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Abstract—Prioritization, selection and minimization of test
cases are well-known problems in software testing. Test case
prioritization deals with the problem of ordering an existing set
of test cases, typically with respect to the estimated likelihood
of detecting faults. Test case selection addresses the problem of
selecting a subset of an existing set of test cases, typically by
discarding test cases that do not add any value in improving the
quality of the software under test. Most existing approaches for
test case prioritization and selection suffer from one or several
drawbacks. For example, they to a large extent utilize static
analysis of code for that purpose, making them unfit for higher
levels of testing such as integration testing. Moreover, they do not
exploit the possibility of dynamically changing the prioritization
or selection of test cases based on the execution results of prior
test cases. Such dynamic analysis allows for discarding test cases
that do not need to be executed and are thus redundant. This
paper proposes a generic method for prioritization and selection
of test cases in integration testing that addresses the above issues.
We also present the results of an industrial case study where
initial evidence suggests the potential usefulness of our approach
in testing a safety-critical train control management subsystem.

Keywords—Software testing, Integration testing, Test selection,
Test prioritization, Fuzzy, AHP, Optimization

I. INTRODUCTION

While different characteristics of test cases can be evaluated

in an offline fashion to determine and select which test cases

to execute, the verdict of a test case can also serve as another

factor in selection of other test cases to execute [1], [2].

Since the complexity of integration testing increases as the

number of subsystems grows [3], considering the dependency

between test cases plays a critical role for efficient use of test

execution resources. This paper introduces a generic approach

for combined static and dynamic prioritization and selection of

test cases for integration testing. The prioritization is based on

the dependency degree of each test case. Further prioritization

is performed among test cases at each dependency degree level

using the Fuzzy Analytic Hierarchy Process technique (FAHP,

see [4]); a structured method where properties are expressed

using degrees of truth. The approach is close to the way people

usually reason, and therefore suitable to this type of complex

decision problem. As a prerequisite, we assume the existence

of a directed dependency relation, capturing information on

which components use other components. In industry, such

dependencies between test cases are usually found using reverse

engineering [5], but also source code analysis [6], interviews

with experts and analysis of documentation may be useful.

In the setting of test-driven integration testing, it is often the

case that test cases exist for components which have not been

implemented yet, making interviews and documentation the

most practical source of this type of information.

In detail, the proposed approach consists of the following

two phases (offline and online) and four steps in total:

1) (Offline) The test cases are partially ordered by cal-

culating a dependency degree for each test case. The

dependency degree of a test case indicates the extent to

which the execution of a test case is redundant given that

another test case fails. As a result of this step, some test

cases may end up having the same dependency degree.

2) (Offline) Test cases with the same dependency degree are

then prioritized by applying FAHP, producing an ordered

set of test cases at each dependency degree.

3) (Online) During test execution, test cases are then

selected one by one from each ordered set and in

ascending order of dependency degrees. In this phase,

when a test case fails, the test cases that are dependent

on it are evaluated to determine if those dependent cases

will also fail due to the failure of the former or not,

hence avoiding redundancy in test execution.

The overarching objective of the proposed approach is thus

to avoid the execution of redundant test cases as well as to

prioritize executable test cases based on dependencies and

various prioritization criteria, in order to enable more efficient

use of testing resources at integration testing.

II. BACKGROUND AND PRELIMINARIES

Selecting a set of core test cases for execution to see whether

further testing would be meaningful is beneficial for efficient

use of testing resources [3], [7]. In this context, initially a set

of test cases can be selected whose results (pass or fail) provide

relevant information on which test cases to select next. This

can be done by testing first the core features of the system

whose failure can result in the failure of other features. In fact,
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by identifying the test cases that will fail because of the failure

of some other test cases (result dependency) and avoiding to

execute the former when the latter have failed, a better use of

testing resources can be achieved. On the contrary, if test cases

are selected without considering such dependencies, a test case

might fail not because the feature it tests is actually faulty, but

that another feature on which it depends on has failed. From

this perspective, a dependency chain among test cases can be

established. In short, dependencies among test cases can be

determined before their execution (offline). The result of each

test case during execution, when combined with the dependency

information, enables us to dynamically identify which test case

to execute next. The idea of using dependency information in

identifying redundant test cases is also evaluated and confirmed

by Arlt et al. [8] where dependency relationships are derived

and inferred from a structured requirements specification.

A. Motivating Example

Many embedded control systems have a possibility to

download applications, updates, and configurations making

it possible to adapt the behavior of the system to the specific

task it will control. This means that it needs to be possible

to download the application to the control system and ensure

that the integrity of the application is maintained. Different

mechanisms, such as using checksums, can be used to confirm

that the download is correct. When testing the download

function, it is necessary to have a communication channel

available with the download functionality implemented. In

our example, we have three different communication channels

as a part of the system: Bluetooth, Wi-Fi and USB. To be

able to test the application download function, at least one

of these channels need to pass basic communication tests;

hence the dependency between the download function and

communication. This is shown in Figure 1. In this case we

thus have an OR situation where it is enough that the tests

for one of the channels pass before it is useful to test the

application download function.

Checksum

Download
App

OR AND

Fig. 1: Dependency with AND-OR relations

We can also get an AND situation for this case. If the tests

for creating a checksum fails, there is no point in trying the

application download function even if one of the tests for the

communication channels passes.

