES EXTRACTED FROM THE MODEL

Msg sm Pm ξm Tm (µs) Cm (µs)
m1 8 4 P 10000 270
m2 8 5 P 10000 270
m3 8 7 P 10000 270
m4 1 8 S 10000 130
m5 8 6 P 10000 270
m6 1 1 S 5000 130
m7 8 2 S 5000 270
m8 1 3 S 10000 130

The IPA State and IPA message OSWCs send messages m6

and m7 over the CAN network respectively.
2) Internal model of Actuator ECU: Figure 8 shows the

internal architecture of the Actuator ECU modeled with
RCM. It is composed of seventeen SWCs, two ISWCs and
six OSWCs. The InputProcessingActuator SWC collects and
processes the inputs sensed from twelve SWCs along with
the CAN messages m6 and m7 received from the IPA State
and IPA message ISWCs. Accordingly, it calculates the
actuation signals for the BrakeController, WheelController,
SteerController and Gear&ThrottleController SWCs to per-
form the desired maneuvers. The fresh vehicle control in-
formation is sent over the network in six messages m1 , m2 ,
m3 , m4 , m5 , and m8 by the respective OSWCs.

C. End-to-End Timing Requirements and Results
The IPA system is modeled with several trigger, data, and

mixed chains. For convenience, we specify the end-to-end
timing requirements on only five Data Chains (DCs) that are
distributed over the whole system. These chains are identi-
fied as DC1, DC2, DC3, DC4 and DC5. We specify 10 msec
as the end-to-end deadline requirement on each of the first
four DCs. The initiator of DC1 is the task corresponding to
the UltrasonicInput1 SWC located in the IPAssistant ECU.
It is responsible for acquiring the ultrasonic sensor input and
sending it to the InputProcessingIPA SWC. The last task
of DC1 corresponds to the BrakeController SWC which is
located in the Actuator ECU as shown in Figure 8. It is
responsible for producing the actuation signal for the brake
controller. All components in the data path of DC1 (from
initiator to terminator) are shown below.

• DT1: UltrasonicInput1 → InputProcessingIPA →
IPA messageOSWC → m7 → IPA messageISWC
→ InputProcessingActuators → BrakeController

All components except from the initiator and terminator
along the data path of DC1 are the same in the data chains
DC2, DC3 and DC4. However, these chains are initiated
by the UltrasonicInput2, UltrasonicInput3 and UltrasonicIn-
put4 SWCs respectively and terminated by the WheelCon-
troller, Gear&ThrottleController and SteerController SWCs
respectively. We specify 20 msec and 30 msec as the data age
and reaction constraints on DC5 respectively. In RCM, these
constraints are specified with start and end objects. The start
objects are shown in Figure 7, while the end objects are vis-
ible in Figure 8. The initiator task of DC5 corresponds to the
PathCalculator SWC which is responsible for calculating the
parking control information. Whereas, the terminator task of
DC5 corresponds to the InputProcessingActuators SWC in
the Actuator ECU, as shown in Figure 8. It processes the

Figure 7. Internal component architecture of the IPAssistant ECU in RCM

Figure 8. Internal component architecture of the Actuator ECU in RCM

vehicle control information. All the components in the data
path of DC5 (from initiator to terminator) are shown below.

• DT5:PathCalculator → IPA messageOSWC → m7

→ IPA messageISWC → InputProcessingActuators

The end-to-end response times are calculated using the
HRTA plug-in, whereas the end-to-end delays are calculated
using the E2EDA plug-in [3]. The analysis results are
shown in Table II. By comparing the end-to-end deadline
requirements with the corresponding calculated end-to-end
response times and delays, it is evident that all the DCs meet
their deadlines and are deemed schedulable.

D. Simulation and Testing
We performed testing and simulation of the IPA system at

various hierarchical levels using the Rubus Inspector. Figure
9 shows unit testing and simulation for the PathCalculator
SWC in the IPAssistant ECU. The input trigger is provided
by the source clock with a period of 5 ms. The data is

Table II
ANALYSIS RESULTS BY THE HRTA AND E2EDA PLUG-INS

DC Requir. Requir. End-to-end End-to-end
Type Value Response Delay

(µs) Time(µs) (µs)
DT1 deadline 10000 1020 –
DT2 deadline 10000 770 –
DT3 deadline 10000 1250 –
DT4 deadline 10000 1170 –
DT5 Age 20000 – 15700
DT5 Reaction 30000 – 25700

provided to the three data input ports by means of ramp, sine,
and triangle wave generators. Whereas, the fourth data input
port reads input from a text file. The outputs of this SWC are
observed by display objects (showing the numerical outputs)

and plots. The real-time simulation of the plot is also shown
in Figure 9.

Figure 9. Unit testing and simulation using the Rubus Inspector

E. Deployment and Demonstration
As discussed in Section IV, there are two options for the

deployment. In this work, we consider the second option.
Hence, we deploy the synthesized code on the version of
Rubus OS that is adapted to host Windows OS. For the
hardware platform, we use two PCs to act as the two
ECUs. Each PC uses the Kvaser USBcan II HS/HS CAN
controller4, which supports two channel CAN interfaces with
a standard USB1.1 interface. We connect the CAN bus to the
first channel of each controller. Whereas, the second channel
is used to inspect and monitor the network communication
and load, with the help of the CanKing tool by Kvaser
that runs on the PCs. The deployed system is graphically
illustrated in Figure 10.

