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Abstract. Traditional embedded systems are evolving into heteroge-
neous systems in order to address new and more demanding software
requirements. Modern embedded systems are constructed by combin-
ing different computation units, such as traditional CPUs with Graphics
Processing Units (GPUs). Adding GPUs to conventional CPU-based em-
bedded systems enhances the computation power but also increases the
complexity in developing software applications. A method that can help
to tackle and address the software complexity issue of heterogeneous
systems is component-based development.
The allocation of the software application onto the appropriate compu-
tation node is greatly influenced by the system information load. The
allocation process is increased in difficulty when we use, instead of com-
mon CPU-based systems, complex CPU-GPU systems.
This paper presents a 2-layer component-based architecture for hetero-
geneous embedded systems, which has the purpose to ease the software-
to-hardware allocation process. The solution abstracts the CPU-GPU
detailed component-based design into single software components in or-
der to decrease the amount of information delivered to the allocator.
The last part of the paper describes the activities of the allocation pro-
cess while using our proposed solution, when applied on a real system
demonstrator.

1 Introduction

Due to the advances in micro and nano technology fabrication, traditional em-
bedded systems are becoming more and more complex. The traditional homoge-
neous unicore CPU-based systems have emerged as heterogeneous systems which
combine various processing units, such as multi-core CPUs and GPUs. The GPU
computation power brings considerable speed-ups compared to the traditional
CPU, for various software applications such as n-body simulations [11] or 3D
reconstruction medical systems [13]. Also, the large GPU parallel computation
power made possible the appearance of new and more complex system applica-
tions such as vehicle vision systems [7] and autonomous vision-based robots [9].
The combination of CPU and GPU increases the system computation power,
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but comes with a cost: being a different computation unit with its own memory
system, the GPU increases the complexity of the software system.

A way to tackle the newly increased software complexity is through component-
based development (CBD). CBD increases developers productivity by construct-
ing complex software applications out of existing software blocks know as compo-
nents. Several advantages arrive by following this development approach; among
them, we can mention an increased productivity and a faster time-to-market.

Developing the component-based design of a system which requires to use the
heterogeneous CPU-GPU hardware is demanding due to the variety of compo-
nent candidates. From a repository of CPU and GPU-based components, differ-
ent combinations of components with their respective properties can construct
different alternatives that have the same functionality. In an embedded system
with multiple heterogeneous hardware nodes, the software-to-hardware alloca-
tion process needs to consider all component-based design alternatives3 in order
to choose the right one w.r.t. the system properties and constraints (e.g., per-
formance optimization). For instance, having a system design composed of only
GPU-based components may result in an infeasible allocation scheme due to
constraints such as the GPU hardware resource limitation.

Determining the software-to-hardware allocation is an NP-hard problem [5].
This challenge is increased even more when instead of using common CPU-based
systems, we use complex CPU-GPU based platforms. In our previous work [6], we
developed a software component allocation model for heterogeneous CPU-GPU
systems. We used the CBD approach to model the software system, and charac-
terize it with extra-functional properties (e.g., CPU and GPU memory usage).
Using the allocation model, we constructed a semi-automatic allocator which
balances the hardware resource usage and optimizes the system performance.
The work does not consider multiple alternatives in its allocation process. This
negatively influences the outcome of the allocation process because it excludes
feasible solutions.

Having multiple alternatives increases the information load of the allocator.
For example, the allocator needs to take in consideration each component prop-
erties (e.g., memory, CPU and GPU usage) and the information regarding the
communication links between the connected components from each alternative.
Due to the tightly-connected nature of the GPU to the CPU, the allocator also
requires to fulfill the constraint of deploying the entire variant onto a single
heterogeneous processing node in order to not negatively influence the overall
system performance.

In this paper, we propose a 2-layer architecture to ease the software-to-
hardware allocation. Both of the layers describe the same system that is using
GPU computation power to fulfill its functionality. The first layer contains the
alternatives and their detailed properties such as communication links or mem-
ory usage. We propose a second layer that encapsulates the alternatives into a
software component with multiple variants. Each variant is characterized by a

3for the rest of the paper, the “component-based design alternative” term will be
simply referred as “alternative”
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distinctive set of properties that reflects the attributes of all of the components
contained by its corresponding alternative. For computing the allocation scheme,
we use the properties of the abstracted second layer. After a suitable component
variant is selected by the allocator, we return to the first layer in order to de-
scribe the full details of the selected alternative which was initially abstracted
away. For future adjustments of the system e.g., to be used in other contexts, the
first layer provides the needed component detailed view to the developer. Using
two distinct levels of granularity, decreases the information load and constraints
on the allocator, making the allocation process easier. Another advantage that
follows from our approach is that it can improve the allocation scalability. More
complex systems (e.g., number of components or properties) may be handled
now by the allocator using the 2-layer approach, when the information load of
all possible allocation scenarios is decreased.

