
Enhancing Time Triggered Scheduling with Value Based
Overload Handling and Task Migration

Jan Carlson, Tomas Lennvall, and Gerhard Fohler
Department of Computer Science and Engineering

Mälardalen University, Sweden
�jan.carlson, tomas.lennvall, gerhard.fohler�@mdh.se

Abstract

Time triggered methods provide deterministic behaviour
suitable for critical real-time systems. They perform less
favourably, however, if the arrival times of some activities
are not known in advance, in particular if overload situa-
tions have to be anticipated. In many systems, the criticality
of only a subset of activities justify the cost associated with
the time triggered methods.

In this paper we consider distributed systems where a
subset of critical activities are handled in a time triggered
fashion, via an offline schedule. At runtime, the arrival of
aperiodic tasks may cause overload that demands to be han-
dled in such a way that i) time triggered activities still meet
all their original constraints, ii) execution of high-valued
tasks are prioritised over tasks with lower value, iii) tasks
can be quickly migrated to balance the overall system load.

We give a precise formulation of overload detection and
value based task rejection in the presence of offline sched-
uled tasks, and present a heuristic algorithm to handle over-
load. To benefit from the distributed setting, the overload
handling includes an algorithm that integrates migration of
rejected tasks with resource reclaiming and an acceptance
test of newly arrived tasks.

Simulation results underline the effectiveness of the pre-
sented approach.

1. Introduction

The time triggered approach has been shown to be suit-
able for critical real-time systems [9] [10]. By applying
strict temporal control, critical activities can be performed
in a deterministic way. Since scheduling is performed off-
line, sufficient time can be spent constructing a feasible
schedule to allow complex constraints, e.g., concerning task
separation or jitter.

However, time triggered scheduling performs less

favourably with activities for which the arrival time is not
known in advance. If overload situations have to be antici-
pated to occur at runtime, a time triggered design would typ-
ically restrict the number of activities for the entire system
lifetime, although solving occasional overload situation by
rejection of less important tasks would be acceptable. De-
signing the system for worst case load would in many cases
result in a prohibitively overdimensioned system.

In distributed systems, it is possible that overload situa-
tions occur on a set of processing nodes although the system
is globally underloaded. Such situations can be resolved by
migrating tasks from overloaded nodes to such with lower
load.

For many systems, only a subset of activities justifies the
cost associated with time triggered methods. In addition to
this critical subset, the system may perform a number of
other activities of lower importance which may be of differ-
ent relative importance to the overall system performance.

As an example, imagine a system with a critical core
responsible for system stability, but less stringent applica-
tions; while a failure in the core system is unacceptable, re-
duced application performance can be tolerated at overload,
as in, e.g., a telephone switch.

In this paper we consider distributed systems where a
subset of activities are handled in a time triggered fashion.
At runtime, the arrival of aperiodic tasks may cause over-
load, which cannot be planned for in advance. If overload
occurs, it must be detected and resolved in such a way that:

i) time triggered activities still meet all their original con-
straints,

ii) execution of high-valued tasks are prioritised over
tasks with lower value,

iii) tasks can be quickly migrated between nodes to bal-
ance the overall system load.

We describe how the time triggered approach can be en-
hanced to suit distributed real-time systems where overload
situations must be anticipated. We give a precise formula-
tion of overload detection and value based task rejection in

the presence of offline scheduled tasks, and present a heuris-
tic overload handling algorithm. Overload situations are de-
tected immediately when the offending tasks arrive, and re-
solved by rejection of low value tasks.

The overload handling includes a task migration algo-
rithm to benefit from the distributed setting, that integrates
migration of rejected tasks with resource reclaiming and the
acceptance test of newly arrived tasks.

We assume that the critical tasks are scheduled offline,
but the schedule is handled in a flexible way at runtime to fa-
cilitate the inclusion of aperiodic tasks. This is achieved by
including mechanisms from the slot shifting algorithm [7]
that allow the planned execution of offline scheduled tasks
to be shifted in time, while still ensuring that no critical
constraints are violated. This allows the designer to choose,
for each activity individually, the tradeoff between guaran-
teed timely execution, and less resource demanding non-
guaranteed handling based on values.

