e
MRTC .’

MALARDALENS HOGSKOLA
Report

Combining Dynamic and
Static Scheduling in
Hard Real-Time Systems

Jukka Maki-Turja Mikael Sjodin

jukka.maki-turjae@mdh. se mikael.sjodin@mdh. se

October 2002
MRTC Report no. 71

MRTC

: www.mrtc.mdh.se
MALARDALEN REAL-TIME

RESEARCH CENTRE ISSN 1404-3041 ISRN MDH-MRTC--71--SE

Combining Dynamic and Static Scheduling in
Hard Real-Time Systems

Jukka Méki-Turja Mikael Sjodin
Milardalen Real-Time Research Centre

Technical Report: MRTC-71

Contact author:

Malardalen Real-Time Research Centre
Jukka Maki-Turja
Box 883

SE-721 23 Visteras
Sweden

email: jukka.maki-turja@mdh.se
phone: +46 21 101 466

Abstact

We present a method to calculate response times for dynamically
scheduled tasks that execute “in the background” of a static cyclic
scheduled functions. The method will allow hard real-time sys-
tems designers to use both static cyclic scheduling and dynamic
(fixed priority) scheduling within one system, thus significantly
simplifying the design tradeoff of which scheduling paradigm to
use.

In a case study we show how the method can be used to guarantee
timeliness of functions moved from a static schedule to dynamic
scheduled tasks, thus saving computing resources and allowing
more functions to be added to the system.

OThis work has been partially supported by Volvo Technical Development within the
EAST/EEA project.

1 Introduction

This paper presents a method to calculate response times for dynamically
scheduled tasks that are executed “in the background” of a static cyclic
schedule. The method can be used to migrating functions from a static
cyclic schedule (where functions sometimes consume excessive resources) to
dynamically scheduled tasks, while still guaranteeing the timeliness of these
functions.

In real-time systems, scheduling of CPUs and communications media can be
classified into two categories:

e Static scheduling, where a schedule is produced off-line. The schedule
contains all scheduling decisions, such as when to execute each task or to
send each message. Static scheduling is sometimes referred to as time-
triggered scheduling.

e Dynamic scheduling, where scheduling decisions are made on-line by a run-
time scheduler. Typically some task attributes (such as priority and dead-
line) are used by the scheduler to decide what task to execute. The sched-
uler implements some queueing discipline, such as fixed priority scheduling
or earliest deadline first. Dynamic scheduling is sometimes referred to as
event-triggered scheduling.

Both approaches have their virtues, and deciding which approach to use
always includes a lot of tradeoffs. Some typical properties of static scheduling
are:

e [t is easy to verify that timing requirements are met.

e Synchronisation between tasks is resolved off-line, and hence poses no run-
time overhead.

e It provides a high degree of determinism (which makes it easy to reproduce
executions during testing).

e It is difficult/time-consuming to construct a schedule (especially for dis-
tributed systems where a set of synchronised schedules have to be con-
structed).

e Unless care is taken at design time, there is a high risk that the size of the
schedules becomes unreasonable large.

e Once a schedule have been found, it may be very difficult to add new tasks
to the schedule.

e Limited possibilities to respond to dynamic events in the environment.

e Resources may be wasted on polling and redundant computing due to lim-
itations when constructing a schedule. (For instance, the schedule length,

often in the order of some 10-100ms, gives the longest possible time between
two pollings of an event that may only occur once every few seconds.)

Some typical properties of dynamic scheduling are:

e Finding the scheduling attributes to ensure that timing requirements are
met may be difficult.

e To asses that timing requirements will be met in all circumstances is not
trivial. However, a large set of methods does exists, [ABD*95, SSNB95|.

e [t is easy to add new tasks to a system without having to rebuild a schedule.
e Handling of dynamic events is easy.

e No resources have to be wasted on redundant polling of the environment.

Since both scheduling paradigms have both pros and cons, making the deci-
sion of which to use is non trivial. Indeed, within a system, some sub-systems
may be best suited for implementation using one paradigm, while other sub-
systems are best suited for implementation using the other paradigm.

This conflict is clearly illustrated by the last few years development of field
busses for automotive applications. The Controller Area Network (CAN)
[CAN92]| has the last years been predominant in the automotive industry.
CAN provides dynamic scheduling (using fixed priority scheduling). How-
ever, the automotive industry felt a need for a more dependable and pre-
dictable bus architecture. So when Kopetz presented the Time Triggered
Protocol (TTP) [KG94, TTT|, which provides static scheduling, many auto-
motive manufacturers and their sub-contractors embraced the new technol-
ogy.

However, it was soon recognised that TTP was a bit too static. Hence, a
consortium of automotive manufacturers and sub-contractors started the de-
velopment of FlexRay [Flx|, which provides both static and dynamic schedul-
ing. On the other hand, efforts to make CAN less dynamic (and hence more
predictable) has been made. For instance, Time-Triggered CAN (TT-CAN)
[FMD™00] gives a method to apply static cyclic scheduling on standard CAN
equipment. Also, in the case of TT-CAN, the need to incorporate dynamic
scheduled messages was recognised. Hence, the Flexible Time-Triggered CAN
(FTT-CAN) [AFF99, PA0O] has been proposed as a method to combine the
both scheduling paradigms.

Also, on the operating-system side, products that support both static and
dynamic scheduling have emerged. For instance, Arcticus Systems’ [Arcal
operating system Rubus [Arcb|, and the free real-time operating system As-
terix [Ast].

