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Abstract—Fixed Priority Scheduling (FPS) is the de facto
standard in industry and it is the scheduling algorithm used in
OSEK/AUTOSAR. Applications in such systems are compositions
of so-called runnables, the functional entities of the system.
Runnables are mapped to operating system tasks during system
synthesis. In order to improve system performance it is pro-
posed to execute runnables non-preemptively while varying the
tasks threshold between runnables. This allows simpler resource
access, which can reduce the stack usage of the system and
improve the schedulability of the task sets. FPDS•, as a special
case of fixed-priority scheduling with deferred preemptions,
executes subjobs non-preemptively and preemption points have
preemption thresholds, providing exactly the proposed behavior.
However OSEK/AUTOSAR-conform systems cannot execute such
schedules. In this paper we present an approach allowing the
execution of FPDS• schedules. In our approach we exploit pseudo
resources in order to implement FPDS•. It is further shown that
our optimal algorithm produces a minimum number of resource
accesses. In addition, a simulation-based evaluation is presented
in which the number of resource accesses as well as the number
of required pseudo-resources by the proposed algorithms are
investigated. Finally, we report the overhead of resource access
primitives using our measurements performed on an AUTOSAR-
compliant operating system.

I. INTRODUCTION

Since the seminal work of Liu and Layland [1], Fixed-
Priority Scheduling (FPS) has been widely studied in the real-
time scheduling community. Fully preemptive FPS provides
a higher ratio of schedulable systems than non-preemptive
FPS. However, fully preemptive FPS increases the memory
requirement of systems and it introduces preemption over-
heads. Also, it complicates the software development. This is
because, in fully preemptive scheduling, preemptions can occur
at any given time. Thus, access to shared resources becomes
non trivial. While, non-preemptive FPS does not have the
aforementioned problems. In order to combine the benefits of
the two approaches, two schemes have been proposed for FPS
with limited preemption. Tasks may increase their priorities
after acquiring the CPU. Therefore, fewer tasks will be able
to preempt the running task. This approach is known as fixed-
priority scheduling with preemption thresholds (FPTS) [2], [3],
[4], [5], [6], [7]. On the other hand, some task models only
allow preemption at specific points in time. This approach is
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known as fixed-priority scheduling with deferred preemptions
(FPDS) [8], [9], [10].

Both models are a generalization of FPS, where the two
improvements are orthogonal to each other. In [11], Bril et
al. combined the ideas of FPTS and FPDS into a general
form FPGS, and later in [12] the authors refined the model
to fixed-priority scheduling with varying preemption thresh-
olds (FPVS). In the same work FPDS• is presented. It is a
specialization of FPVS where tasks are only allowed to be
preempted at specific points known as preemption points. The
preemption points may have higher priorities than the tasks’
original priorities at dispatch.

A. Motivation for using FPDS•

In the following we present two examples to demonstrate
the benefits of limited preemptive fixed-priority scheduling
techniques. Next, we show that FPVS (generalizing both FPTS
and FPDS) and FPDS• have a higher ratio of schedulable task
sets than FPTS and FPDS.

Example 1. The task set in the first example consist of two
tasks τ1 and τ2. The characteristics of the task set used in
this example is presented in Table I. The worst-case response
time of tasks using preemptive FPS (FPPS), non-preemptive
FPS (FPNS) and FPDS are denoted using WRPi , WRNi and
WRDi respectively. This task set is not schedulable by either
FPNS or FPPS. Figure 1 depicts the execution trace of the task
set under FPDS. The arrows mark the release of a job, and the
gray colored boxes highlight the executing jobs. If τ2 is divided
into two subjobs, then the task set becomes indeed schedulable
with FPDS, since the second subjob of τ2 cannot be preempted
by τ1. Let us consider scheduling the task set with FPTS. We
can either execute the jobs of τ2 with a threshold level equal
to the priority of τ2 or equal to the priority of τ1. The resulting
schedule is then equivalent to FPPS or FPNS respectively. In
both cases the task set is not schedulable (see Table I). Thus
FPTS does not dominate FPDS.

Example 2. In this example we consider a task set consisting

Ti = Di Ci πi WRPi WRNi WRDi
τ1 5 2 2 2 6 4
τ2 7 2+2 1 8 6 7

TABLE I: Characteristics of the task set used in Example 1. This task set is
only schedulable using FPDS.
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Fig. 1: The execution trace of Example 1 in which τ2 experiences its worst-
case response time. This task set is schedulable using FPDS.

Ti Di Ci πi WRPi WRNi Θi WRTi
τ1 70 5 5 4 10 45 4 5
τ2 70 50 15 3 20 55 3 40
τ3 80 80 20 2 40 75 3 80
τ4 200 100 35 1 115 75 2 95

TABLE II: Characteristics of the task set used in Example 2. This task set is
only schedulable using FPTS.
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Fig. 2: The execution trace of Example 2 in which τ3 experiences its worst-
case response time. This task set is schedulable using FPTS.

of four tasks {τ1, . . . , τ4} presented in Table II. In contrast to
the first example, in this example the deadlines are not equal
to the periods. The task set is schedulable by FPTS and the
preemption threshold of a task τi is represented by Θi. Figure 2
depicts a possible execution trace, where τ4 is released just
before all other tasks. Since the preemption threshold of τ4
is equal to the priority of τ3, τ3 cannot preempt τ4 and it
experiences its worst-case response time. However, it still stays
schedulable. Both FPNS and FPPS can not make the task set
schedulable (see Table II). Since τ1 has its deadline equal to
its execution time it is easy to see that any attempt to make
the task set schedulable using FPDS will result in a deadline
miss of τ1. Therefore we can conclude that FPDS does not
dominate FPTS.

