
A Model-Based Testing Framework for Automotive Embedded Systems

Raluca Marinescu∗, Mehrdad Saadatmand∗†, Alessio Bucaioni∗, Cristina Seceleanu∗, Paul Pettersson∗
∗Mälardalen University, Västerås, Sweden, <firstname.lastname>@mdh.se

†Alten AB, Sweden, <firstname.lastname>@alten.se

Abstract—Architectural models, such as those described in
the EAST-ADL language, represent convenient abstractions to
reason about automotive embedded software systems. To enjoy
the fully-fledged advantages of reasoning, EAST-ADL models
could benefit from a component-aware analysis framework that
provides, ideally, both verification and model-based test-case
generation capabilities. While different verification techniques
have been developed for architectural models, only a few
target EAST-ADL. In this paper, we present a methodology
for code validation, starting from EAST-ADL artifacts. The
methodology relies on: (i) automated model-based test-case
generation for functional requirements criteria based on the
EAST-ADL model extended with timed automata semantics,
and (ii) validation of system implementation by generating
Python test scripts based on the abstract test-cases. The scripts
represent concrete test-cases that are executable on the system
implementation. We apply our methodology to analyze the
ABS function implementation of the Brake-by-Wire system
prototype.

Keywords-EAST-ADL, model-based testing, UPPAAL PORT,
test-case generation, test-case conversion, Python scripts;

I. INTRODUCTION

The complexity of embedded systems in the automo-
tive domain is continuously increasing, in part due to
the replacement of mechanical or hydraulic technologies
with electrical/electronic systems that implement complex
functions, such as cruise control, automatic braking, etc.
Consequently, the system development needs to conform
with stringent safety standards. To align with such stan-
dards, the development process must provide evidence that
requirements are satisfied at each level of system abstraction,
from architectural and behavioral models to implementation
(e.g., as required by ISO 26262). In this context, there is
a real need for advanced and formal methodologies for
verification and testing of automotive systems, which can
provide industrially relevant artifacts.

Although there is a solid research know-how of generating
test-cases from behavioral specification models [1], [2], [3],
in principle these methods are not directly applicable to
architectural models where the system behavior is defined in
terms of function blocks with no formal support to specify
and analyze their internal behaviors. The latter is usually
described in semi-formal languages such as UML, Simulink
etc. The operation of each function block can, for instance,
be formalized using notations such as timed automata (TA)
[4], which could serve as the semantic representation of
the block behavior [5]. Assuming this, the abstract test-case

generation can then be carried out using component-aware
model-checking algorithms [6]. The resulting abstract test-
cases contain internal state information not corresponding
to the actual code. Hence, the abstract test-cases need to be
transformed into executable scripts that would then be used
as concrete test-cases to analyze the system implementation.
This need has kindled our motivation to introduce a method-
ology (see Section IV) for model-based testing against
functional requirements of embedded systems, starting from
the EAST-ADL architectural models, an emerging standard
for automotive industry, already used by Volvo Group Trucks
Technologies, Sweden. As part of the methodology, we
show how to generate executable test-cases for the system
implementation automatically, starting from abstract tests
generated by model-checking EAST-ADL high-level artifacts
extended with TA behavior. The main goal of this paper
is to check the feasibility of the EAST-ADL+TA generated
abstract test-cases by actually running the corresponding
executable test-cases on the implemented code, in an attempt
to obtain a pass or fail verdict. If the endeavor succeeds,
the testing effort of the code could then be reduced by the
automatic provision of valid test-cases.

Our contribution assumes three actors in the system
development process: the System Designer, the Developer,
and the Tester. The methodology presented in this paper
describes only two main phases: model-based system imple-
mentation and testing. Concretely, we adopt ViTAL [7] as
our main modeling and analysis framework, as it integrates
component-aware model-checking with EAST-ADL models.
In Section V we define an executable semantics of the
UPPAAL PORT TA that facilitates code implementation (see
Section V) in a semantics-preserving manner. Next, we
we show how to generate abstract test-cases for functional
requirements, from the TA model of the EAST-ADL system
description (see Section VI-A). The functional requirement
criterion is formalized as a reachability property in UPPAAL
PORT [8], and the result is an abstract test-case defined by
an execution trace of the TA models corresponding to the
function blocks. In Section VI-B we transform the states
and transitions of the test-case into C/C++ code signals,
by generating Python test-scripts in Farkle test execution
environment [9]. These test-scripts are run against the system
under test (SUT) to obtain a pass or fail verdict w.r.t. the
testing goal. Our framework adapts already existing model-
checking based testing techniques, to obtain a novel inte-

grated approach for testing automotive embedded systems,
starting from high-level system artifacts modeled in EAST-
ADL, and their requirements specification. To check the ap-
plicability of our framework, we illustrate it on a simplified
version of Volvo’s Brake-by-Wire System prototype, which
we describe in Section III. We compare to related work
in Section VIII, and summarize our work, together with
outlining ideas for future work in Section IX.

II. PRELIMINARIES

In this section we give a brief overview of: (i) ViTAL,
used for generating abstract test-cases, and (ii) Farkle, used
for transforming the latter into test-scripts.

A. ViTAL

ViTAL, a Verification Tool for EAST-ADL Models using
UPPAAL PORT, integrates architectural languages and verifi-
cation techniques to provide simulation and model-checking
of timing and functional behavioral requirements. To achieve
this, the tool provides functional and timing behavior for
EAST-ADL functional blocks using timed automata seman-
tics, and performs an automatic model transformation to the
input language of UPPAAL PORT, which enables the model-
checker to handle EAST-ADL models for formal verification.