Thus, we see that the need to combine static and dynamic scheduling have
led to some practical solutions available today. However, one problem with

systems that tries to combine static and dynamic scheduling is that they
often consider the dynamic part as non real-time, e.g. [Flx, Arcb]. That
is, the dynamic scheduled tasks/messages are not given any response-time
guarantees, only a best-effort service is provided. However, in order to fully
utilise the potential of combining static and dynamic scheduling in real-time
systems, both the dynamic and the static parts need to be able to provide
response-time guarantees. The ability to guarantee responsiveness to dynam-
ically scheduled tasks/messages is crucial to allow migration of functions from
(the expensive, resource demanding) static scheduled subsystems into (the
more flexible and light-weight) dynamically scheduled subsystems.

The possibility to selectively migrate functions from static scheduled legacy-
systems to dynamic scheduled systems will substantially facilitate for compa-
nies to gradually move into the area of dynamic scheduling, and thus, in the
long run, help companies to use cheaper hardware for, or fit more functions
into, their products.

The main contributions of this paper are:

e We develop a novel task model that is able to model static schedules and
dynamically scheduled tasks, and

e we present a corresponding response-time formula for calculating response
time guarantees for tasks in our model.

e In a case study, we illustrate the industrial motivation for, and the benefits
of, combining static and dynamic scheduling strategies in the same system.

Paper Outline: Next, in section 2 we formally describe the problem studied
in the paper. In section 3 we present our novel task model and response-time
analysis, and in section 4 we illustrate how the analysis can be used to migrate
functions from a static schedule, in order to free up system resources. Finally,
in section 5 we present our conclusions and outline future work.

2 Problem Formulation

In this paper we address the problem of giving response-time guarantees to
dynamically scheduled tasks when those tasks are scheduled “in the back-
ground” of statically scheduled tasks. That is, we assume that the statically
scheduled task will take priority over dynamically scheduled tasks. However,
we will allow preemption of the statically scheduled tasks by interrupts.

The system model contains:

e Interrupts. There may be multiple interrupt levels, so an interrupt may
be interrupted by a higher level interrupt.

e A static cyclic schedule:

o The schedule has a length (a duration) that is equal to the LCM (least
common multiple) of all function periods that are statically scheduled.
The schedule is constructed off-line by some scheduling tool.

o A set of functions are scheduled in the schedule. Each function has a
known worst case execution time (WCET).

o Fach function is scheduled at an offset relative to the start of the sched-
ule.! This is also referred to as a function’s release time.

o The static cyclic scheduler executes each function in the schedule at its
release time. When the whole schedule has been executed the schedule
is restarted from the beginning.

Interrupts may preempt the execution of the static scheduled functions.

It should be noted that many scheduling tools can coalesce set of functions
into function chains (e.g. the Rubus scheduler [Arcb]). In a function chain
all functions are executed “back-to-back” and only the start of the function
chain is assigned a release time in the schedule. For the purpose of this
paper we will treat a function chain as a single function with WCET equal
to the sum of the WCETs of each function in the function chain.

In this paper we assume that a static cyclic schedule has been constructed
prior to the analysis of dynamic tasks is performed. Furthermore, we
assume that the schedule is valid even if its functions are preempted by in-
terrupts. How a scheduler can generate a feasible schedule, with interfering
interrupts, is described in [SEF98|.

e A set of tasks that are dynamically dispatched. We call each such task
a dynamic task. These tasks executes in the time slots available between
interrupts and static scheduled functions. Dynamic tasks are scheduled by
a fixed priority scheduler. Tasks are assumed to be periodic or, at least,
to have a known minimum time between two invocations. (Section 3.1.1
explains the task model in greater detail.)

In this paper we will present a method to calculate the worst case response-
time for each dynamic task.

Traditionally, in this kind of system the dynamic tasks are assigned to non
time-critical functions. The time-critical functions are all allocated in the
static schedule. The reason for this partitioning has been that no method to
calculate the response-time for dynamic tasks has existed.

1Some static cyclic schedulers allow the functions to overlap in time, i.e. one function
may have a WCET that is longer than the time between its offset and its succeeding
function. In those cases the scheduler may choose either to preempt the first function
and run the second function at its scheduled time, or it may place the second function
in a queue and execute it when the first function completes. The methods presented in
this paper are applicable regardless if overlap is allowed and regardless if preemption or
queueing is used.

3 Calculating the Response Time

In this section we will present our novel method to calculate response times
for dynamic tasks. We will, for clarity, do this in three steps: first we will
reformulate the classical response-time analysis. Second, we show how to
calculate the response times when a particular form of static schedule is used
(i.e. a schedule using the major/minor cycle paradigm). Finally, we present
a response-time analysis for dynamical task running in the background of
any static cyclic schedule.

3.1 Recapitulating Response-Time Analysis

Classical response-time analysis uses an extended version of the original Liu
and Layland task model [LL73[, that we describe below. Unlike Liu and Lay-
land’s rate monotonic approach, where a utilisation bound is used, response-
time analysis provides a both necessary and sufficient schedulability test.

3.1.1 as ode

In the classical response-time analysis (see e.g. [BW96, ABD195]) we assume
a fixed priority scheduler (i.e. a dynamic scheduler that always executes the
highest priority eligible task).

Each task ¢ is assumed to be a periodic task with the following attributes:

C; The Worst-Case Execution-Time (WCET) of the task. Engblom gives an
overview of methods to calculate the WCET [Eng02].

T; The period of the task. Tasks are assumed to be periodic or, at least, to
have a known minimum time between two consecutive invocations.

