
Cost-Benefit Analysis of Using Dependency
Knowledge at Integration Testing

Sahar Tahvili (�)1,2, Markus Bohlin (�)1, Mehrdad Saadatmand1,2,
Stig Larsson1, Wasif Afzal2 and Daniel Sundmark2

1 SICS Swedish ICT, Väster̊as, Sweden
{sahart, markus.bohlin, mehrdad, stig.larsson}@sics.se

2 Mälardalen University, Väster̊as, Sweden
{wasif.afzal, daniel.sundmark}@mdh.se

Abstract. In software system development, testing can take consider-
able time and resources, and there are numerous examples in the lit-
erature of how to improve the testing process. In particular, methods
for selection and prioritization of test cases can play a critical role in
efficient use of testing resources. This paper focuses on the problem of
selection and ordering of integration-level test cases. Integration testing
is performed to evaluate the correctness of several units in composition.
Further, for reasons of both effectiveness and safety, many embedded
systems are still tested manually. To this end, we propose a process, sup-
ported by an online decision support system, for ordering and selection
of test cases based on the test result of previously executed test cases. To
analyze the economic efficiency of such a system, a customized return on
investment (ROI) metric tailored for system integration testing is intro-
duced. Using data collected from the development process of a large-scale
safety-critical embedded system, we perform Monte Carlo simulations to
evaluate the expected ROI of three variants of the proposed new process.
The results show that our proposed decision support system is beneficial
in terms of ROI at system integration testing and thus qualifies as an
important element in improving the integration testing process.

Keywords: Process improvement, Software testing, Decision support
system, Integration testing, Test case selection, Prioritization, Optimiza-
tion, Return on investment

1 Introduction

The software testing process is typically performed at various integration lev-
els, such as unit, integration, system and acceptance level testing. At all levels,
software testing suffers from time and budget limitations. Improving the testing
process is thus essential from both product quality and economic perspectives.
Towards this goal, application of more efficient testing techniques as well as au-
tomating different steps of the testing process (e.g., test case generation, test
execution etc.) can be considered. For test execution, the decision of which test
cases to select and the order in which they are executed can play an important

role in improving test efficiency. In our previous work [1], we introduced a tech-
nique based on dependencies between test cases and their execution results at
runtime. The technique dynamically selects test cases to execute by avoiding
redundant test cases. In our technique, identified dependencies among test cases
give partial information on the verdict of a test case from the verdict of another
one. In this paper, we present a cost-benefit analysis and a return on investment
(ROI) evaluation of the dependency-based test selection proposed in [1]. The
analysis is conducted by means of a case study of the integration testing process
in a large organization developing embedded software for trains. In particular,
we analyze various costs that are required to introduce our decision support sys-
tem (DSS) and compare these costs to the achieved cost reductions enabled by
its application. To improve the robustness of the analysis, stochastic simulation
of tens of thousands possible outcomes have been performed. In summary, the
paper makes the following contributions:

– A high-level cost estimation model, based on Monte-Carlo simulation, for the
evaluation of integration test-case prioritization with test-case dependencies.
The model is generic and can be used to analyze integration testing for a
wide range of systems that exhibit test case dependencies.

– An application of the cost estimation model in an industrial case study at
Bombardier Transportation (BT) where three alternatives for process im-
provement are compared to the baseline test execution order.

– A sensitivity analysis for the model parameter values in the case study.
Through the analysis, various scenarios have been identified where the ap-
plication of the proposed DSS can be deemed as either cost beneficial or
not.

The remainder of this paper is structured as follows. Section 2 presents the
background while Section 3 provides a description of the DSS for test case pri-
oritization. Section 4 describes a generic economic model. Section 5 provides a
case study of a safety-critical train control management subsystem, and gives a
comparison with the currently used test case execution order. In Section 6, the
results and limitations are discussed and finally Section 7 concludes the paper.