B. Main definitions

To understand the concept of test case dependency in this

work, the key terms that are used to describe dependency

relationships between test cases are defined below:

Definition 1: Dependent test case - Given two test cases A
and B, B is dependent on A if from the failure of A it can

be inferred that B will also fail (result dependency: fail based

on fail).

Consequently, based on the result of A, we can decide to

also execute B or not. It only makes sense to execute test

case B when A has passed. Otherwise, if A has failed and B
is also executed, execution of B will not be an optimal use

of testing resources, since we know based on the dependency

relation and fail result of A that B also fails. As a side note,

if test case B can still pass even if A has failed, based on our

definition of dependency, B is not (result-) dependent on A.

Moreover, it is important to remember that if A passes, B may

still fail if the feature or functionality it tests is erroneous.

A test case which is not dependent on any other test cases is

referred to as an independent test case which will not fail due to

the failure of another test case. According to our definition for

the dependency relation we classify test cases in the following

groups:

• First Class Test Cases (white nodes): Independent test

cases.

• Second Class Test Cases (gray nodes): Those which are

dependent on one or more independent test cases.

• Third Class Test Cases (black nodes): Those which are

dependent on at least one dependent test case.

In a multiple dependency relationship two distinct scenarios

can exist:

• Passing of both test case A and B is necessary (but not

enough) for C to succeed. In other words, if any of A or

B fails, it can be concluded that C will also fail. In this

case, based on the result of A and B , test case C will

not be chosen as a candidate for execution. We refer to

this as an AND dependency relationship, which can be

formulated by Boolean operators:

if result(A) = pass ∧ result(B) = pass → consider C
for execution.

• Passing of A or B is enough so that C is selected as

a candidate for execution (implying that C also has a

chance to pass). In fact, only if both A and B fail, then

it can be concluded that C will also fail, and therefore,

will not be chosen for execution. This is regarded as an

OR dependency relationship in this paper:

if result(A) = pass ∨ result(B) = pass → C can be ex-

ecuted (alternatively: if result(A) = fail∧ result(B) =
fail→ do NOT consider C for execution).

III. APPROACH

Our approach for test case prioritization and selection is

based on the valuation of both dependency degree and also

other test case attributes. The main objective of the approach

is to evaluate the effect of test case dependencies in selection

and ordering of test cases such that redundant test cases are

avoided during execution. To this end, we assume that there

is information on test case dependencies corresponding to a

binary relation between test cases. Figure 2 shows an overall

view of the approach.
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Order the test cases inside
each set (using FAHP)

Construct set of test cases
per each dependency degree

Calculate dependency
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executability conditions
Dependency Graph
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ordered set which: 1- is
not previously executed
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condition is not false (fail)

A test case
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Execute the
test case

Test case
passed?
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executability condition

of its dependent test cases

A new
fail/false is
produced?

STOP

YesYes

Yes

NoNo

Yes

No more to selectNo more to select

OFFLINE PHASE

ONLINE PHASE

Fig. 2: The steps of the proposed approach

The proposed approach consists of two phases: offline and

online. In the offline phase, a dependency degree for each test

case in relation to all other test cases is calculated. As the result,

some test cases might have the same dependency degrees. In

this step, test cases with the same dependency degrees, would

be prioritized by applying FAHP. Considering an ascending

order for dependency degrees and their corresponding set of

test cases, an offline order for selection and execution of test

cases can be determined. These sets (prioritized in an ascending

order based on their dependency degrees) are then used in the

online phase of the approach. Now the prioritized test cases

are ready for execution. The results (pass or fail) for every

single execution would be monitored in the online phase. In

this phase it is decided that based on the verdict of a test

case (pass or fail), which test case should be chosen for the

next execution. By establishing and consulting the dependency

relations between test cases, we are able to run them in an

order that results in avoiding redundancy, and thus, a more

efficient use of test execution resources.

A. Dependency Degree

Based on the dependency relationships between test cases,

a dependency graph is constructed that represents test cases

as nodes and the dependency relationships as directed edges.

For each node in this graph, a dependency degree value is

calculated as follows:

1) The dependency degree of independent nodes (with no

incoming edges) is set as 1.

2) For each directed edge (e) outgoing from a node, a value

as its weight (We) (hence a weighted directed graph) is

assigned which is calculated as:

We = Dsource node + 1 (1)

where Dsource node represents the dependency degree of

the node at the start of the edge.

3) The weight of the output edge (Wo) of an AND gate

will be the the maximum of the weights of the incoming

edges to the gate:

Wo = Max{Wi} (2)

4) The weight of the output edge (Wo) of an OR gate will

be the the minimum of the weights of the incoming

edges to the gate:

Wo = min{Wi} (3)

5) The dependency degree of a node (v) will be the weight

of the incoming edge (e) to it (either directly from another

node or from an AND or OR gate):

Dv = We (4)

Considering that the dependencies of test cases can be

complex as described above, we also introduce the concept of

executability condition for each test case and node in the graph.