Value based overload handling has been thoroughly in-
vestigated. In [3], a number of methods that use values and
deadlines to handle overload are compared. For a wide
range of overload conditions, the best performance was
achieved by EDF scheduling extended with a value based
overload recovery mechanism and resource reclaiming. An
example of such an algorithm is RED [4]. For very high
overloads, scheduling based on value density outperforms
EDF based methods. In [1], task priorities are calculated
dynamically from values and remaining execution times.
They consider tasks with soft deadlines, i.e., values that de-
crease if the deadline is missed, rather than become zero or
negative. In [2], an overload algorithm is presented for the
special case when a minimum slack factor for every task is
known. Also, tasks are assumed to be equally important.

These methods do not consider distributed scheduling,
or overload handling in the presence of offline scheduled
critical tasks.

Distributed overload handling is addressed in, e.g., [12],
where an acceptance test is performed upon arrival of ape-
riodic tasks. If it fails, the node initiates an intricate bid-
ding procedure in which nodes cooperate to decide where
to migrate the task. The problem considered in this paper
requires an overload handling where values are taken into
account. Another difference is that in our method migra-
tion is initiated by the receiving node rather than the current
owner of the task, and that migration is integrated with re-
source reclaiming and the acceptance test of new aperiodic
tasks.

The rest of this paper is organised as follows: Section 2
lists task and system assumptions and discusses our method
in general. The task migration algorithm is presented in
Section 3, followed by a description of the local overload
handling in Section 4. Simulation results are given in Sec-
tion 5. Finally, Section 6 concludes the paper.

2. System assumptions and basic idea

This section describes system assumptions, task model
and value model we used. It also includes a brief description
of how the mixed task set is handled, and the basic idea of
the proposed method.

We consider adistributed system, i.e., one that consists
of several processing and communication nodes [13]. All
nodes are assumed to have access to the static parameters,
including code, of all aperiodic tasks. This simplifies task
migration since only task identifiers are sent over the net-
work. Also, we only migrate tasks that have not started
executing on a node, and thus no additional data transfer is
required.

We assume a discrete time model [8]. Time ticks are
counted globally by a synchronised clock, and assigned
numbers from 0 to�. The time between two consecutive
ticks is called aslot. Slots have uniform length, and they
start and end at the same time for all nodes in the system.

2.1. Task model

We assume two different task types in the system: off-
line scheduled tasks and aperiodic tasks, described below.
All tasks are fully preemptive and communicate with the
system via data read at the beginning and data written at the
end of execution. Hard deadlines must be met under any
circumstance. Firm deadlines can be missed, but a result
delivered after the deadline is of no use to the system.

Offline scheduled tasks have hard deadlines and can have
complex constraints, such as distribution, precedence, in-
stance separation, jitter, etc. Solving these constraints on-
line is not feasible in the general case, due to the high com-
plexity. Instead, the offline scheduled tasks are transformed
by an offline scheduler, into simple runtime tasks with sim-
ple constraints: earliest start time, worst case execution time
(wcet), and a relative deadline.

Transformation of complex constraints into simpler ones
is discussed in [6], where an offline scheduler, e.g., [11]
is used and the resulting schedule analysed to establish the
new parameters.

Aperiodic tasks have firm deadlines, and arrival times un-
known at design time. We also assume aperiodic tasks to
be independent of each other, and of the offline scheduled
tasks. An aperiodic task is characterised by the following
set of parameters: arrival time, remaining worst case execu-
tion time (�), firm absolute deadline (��), and value (�).

The termaperiodic reflects the fact that the system has
no knowledge of arrival times and thus do not consider the
arrival of future instances when scheduling. Aperiodic tasks
can still be used to handle non-critical periodic activities.

Value is a measure of the benefit to the system associated
with completing the task in time. Only aperiodic tasks are
associated with values, since offline scheduled tasks are
never considered for rejection when resolving overload situ-
ations. The values are considered to be cumulative, i.e., two
sets of tasks can be compared by their respective sum of val-
ues. Tasks contribute with their value to the system if they
finish in time, otherwise they do not contribute at all. In this
paper we assume static values ranging from� to MaxValue,
where a higher value indicates a greater benefit.