The tool is an integrated environment based on Eclipse
plug-ins and contains an editor for the EAST-ADL model
(i.e., Papyrus), an editor for timed automata description of
the behavior of EAST-ADL blocks, and a semantic mapping
between each EAST-ADL block and a corresponding TA
model (e.g., mapping internal TA variables to EAST-ADL
external ports). The result of the transformation is com-
pliant to the input language of the UPPAAL PORT model-
checker, able to simulate the system model and verify
various requirements (e.g., functional, timing), specified in
Timed Computation Tree Logic (TCTL). ViTAL integrates
the following artifacts:

EAST-ADL: EAST-ADL is an architecture description
language dedicated to the development of automotive em-
bedded systems [10]. The definition of an EAST-ADL system
model is given at five levels of abstraction representing
different stages of the engineering process with complete
traceability between them. At each level, the behavioral
description relies on the definition of a set of function
prototypes (refereed as blocks) fps, executed assuming the
"read-execute-write” semantics. A block starts executing by
reading data, which are constantly replaced by fresh data
arriving on ports, performs some calculation and finally
outputs data on the output ports.This enables analysis,
behavioral composition, and makes the function execution
independent of its internal behavior. The functionality of
each fp is defined using different notations and tools, e.g.,
Simulink or UPPAAL PORT TA in ViTAL.

Component

Port1 Port2

Entry

b>5 [c=a+b]

b<=5 [c=a-b]

x<2
[a=10]

Calc Exit

Figure 1: UPPAAL PORT TA Component.

UPPAAL PORT TA Component: As depicted in
Figure 1, an UPPAAL PORT [6] component is defined by
its interface and its timed behavior. The interface consists
of a set of input data ports, a set of output data ports, and
a set of trigger ports that define the control flow. The timed
behavior is modeled as a tuple:

B = (N, l0, lf , VD, VC , r0, rf , Ed, I) (1)

where N is a finite set of locations, l0 is the initial location,
lf is the final location, VD and VC are sets of data and
clock variables, respectively, r0 and rf are sets of initial
and final clock resets, and Ed is a set of edges. The function
I : N ∪ {l0, lf} → B(VC), with B(VC) denoting the set of
conjunctive formulas of clock constraints of the form xi ∼
m, or xi − xj ∼ n, xi, xj ∈ VC , ∼∈ {≤, <,=,≥, >},
m,n ∈ N , assigns each location l ∈ N ∪ {l0, lf} to its
invariant I(l). To describe an edge from location l to l′,
with guard g, update action e, and clock resets r, we write
l
g,e,r−−−→ l′, for (l, g, e, r, l′) ∈ Ed.
The timed behavior associated to the UPPAAL PORT TA

component depicted in Figure 1 has three locations Entry,
Calc, and Exit, three data variables a, b, and c, and a clock
variable x. When the execution of the TA is triggered, it
enters the Entry location, updates variable a to 10 along
the first edge to location Calc, where it remains as long
as the invariant x < 2 holds. The update of variable c is
determined based on the evaluation to "TRUE" of guards
b > 5 and b <= 5, placed on the edges to location Exit.

The semantics of an UPPAAL PORT TA component are
defined as a state: (l, u, v), where l is a location, v is a data
valuation, and u is a clock valuation. UPPAAL PORT [6]
allows the following transitions from one state to another:

• internal transitions: (l, u, v)
τ−→ (l′, u′, v′), along an

edge l
g,e,r−−−→ l′,

• delay transitions: (l, u, v) δ−→ (l, u, v + δ) where
δ ∈ R≥0,

• read transitions: (idle, u, v) read−−−→ (lo, input(u),
[r0 := 0]u) if triggered(v),

• write transitions, (lf , u, v)
write−−−→

(idle, output(u), [rf := 0]u).

UPPAAL PORT Model-checker: UPPAAL PORT is an
extension of the UPPAAL tool, which supports simulation
and model-checking of component-based systems, without
the usual flattening of the TA network [8]. This is comple-

<<designFunctionType>>

FunctionalDesignArchitecture

<<designFunctionPrototype>>

pBrakePedalSensor
<<designFunctionPrototype>>

pBrakeTorqueCalculator

<<designFunctionPrototype>>

pGlobalBrakeController

<<designFunctionPrototype>>

pWheelSensorFL

<<designFunctionPrototype>>

pABSFL

<<designFunctionPrototype>>

pWheelActuatorFL

structure

Position Position_percent
BrakePedalPos_percent

DriverReqTorque
Wheel_rpm_FL

WheelTorque

Speed_rpm_FLRotation_FL

RequestedTorque_FL

WheelSpeed_rpm_FL

GlobalTorque

ABSTorque_FL TorqueCmd_FL

BrakeTorque_FL

Wheel_rpm_FR
VehicleSpeedEst_kmph

VehicleSpeed_kmph_FL

<<designFunctionPrototype>>

pWheelSensorFR

<<designFunctionPrototype>>

pABSFR

<<designFunctionPrototype>>

+ Wheel Actuator

Speed_rpm_FRRotation_FR

RequestedTorque_FR

WheelSpeed_rpm_FR

ABSTorque_FR
TorqueCmd_FR

BrakeTorque_FRVehicleSpeed_kmph_FR

Figure 2: The EAST-ADL model of the BBW system.

mented by the Partial Order Reduction Technique (PORT)
that improves the efficiency of analysis by exploring only
a relevant subset of the state-space when model-checking.
The tool also uses local time semantics [11] to increase
independence, being suited for the analysis of “read-execute-
write” component models.

B. Farkle
Farkle is a test execution environment that enables testing

an embedded system in its target platform. It uses LINX as
the Inter-Process Communication (IPC) protocol to provide
direct and asynchronous message passing between tasks.
This allows tasks to run on different processors or cores,
while utilizing the same message-based communication
model as on a single processor, but without using shared
memory. The messages that are passed between processes
(i.e., tasks) are referred to as signals. An example signal
definition is shown in Figure 3.