The above two examples show that neither of FPTS and
FPDS algorithms dominates the other. Therefore, it is inter-
esting to see the average success ratio of each algorithm.
To this end, we present the simulation results published by
Bril et al. in [12]. Figure 3 depicts the schedulability ratio of
randomly generated task sets with deadlines equal to periods.
The figure clearly shows the improvements of FPTS and
FPDS over the traditional fixed priority scheduling schemes.
Additionally, the figure illustrates that FPDS• and FPVS have
a higher success ratio in comparison to all other fixed-priority
algorithms considered in the experiment. In order to make
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Fig. 3: Ratio of schedulable task sets versus the task-set’s utilization (redrawn
from [12]).

use of this high schedulability ratio in OSEK/AUTOSAR-
compliant operating systems, in this paper, we present an
approach to implement the FPDS• algorithm.

B. Support for FPDS• in OSEK/AUTOSAR

AUTOSAR [13] is the de facto standard for automo-
tive electric/electronic architectures. The real-time Operating
System (OS) of AUTOSAR is based on the OSEK stan-
dard [14]. Software applications in AUTOSAR consist of
software components which in turn are composed out of
runnables, where a runnable is a functional entity. During
the system synthesis all runnables are mapped to tasks of
the system which are then scheduled by FPS. Additionally,
AUTOSAR provides the concept of internal resources which
allows tasks to raise their priority during the execution of
jobs. Thus, the implementation of non-preemptive groups [2]
and a limited version of preemption thresholds is possible.
Recently, Zeng et al. [15] proposed several algorithms targeting
the design synthesis of AUTOSAR systems with focus on
minimizing the stack memory usage. They provide algorithms
to assign runnables to tasks and they also assign thresholds to
runnables. A runnable, a functional entity, could be considered
non-preemptable. This allows further reduction of stack space
and simple resource access without the need for complex
resource access protocols [15], [16]. However, more elaborate
scheduling schemes, such as FPDS•, which could exploit the
characteristics of such task models cannot be straightforwardly
implemented in an OSEK-compliant operating system. In [17]
Gai et al. proposed exploiting resource access protocols for
assigning preemption thresholds to tasks. They observed that
the Stack Resource Policy (SRP) [18] can be used to raise the
priority of a task to the respective ceiling of the resource. This,
in turn, is equal to raising the tasks’ priorities to a threshold.
Thus, task priorities can be dynamically changed by locking
appropriate resources at right times. Note that this technique is
not exclusive for SRP. The Immediate Priority Ceiling Protocol
(IPCP) [19] combined with FIFO execution of tasks with the
same priority can also be used for this purpose.

In this paper, we investigate implementing FPDS• in an
OSEK-compliant OS. Two algorithms are presented. Both
algorithms use pseudo-resources [17] in combination with a
resource access protocol to adapt the task priorities at runtime.
Both algorithms generate the necessary calls to the resource



access primitives in order to raise the tasks priority to the
respective threshold values. We prove that our first algorithm
always results in an OSEK-conform sequence of resource
lockings while resulting in desired priority values. The second
proposed algorithm is an extension of the first algorithm which
generates a minimum number of resource accesses.

II. BACKGROUNDS

This section describes the theoretic foundation assumed
in [12] as well as the necessary background knowledge
about scheduling and resource access protocols within an
OSEK/AUTOSAR-compliant OS.

A. Task model

We assume a task set T = {τ1, . . . , τN}, consisting of
N independent tasks τi. Tasks are scheduled on a single
processor. A task τi has a worst-case execution time Ci and
arbitrary deadline Di. We assume arbitrary phasing. Tasks are
activated periodically with a period Ti. Thus a task is described
by the following tuple {Ci, Di, Ti}. Each task consists of mi

subjobs, where mi ≥ 1. We denote the ath subjob of a task
i with τi,a. Each task has a priority πi. For our convenience
we assume priorities equal to task indices. To coincide with
the OSEK/AUTOSAR standard [14], a higher value constitutes
a higher priority, with N as the highest task priority in the
system.

FPDS•, as described by Bril et al. in [12], executes all
subjobs in a run-to-completion manner. Preemption is allowed
between subjobs at so called preemption points. Those points
are defined by the system developer at design time. We use
natural numbers in the range [0,mi] for referring to the pre-
emption points. The ath preemption point, with 0 < a < mi,
is located between subjob τi,a and τi,a+1. Point zero is the task
start while the end of task is point mi. Each preemption-point
has a preemption threshold θ•i,a, where πi ≤ θ•i,a ≤ πN , and
θ•i,0 = θ•i,mi = πi.

B. OSEK/AUTOSAR

We use the OSEK operating system description [14] as
the basis of our work. This is sufficient since AUTOSAR is
a superset of OSEK [13]. OSEK only allows static priorities
to improve the efficiency. Priority boosting may only happen
by the resource sharing protocols [14]. The priorities can
be divided into three groups: (i) interrupts with the highest
priority; (ii) scheduling priorities that are below the interrupt
priorities (iii) user task priorities that are lower than the
scheduling operations. According to the specification, three
possible scheduling models are supported.