B; The maximum blocking time (i.e. the maximum time to wait for a lower
priority task that has locked a resource). In order to calculate the block-
ing time for a task, usually, a resource locking protocol like priority ceiling
or immediate inheritance is needed. Buttazzo presents algorithms to cal-
culate blocking times for different resource locking protocols [But97].

J; The maximum jitter (i.e. max deviation from ideal periodicity).
D, The deadline of the task.
Additional attributes for tasks that will be used in this paper are:

P; The priority of the task. Priorities can be assigned with any method (e.g.
rate monotonic or deadline monotonic). If a task ¢ has higher priority
than a task j, then P, > P;.

R; The worst-case response-time (as derived by the response-time analysis,
see section 3.1.2).

In this paper it assumed that:

OCZ‘>0,I@‘>O,DZ‘>O.
e B, >0,J;>0.

o P, # P;ifi+# j (i.e. unique task priorities).

e D; < T;—J; (i.e. the deadline is less that the time between two consecutive
invocations of a task).

The two lTast assumption above could be removed using elsewhere published
techniques (see e.g. [Tin94, AKA94, ABD'95]). The techniques presented
later in this paper could be applied also without these assumptions. However,
since these assumptions significantly simplifies the response-time equations
we will, for pedagogical reasons, keep them throughout this paper.

A set of tasks is said to be schedulable if R; < D; for each task . Hence, the
problem to decide if a set of tasks is schedulable is reduced to calculating the
response-time, R;, for each task.

3.1.2 Response-Time Equations

For the model above, the formula for calculating the response-time for a
task i is [ABD195]:

R, =B, +C; + Z execution_ demand(j, R;)

je{z:Pr>Pi}

execution_ demand(j,t) = occurrences(j, t) * C;
t+J;
7|

occurrences(j, t) = [
(1)

Where ezecution_ demand(j,t) denotes the maximum execution demand task
J can generate in an interval ¢, and occurrences(j,t) denotes the maximum
number of times a task j can arrive during an interval ¢.

However, since R; cannot be isolated on one side of the equality the following
iterative solution method is used:

R;’H-l =B, +C,+ Z execution demand(j, R?)
je{z:Pr>P;}

where R? = 0 and R; = R? when R = R,

3.2 Simple Static Cyclic Schedules

In this subsection we consider a restricted variant of static cyclic schedules.
Here we assume that the whole schedule, called the major cycle, is divided
into a number of equal sized sections, called minor cycles. Functions are
only scheduled at the start of minor cycles. In the case where more than one
function is to be executed within a minor cycle, these functions are coalesced
into a single function chain, that is scheduled for the start of the minor cycle.
Figure 1 shows a schedule with major cycle of 20 time units and a minor cycle
of 5 time units.

. |

| | |
0 5 10 15 20

Figure 1: Example of major/minor cycle schedule

Dynamic Task I |

3 Interrupt |
-O E p X O K2 I
cC .=
S -
0w C .
< O Static Schedule —| —| I
S = |
- -
< ®
< X

i

—

Execution Pattern Eﬂ W |

0 5 10 15 20

Figure 2: Example execution scenario

In figure 2 we see an example of how the execution could look like when exe-
cuting the schedule from figure 1, with one interrupt source and one dynamic
scheduled task. We make the observation that both interrupts and the static
schedule act like higher priority tasks from the dynamic task’s point of view.

We could use the response-time equation in section 3.1.2 to calculate the
interference caused by the static schedule on the dynamic task. A safe, but
overly pessimistic, way would be to make the static schedule a high priority
task with attributes C; = 4 (where 4 is the maximum time allocated for any
function in the schedule) and T; = 5 (where 5 is the minor cycle time). Then

we could use the equation in section 3.1.2 to calculate response-times for each
dynamic task. However, this would be overly pessimistic, and in essence it
would allocate 4/5 (80%) of the CPU to the static schedule. In this example
we can however see that only 9/20? (45%) of the CPU is allocated to the
static schedule. Another, less pessimistic, approach would be to model the
schedule with four tasks, with execution times of 4, 1, 1, and 3 respectively.
All tasks having a period of 20. This approach is still too pessimistic since
it assumes that all four task can be released for execution at the same time.
In this example, a dynamic task with C; = 1, would have a response time of
10. Looking at figure 1 one can see that the worst possible case would result
in a response time of 5 (if the dynamic tasks is released at time 0).

Hence, our goal is to model static schedules so as to incur as little pessimism
as possible. Thus, modelling both functions” WCETs as well as their release
times as accurately as possible

3.2.1 Extending the Task Model

Our solution is to modify the model of section 3.1.1. We will use a technique
that is similar to the technique used in [SH99|. Lets change the attribute C;
to denote a vector of execution times, such that:

C; = [Gi[0], Gi[1], ..., Gi[|Gi| = 1]]

where a C;[k] denotes an execution time.

|C;| is the number of elements in C; (i.e. the number of functions in the
schedule).

T; is the duration of the minor cycle.

A (traditional) dynamic task (that always has the same WCET) would have
|C;| = 1, and T; would be set to the period. Thus, if |C;| = 1 then this new
model is equivalent to the classical model. Hence, we can use this model to
represent both static cyclic schedules and dynamic tasks.

The elements of C; denotes a cyclic pattern of execution times. Where each
execution time would be the execution time of a function chain. In our
example from figure 1 on the page before we would get:

o Cz = [4,1,1,3]
e, =5

Note that, we place no restrictions on where in the cyclic pattern the first
element of C; is. Consequently, [1,1,3,4] is (in this model) an equivalent
definition of C;.

2Te., 4+1+1-+3 units of execution in a schedule of length 20.