The rest of the paper is organized as follows. Section 2 describes, using a
running example, the software-to-hardware allocation challenges when dealing
with many alternatives. The details of our solution are presented in Section 3.
A case study is implemented in Section 4 in order to describe the feasibility and
benefits of our solution. Related work is described by Section 5 while Section 6
presents the paper conclusion and future work.

2 A CPU-GPU component-based design

A component-based application with heterogeneous computing uses a hardware
platform which contains several computation nodes with different architectures,
such as multi-core CPU and GPU. Due to its parallel processing power, GPUs
bring as benefits an increased computation diversity and power. The disadvan-
tage of using, adjacent to CPU, a different processing unit with its own archi-
tecture and memory system, reflects in an increased complexity of the software
application. Another drawback is that the GPU can not be used independently of
the CPU. Considered as the brain of the system, the CPU is the one that triggers
all the GPU specific operations, such as data transfer activities between the main
RAM memory and GPU memory system. Hence, there is a high communication
between the two processing units. In a multi-node system, the connected CPU
and GPU-based components are desired to be placed on the same heterogeneous
computation node to not negatively affect the total system performance.

We consider that a repository contains two types of components; one type
requires only the CPU for its functionality, and another uses also GPU to fulfill
its functionality. For a specific function, we may have both types of components
in the repository as different version implementations of the respective function.
For example, an image processing component may have three component ver-
sions in the repository, one that uses only the CPU and the other two that uses
also the GPU. The components that use the GPU, may have a different usage of
the GPU resources, hence, their properties are different, e.g., in GPU memory
and computation threads usage. From a repository populated with CPU and
GPU software components, by having different component combinations (e.g.,
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CPU-GPU, CPU-GPU-GPU), several potential alternatives with the same func-
tionality can be constructed. In a complex system with multiple heterogeneous
hardware nodes, an alternative composed of only GPU-based components may
not be a feasible allocation solution due to the hardware resource limitations.
Hence, the allocation process should consider all the alternatives in its allocation
activity.

In the following example, we describe a component-based design for a demon-
strator with heterogeneous embedded CPU-GPU hardware. The demonstrator,
an underwater robot, is developed at Mälardalen University, Sweden [2]. The
purpose of the demonstrator is to autonomously navigate under water in e.g.,
tracking various objects, using its vision system that contains two (front and
bottom) cameras.
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Fig. 1: Data activities and alternatives of the front vision system

To develop the demonstrator’s front vision system, CPU and GPU software
components are used from the system repository, as follows. In our example,
a simplified vision system is composed of three components. The FrontCamera
component communicates with the physical camera and receives frames from
the underwater environment. The frames are forwarded to the ImageFilter com-
ponent which processes and converts them into black-and-white frames. The
ObjectDetector component analyzes the filtered frames to detect various objects
(e.g., red buoy). Figure 1a describes the data flow activity of the front vision
system, using an existing underwater frame from the demonstrator front camera.

Only the ImageFilter and ObjectDetector benefit from utilizing a GPU due to
nature of their functionality, i.e., image processing. For ImageFilter component,
the repository contains two versions, i.e., a CPU and GPU-based component,
each with different properties. Using CPU-GPU combinations of the repository’s
components results in different vision alternatives. Figure 1b depicts the alterna-
tives of the front vision system based on the repository content. In our case, for
image processing, GPU provides a better performance than the CPU due to its
massive parallel processing power. The alternative that contains two GPU-based
components (i.e., ImageFilter GPU and ObjectDetector GPU ), has a high usage
of the GPU (e.g, GPU memory and computation threads) and a good perfor-
mance. The alternative which contains only one GPU-based component, uses
less the GPU resources and has a lower performance compared to the previous
alternative.
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For our small example, all the front vision system alternatives have the same
simple design, i.e., three connected components. In a more advanced application,
the vision system may have different design for different alternatives. For exam-
ple, an alternative may contain three GPU-based components, while another
may have two GPU-based components and two CPU-based components.

In general, considering all possible alternatives and selecting one best fit to
be allocated on a heterogeneous hardware node, brings an information load that
may hurt the efficiency of the allocator. The allocator needs to take in consider-
ation each component properties from each variant and to have a component-to-
variant mapping. Also, because of the CPU-GPU dependency, the GPU-based
components are desired to be deployed with their connected CPU-based com-
ponents, otherwise e.g., a high communication between them may negatively
influence the system overall performance. The complexity of the allocation pro-
cess is increased by the number of the alternatives and their content components,
which may affect the allocator performance (e.g., scalability, allocation time).