1) Fixed Priority Fully-Preemptive Scheduling;
2) Fixed Priority Non-Preemptive Scheduling;
3) Fixed Priority Mixed Preemptive Scheduling.

All three scheduling schemes assume fixed priorities, assigned
at design time. For the fixed priority non-preemptive schedul-
ing AUTOSAR prohibits calls to reschedule the tasks while a
resource is held. Therefore we limit our approach to the fixed
priority fully-preemptive scheduling model.

The scheduler searches all tasks in the run and ready
queues, where it selects the tasks with the highest priority.

Get(r1) Get(r2) Rel(r1) Rel(r2)

R1R1

R2

(a) Improper nesting of resource access.

Get(r1) Get(r2) Rel(r2) Rel(r1)

R1R1

R2

(b) Proper nesting of resource access.

Fig. 4: Example of proper and improper nesting of resources. Get() and
Rel() functions represent GetResource() and ReleaseResource()
primitives respectively.

For tasks with a same priority, ties are broken based on the
age of the oldest job. The age of preempted jobs is based on
their first activation time, whereas the age of jobs released
after a wait() command is based on their reactivation time.
In order to avoid problems such as priority inversion and
deadlocks, resource sharing mechanisms are supported by the
standard. The Immediate Priority Ceiling Protocol (IPCP) [19]
is implemented in an adapted version by the operating system
[14]. The standard defines the OSEK Priority Ceiling Protocol
(OPCP) as follows:

1) Tasks may only access resources that are defined in their
task descriptors. The runtime engine assigns a ceiling
priority to a resource. The ceiling priority is statically
assigned the priority of the highest priority task accessing
the resource.

2) If a task requests a resource, its priority is raised to the
ceiling priority of the resource.

3) If the resource is released again the priority of the task is
changed to the priority it had before the resource usage.

OSEK also provides the scheduler as lockable resource. By
locking the scheduler, tasks can create non-preemptive regions.
Therefore, the OSEK standard supports FPDS. The OSEK
standard provides the following two functions for accessing
shared resources: (i) GetResource(ri) which locks re-
source ri; (ii) ReleaseResource(ri) which is used for
unlocking ri. The OSEK standard also defines how resources
should be nested, if nesting is necessary. If a second critical
section needs to be entered, the critical sections must be exited
in the reverse order as they entered the critical section. The
case shown in Figure 4a where the critical sections overlap is
therefore called improper nesting and it is not allowed. Nesting
shown as in Figure 4b is proper nesting and it is allowed.

Lemma 1. In order for task τi to be able to elevate its priority
at preemption points and return back to its nominal priority πi
at the end of each job, it has to access the pseudo-resources
through proper nesting (as recommended by the standard).

Proof: The OPCP protocol is implemented as follows.
When task τi locks a resource rj , first the resource stores
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Fig. 5: Information flow of our proposed approach.

the active priority of the task (rj→old_task_prio
= τi→activePriority). Thereafter, the active
priority of the task is set to the ceiling of the resource
(τi→activePriority = rj→ceiling_priority).
After releasing the resource, the active priority of the
task is set back to the old priority stored in the resource
(τi→activePriority = rj→old_task_prio). The
proof follows from the implementation of the PCP protocol.
Suppose we have improper nesting, i.e, task τi first locks
resource rj then rk, while it first releases rj and then rk.
After locking we will have: rj→old_task_prio = πi,
rk→old_task_prio = j and τi→activePriority
= k. After unlockings we will have: τi→activePriority
= j. While the task has to return back to its nominal priority
πi after releasing all of its resources.

III. SOLUTION

Our approach consists of two parts: (i) the design steps
which are performed offline; (ii) a runtime function. The
flow of our approach is illustrated in Figure 5. Since we
use pseudo-resources for changing the priorities, the first
step is to derive the required pseudo-resources. We use the
FindPseudoResources function presented in Algorithm 1
for deriving the required pseudo-resources. Afterwards we
create two lists that store the sequence of locking and un-
locking the resources. We provide two different solutions
for initializing the two lists. Solution 2 improves upon the
first solution by locking only necessary resources and thus
resulting in a minimum number of resource lockings. The
two functions are explained in detail in Section IV. Finally,
the online function (Yield) uses the two lists and calls
the resource access primitives at proper points in time for
implementing the FPDS• algorithm. In the following we first
present the FindPseudoResources function. Afterwards,
assuming that the lists are initiated correctly, we present the
runtime mechanism, i.e. the Yield function.

A. Deriving the required pseudo-resources

In order to have the pseudo-resources needed to lift a
task’s priority to the threshold given by the FPDS• schedule,
we define a set R containing one pseudo resource for each
threshold priority used by the tasks in T , where rp denotes the
pseudo-resource with ceiling p. Each task τi ∈ T uses a subset
ofR. Therefore, for elevating the threshold at preemption point
a we need to lock rθ•i,a . On the other hand, the operating
system determines the ceiling of a resource based on the tasks
that are using such a resource. Therefore, the resource usage
of rp is inserted to the declaration of the following tasks:

• Every task that has at least one preemption point with
a threshold equal to the ceiling of rp.

• τp, because we want the ceiling priority of rp to be
assigned to πp, i.e, rp = πp.