2.2. Handling the mixed task set

At runtime, local scheduling uses the slot shifting algo-
rithm described in [7], except for the guarantee mechanism.
Slot shifting introduces flexibility into the offline schedule
by allowing offline scheduled tasks to be shifted in time, but
never in such a way that their timely execution is impeded.

Information about this flexibility, i.e., available resources
and leeway in the offline schedule, is represented asspare
capacity of disjoint time intervals. This information is used
by the runtime scheduler to decide for each slot whether to
execute an aperiodic or an offline task. In this paper, the
spare capacity of these fixed intervals are only considered
as a way to determine the spare capacity of arbitrary future
intervals when handling overload.

2.3. Basic idea

As outlined above, slot shifting is used to decide when
aperiodic tasks can be allowed to run without causing an
offline scheduled task to miss its deadline. In addition, the
scheduler must decide which aperiodic task to execute. In
the proposed method, aperiodic tasks are served according
to EDF once accepted by the overload detection mecha-
nism.

To handle overload situations, each node keeps theready
queue, containing the aperiodic tasks ready to be executed
on that node, constantly free from overload. When new ape-
riodic tasks arrive, they are inserted into the ready queue
based on their deadlines. Then, the queue is processed
to detect future overload situations and to resolve them to
make the queue free from overload again.

All tasks removed from the ready queue due to overload
are stored in a separatemaybe-later queue, as long as they
have positive laxity. This queue is similar to thereject queue
in RED [4], but used for tasks migration as well as resource
reclaiming.

The basis of the task migration algorithm is that selected
tasks from maybe-later queues are retried, possibly on other
nodes. Retrying tasks locally is required to reclaim re-
sources when tasks finish in less time than wcet. If a task
is accepted on the new node, it is immediately migrated.

An important aspect of this scheme is that a task is only
migrated if it has been found non-profitable for local exe-
cution, and if there is room for it on the new node, possibly
after rejecting a number of lower valued tasks.

3. Remote task stealing

A distributed system with runtime task migration must
somehow decide when and where to move tasks in order
to maximise the total value of executed tasks. These deci-
sions become increasingly important when the load, or the
value of tasks, varies a lot between nodes. Ensuring optimal
global scheduling is an NP-hard problem, and we therefore
aim for a sub-optimal solution.

In order to cope with the complexity of the problem,
scheduling is primarily handled locally on each node, as
discussed in Section 4. Task migration is handled together
with acceptance tests of new tasks, and local resource re-
claiming. Further, task migration is always initiated by the
node the task is to migrate to, and not the current owner.
Therefore, we use the termtask stealing, rather than migra-
tion.

To keep network usage low, and to simplify the algo-
rithm by ruling out the possibility of conflicting thefts, only
one node at a time is allowed to steal tasks. This is ensured
by something similar to a conceptual token ring, where the
owner of the token may steal tasks from any other node dur-
ing one slot, before the token is passed to the next node in
the ring.

By some arbitrary communication scheme, the maybe-
later queues (or parts of them) are made visible to all nodes
in the system. At the start of a slot, each node adds newly
arrived aperiodic tasks to its ready queue. In addition, the
node holding the token may add tasks from any maybe-later
queue in the system, including its own. After adding tasks,
each node applies the overload handling algorithm to re-
solve any overload situations.

Since only one node is allowed to steal tasks from any
maybe-later queue at the start of each slot, and no additional
data have to be sent over the network, the stealing node may
execute one of the stolen task immediately (in the current
slot).

The Flea Market algorithm1

The parameterMaxTheft is used to adjust the algorithm
w.r.t. network capacity and system size. At the start of every
slot, each node performs the following algorithm:

1. Let� be the set of all aperiodic tasks currently in the
ready queue.

1The name reflects that once a node is no longer interested in a task, the
task is offered to the other nodes of the system, and given to the first node
that wants it.