3.2.2 Extending the Response-Time Analysis

Now, when we have a task model that accurately captures the behaviour
of a major/minor-cycle static schedule (with respect to its interference on
dynamic tasks), how do we calculate the response times for our new task
model?

We begin by introducing the infinite-length array C;[k], where C;[k] is the
maximum total execution time of £ successive invocations of task i. The
formal definition is:

0 itk=0

é@[k]: — (2)
Cil(t+1 d |C; if k>0
R, 2 ClE+ D) mod |G it >

Note specifically that Cj[1] is the maximum of the execution times in Cj,
and C;[|C|] is the sum of execution times of all elements in C;. Also, if
|Ci] = 1 then Ci[k] = C;[0] * k. For our example above, we would get
C;=10,4,7,8,9,13,16,17,...].

This leads us to the final formulation of the extended response-time analysis.
Using C; we can now change ezecution_ demand(j,t) in equation 1 and get:

R, = B; + C’Z[l] + Z execution_ demand(j, R;)
je{z:Pe>Pi}
execution_ demand(j, t) = C;[occurrences(j, R;)]
t+ Jﬂ
T;

occurrences(j,t) = ’V

3.2.3 Calculating C;

An efficient implementation of equation 2 can be made by pre-computing and
storing the first |C;| + 1 elements of C;. The pre-computed array, denoted
CP™, is defined as:

CP"[k] = Ci[k] Vke0...|C

Lets call a sequence of |C;| task executions a full ezecution. A full execution
will contain one execution of each instance in Cj, i.e., a full execution will take
> keo.|c;—1 Cilk] time. As pointed out above, }Z, o o Cilk] = Gi[|Ci]
(which is stored in CP*[|C;|]). Now we can implement equation 2 as:

Ci[k] = no_of _full_ ezecutions x CP"*[|C;[] + CF**[no_ of _remaining_ ezecutions|
no_of full executions =k div |C}|

no_of remaining executions = k rem |Cj|

Where a div b gives the integer part of the division a/b, and a rem b gives
the reminder. Also, note that k will be occurrences(j,t) in equation 3.

3.2.4 Related Work

The task model and response-time analysis presented in sections 3.2.1 and 3.2.2
are inspired from our previous work on scheduling analysis of compressed
multimedia traffic in ATM networks [SH99|, and is also presented in [Sj602].

Also, Mok and Chen has presented an analysis technique that could be ap-
plied to static cyclic schedules with major and minor cycles [MC96]. How-
ever, their method would not be applicable to an arbitrary major /minor cy-
cle schedule, since it requires a task to have a property called “accumulative
monotonic”. In essence, this means that the worst possible sum of consecu-
tive execution times must always start with the same element (typically the
first) in C;.

Since that property is not considered by any (to our knowledge) known static
scheduling algorithm it is not guaranteed that the generated schedules would
exhibit the accumulative monotonic property. Hence, it is highly unlikely
that Mok and Chen’s method could be of any real use for the kind of systems
considered in this paper. Also, Mok and Chen’s method only consider the
two first functions in a schedule, hence their method is highly pessimistic.

Furthermore Mok and Chen calculates a utilisation bound whereas the method
presented here calculates response times for individual tasks. Thus, our work
relates to Mok and Chen’s in the same way classic RTA [ABD'95] relates to
Liu and Layland’s original work [LL73|.

In section 3.3.4 we will consider methods that has more general applicability
than just to model major/minor-cycle schedules.

3.3 General Static Cyclic Schedules

In this section we will consider static cyclic schedules with arbitrary release
times. Thus, we lift the restriction from section 3.2 that a schedule should be
segmented into minor cycles. Previously tasks where scheduled for execution
at the beginning of each minor cycle. In this section tasks can be released
for execution at any point in time in the schedule.

10

i Wl
0 5 10 15 20

Figure 3: Example of static cyclic schedule

Figure 3 shows a static cyclic schedule of length 20, with 4 functions released
at times 1, 7, 10 and 17, with WCETSs 4, 1, 4 and 2 respectively.

3.3.1 Extending the Task Model

In this section we will extend the model of section 3.1.1 and model each task
as a complete schedule. Dynamic tasks are viewed as a schedules with only
one function, and the schedule’s duration is equal to the task’s period. Lets
define a schedule using a list of pairs stored in an array, S;, as follows:

Si=[..., {Ci[k], n[k]}, ...]for k€ 0...|S;| —1
where each C;[k] is the WCET of a function and
7;[k] is the corresponding release time for that function.
|S;| =number of WCET+release time pairs in S;
T, =the duration of schedule.

For the schedule in figure 3 we would get the following model:

S; = [{4,1}, {1,7}, {4,10}, {2,17}]
|Si| =4
T, =20

3.3.2 Extending the Response-Time Analysis

In order to calculate the response-times for tasks described by our new task
model we need to redefine exzecution_demand(j,t) from equation 1 on page 6.
execution_ demand(j,t) should return the maximum execution demand of
task 7 that can accumulate during and interval of time ¢.

The run-time situation that causes the highest possible execution demand is
when one of the functions in the tasks schedule is released at the beginning
of the interval (i.e. at time 0). This is analogous with Liu and Layland’s
critical instant definition [LL73|. Thus, we have a finite number of possible
starting points for the worst case scenario; one possibility for each function
in the schedule.

This means that the accumulated execution demand of a task ¢ can only
increase at limited number of points in time. That is, as the size of the

11

time-interval ¢ increases, the accumulated execution demand calculated by
execution_ demand(i,t) can only increase at discrete points in time.