Algorithm 1 finds the different pseudo resources and it adds
the necessary entries to the task declaration. The algorithm
iterates over all tasks in T (Line 3), and it further iterates
over all preemption points of that task (Line 4). It may be
the case that τi is the only task with a preemption point with
a preemption threshold equal to πi. In this case we do not
need to add ri to R, which we check in Line 5. In Line 6 the
algorithm checks if the resource with ceiling value equal to the
current preemption point does not yet exist in R. It is assumed
that each resource can only be added once. If the resource is
not already in R, then the algorithm generates a new pseudo-
resource. This resource is added to R and an entry is added
to the declaration of the task with priority equal to the desired
ceiling of that resource. Finally the resource is added to the
declaration of the current task. Let M = max∀τi∈T (mi). The
algorithm has a complexity of O(N ×M) and it is executed
offline.

Algorithm 1: FindPseudoResources
1: function FindPseudoResources(T )
2: R ← ∅
3: for ∀τi ∈ T do
4: for θ•i,a|1 < a < mi do
5: if θ•i,a 6= πi then
6: if 6 ∃ rθ•i,a ∈ R then
7: New resource rθ•i,a and R ← R

⋃
{rθ•i,a}

8: Add resource to τθ•i,a
9: end if

10: Add resource to τi
11: end if
12: end for
13: end for
14: end function

B. Runtime mechanism

The preemption point configurations of tasks are static and
they do not change during execution time. Information on
what resources need to be locked/unlocked in order to boost
the tasks priority as defined by the FPDS• schedule can thus
be provided in a table for the runtime access. We use a two
dimensional array of size [mi×(N−i)] to store all information
needed for a task τi, where mi represents the number of
preemption points and the second dimension represents the
maximum possible number of calls to the resource sharing
primitives for either GetResource or ReleaseResource.
A task with priority πi has N − i higher priority tasks
with possible pseudo-resources of same priority. Therefore, at
most N − i resources can be locked or unlocked at a given



time. We use two of the described arrays per task: LR
i for

all calls to ReleaseResource; and LG
i for all calls to

GetResource. If LG
i [a, p] is marked true, then τi has to

obtain rp at preemption point a.

Task τi, at each preemption point a, calls Yield(a, i)
(Algorithm 2). The Yield function works as follows. At
a preemption point a of task τi the algorithm releases all
resources specified in column a of LR followed by acquiring
all resources specified in column a of LG. The algorithm thus
has a complexity of O(N − i) for each task τi.

Algorithm 2: Yield function
1: function Yield(a, i)
2: index = 0
3: while index ≤ mi do
4: if LR

i [a, index] =true then
5: ReleaseResource(LR

i [a, index])
6: end if
7: index+ +
8: end while
9: index = 0

10: while index ≤ mi do
11: if LG

i [a, index] =true then
12: GetResource(LG

i [a, index])
13: end if
14: index+ +
15: end while
16: end function

IV. FUNCTIONS FOR INITIALIZING THE LISTS

In this section we present two algorithms for initializing
LR and LG. The proposed algorithms work on each task
separately. Therefore, in the description of the initialization
algorithms we drop index i when referring to the parameters
of τi.

We propose a two stack model (per task) to prevent im-
proper nesting (Figure 6). The first stack, referred as unlocked
stack (U), stores all unlocked resources, while the second stack
(L) keeps track of locked resources (locked stack). Initially,
all pseudo-resources belonging to the task are in the unlocked
stack. The resources are sorted by decreasing priority. In order
to boost the task priority to θ•p , resource rθ•p has to be locked.
Therefore, for all resources with priority lower than rθ•p , we
(i) remove the resource from the unlock stack; (ii) lock the
resource; (iii) insert it into the locked stack. For reducing
the threshold to a lower value, we move resources in the
opposite order from the locked stack to the unlocked stack
while unlocking them. For our convenience, we define two
functions which encapsulate the resource handling operations.
Function IncreasePriority(U, L, a) first pops a resource
(e.g., ru) from U. Then, it assigns the corresponding index in
the get list to one, i.e. LG[a, u] = 1. Finally, it pushes the
resource in L. The DecreasePriority(U, L, a) function,
however, first pops a resource (e.g., rl) from L. Then, it sets the
corresponding index in the release list to one, i.e LR[a, l] = 1.
Finally, it pushes the resource into U.

Lemma 2. Any algorithm which allows access to the
pseudo-resources only through the IncreasePriority and
DecreasePriority functions results in proper nesting.

ri+6

ri+5

ri+4

ri+3

ri+1

ri+2

LU

GetResource()

ReleaseResource()

Fig. 6: Stack usage to manage proper nesting of resource accesses by τi.

Proof: The proof follows from the fact that locking is
done in the order of increasing priority while the unlocking is
performed in decreasing priority order. Therefore, ∀i, j|ri > rj
rj is locked before ri, whereas rj is unlocked after ri.

A. InitLists function

We present our function, referred as InitLists(a)
function, which has to be called for each preemption point for
initializing LG and LR. Apart from initialization of U with
all resource used by the task, no prior steps are needed. Algo-
rithm 3 depicts the InitLists(a) function. The function
receives the index of the current preemption point a as an
input. As mentioned before, we consider the start and the end
of a task as preemption points. Therefore, the function is called
at those points as well. The task start and task end indices are
equal to 0 and m respectively. The function first checks, if it is
the first preemption point or not (Line 2). If not, the task was
running non-preemptively and thus the scheduler needs to be
released. Before the function returns, the scheduler is locked
again, making the next subjob non-preemtable (Line 16). A
special case is the end of the task where we have no next
subjob and thus do not need to lock the scheduler. In order to
set the desired preemption threshold we identified two cases
where a change of locked resources is needed.