2. Add to� all aperiodic tasks that arrived to the node at
this tick.

3. This step is only performed by the node currently
holding the token. Gather tasks from the maybe-later
queues of all nodes in the system. From the maybe-
later queues of other nodes, consider only tasks that
are movable. Add to� the tasks with highest value
density, at mostMaxTheft tasks.

4. Apply the overload algorithm to�. The result is a
boolean value�� for each�� � �, where� represents
acceptance and� rejection. For each��, perform the
following action depending on whether the task� � was
added during step 1, 2 or 3 of this algorithm.

�� step action
� 1 Remove�� from ready queue, and

insert it in the maybe-later queue.
� 2 Insert�� into maybe-later queue.
� 3 Do nothing.
� 1 Do nothing.
� 2 Insert�� into ready queue.
� 3 Insert�� into ready queue, and in-

form the current owner (possibly
yourself) of the theft.

5. If the node holds the token, send it to the next node.

3.1. Node communication

The algorithm is described as if the whole maybe-later
queues are visible to all nodes, but this is actually not re-
quired. The node holding the token is interested only in
the MaxTheft tasks with highest value density. By keep-
ing maybe-later queues sorted according to value density, it
is sufficient to make theMaxTheft first tasks in each queue
visible. Also, since aperiodic tasks are assumed to reside on
all nodes in the system, only tasks identifiers are sent over
the network.

Furthermore, only one node uses the maybe-later queues
each slot. Thus, the distribution of maybe-later queue in-
formation in a system of� nodes can be accomplished by
a total of��� messages, each consisting ofMaxTheft task
identifiers and remaining execution time.

Communication is also required in order to migrate
tasks. Since only one node may steal tasks from the maybe-
later queues in each slot, the only communication needed in
order to migrate a task is to inform the current owner of the
theft. Thus, a stolen task may execute on the new node in
the same slot as it is stolen. At most��� messages, each
containing one task identifier, are sent each slot due to task
migration.

The algorithm, as described above, assumes that the net-
work is fast enough to permit the following communication
during a single slot:

� The node holding the token sends theft messages to all
nodes.

� When receiving the theft message, each node sends its
new maybe-later queue information to the next token
holder.

If the network does not permit this within a single slot, but
within 	 slots, the algorithm can be modified so that the to-
ken is inactive for	�� slots when it arrives to a node. Fig-
ure 1 and 2 show the communication between three nodes
for 	�� and	��. Ticks are denoted by vertical lines, and
the scheduling performed in each slot is represented by a
grid. Horizontal lines denote the token holder, and dashed
lines represent that the token is inactive. Arrows starting in
a grid are messages concerning stolen tasks, and those start-
ing in the middle of a slot are messages containing maybe-
later queue information.

�

�

�

�
�
��

�
�
�
�
�
��

�
�
��

�
�
��

�
�
��

�
�
�
�
�
��

�
�
��

�
�
��

�
�
��

�
�
�
�
�
�� �

�
�
�
�
��

�
�
��

Figure 1. Node communication (��).

�

�

�

									

�
�
�
�
�
�
�
�
��

�

�������

Figure 2. Node communication (��).

4. Overload handling

At run time, scheduling is performed locally via the slot
shifting scheme, which decides for each slot if an aperiodic
task can be allowed to execute without causing an offline
scheduled task to miss its deadline.

Aperiodic tasks are served according to EDF, which
gives good performance in non-overload situations. When
the system is overloaded, two important issues must be ad-
dressed. In general, high valued tasks should be preferred
over tasks with low value. Additionally, tasks should be
removed as early as possible, rather than simply being al-
lowed to miss their deadlines, since an early removal might
allow the task to be stolen by another node in the system.

Our algorithm ensures an overload-free ready queue,
i.e., all tasks in the queue can be executed without miss-
ing their deadlines, also in the presence of offline sched-
uled tasks. When new aperiodic tasks arrive, the algorithm
checks if they cause overload, and if so, which tasks to re-
ject in order to resolve this efficiently.