CAN controller
(Kvaser USBcan II HS/HS)

CAN CAN controller
(Kvaser USBcan II HS/HS)

Synthesized Code

Rubus OS

Synthesized Code

Rubus OS

CanKing CanKing

Synthesized Code

Figure 10. Deployment of the IPA system on software and hardware
platforms

If the IPA system is deployed on the ECUs using the
first option, the inputs are fed from the buttons, ultrasonic
sensors, camera, etc., present in the experimental vehicle.
In response to these inputs, the IPA system maneuvers the
vehicle accordingly. Moreover, the corresponding messages
are displayed on the user interface in the vehicle. Since,
we deploy the IPA system using the second option, i.e.,
on the PCs connected to a CAN network, we show the
execution by developing a simple stand-alone application
that provides inputs and gets outputs to and from the IPA
system. Alternatively, the application also supports input, for
the IPA system, from a text file. The file may contain a trace
recorded from the IPA system of an experimental vehicle.

VI. CONCLUSION
We presented step-by-step demonstration of a complete

model- and component-based approach that is used for
the development of distributed real-time systems in the

4http://www.kvaser.com/.

vehicular-applications domain. We discussed various steps
that are used in this approach including the modeling of
software architecture, performing end-to-end response-time
and delay analyses, automatically synthesizing the code from
the software architecture, performing simulation and testing,
deployment of the synthesized code, and finally demonstrat-
ing the functionality by executing the application. In order to
provide the proof of concept, we demonstrated this approach
by developing a distributed real-time application namely
Intelligent Parking Assist (IPA) system with the existing
industrial component model and accompanying tool suite.
An interesting future work is to support interoperability of
RCM and Rubus-ICE with other related tools used in the
vehicular domain.

REFERENCES

[1] A. Bucaioni, S. Mubeen, J. Lundbäck, K.-L. Lundbäck, J. Mäki-
Turja, and M. Sjödin, “Demonstrator for modeling and development
of component-based distributed real-time systems with rubus-ice,”
in Open Demo Session of Real-Time Systems located at Real Time
Systems Symposium (RTSS), Dec. 2013.

[2] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Communications-
Oriented Development of Component- Based Vehicular Distributed
Real-Time Embedded Systems,” Journal of Systems Architecture,
http://dx.doi.org/10.1016/j.sysarc.2013.10.008, Oct. 2013.

[3] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” in Computer Science and Information
Systems, vol. 10, no. 1, pp 453-482, January 2013. ISSN: 1361-1384.

[4] “Rubus models, methods and tools,” http://www.arcticus-
systems.com.

[5] S. Mubeen, J. Mäki-Turja, M. Sjödin, and J. Carlson, “Analyzable
modeling of legacy communication in component-based distributed
embedded systems,” in 37th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2011, pp. 229–238.

[6] K. Hänninen et.al., “The Rubus Component Model for Resource Con-
strained Real-Time Systems,” in 3rd IEEE International Symposium
on Industrial Embedded Systems, 2008, June 2008.

[7] “Rubus-ICE: Integrated component Development Environment,”
2013, http://www.arcticus-systems.com.

[8] M. Bohlin, K. Hänninen, J. Mäki-Turja, J. Carlson, and M. Sjödin,
“Bounding shared-stack usage in systems with offsets and prece-
dences,” in 20th Euromicro Conference on Real-Time Systems, 2008.

[9] J. Mäki-Turja, K. Hänninen, and M. Nolin, “Efficient Development
of Real-Time Systems Using Hybrid Scheduling,” in International
Conference on Embedded Systems and Applications, June 2005.

[10] “AUTOSAR Techincal Overview, Version 2.2.2. AUTOSAR – AU-
Tomotive Open System ARchitecture, Release 3.1, The AUTOSAR
Consortium, Aug., 2008,” http://autosar.org.

[11] “TIMMO Methodology, Version 2, Deliverable 7, Oct. 2009.”
[12] “Mastering Timing Information for Advanced Automotive Systems

Engineering. In the TIMMO-2-USE Brochure, 2012. Available at:
http://www.timmo-2-use.org/pdf/T2UBrochure.pdf,” 2012.

[13] “TADL: Timing Augmented Description Language, Version 2, Deliv-
erable 6, October 2009,” The TIMMO Consortium.

[14] “The UML Profile for MARTE: Modeling and Analysis of Real-
Time and Embedded Systems, 2010.” OMG Group, January 2010.
[Online]. Available: http://www.omgmarte.org/

[15] “EAST-ADL Domain Model Specification, Deliverable D4.1.1, 2010,”
http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-
ADL2-Specification 2010-06-02.pdf.

[16] “TIMMO-2-USE,” http://www.timmo-2-use.org/.
[17] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic,

“A Component Model for Control-Intensive Distributed Embedded
Systems,” in 11th International Symposium on Component Based
Software Engineering (CBSE), 2008.

[18] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos,
“A survey on model-based testing approaches: A systematic review,”
in the 1st ACM International Workshop on Empirical Assessment of
Software Engineering Languages and Technologies, 2007.