1 #define WHEEL_SPEED_SIG 1026
2 typedef struct WheelSpeedSignal{
3 SIGSELECT sigNo;
4 float WheelSpeed;
5 } WheelSpeedSignal;

Figure 3: Signal example

Using the signal passing mechanisms of LINX, Farkle
runs on a host machine and communicates with the target.
Hence, Farkle enables testing an embedded system by pro-
viding certain inputs to the target in the form of signals and
receiving the result as signals containing output values. The
test-scripts that are used to send and receive signals, and
also decide the verdict of a test-case are implemented in
Python. Moreover, in order for the signal passing mechanism
to work between the host and target, the host needs to also
have information about signal structures. For this purpose,
Farkle also generates signal definitions in Python from the
signal definitions of the application source code, which is
then imported and used in the Python test-script.

III. BRAKE-BY-WIRE CASE STUDY: FUNCTIONALITY
AND STRUCTURE

Through the paper we use the Brake-by-Wire (BBW)
system as a running example. Figure 2 shows the EAST-
ADL model of the BBW system at the analysis level. To
simplify, we have modeled only two out of the four wheels
of the system. The Brake Pedal Sensor reads the position
of the pedal and the Brake Torque Calculator computes
the desired braking force based on this value. Similarly, the
Wheel Sensor reads the rotation speed of the wheel. The
Global Brake Controller calculates the actual braking force
by updating the desired braking force based on the speed
of the wheels, and provides it to the ABS block, which
calculates the slip rate to decide if the braking force can
be applied without locking the wheel. Finally, the braking
force is applied by the Wheel Actuator.

The ABS fp calculates the slip rate s based on the
equation:

s = (v − w ×R)/v, (2)

where w is the rotation speed of the wheel, v is the speed
of the car, and R is the radius of the wheel. The friction
coefficient of the wheel has a nonlinear relationship with
the slip rate: when s starts increasing, the friction coefficient
also increases, and its value reaches the peak when s is
around 0.2. After that, further increase in s reduces the
friction coefficient. For this reason, if s is greater than 0.2
the brake actuator is released and no brake is applied, or
else the requested brake torque is used. Our goal is to
test whether the actual system implementation meets this
functional requirement.

IV. FROM EAST-ADL TO CODE VALIDATION:
METHODOLOGY OVERVIEW

This section overviews our model-based testing (MBT)
framework, which allows test-case generation starting from
EAST-ADL models, down to their execution on the sys-
tem under test (SUT). This framework follows the MBT

ViTAL

Extended Farkle

System

Designer

UPPAAL PORT Timed

Automata Models

EAST-ADL System Models

Import/ create models

fp

Port Port

fp

Port Port

Abstract Test-Cases

C Code

(SUT)
Concrete Test-Cases

Integration

Test case generation by model-

checking using UPPAAL PORT

Tester

Code implementation

Test Execution Engine

Pass/Fail

Verdict

Generation of

test scripts

Coverage Criterion

in TCTL

Requirements

Document

Formalize

requirements

Execution of

test scripts
Linx protocol

Developer

UPPAAL PORT Integrated

Formal Model

Figure 4: From ViTAL to Farkle: The Methodology

methodology [12], and it is implemented by a tool chain
consisting of ViTAL and Farkle, as depicted in Figure 4. We
assume three actors in the process: the System Designer, the
Developer, and the Tester. Their roles are explained below.

The System Designer performs the following actions:
• Imports the EAST-ADL model and creates the associ-

ated TA behavior to each EAST-ADL fp.
• Performs an automatic transformation from the EAST-

ADL + TA models to the input language of UPPAAL
PORT, in ViTAL. The result is the integrated abstract
formal model used for formal verification and test-case
generation by means of model-checking.

The Developer implements the code (here the SUT)
manually, based on the system’s integrated abstract formal
model (for which we define an executable semantics).

The Tester performs the following actions:
• Formalizes the system requirements manually into

TCTL properties, the query language of UPPAAL PORT.
Each requirement represents a testing goal, whereas
their collection is our coverage criterion.

• Generates abstract test-cases with UPPAAL PORT for
the integrated formal model, against the above formal-
ized criterion.

• Converts the abstract test-cases into concrete test-cases
automatically, by generating Python test-scripts exe-
cutable by Farkle.

• Executes the concrete test-cases against the SUT, to
obtain a pass or fail verdict, and also code-related
information (e.g., variable values).

The activities performed by the System Designer are part
of our previous work, and for further details we refer the
reader to our previous publication [7]. The next sections
provide details on semantics preserving code implementa-
tion (see Section V), as well as our method for test-case
generation from EAST-ADL models with TA semantics, up
to test-case execution on the SUT (see Section VI).

V. IMPLEMENTATION ACTIVITIES

The implementation is an important, labor intensive,
and error prone phase in the development process of any
software system. To ease the implementation process, we
are interested in providing guidelines that could help the
developers to implement C code, based on the EAST-ADL
system models extended with TA semantics. For this, we
introduce an executable semantics for UPPAAL PORT TA
that could serve as the basis of future code synthesis.

A. Executable Semantics of UPPAAL PORT TA

In principle, the TA behavior of an EAST-ADL block
can be non-deterministic. To obtain an implementation of
the EAST-ADL component whose behavior is modeled as
UPPAAL PORT TA, we need to define its deterministic

semantics that needs to be obeyed by the code. For this,
we adapt the approach proposed by Amnell et. al [13] for
task automata code synthesis, to UPPAAL PORT TA.

Similar to ordinary timed automata, the semantics of
an UPPAAL PORT timed automaton is given in terms of
a labeled transition system. Assume that the set of VD
variable valuations is ranged by v, the set of VC clock
valuations by u, and l stores the automaton’s current lo-
cation, l ∈ N ∪{l0, lf}. In addition, we say that a transition
trs = (l

g,e,r−−−→ l′) is enabled in state s = (l, u, v), denoted
by Enabled(trs,s), when its guard holds, that is, u, v |= g.