4.1. Problem formulation

Detection and removal of overload can be formulated as
a general binary optimisation problem. This allows us to ab-
stract on details, since the dynamic aspects of the rejection
problem (e.g., that rejecting a task influences the finishing
times of the others) are represented by static restrictions.
This facilitates the development of a suitable algorithm.

Let ��� � �� be the aperiodic tasks currently in the
ready queue, including the ones that just arrived, sorted ac-
cording to EDF. For each task�� we use a boolean variable
�� to represent whether the task should be kept in the ready
queue (����), or rejected (����). These variables are the
output of the overload algorithm, used by the Flea Market
algorithm described in Section 3.

To explain the problem formulation, we first consider a
simpler setting without offline scheduled tasks, and then
proceed by showing the modifications needed to incorpo-
rate offline scheduled tasks as well.

Consider a single aperiodic task��. To detect if there is a
risk of this task missing its deadline, we need the expected
finishing time, denoted�	�. In a pure EDF setting, with no
offline scheduled tasks to consider, this would be computed
by adding the remaining execution times��� � �� to the
current time.

However, detecting overload is not enough. To solve it
efficiently we need to know the size of each deadline miss,
so we denote by�� the overload amount of��, defined in
the simple setting as�	� � ���. In order to ensure that��
does not miss its deadline, at least�� slots must be freed, by
removing some of the tasks��� � ��. This is represented
by the following restriction:

���� � ���� � � ���� � ��

Similar reasoning can be applied to each of the tasks in
the ready queue, resulting in the following set of restric-
tions:

���� � ��
���� � ���� � ��

...
���� � ���� � � ���� � ��

Note that these restrictions give a static formulation of the
problem, since the�-values are defined in term of the cur-
rent ready queue, and do not depend on the�-values.

An assignment of the values� or� to the�-variables cor-
responds to a potential solution to the task rejection prob-
lem. Furthermore, any assignment that satisfies the restric-
tions corresponds to a solution that would result in a ready
queue free from overload. However, we do not simply look
for a solution (rejecting all tasks is always a valid possibil-
ity), we want a solution that gives as high value as possible
to the system. This means that the summed values of the
removed tasks should be minimised, which is represented
as:

min ���� � ���� � � ����

So far, we have considered a simplified system that con-
tains only aperiodic tasks. In order to construct similar re-
strictions when offline scheduled tasks also have to be con-
sidered, the definition of�� must be modified.

Let ����� �� be the spare capacity of the interval from� to
�, i.e., the number of slots in the interval that is not required
to execute offline scheduled tasks in time. Now,� � can be
defined as follows:

�� � ������� �	��

This definition requires the expected finishing time to be
computed, and now that the system contains offline sched-
uled tasks as well, this is not straightforward. Instead, we
use the following definition, which is equivalent to the pre-
vious one except that it assigns negative values rather than
zero to tasks that finish before the deadline. In this defini-
tion, 	� denotes the current time.

�� � �� � ���	�� ����
�� � ������� � ��������� ���� �� � � � �	

The modified definition of�� allows the same restric-
tions to be used as in the simplified setting, and the final
representation of task rejection as a optimisation problem
is:

min ���� � ���� � � ����
when ���� � ��

���� � ���� � ��
...

���� � ���� � � ���� � ��
��� ��� � �� � ��� ��

Example: Let the ready queue contain the following ape-
riodic tasks at the beginning of slot��, where (�� �� ��� ��)
represents��.

��
 ���� �� ��	 ��
 ��� �� ��	 ��
 ���� �� ��	
��
 ���� �� ��	 ��
 ��� �� �	 ��
 ���� �� ��	

The tasks�� and�� have just arrived, and might have caused
overload. If no more tasks were to arrive, the execution of

the aperiodic tasks would look as follows. The arrows de-
note deadlines, and the gaps indicate slots needed to exe-
cute offline tasks. For simplicity, we assume that the offline
schedule has a low load in the interval.