Now, we know that the worst case execution demand occurs when one of the
functions is released at the start of the interval. In our example, the schedule
has four functions (and thus four release times), hence we get four possible
candidates for the worst case scenario. Figure 4 depicts how the execution

demands accumulates over time for each of the four cases.

oA sA
C C
© (4]
& £
[0} [0}
© T _____
10+ | 10— |
| |
-——
S S S p-——-
interval I interval
| | | sizeI I— | | | sizeI
| | | > | | | |
0 5 10 15 20 0 5 10 15 20
(a) (b)
oA cA
[C
© (4]
& €
[0} [0}
° L S|
10__ I_ ______ J'- 10__
[}
5 T 5+
interval interval
| | | size | | | | size |
| | | > | | | |
0 5 10 15 20 0 5 10 15 20

Figure 4: The four candidate worst case scenarios

Figure 5 on the following page shows figures 4(a)-4(d) combined in a single
graph. Here it can been seen that each one of the four cases of figure 4 will,
for some interval length, have the highest accumulated execution demand.
Hence, we draw the conclusion that we cannot settle for considering any
single one case. Note that, at the end of the schedule (i.e. at time 20)
all four cases has converged to the same execution demand, and that after

time 20 the increase in execution demand will follow the exact same curve
as it did the first 20 time units.

Here we will reuse the trick of section 3.2.3 and precompute an array that

12

oA oA
[C
© ©
£ =
() (0]
© ©
10 — 10
5 — 5 —
| interval interval
E— size size
| | T > | T | T
0 5 10 15 20 0 5 10 15 20
(a) All scenarios (b) Max of the four curves in (a)

Figure 5: The scenarios of figure 4 combined

will help us to calculate execution_ demand(j,t). Lets define SP™ as an array
representing the maximum of the execution demands for each of the candi-
dates. SP™ stores the accumulated execution demand for the first 7} time
units. (Visually, SP™ will represent figure 5(b)). S is an array of pairs:

SPre = [..., {CPlk], 7P [K]}, ...]for k€ 0...|SP| -1
|SP™| is the number of pairs in S

Where 777°[k] represents a length of an interval and the corresponding CF*°[k]
represents the total execution released for execution within that interval. In
section 3.3.3 we will return to how to calculate the elements of S and its
size |SP™|. For now we will settle to show how S will look for our example

from figure 3:

SP® =[{4,0}, {5,3}, {6,4}, {9,9}, {10,11}, {11,13}]
|57 =6

The interpretation of the above is that for an interval, ¢, of size 0 < ¢t < 3
(upper limit given by 7°"°[1]) a maximum of 4 time units of execution has
been released. For interval sizes 3 < ¢ < 4, the execution demand is 5, and so
on. Note that our example S corresponds to the execution demand shown

in figure 5(b).

Note particularly that CF*[0] (in the first pair of SP™) is the max of all C;[k]-
s and that CP™[|SF*| — 1] (in the last pair of SP™) is the sum of all C;[k]-s.
Also, note that each pair in S’ does not correspond to the same starting
point in S;. In this example, the first element in SP™ corresponds either to
the scenario shown in figure 4(a) or in figure 4(c), whereas the second element
corresponds the scenario shown in figure 4(b).

13

Given SP™ we can calculate the accumulated execution demand for a task ¢ in
any interval ¢, and hence we now have the following response-time equation:

R; = B; + C™[0] + Z execution_ demand(j, R;)
N—— ,
Max of C; je{x:Pr>P;}
execution_ demand(j,t) =
no_of full_schedulesx C7™ [|S]™| — 1] + partial_ schedule
Sum of C; A
no_of _full_schedules = (t + J;) div Tj (4)

remaining_ time = (t + J;) rem Tj

, 0 if remaining _time = 0
partial_ schedule = ore] o)
CY[k] if remaining_time > 0

k =max{z : remaining_time > 7;"[x]}

Where no_of full schedules denotes the number of complete executions of
the schedule (accounting for jitter) and remaining time is the remaining
time of t after no_of full schedules schedule executions. k gives the index
into CP'™ that tells how much execution demand that can have accumulated
during the last remaining time time units.

3.3.3 Calculating SPr®

The array SP™ is calculated by considering each possible start of the sched-
ule. This means that we will consider |S;| cases. We will calculate how the
execution demand will accumulate for each candidate worst-case scenario.
We then take the maximum of these execution demands. Intuitively, we
will calculate the graph shown in figure 5(b) based on the graphs in figures
4(a)-4(d).

In order to do this we will, for each index n € 0...|S;| — 1, calculate an array

SP of size |S;|. SP'¢ will contain the accumulated execution demand for
b)

intervals up to length T;, assuming that function n is released at start of the

interval. Each element, &, in S}, is a pair of the form {C},7[k], 77,7 [k]}, where

i,n
7P[k] represents the length of an interval and the corresponding CF°[k]

1,1 N
represents the accumulated execution demand within that interval. S}’ is

defined as follows:

14

1. S = Append all S?, arrays.

. Sort SP™ on ascending 7/"-values. (Now, we have all possible
execution demands listed in the order in which they may occur.)

N

3. If multiple pairs in S have the same 77"-value discard all dupli-
cate pairs except the pair with the highest CP™. (The intuition for
this is that if a time can have more than one execution demand,
only the highest demand corresponds to the worst case situation.)

4. Discard each pair k (for k > 1) in S where CP™[k —1] > CP™[k].
(The intuition for this is that if we have a pair where the execution
demand decreases, that demand does not correspond to the worst
case situation.)