The non-determinism of the semantic representation of
the UPPAAL PORT TA stems from the internal, read, or
write actions, as well as from time-delays. As in previous
work on TA, we resolve non-determinism, as follows: (i) Let
Pr : E 7→ N be a function that assigns unique priorities to
each edge in the UPPAAL PORT TA. If several transitions
are enabled in a state, the function Pr establishes the order
in which the transitions are fired. This resolves the action
non-determinism; (ii) Time non-determinism is resolved by
implementing the maximal progress assumption [14], in
which delay transitions are forbidden if an action transition
is enabled. The TA should fire all the enabled transitions
until no enabled transition exists anymore.

In the following, we write (l, u, v)
e,r−−→ (l′, u′, v′) for a

state-changing discrete transition (internal, read, or write)
on which update actions in form of assignments e, or clock
resets r, occur. In case of a delay transition that does not
result in a state-change, we write (l, u, v)

t−→ (l, u′, v′),
where u′ = u+ t, and (u+ t) |= I(l) holds.

Definition 1 (Deterministic Semantics): Let
B = (N, l0, lf , VD, VC , r0, rf , Ed, I) be a UPPAAL
PORT TA behavior of an EAST-ADL component. Assuming
a function Pr that assigns priorities to TA edges, the
deterministic semantics of the component’s behavior is a
labeled transition system defined by the following rules:
• (l, u, v) e,r−−→ (l′, u′, v′) if Enabled(l

g,e,r−−−→ l′, (l, u, v)), and
there is no edge ∈ Ed such that Pr(edge) > Pr(l

g,e,r−−−→ l′)
and Enabled(edge, (l, u, v));
• (l, u, v)

t−→ (l, u + t, v′) if (u + t) |= I(l), and for all
edge ∈ Ed and d < t, ¬Enabled(edge, (l, u+ d, v)).

The above definition ensures conformance of the im-
plementation to the high-level behavioral model, since the
behavior defined by the deterministic semantics is a subset
of the UPPAAL PORT TA behavior. Hence, all the transition
sequences possible in the (deterministic) implementation
model are also possible in the original (possibly non-
deterministic) one, thus guaranteeing preservation of the
safety properties of the EAST-ADL behavioral TA model.
However, the code generation is not automated yet. Even if
the latter were achieved, the code might still need human
intervention in implementing primitives or aggregations that
would improve its performance. Hence, testing the code

itself cannot be avoided.

B. Implementing the System Model
We approach the problem of code implementation as

a mapping activity between the EAST-ADL system model
extended with TA behavior and C code. We propose a simple
1-to-1 mapping to code elements starting with the elements
of the EAST-ADL model focusing on: (i) components, (ii)
ports, (iii) connectors and (iv) triggering information. The
mapping is defined in Table I.

Table I: Mapping EAST-ADL fp’s interface to C code

EAST-ADL fp C Code
Component (block) C function
Port (input and output) Buffer of size 1
Connector Connection between buffers
Triggering information Function calls and time interrupts

This mapping provides guidelines for the structure of
the C code, which should also conform to the semantics
of Definition 1. For instance, for each fp in the EAST-
ADL model we will create a C function implementing its
behavior. Since the input and output data-flow ports can
store only the latest value of the corresponding variable,
the implemented C function will have a buffer of size 1 for
each port. This implies that the connection between a block’s
output ports and another one’s input ports is translated into
a link between buffers. The triggering information for each
fp is implemented as a function call or a time interrupt.
However, some of the features of the EAST-ADL model are
lost at the implementation level. For instance, the C code
does not respect the “read-execute-write” semantics of the
model.

The C code inside each function is implemented based on
the TA behavior. Each element in the TA tuple is mapped
to code elements according to Table II.

Table II: Mapping TA behavior to C code

TA model C code
data variables variables
clock variables variables of type long
locations state variables
clock reset (initial and final) assignment to zero
invariant while loop
enabled action selection if/case statement
action update assignment

Based on these rules and Definition 1, a complete imple-
mentation of the system can be obtained. The implemen-
tation conforms with the model. This conformance is an
important aspect in model-based testing, as the formal model
and the SUT need to be in close relation for the abstract test-
cases to really aid the generation of executable test-cases, in
a meaningful way.

VI. TESTING ACTIVITIES

In model-based testing, the formal model is a faithful
yet abstract representation of the intended system, based on
requirements and specification, and describes rigorously the
intended behavior using formal modeling notations. In our
framework, we employ ViTAL to create the formal model
starting from the architectural representation of the system
in EAST-ADL and describe the behavior of each fp as a
UPPAAL PORT TA model using the specific TA semantics.
In this section, we use such a model to generate abstract test-
cases with UPPAAL PORT automatically, followed by their
automatic conversion to Python scripts, and their execution
on the SUT.

A. Generation of Abstract Test-Cases in ViTAL

ViTAL employs UPPAAL PORT to automate the abstract
test-case generation and takes as input: (i) the abstract formal
model represented by the "UPPAAL PORT compliant" EAST-
ADL model with TA semantics, and (ii) a testing goal, i.e., a
functional requirement of the system (or a collection of such
requirements) formalized as a TCTL reachability property
(properties).

UPPAAL PORT is a model-checker designed for the sim-
ulation and the formal verification of component-based em-
bedded systems, and is not tailored for test-case generation.
However, we exploit its ability to automatically generate
witness traces for reachability properties specified in TCTL.
Such properties are encoded as E <> q, where E represents
the existential path quantifier, <> is the temporal operator,
and q is the goal state. The property can be read as follows:
there exists an execution path such that, eventually, the state
q is reached. The test goal guides the generation of a witness
trace from an infinite number of possible executions of the
system.

The witness trace is a sequence of states and transitions,
and it represents the abstract test-case (ATC) for the test
goal specified by the reachability property:

ATC , (l0, u0, v0)
a0−→ (l1, u1, v1)

a1−→ ...
an−1−−−→ (ln, un, vn)

In the above, the state of the system is defined by the current
locations li, data valuations ui and clock valuations vi in the
TA network that describes the system behavioral model. The
transition actions aj represent either delays, or internal TA
transitions, or the special read/write transitions from/to ports,
respectively.