�� �� �� ��

�� 	 �����

�� 	 �����

�� 	 �����

�� 	 �����

�� 	 ����

�� 	 ����

The corresponding optimisation problem is:

min ���� � ���� � ���� � ��� � ���� � ����
when ��� ���

��� � ��� ���
��� � ��� � ��� ���
��� � ��� � ��� � ��� ���
��� � ��� � ��� � ��� � ��� � �
��� � ��� � ��� � ��� � ��� � ��� � �
��� ��� � �� � ��� ��

The last two inequalities correspond to the overload at��
and��, and describe what must be done in order to resolve
this.

4.2. Rejection algorithm

Even when all restrictions except the last one are trivially
satisfied (�� � � for � � � � �), the problem is hard
to solve. In fact, it has been reduced to the well known
NP-hard binary knapsack problem, which indicates that an
optimal alogrithm is not feasible. Instead, our algorithm is
based on heuristics that exploit properties of this particular
problem.

One such property is that each restriction contains less
variables than the subsequent ones. Furthermore, a good
solution (w.r.t. the minimisation criteria) to a single restric-
tion is a reasonably good partial solution to all subsequent
restrictions, since the variables are equally weighted in all
restrictions.

Algorithm description. Initially, all �� variables are set to
�, which represents a solution where no tasks are removed.
The rejection algorithm traverses the restrictions top-down,
solving each of them individually.

The restrictions are solved by changing some of the vari-
ables from� to �. Once a variable is set to�, this variable is
never changed during the solving of subsequent restrictions.

Each restriction, unless already satisfied by the current
variable settings, is solved in three steps.

� First, we consider the variables of the left-hand side
of the restriction that are currently set to 0, and would
solve the restriction if set to 1. From these we select as
ourbest single candidate the one with lowest� �.

� Next, we construct thecollection candidates. From the
remaining left-hand side variables that are currently set
to 0 (i.e., those that would not solve the restriction if
set to 1), we collect variables from right to left until
the restriction would be solved if all variables in the
collection are set to 1.

� Finally the value of the best single candidate is com-
pared against the summed values of the collection can-
didates (if a large enough collection was found), to de-
cide what the final choice should be.

Complexity. Computing�-values for� aperiodic tasks can
be done in linear time. The algorithm has been left out due
to space limitations, but can be found in [5]. In the worst
case, all� restrictions have to be solved and none of the so-
lutions solve any subsequent restriction. Solving a single re-
striction requires a linear traversal of all earlier tasks, which
gives the algorithms a worst case complexity in����	.

In practical applications, this worst case complexity can
be handled in essentially two ways. We can restrict the
overload algorithm to consider only a prefix of the ready
queue. Simulations presented in [5] show a moderate im-
pact on system performance when this type of restriction
is applied. Another possibility is to restrict the number of
non-trivially solved restrictions that are considered at each
call to the overload algorithm. If this number is reached, the
system rejects all new tasks, which is always a valid option.

Efficiency improvements. Let �� be the new task that has
the earliest deadline. Since the task set was free from over-
load before the new tasks arrived, the first��� restrictions
are trivially satisfied and do not need to be considered.

If, at any point, the sum
��

��� ���� becomes greater than
the summed value of the newly arrived tasks, the algorithm
stops, returning an answer where all new tasks are rejected,
and all old tasks are kept. This improvement ensures that
the total value of the ready queue is never decreased when
new aperiodic tasks arrive.

Example: For the task set in the previous example, the al-
gorithm works in the following way. The first new task was
added at position three, so we need only to check restric-
tions three to six. The third and fourth restrictions are triv-
ially satisfied, because the�-values are negative, but restric-
tion five needs to be solved.

��� � ��� � ��� � ��� � ��� � �

To find the best single candidate, we choose between��,
�� and��. Since�� is smaller than�� and��, �� is chosen

as single candidate. Constructing the collection, both��

and�� are added before the collection is large enough to
solve the restriction. Comparing����� against��������
we finally decide to solve the fifth restriction by����.