Figure 6: Algorithm to calculate S;™ from set of S},

S = [{CPelk], mPk]}, .] fork€0..]S~ 1

i,n

Cin k] = Z Ci[(l4+n) mod |S;]
1=0
Tin k] = (Ti[k] — 7i[n]) mod T;
For our example from figure 3 we would get the following four S}," (each S},
corresponds to one graph in figure 4):

S%e = [{4,0}, {5,6}, {9,9}, {11,16}] (Figure 4(a))
Sir = [{1,0}, {5,3}, {7,10}, {11,14}] (Figure 4(b))
Sty = [{4,0}, {6,7}, {10,11}, {11,17}] (Figure 4(c))
SPe — [{2,0}, {64}, {7,10}, {11,13}] (Figure 4(d))

From the set of S},’-s we now have to select the pairs that corresponds to
the worst possible case in each situation. The algorithm to perform this
selection is shown in figure 6. Intuitively, the algorithm merges all S},’-s
to get an array that corresponds to figure 5(a). From that array redundant
information is thrown away to get an array that represents figure 5(b). The
result of the algorithm is the S array to use in equation 4 on the preceding
page.

Again, looking at our example, we would get the following result from each

15

step in the algorithm in figure 6:

1. SP* =[{4,0}, {5,6}, {9,9}, {11,16}, {1,0}, {5,3}, {7,10}, {11,14},
{4,0}, {6,7}, {10,11}, {11,17}, {2,0}, {6,4}, {7,10}, {11,13}]

2. SP =[{4,0}, {1,0}, {4,0}, {2,0}, {5,3}, {6,4}, {5,6}, {6,7}, {9,9},
{7,10}, {7,10}, {10,11}, {11,13}, {11,14}, {11,16}, {11,17}]

3. SP =[{4,0}, {5,3}, {6,4}, {5,6}, {6,7}, {9,9}, {7,10}, {10,11},
{11,13}, {11,14}, {11,16}, {11,17}]
4. 5P =[{4,0}, {5,3}, {6,4}, {9,9}, {10,11}, {11,13}]

It should be noted the by coalescing each individual candidate worst case
scenario into a single worst case description (i.e. by merging the S},’-s into
SP™) we create an overestimation of the worst case execution demand. This,
can be seen in our example: In figure 5(b) it looks like execution demand
increases from 4 to 5 at time 3. However, as can be seen in figures 4(a)
and 4(b) it is either the case that execution demand remains at 4 until time 6,
or execution demand reaches 5 from being 1. Thus, regardless which of the
two scenarios would occur in a real world situation our model would incur a
pessimistic estimate of the execution demand.

3.3.4 Related Work

For schedules without the major /minor cycles the simple model of Mok and
Chen [MC96| mentioned before does not suffice. However, the response-time
analysis for tasks with transactions using offsets [Tin92, GH98] would be
able to model static schedules. In this case, the static cyclic schedule would
be modelled as a transaction with high priority tasks. Each task in the
transaction would correspond to one function in the schedule, and the task
offset would be the function’s release time.

The main disadvantage of using the offset analysis is its high computational
complexity. At its core, the offset analysis uses the same fix-point iteration
method as does our analysis. However, the offset analysis have to consider a
prohibingly large set of cases (i.e. calculate a large set of candidate response-
times). In fact, the number of cases to consider grows exponentially with
the number of transactions. Hence a conservative approximative method
is used. The approximation limits the number of cases that need to be
considered, making the analysis technique computationally tractable. Still,
a large number of cases need to be considered. Also, using the approximation
will introduce pessimism into the offset analysis. Our analysis also inhibits
some degree of pessimism; to study which of the two methods that introduce
the least pessimism is an interesting future study.

As a side note, it should be mentioned that the response-time analysis pre-
sented in this paper could be extended to become an analysis technique for

16

tasks with transactions using offsets. However, to further investigate this is
outside the scope of this paper.

4 Case Study

The company Volvo Construction Equipment (VCE) [Vol| has a tradition in
statically scheduled systems. This is mainly due to the safety critical nature
of their control systems in their heavy machinery, e.g., articulated haulers,
trucks, wheel loaders and excavators. VCE uses the Rubus OS [Arcb], that
has a Red part (using static cyclic scheduling) and a Blue part (using a
FPS dynamic scheduler that runs in the background of the static schedule)
[HLS96]. Currently at VCE, all safety critical functionality is implemented
in the Red part and only soft real-time or non real-time activity resides in the
Blue part. The demand on more functionality in next generation machinery
is growing. However, the static schedule is getting close to full utilisation,
leaving little or no room for added functionality. This can either be addressed
with new and more expensive hardware or to find a better way of utilising
the current hardware resources.

Demand on responsiveness (i.e. deadlines) for functionality in the red part
ranges from a few milliseconds up to several seconds. This could potentially
result in a very large schedules (with corresponding high memory consump-
tion). VCE’s solution to this has been to fix the schedule length at 100ms,
which result in waste of computing resources due to redundant polling for
any function with a responsiveness demand higher than 100ms (even func-
tions with responsiveness demand within 100ms but associated with events
that occur seldom will in this case waste computing resources). A solution
that could get rid of this redundant polling, while still guaranteeing the re-
sponsiveness and without increasing the schedule length, would be highly
desirable.

Here we will present an example system that can be viewed as a highly sim-
plified version on one of the systems constructed by VCE. We will show how
functions currently residing in the Red part can be moved to the Blue part
and, by using our proposed response-time analysis, we can still guarantee
that the function deadlines will be met. For our example the task specifica-
tion in table 1 on the next page will be used. (For simplicity we will in this
example ignore interrupts.)