Executability condition of a node is the logical condition that

is resulted from the incoming edges to that node. We use the

executability condition to reflect when a test case needs not
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be considered for execution based on the fail result of other

test cases it is dependent on. In this context, the pass result

of a test case will be equivalent to the logical true, and the

fail result will be the logical false, and all nodes are assumed

to be true by default. Therefore, in Figure 3, the executability
condition of node D will be A ∨ (B ∧ C).

B

A

C

D
AND

OR

Fig. 3: An illustration of executability condition

In this case, we can determine to skip executing test case

D, only when test case A and either of test case B or C have

failed (considering the OR relation between test case A and

the AND relation that groups test case B and C). However,

if for example, only test case A has failed, the executability
condition of D can still become true, implying that there is

still one more way (through the AND relation) that has to be

fail (i.e., false) until we can definitely determine that D will

also fail. When the executability condition of a test case is

evaluated as false, that test case can then be skipped and not

selected for execution. Evaluation of executability condition
is done only in the online phase of our approach, while the

executability condition itself can be determined and formulated

in the offline phase.

B. Test Case Prioritization: FAHP
After calculating dependency degrees, some test cases can

end up having the same dependency degrees. In this situation,

we prioritize them based on some other criteria (such as

requirement coverage, time efficiency, cost efficiency and

fault detection probability). In fact, there is no test execution

preference for test cases with the same dependency degree.

The main goal of applying FAHP for prioritizing test cases is,

giving more chance for earlier execution to the test cases which

satisfy the identified criteria properly. FAHP is not, however,

limited to any particular set of criteria and in different systems

and contexts users can have their own set of criteria. For

computing the effects of the criteria on the test cases, we

define a set of linguistics variables (e.g., low, high, etc.) and

then questionnaires are sent to testers, where testers specify

the values for each criterion. The answers of the questionnaire

are then interpreted into fuzzy environment. By re-defining

AHP in fuzzy environment (called FAHP), the approach is

more practical in real world scenarios when precise quantified

values cannot be given for each criterion [9].
Fuzzy truth represents membership in vaguely defined sets.

Variables over these sets are called fuzzy variables. From a user

perspective, fuzzy properties are often described using linguistic

variables. This section outlines the process of transforming a

linguistic value into a fuzzy value. In this paper we use five

triangular-shaped membership functions, shown in Figure 4.

mA

0

1

1 3 5 7 9

Very Low Low Medium High Very High

Fig. 4: Fuzzy membership functions for the linguistic variables

Definition 2: A triangular fuzzy number (TFN) can be defined

as a triplet M = (l ,m, u) where l ,m, u are real numbers and

l indicates low bound, m is modal and u represents a high

bound (see [10]).

By using Table I, we are able to interpret the linguistic

variables in the form of TFNs.

TABLE I: THE FUZZY SCALE OF IMPORTANCE

Fuzzy number Description Triangular fuzzy scale Domain mA(x)

9̃ Very High (7, 9, 9) 7 ≤ x ≤ 9 (x − 7)/(9 − 7)

7̃ High (5, 7, 9) 7 ≤ x ≤ 9 (9 − x)/(9 − 7)
5 ≤ x ≤ 7 (x − 5)/(7 − 5)

5̃ Medium (3, 5, 7) 5 ≤ x ≤ 7 (7 − x)/(7 − 5)
3 ≤ x ≤ 5 (x − 3)/(5 − 3)

3̃ Low (1, 3, 5) 3 ≤ x ≤ 5 (5 − x)/(5 − 3)
1 ≤ x ≤ 3 (x − 1)/(3 − 1)

1̃ Very Low (1, 1, 3) 1 ≤ x ≤ 3 (3 − x)/(3 − 1)

The fuzzy comparison matrix A = (ãij )n×n can be formu-

lated and structured as [11]:

A =

⎛
⎜⎜⎜⎝

(111) ã12 . . . ã1n
ã21 (111) . . . ã2n

...
...

. . .
...

ãn1 ãn2 . . . (111)

⎞
⎟⎟⎟⎠ (5)

where ãij (i = 1, 2, ..., n, j = 1, 2, ...,m) is an element

of the comparison matrix and the reciprocal property of the

comparison matrix is defined as ãij = ã−1
ij . The pairwise

comparisons need to be applied on every criteria and alternative,

and the values for ãij come from a predefined set of fuzzy

scale value as showed in Table I. Moreover ãij represents a

TFN in the form of ãij = (lij ,mij , uij ) and matrix A consists

of the following fuzzy numbers:

ãij =

{
1 i = j
1̃, 3̃, 5̃, 7̃, 9̃ or 1̃−1, 3̃−1, 5̃−1, 7̃−1, 9̃−1 i �= j

For computing a priority vector of matrix A, we need to

calculate the value of fuzzy synthetic extent S̃i for each row

in matrix A by (see [10]):

S̃i =
m∑
j=1

ãij ⊗
[

n∑
i=1

m∑
j=1

ãij

]−1

(6)

where ãij is a TFN, ⊗ is the fuzzy multiplication operator.

The degree of possibility for a convex fuzzy number can then

be calculated by:

V (ã2 ≥ ã1) = hgt(ã1 ∩ ã2) =
l1 − u2

m2 − u2 +m1 − l1
= d (7)
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where d is the ordinate of the highest intersection point

between ã1 and ã2 and the term hgt indicates the height of

fuzzy numbers on the intersection of ã1 and ã2 (see [10]).