3 Solution overview

To ease the software-to-hardware allocation process, we propose a 2-layer ar-
chitecture view for the component-based design of the system. The first layer
contains the details of the system alternatives. We propose to abstract away the
complexity of these system alternatives, by using an abstracted second layer.
This second layer compacts a system alternatives into a single component with
many variants. A component variant is characterized by properties that reflect
the components’ properties of the corresponding alternative.

Figure 2 presents a component with two variants of the front vision sys-
tem. The figure illustrates only one alternative which is composed of three com-
ponents. The elements of the alternative, i.e., components and communication
links, are characterized by different properties such as RAM memory usage or
bandwidth. Each variant hides away the full details of its corresponding alter-
native, and exposes the overall properties of the abstracted structure.
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Fig. 2: Two front vision alternatives abstracted to a component with two variants



6

The allocator, using the abstracted layer properties, chooses the fittest com-
ponent variant w.r.t. the rest of the system properties and other constraints.
Once a component variant is selected, the system is described by the first layer
where the alternative that corresponds to the selected component variant is
displayed. Figure 3 presents the steps of our approach. From the components
contained by the repository, several alternatives for different systems are con-
structed in step 1. These may be constructed either manually by the system
developer, or automatically. In step 2, all alternatives with the same functional-
ity are compacted into a multi-variant component. Although not described in the
figure, at this step, the alternatives properties are synthesized into the properties
of the component variants. The allocator, which is an automatic system, receives
in step 3, the properties of the multi-variant components. Using also other infor-
mation (e.g., software and hardware models, constraints), the allocator selects,
during step 4, the fittest component variants for the system allocation scheme.
Once the variants are selected, the last step exposes the detailed alternatives
abstracted by the selected variants.
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Fig. 3: The steps of the allocation process using our approach

In general, using a high-level layer containing simplified multi-variant compo-
nents to abstract the details of the alternative, eases the information load of the
allocation process. Instead of considering each component properties and other
information (e.g., the communication links between connected components) from
each alternative, the allocator considers only the abstracted variant properties,
where the rest of the information is hidden away. Also, the concern of distribut-
ing connected CPU-GPU components to the same computation node is now
implicit considered in the allocation process.
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4 Running example

To illustrate the usage of our solution, we describe the allocation process of the
underwater robot system, used during the paper. For the front and bottom vision
systems, we developed several GPU and CPU-based components as follows. The
repository of the vision systems contains three CPU-based components, i.e.,
FrontCamera CPU, BottomCamera CPU and ImageFilter CPU, and two GPU-
based component, i.e., ImageFilter GPU and ObjectDetector GPU. In our simple
example, we characterized each CPU-based component with RAM memory usage
and performance. The GPU-base components are defined by similar properties,
such as the GPU memory usage and performance (e.g., execution time on GPU.

Dealing with a robot where performance and real-time responses may be
crucial, a performance-driven component-based design of the front or bottom
vision system would be composed mostly of GPU-based components. Not know-
ing beforehand various criteria such as the available hardware resources, the
software-to-hardware allocation may be infeasible. For example, an alternative
of the front vision system composed of only GPU-based components may de-
mand more GPU computation threads than the hardware limitations, without
even considering the resource requirements of the bottom vision system.

In the upper part of Figure 4, the hardware and the software architectures
of the robot are presented. Figure 4a describes the hardware platform that con-
tains two processing nodes, where only one has GPU capabilities. The nodes
communicate over a CAN bus. To simplify our example, each hardware element
is characterized by a minimal set of properties such as the available RAM and
GPU memory and the GPU processing power. We use GPU threads capacity
as a simple metric for specification of GPU computation power. In a more com-
plex example, this property may be extended to include other metrics such as
registers per thread.

Figure 4b describes the component-based design of the robot. The main com-
ponent, DecisionCenter, controls the system settings (e.g., water pressure, color
calibration specifications) and the robot missions. The robot propellers are con-
trolled by the MovementNavigation component that maneuver the underwater
robot based on the commands received from the DecisionCenter component.
There are two vision systems, one for the front camera and another for the
bottom camera. The VisionManager component takes decisions based on the
information received from the vision systems. Both of the vision systems are
constructed using components from the repository content. The front vision sys-
tem is displayed as a component with two variants and the bottom vision system
is described by a three variant component.