Case 1: if θ•a is smaller than θ•a−1, the preemption threshold
decreases. Since this decrease can not be done ahead, otherwise
we would lower the preemption threshold at a− 1, this is
done at preemption point a. We call DecreasePriority
(Line 6) until the head of the locked stack is equal to θ•a or
it is empty (Line 7). Note that when the head of the stack
is empty we have reached the base priority of πi. Now we
reached the desired preemption threshold for point a. Note that
after releasing the scheduler resource, we execute at a higher
preemption threshold until we release the respective resources.

Case 2: when the priority of the next preemption point
θ•a+1 is larger than the current point θ•a (Line 11). Note that
we first need to check if such a preemption point exists or
if we are at the last point (Line 10). The function proceeds
by calling IncreasePriority until the head of the locked
stack is equal to θ•a+1. If the next preemption point is equal
to the current one we do not need to take any actions.

Theorem 1. Using the InitLists function described in
Algorithm 3 guarantees correct implementation of FPDS•.

Proof: We must prove the following two properties for the
algorithm. (i) The algorithm results in having a proper resource
lock for all preemption points, i.e, ∀p ∈ (0,m), rθ•p has to be



Algorithm 3: InitLists function
1: function InitLists(a)
2: if a > 0 then
3: ReleaseResource(RES_SCHEDULER);
4: if θ•a−1 > θ•a then
5: repeat
6: DecreasePriority(U, L, a);
7: until top(L) == θ•a || top(L)= ∅
8: end if
9: end if

10: if a < m then
11: if θ•a+1 > θ•a then
12: repeat
13: IncreasePriority(U, L, a);
14: until top(L) == θ•a+1
15: end if
16: GetResource(RES_SCHEDULER);
17: end if
18: end function

kept locked at preemption point p; (ii) the algorithm respects
proper nesting. Except the scheduler resource, all other re-
sources are accessed through the IncreasePriority and
DecreasePriority functions. The scheduler resource is
always the last resource to be locked, and it is the first resource
to be unlocked. Therefore, property (ii) is proven by Lemma 2.
For proving property (i) we show that the function always
obtains rθ•p before preemption point p, and it releases all
resources with priority higher than the current threshold (θ•p)
at point p. Line 11 to 15 guarantee that rθ•p is always locked
before reaching point p. Line 3 to 8 guarantee that the priority
will go down until we reach the current priority level.

B. InitLists∗ function

Locking and unlocking resources incur overhead costs.
Thus, it is desirable to minimize the number of resource
calls in order to reduce the introduced overhead. In order to
minimize the number of lockings (and therefore the number of
unlockings), we investigate the conditions in the InitLists
function that results in resource lockings. The function only
locks a pseudo-resource if the next preemption point has a
higher threshold than the current one. In such a case, all
resources rp ∈ Ri with a resource ceiling between θ•a of
the current point a and θ•a+1 of the next point a + 1 are
locked by InitLists. However, it may be unnecessary to
lock all priority levels. Therefore, in the following first we
define a preemption point interval which has to be considered
when initializing List LG for the current preemption point a.
Thereafter, we consider different scenarios in which locking is
unnecessary.

We define an interval, referred as hill, for the current point
a starting from a and ending in b, where θ•b ≤ θ•a and all
points between a and b have a threshold higher than θ•a. We
also define function hill(a) which returns the hill interval
of its input preemption point. For instance, Figure 7a illustrates
a hill interval starting from a and ending at a+ 4. In order to
determine unnecessary lockings it is enough to investigate the
hill interval. This is because all obtained locks corresponding
to the priority levels between θ•a and θ•a+1 have to be unlocked

at point b (θ•b ≤ θ•a). Therefore, if a priority level is not used in
the hill interval, then we can avoid locking its corresponding
resource.

The following four scenarios, depicted in Figure 7, may
lead to locking a resource when θ•a+1 > θ•a.

a) If the next preemption point a+ 1 has a threshold level
one priority higher than the current preemption point a, i.e.
θ•a+1 = θ•a + 1. The function locks the resource in order to
obtain the correct threshold level at a+ 1.

b) The threshold of the next preemption point a+ 1 is two
or more priority levels higher than the current priority
threshold θ•a, i.e. θ•a+1 ≥ θ•a+2. However, the intermediate
priority levels are used by later preemption points, e.g.
a+ 2 and a+ 3. Since proper nesting must always be
respected, the function locks the intermediate resources at
point a, before locking rθ•a+1

.
c) This scenario is similar to (b), except that the intermediate

priority levels are not used by a preemption point within the
following interval: from point a to the first preemption point
with threshold smaller or equal to θ•a. If the intermediate
resource is locked at point a, it needs to be unlocked
latest at point a + 4. This is because the ceiling of the
intermediate resource is higher than the threshold level of
point a. Therefore, locking the intermediate resource is
unnecessary.

d) In this scenario, all intermediate priority levels are used.
But one of the intermediate priority levels is followed by a
second intermediate priority level with larger priority, e.g.
a + 2 followed by a + 3 and θ•a+2 < θ•a+3. The function
does not need to lock the resource of a+3, since the lower
priority of a + 2 would need the resource to be unlocked
prior to its intended use.