As last step, we measure the weight vector for the criteria,

assuming:

d′(Ai) = min V (S̃i ≥ S̃k), k = 1, 2, ..., n, k �= i

where Ai(i = 1, 2, . . . ,m) is the m decision alternative and
n is the number of criteria, then the weight vector is obtained
by (see [10]):

W
′
(Ai) = (d

′
(A1), d

′
(A2), ..., d

′
(Am))

T
, Ai(i = 1, 2, ...,m) (8)

the normalized weight vectors can be calculated via normal-

izing Eq. (8) (see [12]):

W (Ai) = (d(A1), d(A2), ..., d(An))
T (9)

where W is a non-fuzzy number and represents the arrange-

ment of the alternatives. The importance degree of a criterion

(WCj ) can be calculated by:

WCj =
W (Aj)∑n
i=1 W (Ai)

, j = 1, ..., n (10)

C. Offline and online phases
In this section, through an example, we show how the

calculation of dependency degree is done where we have both

AND, OR situations and 13 test cases that test the system under

test. Figure 5 illustrates a sample calculated dependency graph

for the test cases where the calculated dependency degree for

each node is specified inside parenthesis and weight of each

edge is shown above it.

TC1 (1)

TC2 (1)

TC4 (2) TC5 (3)

TC3 (1)

TC6 (3)

AND

TC7 (4)

TC10 (2) TC11 (3)

TC8 (2) TC9 (3)

TC12 (2) TC13 (3)

OR

2 3

3

32

4

2 3

2

2

2 3

2 3

Fig. 5: Dependency Graph

By using Eqs. 1, 2, 3, and 4 we get the following dependency
degrees for the test cases. Noting that the dependency degrees
for each independent node is equal to 1 then DTC1

= 1.

For calculating the dependency degrees for the next node in

the first row, which is the grey node TC4, first the weight

of the incoming edge to this node is calculated using Eq. 1:

WTC4 = Dsource node + 1 = DTC1 + 1 = 2.

Since there is no other incoming edge to TC4, Eq. 4 is

applied and therefore DTC4 = 2 (the weight and value coming

from the edge between TC1 and TC4). Similarly, for node

DTC6
first the weights of the incoming edges are calculated

using Eq. 1. Then because of the AND relation between the

incoming edges, Eq. 2 is applied for calculating the dependency
degree for node DTC6

:

DTC6
= Max{2, 3} = 3

The set of test cases with the same dependency degree can be

further prioritized by FAHP according to a selection of criteria

(cost, execution time, etc). The result of this step will be an

ordered set of test cases with the same dependency degree. A

sample output as illustrated in Table II is produced.

TABLE II: ORDERED SET OF TEST CASES PER DEPENDENCY

DEGREE BY FAHP

Dependency Degree Set of ordered test cases

1 {TC2, TC3, TC1}
2 {TC8, TC10, TC12, TC4}
3 {TC9, TC6, TC11, TC5, TC13}
4 {TC7}

Having an ascending oder of test cases for each dependency
degree, an offline order for execution of test cases is generated.

This means that starting from the lowest calculated dependency
degree, the test cases can be selected for execution in the order

that is determined for them using FAHP (i.e., ordered set).

This can be repeated for the subsequent dependency degrees.

In the online phase, the result of each executed test case is

also added to the ordering process.

In the online phase, the result of each test case execution is

also taken into account in the selection of the next test case(s)

for execution. The steps that are performed in the online phase

are as follows: the first item in the set of test cases from the

lowest dependency degree is selected and executed. Then the

next item in the same set is executed until there is no item left.

Then the (ordered set of test cases in the) next dependency
degree greater than the previously selected dependency degree
is considered. During the whole process, after the execution

of each test case and based on its result, the executability
condition of the test cases that are dependent on it are (re-)

evaluated. In selecting test cases from the ordered set of test

cases at each dependency degree, if the executability condition
of a test case is false, it will be skipped and not selected for

execution.

IV. INDUSTRIAL CASE STUDY

We have started validating our approach at Bombardier Trans-

portation AB (BT) in Sweden. BT develops and manufactures

trains and railway equipment. Reliability and safety of the train

control management system along with all integrated functions

is of great importance for BT. We plan to conduct a series of

case studies to continuously adapt and improve our approach

for BT. Case study represents a good choice as a research

method because we need to develop a deeper understanding of

decisions impacting test efficiency at BT. Furthermore, as our
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final objective is to improve the current state of testing practice

at BT and it may involve different kinds of evidence, case study

research is further justified [13]. This section presents the results

of a case study where we evaluate the feasibility of our proposed

approach. The objective of this case study is to understand the

existing order of test execution at BT and how our approach is

expected to impact test efficiency. We have selected a running

project at BT as our case. The project is selected to fit the

case study objectives as we wanted to observe and track the

order of test execution. Moreover, our units of analysis is

limited to two sub-level function groups (SLFGs): brake system
and air supply. A SLFG is a grouping of functions related

to a key functional requirement; other examples of SLFGs

include aerodynamic performance, propulsion and auxiliary

power. Brake system and air supply SLFGs were selected as a

matter of convenience since the test cases for them were ready

to be executed as part of the running project at BT. Moreover

these SLFGs represent two of the critical function groups in a

train control management system, having inter-dependencies

and these must be tested. Our current context is limited to a

set of 12 integration test cases only, but these test cases are

expensive to run in terms of time (approximately 1 hour per

test case) since they cover coarse requirements. Moreover these

test cases are run at a sub-system level, meaning that they are

more time consuming to run than tests at unit level [14]. On a

limited number of expensive simulators, therefore re-running

them due to unintended failures is costly as simulators are

kept busy waiting for other test cases to execute. Table III list

down the test cases used in this case study along with their

associated SLFG. We have retained the test case IDs used in

BT for brevity.