Tasks F and G handle events that may occur once every 2000ms, and with
a response time requirement of 100ms. Placing tasks F and G in a static
schedule, means that they would have to be polled at the rate of their deadline
(100ms) instead of their period (2000ms) (since we do not know exactly when
the events are going to occur). Task H, however, could be polled at the rate

17

A 10 2 10
B 20 2 5
C 50 1 2
D 50 6 50
E 100 8 100
F 2000 7 100
G 2000 8 100
H 2000 8 2000

Table 1: The set of tasks in the Red system

of its period (2000ms), however, the resulting schedule would become too
large and memory consuming (it would have to extend for 2000ms). Setting
the schedule length to 100ms would be adequate for all tasks except task H.
Hence, the schedule length is set to 100ms, and the resulting schedule can be
seen in figure 7.

Z{_B|K| A E [8] [A] ¢ B[o HA] F B[o] H B |K| |
[

0 10 20 30 40 50 60 70 80 90 100

Figure 7: Static cyclic schedule for task in table 1

The total utilisation of the tasks is 75%. Adding new functionality, requiring
some kind of temporal guarantee, to this system is hard, there are not many
free time-slots in the schedule.

However tasks F, G, and H could be placed in the dynamic part instead,
and making them event triggered, thus freeing some resources. The resulting
static schedule can be seen in figure 8. The utilisation for the static schedule
now becomes 52%. The utilisation for the three dynamic tasks are 1,15%,
resulting in a total utilisation of just above 53%. Thus, by moving these three
tasks from the static schedule we free nearly 23% of the CPU resources.

A W el W FRom FHoR A f
[[I |
0 10 20 30 40 50 60 70 80 90 100

Figure 8: Static cyclic schedule with tasks F', G and H removed

Now, it remains to see whether the three tasks will meet their deadlines
when running as dynamic tasks. To be able to calculate the response times
for tasks F, G, and H we model the static schedule as a task. In this case
we can use the simpler major/minor cycle model described in section 3.2.1,
with a minor cycle of 10ms, and the model of the schedule, S, becomes:

Cs =[5, 10, 4, 2, 10, 3, 10, 2, 4, 2]
Ts = 10

18

From Cys we calculate CE according to section 3.2.3 to be the following:

C¥° =0, 10, 15, 23, 26, 31, 39, 44, 46, 50, 52]

Assuming that F, G, and H have priorities high, medium, and low respectively
we can now calculate the response times for the three tasks according to
equation 3 in section 3.2.2. And the result is:

Rr =30
Re =46
Ry =67

And from the deadlines in table 1 we can see that all three tasks will meet
their deadline.

As a side note it could be mentioned that by removing tasks F, G and H from
the schedule we have enabled shorter response times for any other dynamic
tasks that might have existed in the system. The schedule in figure 7 has
a longest busy period of 54ms, whereas the new schedule in figure 8 has a
longest busy period of 14ms. Since any dynamic task (in the worst case) will
have to wait for the longest busy period, we now have significantly reduced
that time.

A requirement for moving functions from the static subsystem to the dynamic
subsystem is that any requirements on function precedences or function inter-
communication is still met when a function is moved.

With the task model presented in this paper the static schedule could be kept
small (with respect to memory consumption as well as utilisation). By mod-
elling the static schedule as one task, the presented response time analysis
can be used to evaluate timeliness for the dynamic part.

This solution does not require an increase in resources at any end. We save
utilisation by moving functionality, previously polled excessively, from the
static schedule to the dynamic part. Our method also gives a possibility to
shrink the static schedule since functions with long periods can be moved
from the static schedule. Note however, that all tasks in the static schedule
share a common stack, whereas, moving a task from the schedule to the
dynamic part may require it to have a separate stack, hence increasing the
memory consumption. However, using a resource locking protocol such as
the immediate inheritance mechanism [But97]) can allow also dynamic tasks
to share a single stack, hence reducing the overhead for dynamic tasks.

There is an ongoing master thesis project at VCE focusing on how much
of the functionality can be shifted from the static part to the dynamic FPS
part, without jeopardising any of the original timing constraints. Preliminary
results suggests that there is much to gain.

19

5 Conclusion and Future Work

In this paper we have presented a task model with corresponding response-
time analysis (i.e. a method to calculate the worst case response-times) for
tasks scheduled by a fixed priority scheduler, when those tasks are executed
“in the background” of a static cyclic schedule and interrupt service routines.

The response-time analysis makes it possible to develop hard real-time sys-
tems using a hybrid scheduling policy with both static cyclic scheduling and
fixed priority scheduling. This, in turn, can significantly simplify the design
tradeoff of whether to use static or dynamic scheduling. Using our method,
both types of scheduling can be used in the same system.

We present a case study that illustrates the usefulness of our new analysis
technique. The case study mainly shows two things:

1. A hybrid task model is of real industrial use, especially if one can
guarantee real-time properties for all tasks.

2. The task model and the corresponding response-time analysis are ap-
plicable tools for guaranteeing real-time behaviour in hybrid scheduled
systems.

As pointed out in sections 3.2.4 and 3.3.4 there are other methods that could
potentially be used to guarantee timeliness for dynamic tasks in the pres-
ence of a static cyclic schedule. In the future we would like to evaluate the
usefulness of these methods, and also perform a quantitative study where
properties such as execution time and the degree of pessimism is studied.

Also, the response-time analysis proposed in section 3.3 could be a base for
an alternative analysis method for tasks with offsets. To further extend our
method to a general offset analysis method and to evaluate its performance
relative to existing offset analysis methods [Tin92, GH98| would be interest-
ing.