For each test goal, the UPPAAL PORT model-checker
generates only one trace representing the execution of the
system from its initial state to the goal state encoded by the
reachability property. Such a trace represents our abstract
test-case with respect to a particular system requirement. A
collection of such abstract test-cases is provided to Farkle,
for further transformations and execution on the code.

B. Generation and Execution of Concrete Test-Cases in
Farkle

The abstract test-cases generated by ViTAL are provided
as input to the Extended Farkle environment (i.e., Farkle plus
Parser, etc.). The abstract test-cases are parsed and the order
of states and transitions, along with the values of variables
in each state, are identified. Based on this information a
test-script is created. The test-script basically creates signals
with values of variables at each state extracted by parsing the
abstract test-cases, which are then sent to the target system.
The initial values of variables that are sent to the target
system by the test-script, in form of signals, trigger the SUT
to execute and evolve through a set of states and transitions.
The information about the actual set of states and transitions
taken by the SUT during execution is collected and sent
back to the script (again in form of signals). An important
contribution here is that we enable tracking of state changes
at runtime by implementing the code based on the formal
models. In other words, a switch-case structure is used and
some variable keeps track of the current system state, and
changes accordingly when moving to a different state.

The test-script receives the result, that is, the information
on the set of states and transitions, as well as the values of
variables at each state. This information, collected during
execution and at runtime, is then used to compare the actual
order of states and transitions against the expected one
originated from the models and specified in the abstract test-
case. If any discrepancy between the actual and expected
orders of traversed states and transitions (with the option
of also checking the expected values of variables) is found,
the test result is evaluated to fail, otherwise a pass verdict is
issued. In other words, it is checked that, based on the given
inputs, the exact same order of states as in the trace and
abstract test case appears at runtime, during the execution
of the system.

In the above steps, the generation of executable test-scripts
is based on the following principles:
• For each variable (in the UPPAAL PORT TA), we

create an array containing all of its expected values, re-
spectively, at each state and in the exact same order as
it appears in the abstract test-case, as follows: <statema-
chine_name>_<variable> = [x,..,y].
• The initial values of variables are used in the structure

of a signal, which is then sent to the target.
• We define an additional array to preserve the order of

states, in the form of: <statemachine_name>_state = [x,..,y];
e.g., line 18 in Figure 8, where the numbers serve as IDs, and
each represents a unique state in the automaton, respectively.
• Based on the number of states, we create a loop in the

script.
• Inside the loop, we add assertion statements for each

variable, e.g., line 28 in Figure 8, to check its expected value
at the current state versus its received value at that state,

which is retrieved from the log information sent back from
the target (in the form of a signal), respectively.
• An additional assertion statement is used in a similar

way, for checking the actual order of visited states in the
code, versus the expected ones in the model.

Basically, this allows to verify the internal state of the
system, and to determine whether it is behaving as expected
(as specified in the models) or not. Moreover, it makes
it possible to determine exactly between which states a
deviation from the expected behavior has occurred. This
mechanism provides a defect localization feature as well.
In other words, testers can get some insight into the vicinity
of a problem in the code, which can ease debugging and
fixing that respective problem.

VII. BRAKE-BY-WIRE REVISITED: APPLYING THE
METHODOLOGY

We illustrate and exercise the applicability of our approach
on the BBW system, introduced in Section III.

A. Creating the formal model

Entry

CalcSlipRate

Exit
v>0 []

v==0 [torqueABS=0]

v<5*(v-w*R) [torqueABS=0]

v>=5*(v-w*R) [torqueABS=wheelABS]

Figure 5: The TA description of the ABS function.

In ViTAL, we have imported the EAST-ADL model de-
scribed in Section III and created nine TA describing the
behavior of each EAST-ADL fp, respectively. Figure 5 shows
the behavior of the pABSFL fp as an UPPAAL PORT TA
model.

The functionality of the timed automaton is described as
follows. First, the speed of the car is evaluated; if the car has
no speed then no brake force is applied which corresponds to
transversing the edge annotated with v == 0[torqueABS =
0], otherwise the slip rate is evaluated. If the slip rate exceeds
0.2, no braking force should be applied to not block the
wheel. In our TA model, we are evaluating s > 0.2 as v <
5× (v − w ×R).

Table III: Mapping TA variables to EAST-ADL ports

TA variable EAST-ADL port
w WheelSpeed_rpm_FL
wheelABS RequestedTorque_FL
torqueABS ABSTorque_FL
v VehicleSpeed_kmph_FL

In ViTAL, the TA local variables need to be mapped to
the EAST-ADL ports shown in Figure 2. This mapping is

presented in Table III. Next, ViTAL performs an automatic
transformation to the input language of UPPAAL PORT. At
this point, we can use the UPPAAL PORT model-checker to
simulate and formally verify the model against its require-
ments. Once the correctness of our model is ensured, we
start generating test-cases.

B. Code implementation

Based on the guidelines of Section V, we have imple-
mented the code for the BBW system. A section of the code,
depicting the functionality of the ABS component is shown
in Figure 6.

1 void mbatAbs_calc(MbatAbsInput* input, void* hdl)
2 { state = Idle;
3 /* Internal variables of automaton */
4 float s;
5 /* Output variables */
6 U32 TorqueABS=0;
7

8 state = Entry;
9 while(state != Exit) {

10 switch(state) {
11 case Entry: {
12 if(input->v > 0) {state=CalcSlipRate; }
13 else
14 if(input->v == 0) { TorqueABS=0; state=Exit; }
15 else { // Error }
16 break; }
17 case CalcSlipRate: {
18 s = (float)(input->v-input->w*input->R)/input->v;
19 if(s > 0.2) { TorqueABS=0; }
20 else { TorqueABS=input->WheelABS; }
21 state = Exit;
22 break; }
23 case Exit: { break; } }
24 printf(" Tracing ABS calculation state:%d\n",
25 state);
26 mbatAbs_transition(state, input->w, input->WheelABS,
27 input->v, TorqueABS, input->R,
28 (MBAT_TRC*)hdl);
29 state = Idle; } }

Figure 6: Implementation of the ABS component

Each location in the TA model depicted in Figure 5
represents a possible value of the variable state, which is
initially set to Entry. While state is different from Exit,
the code implements all the possible computations of the
TA, e.g., if v == 0 then torqueABS is set to zero. Note
that time is not considered in this implementation, so all
transitions are taken instantly.