TABLE III: TEST CASE IDS WITH ASSOCIATED SLFG

No. Test case ID Associated SLFG

1 Drive-S-IVV-046 Brake system
2 Speed-S-IVV-005 Brake system
3 ExtDoors-S-IVV-011 Air supply
4 ExtDoors-S-IVV-022 Air supply
5 Brake-IVV-031 Brake system
6 Brake-IVV-041 Brake system
7 Drive-S-IVV-024 Air supply
8 Speed-IVV-004 Air supply
9 Drive-IVV-030 Brake system

10 Brake-IVV-044 Brake system
11 Brake-S-IVV-042 Brake system
12 Drive-S-IVV-011 Air supply

The data collection for the case study was done using

participant observation, questionnaire as well as taking help

from archival data for finding the cause of test case failures.

As is shown in Figure 2, our approach is usable in two

phases: offline and online. In the beginning of the offline

phase, a test expert at BT answered a questionnaire where the

test dependencies were identified based on requirements. The

mapping of these dependencies resulted in two dependency

graphs as shown in Figure 6. As given in Section II-A, the white,

grey and black nodes in Figure 6 show first class (independent),

second class and third class test cases. Also in the current set of

test cases, we only have AND situations but no OR situation.

ExtDoors-
S-IVV-

011

Drive-S-
IVV-024

Brake-
IVV-031

ExtDoors-
S-IVV-

022

Brake-
IVV-041

AND

(a) Directed Dependency Graph 1

Drive-S-
IVV-011

Speed-
IVV-004

Drive-
IVV-030

Brake-
IVV-044

Speed-S-
IVV-005

Drive-S-
IVV-046

Brake-S-
IVV-042

AND

(b) Directed Dependency Graph 2

Fig. 6: Directed dependency graphs for Brake system and Air supply
SLFGs

Using Eqs. 1, 2 & 4, the dependency degree for each test

case is also calculated, given in Table IV.

TABLE IV: SET OF TEST CASES PER DEPENDENCY DEGREE

Dependency Degree Set of test cases

1
{Drive-S-IVV-046, Brake-S-IVV-042,
ExtDoors-S-IVV-022, Brake-IVV-041,

ExtDoors-S-IVV-011}
2 {Speed-S-IVV-005, Brake-IVV-031}
3

{Brake-IVV-044, Speed-IVV-004,
Drive-S-IVV-024}

4 {Drive-IVV-030}
5 {Drive-S-IVV-011}

As we can see in Table IV, there is more than one test

case with dependency degrees 1, 2 and 3. To select the best

candidates for execution in the online phase, we need to

prioritize test cases having same dependency degree, based on

an existing criteria. As explained in Section III-B, we propose

FAHP for prioritizing test cases in this step. In discussions

with the test expert at BT, the following criteria have been

identified, sorted in descending order of preference for BT:

• Requirements coverage: Refers to the number of require-

ments tested by a test case.

• Time efficiency: Is the sum of test case creation time,

test case execution time and test environment setup time.

• Cost efficiency: Refers to the cost incurred by BT in test

case configuration (e.g., setting environment parameters,

hardware setup) and test case implementation.

• Fault detection probability: Refers to the average prob-

ability of detecting a fault by each test case.

We need to reiterate that these criteria have different

preferences for BT, with requirements coverage being the

most important criterion at sub-system level testing. The

resulting weights for the mentioned criteria, as calculated

through pairwise comparisons between the criteria, are shown

in Table V.
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TABLE V: PAIRWISE COMPARISONS OF CRITERIA

Rank Criteria Priority

1 Requirement Coverage 67.5 %

2 Time Efficiency 22.5 %

3 Cost Efficiency 7.5 %

4 Fault Detection Probability 2.5 %

While there is a possibility to achieve quantitative numbers

on some criteria, e.g., requirements coverage, there is always

an element of human judgment in estimating them. In order to

get expert judgment on these criteria for our set of test cases,

five linguistic variables (Figure 4) are defined. A questionnaire

was designed where the test experts responded with, for each

test case, a linguistic variable for the different criteria. Table VI

represents a sample survey questionnaire which has been sent

to the test experts at BT, the variables were assigned using

pair-wise comparisons between the criteria.