Continuing the traversal of restrictions, we now consider
the last one:

��� � ��� � ��� � ��� � ��� � ��� � �

We find that the current variable values do not satisfy this
restriction, and the procedure of finding the best single can-
didate and a collection is repeated. This time, the col-
lection has a lower value, and the restriction is solved by
�������

The solution to the whole problem is����������,
����������, meaning that�� is accepted, while��, ��
and�� are removed from the ready queue. Since all restric-
tions are satisfied by this solution, the ready queue is once
again free from overload. The future execution of aperiodic
tasks, assuming no further arrivals, is:

�� �� �� ��

�� 	

�� 	

�� 	

5. Simulations

We have implemented the described method, and have
run simulations for various scenarios. The simulated sys-
tem consists of� processing nodes, connected via a network
where all necessary messages can be sent during one time
slot.

Each simulation has a length of���� slots. The off-
line schedules are created from randomly generated prece-
dence graphs, an offline scheduler transforms the prece-
dence graphs to offline schedules. Each node has one offline
schedule with a load of�� and a length between��� and
���� slots.

Worst case computation time for both offline and aperi-
odic tasks varies uniformly in the range�–��. Aperiodic
tasks are assigned an actual execution time uniformly dis-
tributed between�� and�� of its wcet, and relative dead-
lines varying between�–� times wcet.

Arrival times of aperiodic tasks are distributed over the
simulation length, with the restriction that no task have a
deadline exceeding the simulation length. Finally, values of
aperiodic tasks vary uniformly in the range�–���.

The average node load varies between�� and��, the
offline load of�� included. The load parameter is based
on wcet, and thus represents the load as perceived by the

overload algorithm. The actual system load is lower2, since
execution time is less than wcet.

We have studied the total accumulated value of aperiodic
tasks that finished in time, and the following methods have
been compared:

1. The full method presented in the paper.
2. The overload handling algorithm, without task migra-

tion.
3. A basic algorithm that uses the offline schedule, as-

signing idle slots to the aperiodic tasks based on value
density.

4. Same as 3, but aperiodic tasks are ordered by value.
5. Same as 3, but aperiodic tasks are ordered EDF.
6. Same as 3, but aperiodic tasks are serviced in order of

arrival.

Methods 1 and 2 implement the efficiency improvements
suggested in Section 4.2. Each point in the figures repre-
sents some��� simulations.

0

25

50

75

100

125

150

175

200

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Average node load

A
c
c
u

m
u

la
te

d
 v

a
lu

e
 *1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

Figure 3. Even load distribution.

In the first experiment, all nodes in the system are sub-
ject to the same amount of load. The result is presented in
Figure 3. Because all nodes are overloaded, the possibility
of task migration does not provide any significant improve-
ment. Compared to the basic methods, the proposed method
performs better.

The second experiment, shown in Figure 4, is a scenario
of unevenly distributed load. Half of the nodes have no ape-
riodic tasks arriving, only offline scheduled tasks. Here, the
task migration algorithm clearly increases the system per-
formance, compared to overload handling without migra-
tion, because tasks can migrate to nodes with no aperiodic
load.

6. Conclusions

In this paper we have described how the time trig-
gered approach can be enhanced to suit distributed real-time

2The actual system load varies approximately between��� and���� in
the experiments, based on the distribution of actual execution times

0

25

50

75

100

125

150

175

200

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Average node load

A
c
c
u

m
u

la
te

d
 v

a
lu

e
 *1

0
-3

1. Migration
2. Local
3. Offline Valuedensity
4. Offline Value
5. Offline EDF
6. Offline FCFS

Figure 4. Uneven load distribution.

systems where overload situations have to be anticipated.
Overload situations are resolved w.r.t. task value, possibly
by migration of tasks to nodes of lower load, without im-
peding the timely performance of critical activities.

For many systems, the cost associated with time trig-
gered methods is only justified for a subset of activities.
In addition to this critical subset, the system may perform
a number of other non-critical activities, which may be of
different relative importance to the overall system perfor-
mance.

We have formulated a binary optimisation problem that
represents overload detection and value based task rejection
in the presence of offline scheduled tasks that are guaran-
teed a timely execution.

We have also presented a heuristic overload handling al-
gorithm that detects overload situations immediately when
the offending tasks arrive, and resolve them by rejection of
low value tasks. The overload resolver, although not op-
timal, never decreases the value of aperiodic tasks in the
overload-free ready queue.