We define a function, referred as filter, which processes
the hill interval of the current point and filters out the unnec-
essary lockings. Algorithm 4 presents the filter function.
This function returns a set of pseudo-resources required to be
locked. We use F to represent the output of filter. Since
we always need to lock a resource corresponding to the priority
level of the next point, F is initialized with {rθ•a+1

}. We also
keep track of the resource with the minimum priority level in
F with the variable minF. The loop starts from point a + 2,
because we already considered point a+ 1. Line 5 makes sure
that only the points inside the hill interval are considered. Once
we find a preemption point which has a priority lower than
minF, then we add the resource corresponding to that priority
level to F and update minF. The intuition behind Line 6 is as
follows. The points that have higher threshold than minF can
be considered at later points. This is because when we reach
the point that has a threshold equal to the priority of minF,
we have to unlock all resources that have priority higher than
minF. In the following we present an example for explaining
the filter function.

Figure 8 shows the preemption point schedule, note that
the schedule contains both identified scenarios for unnecessary
lockings. Each of the subfigures depicts one iteration of the
algorithm starting from point 3 to point 6. Point 1 and 2 are
considered during initialization before the loop. In 8a, the first
point (3) is checked by the algorithm. Since there is no point
with lower priority in F the function adds rτi+2

and adjusts
minF. For the next iteration (8b), the priority level of the point
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is not locked at a, since we would need to

unlock it at preemption point a+ 2, before using it at a+ 3.

Fig. 7: Different possible scenarios at a preemption point a.

under consideration is larger than minF. Thus the point is
not added to F . This corresponds to the case shown in 7d.
Figure 8c shows the scenario at the next preemption point
5. This priority is already included in F , thus the algorithm
proceeds to the next and last point 6 (Figure 8d). Line 5 of
Algorithm 4 detects the end of the hill and the function
terminates, returning F .

Algorithm 4: Filter function
1: function = filter(a)
2: F = {rθ•a+1

};
3: minF = θ•a+1;
4: p = a+ 2;
5: while p ≤ m and θ•p > θ•a do
6: if rθ•p < minF then
7: minF= rθ•p ;
8: F = F

⋃
{rθ•p};

9: end if
10: p++;
11: end while
12: return F ;
13: end function

We define new abstractions for locking and unlock-
ing resources. We introduce the set S = {s1, · · · , sk},
where si represents the state (locked or unlocked) of
rθ•i . Therefore, we overload the IncreasePriority and
DecreasePriority functions. The new function for in-

creasing priority has an additional parameter called flag for
specifying whether the resource needs to be locked or not, i.e
IncreasePriority(U, L, a, flag). We can skip unneces-
sary priority levels without locking them by passing false as
the flag parameter. This function sets the corresponding index
in LG to one and su = true if the flag is true. The pop and
push operations are performed as before. Similarly, the new
function for decreasing the priority only sets the corresponding
index in LR to one if sl = true. Once LR[a, l] is set to one it
assigns false to sl. The push and pop operations are performed
as before.

Another approach for reducing the number of locking
operations is to use one locking for priority levels that are
revisited throughout the set of the preemption points, i.e.,
points p and p′ such that θ•p = θ•p′ . For instance, in Figure 7c
we can use one locking for points a+ 1 till a+ 3.

Lemma 3. Assume τ revisits its priority level in preemption
point p and p′, i.e., θ•p = θ•p′ , where point p is prior to point p′.
In order to be possible to use the same locking for both points
the following condition should hold: ∀e ∈ [p, p′] θ•e ≥ θ•p .

Proof: The proof is done by contradiction. Assume there
exist a point e ∈ [p, p′] such that θ•e < θ•p , and assume that we
do not release rθ•p until point p′. Since, rθ•p is locked at point
e and the priority level of rθ•p is higher than threshold of point
e, the task will not be able to land to the correct priority level
at point e.
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Fig. 8: Example execution of the filter function.

Algorithm 5 shows our improved InitLists function re-
ferred as InitLists∗. The function is similar to the previous
version and it behaves the same for the case where θ•a−1 > θ•a
(Line 4 to 8). For the second case, where θ•a+1 > θ•a, we call
the function hill prior to locking all resources in order to
reach the preemption threshold of θ•a+1. As second step we call
the filter function. This function will exclude all points of
the hill, which not need to be locked at θ•a. If a resource is
element of F , the IncreasePriority function locks the
resource. Otherwise it is not locked.

Theorem 2. Function InitLists∗ presented in Algorithm 5
is optimal in the sense that there exists no other algorithm
that can correctly implement the FPDS• scheme through
resource sharing primitives of an OSEK-compliant OS with
fewer number of locking than InitLists∗.