Each software component, such as DecisionCenter component, is character-
ized by extra-functional properties and performance, as seen in the Figure 4b. For
the multi-variant components, we specify their properties in the following way.
The CPU mem, GPU mem and Perf attributes are described as a sequence of
values, where each value represents the resource usage of the corresponding vari-
ant. The Perf property is a sequence of variant values; the higher the value is, the
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Fig. 4: The allocation process of the underwater robot demonstrator

better the variant performance is. For example, Table 1 presents the properties
of the front vision multi-variant component. The component has two variants,
where the first one is using 3Mb of RAM memory, 1 Mb of GPU memory and
2500 of GPU threads. The second variant, having two GPU-based components,
uses more of the GPU resources (e.g., 2 Mb of GPU memory and 4000 Threads)
than the previous variant.
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Table 1: The properties of the 2-variant front vision component
Component RAM Mem GPU Mem GPU

variant (Mb) (Mb) (Threads)

1 3 1 2500

2 1 2 4000

Table 2 presents a detailed description of the properties of the two alterna-
tives which corresponds to the front vision bi-variant component. Each alterna-
tive is composed of three components as follows. The first alternative has two
CPU-based components and one GPU-based component, while the second al-
ternative has two GPU-based components and one CPU-based component. The
amount of information is much larger; each alternative is characterized by nine
properties while a component variant has three properties.

Table 2: The properties of front vision alternatives
Alternative Component RAM Mem GPU Mem GPU

(Mb) (Mb) (Threads)

FrontCameraCPU 2 0 0

1 ImageFilterCPU 1 0 0

ObjectDetectorGPU 0 1 2500

FrontCameraCPU 1 0 0

2 ImageFilterGPU 0 1 1500

ObjectDetectorGPU 0 1 2500

For our case study, we use simple properties such as static memory or thread
usage; for synthesizing the variant properties, we use a simple addition oper-
ation. In general, other properties of a variant may also be derived from the
components’ properties of the corresponding alternative using different methods
or techniques, when feasible.

The robot relies on the front vision system as the main vision system, and
uses the bottom vision system as a secondary vision system when e.g., the front
vision does not detect anything. Hence, the front vision has higher priority in
accessing the GPU hardware resources. After the allocator receives the hardware
and software information and other constraints such as priorities of the vision
systems, the system allocation scheme is computed, as presented in the upper
part of the Figure 4c. On the heterogeneous node H1, both of the vision systems
are allocated, while the rest of the components are allocated on the H2 computing
node. Having a higher priority, front vision system is allowed to access more of the
GPU resources than the bottom vision system. Hence, the allocator selects the
front vision variant that contains two GPU-based components: ImageFilterGPU
and ObjectDetectorGPU. Because most of the GPU processing resources are
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occupied by the front vision system, the allocator selects the bottom vision
variant that contains only one GPU-based component.

In our simplified example, we used a small number of simple component prop-
erties. We did not consider other information such as the communication link
properties between components. Also, the analysis and synthesizes of different
properties into a set of variant properties is beyond the subject of this paper.

5 Related Work

There is a lot of research done in the allocation and software-to-hardware opti-
mization domain, described in surveys like [3] and [4]. Several works present the
tasks distribution used in the automotive industry [10], where an optimization
method allocates task onto ECUs with different memory capacity and processing
power. Various criteria are addressed by the allocation process, such as balancing
local memory [12] for safety-critical multi-core systems or balancing the CPU
processing power [8].

An allocator that covers CPU-GPU component allocation is described in our
previous work [6]. The work translates an allocation optimization model into a
mixed-integer programming solver (SCIP [1]). The solver, based on the software
and hardware inputs, calculates feasible allocation schemes. The allocation model
is formally describing the software component-model, the CPU-GPU hardware
model and various allocation constraints such as balancing resources (i.e., mem-
ory, CPU and GPU computation power) and performance optimization. The
work is limited by not considering multiple alternatives in the allocation pro-
cess. The evaluation section describes the time and scalability limitations due to
the amount of components and hardware information. Extending the work with
our solution may result in a more accurate allocation with a better scalability
property.

6 Conclusion

In this paper, we have proposed a solution to ease the software-to-hardware
allocation process. Using a 2-layer component-based design for heterogeneous
CPU-GPU embedded systems, we decreased the information load delivered to
the allocator which can positively influence the total allocation process efficiency.
Another advantage of our solution is that it can improve the allocation scalability
by reducing the information load, making possible the allocator to handle more
complex systems and component combinations. The disadvantage of our work is
that it introduces new steps in the allocation process but can be worth accepting
when the allocator gains benefits in efficiency.

For future activities, we propose to extend our previous work to include the
solution presented in this paper and compare the efficiency results between the
two work versions. Covering a limited number of simple component properties, a
future work extension may include more extra-function properties and GPU spe-
cific properties to describe the software model. Another future work continuation
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may include an adaptation or development of an existing method or technique,
to allow us to synthesize the component properties to the variant properties.
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