C. Testing goal

In this paper, we focus on one of the requirements of
the ABS function, which states that: “If the brake pedal
is pressed and a wheel has a slip rate > 20%, then the
brake torque for that wheel should be set to 0 N/m2”. The
requirement is expressed in TCTL as follows:
E <> (BrakePedalSensor.pos > 0 and ABS.v < 5×
(ABS.v −ABS.w ×ABS.R) and WheelActuator.NoBrake)

D. Abstract test-case generation

As presented in Section VI-A, we employ UPPAAL PORT
to generate abstract test-cases from the abstract model pre-
viously constructed. The model-checker takes as input the
formal model together with the test goal specified as the
TCTL reachability property above.

1 State:(ABSFL.idle)
2 ABSFL.w=0 ABSFL.wheelABS=0 ABSFL.torqueABS=-1
3 ABSFL.v=0 ABSFL.R=1/2
4 Transitions: ABSFL.idle->ABSFL.Entry { w:= 8, wheelABS:= 1,
5 v:= 12}
6 State:(ABSFL.Entry)
7 ABSFL.w=8 ABSFL.wheelABS=1 ABSFL.torqueABS=-1
8 ABSFL.v=12 ABSFL.R=1/2
9 Transitions: ABSFL.Entry->ABSFL.CalcSlipRate { v> 0}

10 State:(ABSFL.CalcSlipRate)
11 ABSFL.w=8 ABSFL.wheelABS=1 ABSFL.torqueABS=-1
12 ABSFL.v=12 ABSFL.R=1/2
13 Transitions: ABSFL.CalcSlipRate->ABSFL.Exit
14 { v< 5* (v- w* R), torqueABS:= 0 }
15 State: (ABSFL.Exit)
16 ABSFL.w=8 ABSFL.wheelABS=1 ABSFL.torqueABS=0
17 ABSFL.v=12 ABSFL.R=1/2
18 Transitions: ABSFL.Exit->ABSFL.idle { }
19 State:(ABSFL.idle)
20 ABSFL.w=8 ABSFL.wheelABS=1 ABSFL.torqueABS=0
21 ABSFL.v=12 ABSFL.R=1/2

Figure 7: Abstract Test-Case

The UPPAAL PORT model-checker generates the witness
trace presented in Figure 7 automatically. The trace repre-
sents the execution of the pABSFL fp. Initially, the TA is in
location idle and all variables are zero. The first transition
to state Entry is a read transition, where the latest variable
values of w, wheelABS, and v are read. Since v > 0, the
TA moves to the CalcSliprate location. On the transition
to Exit, the torqueABS variable is set to zero, and after
the write transition, the TA returns to the idle location.

Model-checking this particular instance has involved ex-
ploring 154182 states out of 203384 stored ones, and the
abstract test-case generation took 3.27 seconds on a 1.8 GHz
Intel Core i5 processor, with 8 GB of RAM memory.

E. Python scripts generation

From the abstract test-case of Figure 7, the input variable
values determining transitions in the TA model are identified
automatically, and a Python test-script is generated. When
executed by Farkle on the host system, the script sends
the signals representing those input values to the target. An
excerpt of the generated script is shown in Figure 8. Lines
6-10 in the script set the content of the input signal with
the initial variable values, whereas line 11 encodes sending
the signal to the target. The expected values of variables, as
well as the expected order of visited states are defined in
lines 13-18, according to the principles described in Section
VI-B. The log information sent back to the host, from the
target, in the form of a signal is then received (line 20).
Again, following the aforementioned principles, a set of

assertion statements for checking the returned values versus
the expected values are also generated as the body of a loop,
depicted in lines 23-39 of the script.

1 import sys
2 import signals
3 import xmlrunner
4 ...
5 # Sending input signal to ABSFL
6 sig_send_ABSFL = signals.ABSFL_INPUT_SIG()
7 sig_send_ABSFL.input.ABSFL_w = 8
8 sig_send_ABSFL.input.ABSFL_v = 12
9 sig_send_ABSFL.input.ABSFL_wheelABS = 1

10 sig_send_ABSFL.input.ABSFL_R = 1
11 self.linx.send(sig_send_ABSFL, self.pid_ABSFL)
12 # Expected values
13 ABSFL_w = [8, 8, 8]
14 ABSFL_wheelABS = [1, 1, 1]
15 ABSFL_torqueABS = [-1, -1, 0]
16 ABSFL_v = [12, 12, 12]
17 ABSFL_R = [0.5, 0.5, 0.5]
18 ABSFL_state = [1, 2, 3]
19 # Receive signals from test targets
20 sig_recv_ABSFL = self.linx.receive
21 ([signals.ABSFL_OUTPUT.SIGNO])
22 # Testing of ABSFL
23 for i in range(sig_recv_ABSFL.num_states):
24 print "Transition %d:" %(i+1)
25 self.assertEqual(sig_recv_ABSFL.states[i].state,
26 ABSFL_state[i])
27 print " state = %d" %sig_recv_ABSFL.states[i].state
28 self.assertEqual(sig_recv_ABSFL.states[i].w, ABSFL_w[i])
29 print " w = %d" %sig_recv_ABSFL.states[i].w
30 self.assertEqual(sig_recv_ABSFL.states[i].wABS,
31 ABSFL_wABS[i])
32 print " wheelABS = %d" %sig_recv_ABSFL.states[i].wheelABS
33 self.assertEqual(sig_recv_ABSFL.states[i].tABS,
34 ABSFL_tABS[i])
35 print " torqueABS = %d"
36 %sig_recv_ABSFL.states[i].torqueABS
37 self.assertEqual(sig_recv_ABSFL.states[i].v, ABSFL_v[i])
38 print " v = %d" %sig_recv_ABSFL.states[i].v
39 self.assertEqual(sig_recv_ABSFL.states[i].R, ABSFL_R[i])
40 print " R = %d" %sig_recv_ABSFL.states[i].R
41 ...