TABLE VI: A SAMPLE WITH VALUES VERY LOW(VL), LOW (L),
MEDIUM (M), HIGH (H) AND VERY HIGH (VH)

Test Case ID Requirement Coverage Time Cost Fault Detection

Drive-S-IVV-046 VH H L M

Speed-S-IVV-005 M VL M M

ExtDoors-S-IVV-011 VL H H L

ExtDoors-S-IVV-022 H L M L

Brake-IVV-031 VL M M L

Brake-IVV-041 VL L M M

Drive-S-IVV-024 L H H M

Speed-IVV-004 L M M M

Drive-IVV-030 L H L L

Brake-S-IVV-044 L H L H

Brake-S-IVV-042 VL H M M

Drive-S-IVV-011 VL M M H

The linguistic variables have been interpreted in a set of fuzzy

numbers. The last step in the offline phase of our approach

involves prioritizing test cases with the same dependency degree
by using Eqs. (6) to (10). The results are shown in Table VII:

TABLE VII: ORDERED SET OF TEST CASES BY FAHP

Dependency Degree Ordered set of test cases (FAHP)

1
{Drive-S-IVV-046, ExtDoors-S-IVV-011,
ExtDoors-S-IVV-022, Brake-S-IVV-042,

Brake-IVV-041}
2 {Speed-S-IVV-005, Brake-IVV-031}
3

{Drive-S-IVV-024, Brake-IVV-044,
Speed-IVV-004}

4 {Drive-IVV-030}
5 {Drive-S-IVV-011}

We now have an order of execution of the test cases that

takes into account test case dependencies along with multiple

criteria of importance for BT.

A. Preliminary results of online evaluation

The objective with online evaluation is to identify improve-

ment potential in the current ordering of test executions at BT

and to assess if the online phase of our approach will be of any

benefit. So far, we have monitored and observed the execution

of a subset of our 12 test cases and the results have given us

an early indication of usefulness of our approach.

The subset of tests monitored are: Drive-S-IVV-024,

ExtDoors-S-IVV-022, Brake-IVV-031, Brake-IVV-041 and

ExtDoors-S-IVV-011, shown in Figure 6a. It should be noted

that the current way of executing these tests at BT does not

follow a dependency structure, rather the tester selects a test

case to execute based on intuition and knowledge regarding if

the associated functionality has been implemented as yet. The

tester has to configure the simulator in an effort to successfully

run a test case which also includes configuration of any signal

inputs that are expected as part of dependencies between test

cases. As will be evident shortly, without any systematic way

to identify these dependent signals, the current execution of

test cases need multiple runs which is both time consuming

and expensive for BT.

We continued monitoring test execution until every test case

had a pass verdict. Table VIII presents the results of four runs

of test execution that were required to successfully execute the

test cases, while also showing the order of execution.

TABLE VIII: EXECUTION (EXEC.) ORDER - BT

Exec. Order Test Case ID Exec.1 Exec.2 Exec.3 Exec.4

1 Drive-S-IVV-024 Fail Fail Fail Pass
2 Brake-IVV-031 Fail Fail Pass —
3 ExtDoors-S-IVV-011 Fail Pass — —
4 ExtDoors-S-IVV-022 Not Run Fail Pass —
5 Brake-IVV-041 Fail Pass — —

It is evident that the execution order (column 1 in Table VIII)

has not followed the dependency directed graph as shown in

Figure 6a. In the first execution run (column 3, Table VIII),

the first test case executed is Drive-S-IVV-024. According to

our calculation, the dependency degree for this test case is 3
(see Table IV), which means that it is a dependent test case

and its successful execution is dependent on the successful

execution of prior test case(s). This test case failed in the first

execution run as shown as ‘Fail’ in Table VIII (column 3).

The reason for this failure could be that it found a fault but

reading the logged test record reveals that it failed because

‘the door lock status failed’, which would have been tested

earlier by test case ExtDoors-S-IVV-022. While this was the

reason mentioned in the test records, we know from Figure 6a

that the successful executions of Drive-S-IVV-024 also depends

on successful execution of two other test cases (Brake-IVV-
031 & Brake-IVV-041). This is the reason why the test case

Drive-S-IVV-024 does not pass until the fourth test run, after

the test cases it depends on have successfully passed. If the

tester had known the correct dependency structure among test

cases, wasted effort in running Drive-S-IVV-024 thrice would

have been saved. We also measured the test execution time

for a single test case; it took approximately one hour to get a

verdict (pass or fail). Considering this time, just for testing the

test case Drive-S-IVV-024, three hours were wasted. The test

record for Brake-IVV-031 in first execution showed that this

test case failed because of the ‘signal service brake failure’.

The test case specification for ExtDoors-S-IVV-011 explains

that this test case tests the signal service brake as well. This is

also evident in Figure 6a where Brake-IVV-031 is dependent on

successful execution of ExtDoors-S-IVV-011. Thus it turned out

to be a wasted effort in executing Brake-IVV-031 before having

a pass verdict on ExtDoors-S-IVV-011. In other words, it is a

redundant test case to execute. According to our calculations
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in Table VII, the dependency degree for ExtDoors-S-IVV-011,

ExtDoors-S-IVV-022 and Brake-IVV-041 is 1, indicating that

these are independent test cases.In the first execution run, none

of these independent test cases were able to get a pass verdict,

due to reasons attributed to faults in test specifications. For

ExtDoors-S-IVV-022, the test case could not even get started

(indicated as ‘Not Run’ in Table VIII) while for ExtDoors-
S-IVV-011 and Brake-IVV-031, failures resulted after the test

cases had run for approximately one hour each. For ExtDoors-
S-IVV-022, when the fault in the test specification was fixed

to enable it to run in the second execution run, it failed again

due to another fault in the test specification. This highlights

improvement opportunities in design of test specifications at

BT but it is not a focus in this paper.