Proof: We need to prove that the function InitLists∗

has the following properties. (i) It reuses the same locking for
revisited priority levels for all possible revisited thresholds. (ii)
It never performs any unnecessary lockings. The function only
releases locks if the current priority level is below the obtained
locks ceiling (Line 4 to 8) which is inevitable according to
Lemma 3. Therefore, property (i) holds. Showing that for each
point the function produces at most one locking implies that
no unnecessary locking is done.The function only performs
locking, if the next point has a higher priority than the current
point. The only condition that more than one point ahead is
considered is when there is a jump in priority levels and the
jumped level(s) are in set F returned by function filter.
Therefore, we must show that if point j is considered at point
i, it will not be considered again in any other points between
i and j. We prove by contradiction. Assume that point j is
considered at point i as well as point e ∈ (i, j). Let F =

Algorithm 5: Optimal InitLists function.
1: function InitLists∗(a)
2: if a > 0 then
3: ReleaseResource(RES_SCHEDULER);
4: if θ•a−1 > θ•a then
5: repeat
6: DecreasePriority(U, L, a);
7: until top(L) == θ•a
8: end if
9: end if

10: if a < m then
11: if θ•a+1 > θ•a then
12: F = filter(a)
13: repeat
14: if top(U)∈ F then
15: IncreasePriority(U, L, a, true);
16: else
17: IncreasePriority(U, L, a, false);
18: end if
19: until top(L) == θ•a+1
20: end if
21: GetResource(RES_SCHEDULER);
22: end if
23: end function

filter(hill(i)) and F ′ = filter(hill(e)). We can draw
the following conclusions from our assumptions: (a) j ∈ F
because it is considered at point i; (b) j ∈ F ′ because it is
considered at point e; (c) e ∈ hill(i) because j ∈ hill(i) and
e ∈ (i, j). From (b) we can derive θ•j > θ•e , and from (c) given
that e and j (e < j) are both in the hill of i we have: θ•e > θ•i .
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Fig. 9: Evaluation results for the number of resource access calls and the number of pseudo resources.

Therefore, we have θ•j > θ•e > θ•i . However, since e is before
j, in function filter(i) we will have minF= rθ•e before
approaching point j. Therefore function filter(i) will not
add rθ•j to F , and point j will not be considered at point i
which contradicts our assumption.

V. EVALUATIONS

In this section we investigate the relation between the
number of preemption points in a task and (i) the number
of resource access primitives generated by the two algorithms
(ii) the number of required pseudo-resources. In addition, we
report the measurement results regarding the cost of resource
access primitives. As part of the evaluation we developed a
simulation tool to compare the two algorithms1.

A. Experiment design

Experiments were performed on randomly generated pre-
emption point sets, where each set describes one task. We
compare tasks with 1 to 100 preemption points. The threshold
value for each preemption point was chosen by a uniformly
distributed random variable in the range [0,m], where m
represents the number of preemption points. We generated
1000 random tasks for each m. Since the schedule of the
resource access sequence and the preemption points are both
not related to other tasks in the system we evaluate each task
separately. We then run the different algorithms on the same
random sets.

Both algorithms use the functions GetResource and
ReleaseResource in order to change the task priorities.
Those functions are provided by any OSEK/AUTOSAR im-
plementation. Changing the priority using those functions is
constant and does not depend on the pseudo-resource. Thus we
can compare the number of resource accesses produced by both
algorithms in order to evaluate the overhead of each solution.
Figure 9a shows the average number of resource accesses for
both InitLists and InitLists∗ functions. The standard
deviation is also plotted for every 10th datapoint in order to
keep the graph readable. The InitLists∗ function results in
a linear number of resource accesses whereas the InitLists
function grows faster. For a larger number of preemption points
it is more likely to get jumps between consecutive preemption
points with unused intermediate resources which is exploited

1The source code of our simulation tool is availabe at: https://bitbucket.org/
matthiasbecker/fpds_dot_simulation

by InitLists∗. This explains the smaller standard deviation
of the InitLists∗ function as well as the lower number of
resource accesses. In Figure 9b the number of resources used
by both approaches is shown as well as the standard deviation.
Since both algorithms need to lock the same resources in order
to reach the threshold priorities of its preemption points the
number of used resources is the same. As described before we
generated the threshold for each preemption point randomly
in the range [0,m] with uniform distribution.

B. Illustrative example

Figure 10 shows an illustrative example, comparing the
two functions. The nominal priority of the illustrated task is
assumed to be π3. In the example the task has nine subjobs and
ten preemption points with varying thresholds. The upper part
of the graph shows the current task priority and the lower part
depicts the respective calls to the resource sharing primitives.
At the first preemption point the two algorithms differ in
their output. The first algorithm always locks all resources
and results in 48 calls to the resource access primitives. The
optimal algorithm avoids unnecessary lockings and results in
32 calls to the resource access primitives.

C. Overhead due to OSEK Priority Ceiling Protocol routines

In order to identify the applicability of our proposed
approach, we measured the time a call to the primitives
GetResource and ReleaseResource takes in a real
AUTOSAR OS implementation. For our experiments we chose
ArcticCore [20], as an open source AUTOSAR-compliant OS.
Experiments were performed on the Raspberry Pi, with its
Broadcom BCM2835 SoC utilizing a 700MHz ARM1176JZF-
S processor [21]. We used the ArcticCore port to the Raspberry
Pi described in [22].

To measure only the runtime of the OSEK PCP routines
we created a task with highest priority in the system. The
scheduler resource is then locked and unlocked. Timestamps
are taken before the call to the PCP function and after
it returned, for both functions respectively. 50,000 samples
were taken. The minimum, maximum, average and standard
deviation of the observed overhead values are reported in
Table III.