Figure 8: Generated Python script

When the test-script is executed, an input signal is sent
to the target. Upon the receipt of a signal, the process to
which the signal is sent starts executing. The different states
that a process enters are tracked and logged at runtime and
during the execution of the code. This information is then
sent back to the script, where it is checked whether the order
of the states at runtime and also the value of variables after
each state change match the specification in the abstract test-
case generated from the TA models. To enable tracking of
different states at runtime, the code is implemented in the
form of deterministic state-machines, as shown in Figure 6.
The Python script of Figure 8 delivers a "pass" verdict on
the implementation of Figure 6.

F. Conformance between the abstract test-case and the
Python script

Our abstract test-case presented in Figure 7 can be repre-
sented operationally by a sequence of states and transitions
as follows:

(idle, w = 0, wheelABS = 0, torqueABS = −1, v = 0, R = 1/2)
read(v,wheelABS,v)−−−−−−−−−−−−−−→
(Entry, w = 8, wheelABS = 1, torqueABS = −1, v = 12, R = 1/2)
v>0−−−→
(CalcSlipRate, w = 8, wheelABS = 1, torqueABS = −1, v = 12, R = 1/2)
v<5∗(v−w/R),torqueABS=0−−−−−−−−−−−−−−−−−−−−−→
(Exit, w = 8, wheelABS = 1, torqueABS = 0, v = 12, R = 1/2)
write(torqueABS)−−−−−−−−−−−−−→
(idle, w = 8, wheelABS = 1, torqueABS = −1, v = 12, R = 1/2)

In a similar manner, the Python scripts give rise to the
following:
(ABSFL_state = 1, ABSFL_w = 8, ABSFL_wheelABS = 1,

ABSFL_torqueABS = −1, ABSFL_v = 12, ABSFL_R = 1/2)
v>0−−−→
(ABSFL_state = 2, ABSFL_w = 8, ABSFL_wheelABS = 1,

ABSFL_torqueABS = −1, ABSFL_v = 12, ABSFL_R = 1/2)
v<5∗(v−w/R),torqueABS=0−−−−−−−−−−−−−−−−−−−−−→
(ABSFL_state = 3, ABSFL_w = 8, ABSFL_wheelABS = 1,

ABSFL_torqueABS = 0, ABSFL_v = 12, ABSFL_R = 1/2)

In the above we have the following: the Entry state in the
TA model is ABSFL_state = 1 in the Python script. Given
this, we observe that the trace generated from executing the
Python script is included in the trace generated by executing
the TA model. Thus, it follows that we can actually use the
Python script as a concrete test-case on the SUT, so the
abstract test-case of Figure 7 has proven to be a feasible
abstract test-case candidate.

VIII. RELATED WORK

Model-based testing by model-checking is a technique
introduced almost fifteen years ago [15] as an efficient way
of using a model-checker to interpret traces as test-cases.
Some approaches to testing with model-checkers are applied
on real-time reactive systems. Hessel et al. have proposed
test-case generation using the UPPAAL model-checker for
real-time systems [1] using timed automata specifications.
In comparison, in our work we provide an approach suited
to an architectural description language, and we offer an
end-to-end tool-chain with support for test-case generation
and execution.

Over the last few years, researchers in the software testing
community have been investigating how design components
and architecture description languages (ADLs) can be used
for testing purposes. This led several research groups to
develop concrete testing techniques for ADLs[16], [17],
[18]. Our framework allows the formal specification of both
the interface, and the internal behavior of each EAST-ADL
block as UPPAAL PORT TA. In addition, in this work we
have provided functional test goals to be considered by
the UPPAAL PORT model-checker, defined an executable
semantics for the UPPAAL PORT TA, and described a method
for generating code that preserves the semantics of the TA
model.

While a number of groups have made a distinction be-
tween abstract and concrete test cases [19], [20], [21], there
are also differences in each case. For instance, Peleska
[20] has proposed the RT-Tester tool-suite along with the
corresponding methodology, and discussed the two types
of test-cases, abstract and executable. The major goal in
RT-Tester is to execute test-cases against the models of
the system. In our work, we have introduced an approach
that generates abstract test cases and then concrete ones,
which the latter are actually executable against the running
system in its target environment. In [22] based on a subset
and preliminary version of the approach (which is extended
here in this work) and focusing only on the concrete test
cases part, we have discussed how having such executable
test scripts to test the system behavior also serves as a
method to verify architectural consistency. Finally, it is worth
noting that there are different static analysis methods that
can be applied to ensure that expected properties in a system
hold, thus increasing confidence in its correctness. However,
despite the application of such methods, there are still
situations/systems where the results of such analysis may
be invalidated at runtime due to different factors [23], [24].
In this work, we have tackled this issue by complementing
formal verification of the system at the model level with the
testing of its behavior at runtime.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a methodology for
testing system implementations, starting from EAST-ADL
architectural models that are extended by TA behavioral
models. The methodology is supported by a tool-chain
consisting of ViTAL and Farkle, which can produce and
run test-cases automatically. The abstract test-cases for
functional requirements result by model-checking the “TA
enriched” EAST-ADL models in UPPAAL PORT. Next, such
test-cases are transformed into Python scripts representing
the executable test-cases that are finally run on the actual
code that is implemented based on the (verified) formal
model. Our work is an attempt to exercise the feasibility of
test-case generation from EAST-ADL models. The method
has shown encouraging results when applied on a Brake-
by-Wire prototype from Volvo. As future work, we plan
to also investigate abstract test-case generation for timing
properties of EAST-ADL models, and integrate the results
in our methodology. In addition, we envision extending our
work towards other ADLs.