In second execution run, the other two independent test cases

(ExtDoors-S-IVV-011 and Brake-IVV-041) were able to get a

pass verdict which allowed Brake-IVV-031 to pass in the third

execution run. ExtDoors-S-IVV-022 was also eventually passed

in third execution once the problem in the test specifications

was fixed. The already passed test cases are now represented

with ‘—’ in Table VIII. The test case Drive-S-IVV-024 was

also eventually passed in the fourth execution run once the

test cases it was dependent on were passed. These are only

preliminary results but they have given us evidence that much

time can be saved by incorporating dependency information in

ordering test execution. The total estimated time for executing

test cases in Figure 6 is approximately 5 hours (one hour per

test case). But the total time taken to execute test cases in Table

VIII is 45 hours. We need to consider that re-running a test

case has additional associated costs, such as troubleshooting

the cause of failure, potential update of test case, implantation,

restarting the simulator and potential configuration setting. In

this case, 40 hours of testing time was wasted. Given it takes

approximately 0.5 hour to find dependencies in our case, 39.5

hours of testing time could potentially be saved from using

our method. Our proposed approach further recommends an

ordering of test cases that have the same dependency degree.

This promises to further cut down test costs. The early results

presented here suggest that efficiency gains can be made using

our approach. We, however, need to provide further quantitative

evidence in support of our approach by executing the online

phase, which is left as a future work.

V. DISCUSSION & FUTURE EXTENSIONS

In our proposed approach, test cases were first categorized

based on their dependency degree resulting in sets of test

cases for each dependency degree. As each set can contain

one or more test cases, FAHP was introduced to prioritize

test cases at each dependency degree. This prioritization was

based on a set of test case attributes serving as criteria in the

decision making process. From this perspective, dependency

was used in our work as a separate criterion. An alternative

way is to use dependencies directly as another criterion in

the decision making process. One can also consider using

fuzzy dependency relationships. In other words, in our current

approach, a test case is either independent or not (i.e., binary:

0 or 1). By including concepts from fuzzy logic, the strength

of the dependency between test cases can be specified with

fuzzy variables mapping to values over the interval [0, 1]. This

idea can particularly be helpful in cases where test engineers

cannot determine if two test cases are fully dependent or not.

To visualize the dependencies of test cases, a directed graph is

used in this paper. However, we did not modify the structure of

the graph after it was constructed. Another possible extension

could be to update the graph dynamically during test execution

(e.g., by removing some edges). Regarding the use of graph

in providing visual hints to testers, we grouped test cases

into three classes with respect to their dependency relations

(white, grey, and black nodes). We believe this is a useful

basis for discussions in a testing team, not only for dependency

issues but potentially also for resolving traceability issues.

One interesting future direction is to investigate the opposite

form of result dependency. In other words, while here we

determined redundancy of test cases based on the fail result of

other test cases (i.e., fail based on fail), it would be interesting

to consider whether and how from the pass result of a test

case, it can similarly be asserted that the result of some other

test cases will have to be pass as well (i.e., pass based on

pass). So, in our current work, we start by test cases with

lowest dependency degree and move to the ones with higher

dependency degree while considering which fail verdicts will

result in the failure of other dependent test cases. For the

opposite case, test cases might be considered from the highest

dependency degree towards the ones with lower dependency
degree and determining their verdict whenever a test case

further in the dependency path has passed. A combination of

these two approaches (i.e., fail based on fail & pass based on

pass) will be another possible future direction of this research.

The approach is generic and independent of the type of

analysis performed to identify dependencies. Currently, we

are identifying individual dependencies by interviewing text

experts. However, this approach may not be feasible when the

number of test cases are larger. As a next step, we are therefore

considering analysing dependencies based on a combination

of temporal order and pattern matching applied to historic test

record data.

A. Delimitations

In discussions with BT, four prioritization criteria were

agreed upon. But there can be other applicable criteria, e.g.,

requirements volatility. The increase in the number of criteria

is not a limitation of our proposed FAHP approach but it might

take more time for pair-wise comparisons. We did not undertake

such an analysis in this study. Also the answers to the criteria

were given by one test expert at BT. There is a risk that another

test expert will give different ratings on the criteria, leading to

a different prioritization of test cases. However, we minimized

this risk by having an experienced test expert who has a long

background in testing train control management systems. We

have used triangular fuzzy membership function for evaluating

the effect of the identified criteria on each test case. We did

not compare other membership functions, e.g., bell-shaped
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that might produce a better prioritization of test cases. We

used result dependency (fail based on fail) for creating the

dependency model. If in a different context, another type of

dependency such as state dependency is considered and is more

relevant, the approach might not be applicable as it is, and might

require some modifications. Moreover, our approach assumes

that test case dependencies are identified, either manually or

otherwise. We did not assess the cost of identifying these

dependencies but in cases where more complex dependencies

exist, an automatic inference and extraction of dependencies

is more feasible, see e.g., Arlt and Morciniec [8].