VI. DISCUSSIONS

In this section we first compare the two solutions with
respect to four aspects. In addition, we show how our approach

https://bitbucket.org/matthiasbecker/fpds_dot_simulation
https://bitbucket.org/matthiasbecker/fpds_dot_simulation


GetResource ReleaseResource
Minimum 5.0000 µs 9.0000 µs
Maximum 6.0000 µs 12.0000 µs
Average 5.0063 µs 9.2253 µs
Standard Deviation 0.0796 µs 0.4181 µs

TABLE III: Observed overhead values.

can be generalized to support other fixed-priority scheduling
policies.

Memory complexity. The amount of extra memory required
by our approach is due to (i) declaration of pseudo-resources
(ii) implementation of the two lists that store the sequence of
the primitives (LG and LR). Both solutions require as many
resources as the number of unique preemption threshold levels
of all tasks in T . In the worst case we will have N−1 threshold
levels. The lists have size mi × N . Hence the complexity is
O(mi ×N).

Runtime complexity. The offline part of our
approach consists of the following two functions:
FindPseudoResources and InitLists/InitLists∗.
The FindPseudoResources function has complexity of
O(N2). The InitLists function has run time complexity
of O(N) for each preemption point. The InitLists∗

function has run time complexity of O(m × N) for each
preemption point. This is because InitLists∗ calls the
filter function before increasing priority. Recall that
M = max∀τi∈T (mi). The collective complexity of the offline
part of our approach is O(MN2) if InitLists is used and
it is O((N2M2) if InitLists∗ is used. The online part
of our approach is the Yield function. This function has
complexity of O(N).

Runtime overhead. AUTOSAR provides the possibility to
associate one exclusive resource with each task, called internal
resource. The kernel locks an internal resource for the duration
of one job. The priority change is done inside the kernel. Thus
a limited version FPTS can be implemented using internal
resources. In order to compare the overhead for changing
priority incurred by a method implemented in the kernel with
our approach, we conducted experiments based on the setup of
Section V-C. Our measurements showed that internal resources
may be up to four times more efficient than the external
resources. Therefore, if we implement the priority change
inside the kernel, the overhead will be reduced. However
changing the kernel is not trivial and typically the source code
of the kernel is not available.

Number of resource accesses. Both solutions require at most
(N − i) × 2 + 2 calls to resource sharing primitives per
preemption point. This worst case is reached if a preemption
point with highest threshold is followed by a preemption point
with threshold level equal to the task priority and then again
by a second preemption point with the highest threshold. Here
we assume that the task has N − i different thresholds for the
preemption points. Two additional calls are needed to release
and later get the scheduling resource in order to execute the
jobs non-preemptively.

Generalization. FPDS• is a specific form of FPVS [12]. In
FPVS, equivalent to FPDS•, a task τi consists of mi subjobs,
separated by preemption points, and preemption points have in-
dividual thresholds. Unlike FPDS•, FPVS executes the subjobs
preemptively, instead each subjob is assigned a preemption

Parameter πi θi,1 θ•i,1 θi,2 θ•i,2 θi,3
Priority value πi πi+3 πi+1 πi+2 πi+2 πi+4

TABLE IV: Configuration of the example task shown in Figure 11.
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Fig. 11: Examples of the priorities of a FPVS task.

threshold θi,a. The preemption threshold of a preemption point
is restricted not to have a higher threshold than its neighboring
subjobjs, i.e. the condition max(θi,a, θi,a+1) ≥ θ•i,a ≥ πi must
hold for all preemption points. In [12] Bril et al. showed that
all other fixed priority scheduling schemes are specializations
of FPVS. Thus by showing the applicability of our algorithms
for FPVS we show that our proposed algorithm enables
AUTOSAR to support all flavors of fixed priority scheduling
algorithms.

Figure 11 shows an example FPVS task τi with base
priority πi. τi has three subjobs τi,1 to τi,3. Each subjob
has an assigned preemption threshold θi,j and preemption
points have preemption thresholds θ•i,j . The top of the figure
illustrates the changing priority value during the execution of
the task. Table IV specifies the underlying values for the task
parameters. We can see that the priority of the task changes as
follows during the execution of one job: πi → θi,1 → θ•i,1 →
θi,2 → θ•i,2 → θi,3 → πi. We convert this sequence of priority
values into a set P with priority values denoted by Φ, where
Φi,1 = πi, Φi,2 = θ1 etc.

Since subjobs of FPVS are not executed non-preemptively
we need to remove lines 3 and 21 of InitLists∗(a)
(Algorithm 5) to prevent locking of the scheduler. Generation
of the locking sequence can now be done as described for the
FPDS• algorithm with the sequence of priorities described in
P being the input of InitLists∗. As a consequence, the
Yield function is executed both for preemption points and
subjob thresholds at runtime.

VII. CONCLUSION

In this paper we exploited the resource access protocol
of AUTOSAR in order to change the task priority at runtime
according to the FPDS• scheduling algorithm. We provided
two algorithms to call pseudo-resources in such a way that the
task priorities change as defined by the schedule. We proved
the correctness of the first algorithm. Furthermore, we proved
that our second algorithm is optimal in the number of calls
to the resources access primitives and we showed how to
generalize our solution to support all fixed-priority scheduling
schemes.
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Fig. 10: Illustrative example, comparing the two proposed algorithms to generate the resource accesses to the pseudo-resources. Get() and Rel() functions
represent GetResource() and ReleaseResource() primitives respectively. The base priority of the task is π3.
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