References

[ABD*95] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings.
Fixed Priority Pre-Emptive Scheduling: An Historical Perspec-
tive. Real-Time Systems, 8(2/3):129-154, 1995.

[AFF99] L. Almeida, J. A. Fonseca, and P. Fonseca. A Flexible Time-
Triggered Communication System Based on the Controller Area
Network: Experimental Results. In Int. Conf. on Filedbus Tech-
nology (FeT’99), 1999.

20

[AKA9]

A.Burns, K.Tindell, and A.J.Wellings. Fixed Priority Scheduling
with Deadlines Prior to Completion. In Proc. of the 6" Euromicro
Workshop of Real-Time Systems, pages 128-142, June 1994.

[Arca]
[Arcb]

[Ast]

[But97]

[BW96]|

[CANO2]

|Eng02]

[Flx]
[FMD+00]

[GHOS]

[HLS96]

[KG94]

Arcticus Systems Home-Page. http://www.arcticus.se.

Arcticus Systems. The Rubus Operating System. http://www.-
arcticus.se.

The Asterix Real-Time Kernel. http://www.mrtc.mdh.se/-
projects/asterix/.

G.C. Buttazzo. Hard Real-Time Computing Systems. Kluwer
Academic Publishers, 1997. ISBN 0-7923-9994-3.

A. Burns and A. Wellings. Real- Time Systems and Programming
Languages. Addison-Wesley, second edition, 1996. ISBN 0-201-
40365-X.

Road Vehicles — Interchange of Digital Information — Controller
Area Network (CAN) for High Speed Communications, February
1992. ISO/DIS 11898.

J. Engblom. Processor Pipelines and Static Worst-Case Execu-
tion Time Analysis. PhD thesis, Uppsala University, Department
of Information Technology, 2002. http://user.it.uu.se/~jakob/-
phdthesis.html.

FlexRay Home Page. http://www.flexray-group.org/.

T. Fiihrer, B. Miiller, W. Dieterle, F. Hartwich, R. Hugel, and
M. Walther. Time Triggered Communication on CAN. In 7"
International CAN Conference, 2000.

P. C. Palencia Gutierrez and M. Gonzalez Harbour. Schedula-
bility Analysis for Tasks with Static and Dynamic Offsets. In
Proc. 19" IEEE Real-Time Systems Symposium (RTSS), Decem-
ber 1998.

H. Hansson, H. Lawson, and M. Strémberg. BASEMENT a Dis-
tributed Real-Time Architecture for Vehicle Applications. Jour-
nal of Real-Time Systems, 3(11):223-244, November 1996.

H. Kopetz and G. Griinsteidl. TTP — A Protocol for Fault-
Tolerant Real-Time Systems. IEEE Computer, pages 14-23, Jan-
uary 1994.

21

[LL73]

C. Liu and J. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment. Journal of the ACM,
20(1):46-61, 1973.

[MC96]

[NGST01]

[PAOO]

[SEF98]

[SHO9]

[Sj502]

[SSNBY3|

[Tin92)

[Tin94|

A. Mok and D. Chen. A Multiframe Model for Real-Time Tasks.
In Proc. 17" IEEE Real-Time Systems Symposium (RTSS), pages
22-29, December 1996.

C. Norstrom, M. Gustafsson, K. Sandstrom, J. Maki-Turja, and
N. E. Bankestad. Experiences from Introducing State-of-the-art
Real-Time Techniques in the Automotive Industry. In Figth IEEE
International Conference and Workshop on the Engineering of
Computer-Based Systems. IEEE Computer Society, April 2001.

P. Pedreiras and L. Almeida. Combining Event-triggered and
Time-triggered Traffic in FTT-CAN: Analysis of the Asyn-
chronous Messaging System. In Proc. 3" IEEE International
Workshop on Factory Communication Systems (WEFCS2000),
September 2000.

K. Sandstrom, C. Eriksson, and G. Fohler. Handling Interrupts
with Static Scheduling in an Automotive Vehicle Control Sys-

tem. In Proc. of the 5" International conference on Real-Time
Computing Systems and Applications (RTCSA’98), 1998.

M. Sj6din and H. Hansson. Analysing Multimedia Traffic in Real-
Time ATM Networks. In Proc. 5" IEEE Real-Time Technology
and Applications Symposium (RTAS), pages 203-212, June 1999.

M. Sjédin. Response-Time Analysis for Dynamically and Stati-
cally Scheduled Systems. Technical report, Mélardalen Real-Time

Research Centre (MRTC), April 2002. http://www.mrtc.mdh.-
se/showPublications.phtml.

J.A. Stankovic, M. Spuri, M. Di Natale, and G.C. Buttazzo. Im-
plications of Classical Scheduling Results for Real-Time Systems.
IEEE Computer, pages 16-25, June 1995.

K. Tindell. Using Offset Information to Analyse Static
Priority Pre-emptively = Scheduled Task Sets. Tech-
nical Report YCS-182, Dept. of Computer Science,
University of York, England, 1992. Available at
ftp://ftp.cs.york.ac.uk /pub/realtime/papers/YCS182 _[12].ps.Z.

K. Tindell. Fized Priority Scheduling of Hard Real-Time Sys-
tems. PhD thesis, University of York, February 1994. Available
at ftp://ftp.cs.york.ac.uk/pub/realtime/papers/thesis/ken/.

22

[TTT] Time Triggered Technologies Home Page. http://www.tttech.-
com/.

[Vol] Volvo Construction Equipment Home-Page. http://www.-
volvoce.com.

23