ACKNOWLEDGMENT

The authors would like to thank Elaine Weyuker for her valuable
comments on this work. This research has received funding from the
ARTEMIS JU, grant agreement number 269335, and from VINNOVA, the
Swedish Governmental Agency for Innovation Systems, within the MBAT
project, and also partially from the Swedish Knowledge Foundation (KKS)
through the ITS-EASY industrial research school.

REFERENCES

[1] A. Hessel, K. Larsen, B. Nielsen, P. Pettersson, and A. Skou,
“Time-Optimal Real-Time Test Case Generation Using UP-
PAAL,” in Lecture Notes in Computer Science, Formal Ap-
proaches to Software Testing. Springer Berlin Heidelberg,
2004, pp. 114–130.

[2] T. Jan, “Model based testing with labelled transition systems,”
in Formal methods and testing. Springer, 2008, pp. 1–38.

[3] M. Satpathy, M. Leuschel, and M. Butler, “Protest: An
automatic test environment for b specifications,” Electronic
Notes in Theoretical Computer Science, vol. 111, pp. 113–
136, 2005.

[4] R. Alur and D. L. Dill, “A theory of timed automata,”
Theoretical computer science, vol. 126, no. 2, pp. 183–235,
1994.

[5] A. Agrawal, G. Simon, and G. Karsai, “Semantic translation
of simulink/stateflow models to hybrid automata using graph
transformations,” Electronic Notes in Theoretical Computer
Science, vol. 109, pp. 43–56, 2004.

[6] J. Håkansson and P. Pettersson, “Partial order reduction for
verification of real-time components,” in Formal Modeling
and Analysis of Timed Systems. Springer, 2007, pp. 211–
226.

[7] E.-Y. Kang, E. P. Enoiu, R. Marinescu, C. Seceleanu, P.-
Y. Schobbens, and P. Pettersson, “A methodology for formal
analysis and verification of east-adl models,” Reliability En-
gineering & System Safety, vol. 120, pp. 127–138, 2013.

[8] J. Håkansson, J. Carlson, A. Monot, P. Pettersson, and
D. Slutej, “Component-based design and analysis of embed-
ded systems with uppaal port,” in Automated Technology for
Verification and Analysis. Springer, 2008, pp. 252–257.

[9] Daniel Digerås, “Integration between Optima and Farkle and
verification with a use case about file storage stack integration
in a quality of service manager in OSE - Master Thesis,”
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:624122,
April 2011.

[10] T. A. ATESST2 Consortium, “EAST-ADL Pro-
file Specification, 2.1 RC3 (Release Candidate).”
www.atesst.org, 2010, pp. 10–75. [Online]. Available:
www.atesst.org/home/liblocal/docs/

[11] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi, “Partial order
reductions for timed systems,” in CONCUR’98 Concurrency
Theory. Springer, 1998, pp. 485–500.

[12] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of
model-based testing approaches,” Software Testing, Verifica-
tion and Reliability, vol. 22, no. 5, pp. 297–312, 2012.

[13] T. Amnell, E. Fersman, P. Pettersson, H. Sun, and W. Yi,
“Code synthesis for timed automata,” Nord. J. Comput.,
vol. 9, no. 4, pp. 269–300, 2002.

[14] W. Yi, “Ccs+ time= an interleaving model for real time sys-
tems,” in Automata, Languages and Programming. Springer,
1991, pp. 217–228.

[15] A. Engels, L. Feijs, and S. Mauw, “Test generation for
intelligent networks using model checking,” in Tools and
Algorithms for the Construction and Analysis of Systems.
Springer, 1997, pp. 384–398.

[16] A. Bertolino and P. Inverardi, “Architecture-based software
testing,” in Joint proceedings of the second international
software architecture workshop (ISAW-2) and international
workshop on multiple perspectives in software development
(Viewpoints’ 96) on SIGSOFT’96 workshops. ACM, 1996,
pp. 62–64.

[17] H. Muccini, P. Inverardi, and A. Bertolino, “Using software
architecture for code testing,” Software Engineering, IEEE
Transactions on, vol. 30, no. 3, pp. 160–171, 2004.

[18] H. Reza and S. Lande, “Model based testing using software
architecture,” in Information Technology: New Generations
(ITNG), 2010 Seventh International Conference on. IEEE,
2010, pp. 188–193.

[19] C. Nebut, F. Fleurey, Y. Le-Traon, and J.-M. Jezequel, “Auto-
matic test generation: a use case driven approach,” Software
Engineering, IEEE Transactions on, vol. 32, no. 3, pp. 140–
155, 2006.

[20] J. Peleska, “Industrial-strength model-based testing - state of
the art and current challenges,” in Proceedings of the Eighth
Workshop on Model-Based Testing, March 2013, pp. 3–28.

[21] W. Prenninger, M. El-Ramly, and M. Horstmann, “Chap-
ter 15: Case studies,” in Model-Based Testing of Reactive
Systems: Advanced Lectures (Lecture Notes in Computer
Science), M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner, Eds. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2005.

[22] M. Saadatmand, D. Scholle, C. W. Leung, S. Ullström, and
J. F. Larsson, “Runtime verification of state machines and
defect localization applying model-based testing,” in Proceed-
ings of the WICSA 2014 Companion Volume. ACM, 2014.

[23] M. Saadatmand, A. Cicchetti, and M. Sjödin, “Design of
adaptive security mechanisms for real-time embedded sys-
tems,” in Proceedings of the 4th international conference on
Engineering Secure Software and Systems (ESSoS). Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 121–134.

[24] S. Chodrow, F. Jahanian, and M. Donner, “Run-time monitor-
ing of real-time systems,” in Real-Time Systems Symposium
(RTSS), 1991. Proceedings., Twelfth, 1991, pp. 74–83.