VI. RELATED WORK

Use of dependency information to prioritize, select and

minimize test suites has recently received much attention.

Bates and Horwitz [15] use program dependence graphs and

slicing with test adequacy data to identify components of the

modified program that can be tested using files from the old

test suite and to avoid unproductive retesting of unaffected

components. Rothermel and Harrold [16] also used slicing

with program dependence graph to identify changed def.-use

pairs for regression testing. Our approach uses a black-box

approach in the sense that it is independent of the source-code

modifications. We do not have access to implementation details

of functions which is realistic for testing at higher levels. Also

we do not address regression testing in particular.

Ryser and Glinz [17] propose the use of dependency charts

to manage dependencies between scenarios for systematically

developing test cases for system test. They differentiate between

three types of dependencies: abstraction, temporal and causal,

while data and resource dependencies are taken as special cases

of causal dependencies. Test cases are derived by traversing

paths in the dependency chart, taking into account data and

resource annotations and other specified conditions. While test

suite reduction or prioritization is not their objective, their

approach shows the importance of managing dependencies and

interrelations between scenarios for thorough system testing,

e.g., trying to break constraints and restrictions.

Zhang et al. [18] challenge the test independence assumption

of much of the traditional regression test prioritization (e.g. [19],

[20], [21]) and test selection (e.g. [22], [23], [24], [25]) ap-

proaches. This assumption stems from the controlled regression
testing assumption [26] which states: given a program P and

a modified version P’, when P’ is tested with test t, all

factors that may influence the outcome of this test remain

constant, except for the modified code in P’. Zhang et al. [18]

show that dependent test cases affect the output of five test

case prioritization techniques. They further implemented four

algorithms to detect dependent tests. An empirical study of

96 real-world dependent tests from 5 software issue tracking

systems showed that dependent tests do arise in practice,

both for human-written or automatically-generated tests. The

presence of dependencies between tests is also confirmed by

Bell et al. [27] and Lou et al. [28]. Haidry and Miller [29]

use dependency structure of test cases, in the form of a

directed acyclic graph, to prioritize test cases. The test cases

are prioritized based on different forms of graph coverage

values, however a set of independent tests are arbitrarily

prioritized, which leads to lower performance in case of fewer

unconnected tests. The authors emphasize the need to combine

dependency with other types of information to improve test

prioritization. Our work contributes to fill this gap whereby

test case dependencies along with a number of other criteria

are used to prioritize test cases.

Caliebe et al. [30] present an approach based on de-

pendencies between components whereby analysis could be

performed on a graph representation of such dependencies. Two

applications of their proposed approach are possible: general

test case selection and test case prioritization for regression

testing. Arlt et al. [8] use logical dependencies between

requirements written in a structured format to automatically

detect a redundant test case. Their approach is essentially a

test suite reduction technique based on the current status of

successful tests and failed tests. While being similar in purpose,

our focus is mainly on the steps after the identification of

dependencies. Moreover, our proposed approach cover a more

general form of dependencies that can address more complex

scenarios consisting of AND and OR relations.

There has also been previous work on using fuzzy comput-

ing approaches for multi-faceted test case fitness evaluation,

prioritization and selection. Kumar et al. [31] use a fuzzy

similarity measure to filter out unfit and high ambiguity test

cases based on four parameters of statement coverage, branch

coverage, fault detection capability and execution time. Tahvili

et al. [9] formulate test prioritization as a multi-criteria decision

making problem and apply analytic hierarchy process (AHP)

in a fuzzy environment to prioritize test cases. Alakeel [32]

present a test case prioritization approach that uses fuzzy logic

to measure the effectiveness of a given test in violating program

assertions of modified programs while Malz et al. [33] combine

software agents and fuzzy logic for automated prioritization

of system test cases. Xu et al. [34] use a fuzzy expert system

to prioritize test cases based on knowledge represented by

customer profile, analysis of past test case results, system

failure rate, and change in architecture. A similar approach

is used by Hettiarachchi et al. [35] where requirements risk

indicators such as requirements modification status, complexity,

security, and size of the software requirements are used in a

fuzzy expert system to prioritize test cases. Schwartz and

Do [36] use a fuzzy expert system to choose the most cost-

effective regression testing technique for regression testing

sessions. While similar to these studies in the use of a fuzzy

approach, this paper is unique in combining dependencies in

test cases with multiple criteria.

VII. SUMMARY & CONCLUSION

In this paper, we provide the following main contributions:

(1) we formally define the dependency degree as a metric to be

used in test case prioritization, together with an algorithm for

calculating it; (2) we introduce a new approach for dynamic

test case selection using the result of executed test cases and

their dependency degrees whereby an offline order based on
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dependency of test cases is produced along with prioritization of

test cases using FAHP; (3) we apply the method to an industrial

case study of a safety-critical train control subsystem, compare

it to the baseline test case execution order, and give a brief

analysis of the results. The results of the BT case study show

that the concept of ‘fail based on fail’ is applicable and can

reduce test execution time. When the testers did not follow and

consider test case dependency relations, some test cases were

selected which failed due to the failure of test cases they were

depending on. Consequently, using our approach will enable

higher test execution efficiency by identifying and avoiding

such forms of test redundancies.
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