As distributed systems were considered, the overload
handling includes a task migration algorithm that integrates
migration of rejected tasks with resource reclaiming and the
acceptance test of newly arrived tasks. Task migration is ini-
tiated by the receiving node. It is only applied to tasks that
have been rejected by their current owner, and will increase
the value of the receiving node. A task can execute on the
new node in the same slot it was migrated.

Critical tasks are scheduled offline, which allows com-
plex constraints, such as distribution, precedence and jitter,
to be considered. Using mechanisms from the slot shifting
method, the schedule is handled in a flexible way at run-
time to facilitate the execution of aperiodic tasks, while still
ensuring that no critical constraints are violated.

This enables designers to choose the tradeoff between
predictability and flexibility individually for each activity
in the system. It guarantees predictable execution of critical
activities even under overload situations, while minimising
response times and maximising accumulated values.

Simulation results show the effectiveness of our ap-

proach for loads up to��, evenly and unevenly distributed
over the nodes, compared to a basic algorithm that uses the
offline schedule directly and assigns idle slots to execution
of aperiodic tasks in order of arrival. The results also show
the performance increase due to task migration.

An interesting future extension to this work would be to
allow offline scheduled tasks to be associated with values as
well, and thus included in the rejection process. The differ-
ence, compared to including them as aperiodic tasks in the
current method, would be that the information about future
instances could be taken into account.

References

[1] S. A. Aldarmi and A. Burns. Dynamic value-density for
scheduling real-time systems. InProceedings 11th Euromi-
cro Conference on Real-Time Systems, Dec 1999.

[2] S. Baruah and J. Haritsa. Scheduling for overload in real-
time systems.IEEE Trans. on Computers, 46(9), Sep 1997.

[3] G. Buttazzo, M. Spuri, and F. Sensini. Value vs. deadline
scheduling in overload conditions. InReal-Time Systems
Symposium, Pisa, Italy, Dec 1995.

[4] G. Buttazzo and J. Stankovic. Red: A robust earliest dead-
line scheduling algorithm. InProceedings of 3rd Interna-
tional Workshop on Responsive Computing Systems, 1993.

[5] J. Carlson, T. Lennvall, and G. Fohler. Simulation re-
sults and algorithm details for value based overload han-
dling. Technical report, Department of Computer Engineer-
ing, Mälardalen University, Sweden, May 2002.

[6] G. Fohler. Flexibility in Statically Scheduled Hard Real-
Time Systems. PhD thesis, Technische Universit¨at Wien,
Austria, Apr. 1994.

[7] G. Fohler. Joint scheduling of distributed complex periodic
and hard aperiodic tasks in statically scheduled systems.
In Proceedings of the 16th Real-Time Systems Symposium,
Pisa, Italy, Dec. 1995.

[8] H. Kopetz. Sparse time versus dense time in distributed
real-time systems. In12th International Conference on Dis-
tributed Computing Systems, pages 460–467, Washington,
D.C., USA, June 1992. IEEE Computer Society Press.

[9] H. Kopetz. Time-triggered model of computation. InPro-
ceeedings 19th Real-Time Systems Symposium, pages 168–
177, Dec 1998.

[10] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl,
C. Senft, and R. Zainlinger. Distributed fault-tolerant real-
time systems: The MARS Approach.IEEE Micro, 9(1):25–
40, Feb. 1989.

[11] K. Ramamritham. Allocation and scheduling of complex pe-
riodic tasks. InInternation Conference on Distributed Com-
puting Systems, pages 108–115, 1990.

[12] K. Ramamritham, J. Stankovic, and W. Zhao. Distributed
scheduling of tasks with deadlines and resource require-
ments. IEEE Transactions on Computers, C-38(8):1110–
1123, August 1989.

[13] J. Stankovic, K. Ramamritham, and C.-S. Cheng. Evaluation
of a flexible task scheduling algorithm for distributed hard
real-time systems.IEEE Trans. on comp., 34(12), Dec 1995.