2 Background

Numerous techniques for test case selection and prioritization have been pro-
posed in the last decade [2], [3], [4]. Most of the proposed techniques for ordering
test cases are offline, meaning that the order is decided before execution while
the current execution results do not play a part in prioritizing or selecting test
cases to execute. Furthermore, only few of these techniques are multi-objective
whereby a reasonable trade-off is reached among multiple, potentially compet-
ing, criteria. The number of test cases that are required for testing a system
depends on several factors, including the size of the system under test and its
complexity. Executing a large number of test cases can be expensive in terms of
effort and wall-clock time. Moreover, selecting too few test cases for execution

might leave a large number of faults undiscovered. The mentioned limiting fac-
tors (allocated budget and time constraints) emphasize the importance of test
case prioritization in order to identify test cases that enable earlier detection of
faults while respecting such constraints. While this has been the target of test
selection and prioritization research for a long time, it is surprising how only few
approaches actually take into account the specifics of integration testing, such
as dependency information between test cases.

Exploiting dependencies in test cases have recently received much attention
(See e.g., [5, 6]) but not for test cases written in natural language, which is the
only available format of test cases in our context. Furthermore, little research
has been done in the context of embedded system development in real, indus-
trial context, where integration of subsystems is one of the most difficult and
fault-prone task. Lastly, managing the complexity of integration testing requires
online decision support for test professionals as well as trading between multiple
criteria; incorporating such aspects in a tool or a framework is lacking in current
research.

The cost of quality is typically broken down into two components: confor-
mance and nonconformance costs [7]. The conformance costs are prevention and
appraisal costs. Prevention costs include money invested in activities such as
training, requirements and code reviews. Appraisal costs include money spent
on testing such as test planning, test case development and test case execution.
The non-conformance costs include internal and external failures. The cost of in-
ternal failure include cost of test case failure and the cost of bug fixing. The cost
of external failure include cost incurred when a customer finds a failure [8]. This
division of cost of quality is also a basis for some well-known quality cost models
such as Prevention-Appraisal-Failure (PAF) model [9] and Crosby’s model [10].
While general in nature, such quality cost models have been used for finding
cost of software quality too, see e.g., [11–13]. Software testing is one impor-
tant determinant of software quality and smart software managers consider the
cost incurred in test related activities (i.e., appraisal cost) as an investment in
quality [8]. However, very few economic cost models of software testing exist,
especially metrics for calculating the return on testing investment are not well-
researched. It is also not clear how the existing software test process improvement
approaches [14] cater for software testing economics. One reason for this lack of
attention of economics in software quality in general is given by Wagner [15].
According to him, empirical knowledge in the area is hampered by difficulties
in cost data gathering from companies since it is considered as sensitive. Niko-
lik [16] proposes a set of test case based economic metrics such as test case cost,
test case value and return on testing investment. A test cost model to compare
regression test strategies is presented by Leung and White [17]. They distinguish
between two cost types: direct and indirect costs. Direct costs include time for
all those activities that a tester performs. This includes system analysis cost,
test selection cost, test execution cost and result analysis cost. Indirect costs
include test tool development cost, test management cost and cost of storing
test-related information. A test cost model inspired by PAF model is also pre-
sented by Black [18] while several cost factors for ROI calculation for automated

test tools are given in other studies [19–21]. Some other related work is done by
Felderer et al. [22], [23] where they develop a generic decision support procedure
for model-based testing in an industrial project and compare estimated costs
and benefits throughout all phases of the test process.

3 Decision Support System for Test Case Prioritization

In this section we outline our proposed DSS, which prioritizes and selects in-
tegration test cases based on analysis of test case dependencies. Although not
the focus of this paper, the DSS is also capable of performing multi-criteria
decision analysis. The details of the approach can be found in [1]. In essence,
the DSS provides an optimized order for execution of test cases by taking into
account the execution result of a test case, its dependency relations and various
test case properties. The steps performed in the DSS can be categorized into an
offline and online phase: The offline phase produces an order for execution of
test cases based on different test case properties (e.g., fault detection probabil-
ity, execution time, cost, requirement coverage, etc.) while in the online phase,
the pass or fail verdict of executed test cases is taken into account in order to
identify and exclude upcoming test cases based on knowledge of dependencies
between executed and scheduled test cases. The following definition of result
dependency for integration test cases, first introduced in [1], constitute the basis
of the dependency-based prioritization considered in this paper:

Definition. For two test cases A and B, B is dependent on A if, from the
failure of A, it can be inferred that B will also fail.

In industrial practice, such dependencies may exist e.g., whenever a subsys-
tem uses the result of another subsystem. During testing, the dependency may
manifest whenever a test case B, dependent on test case A, is scheduled for
execution before a component, tested by A, has been fully and adequately im-
plemented and tested. By delaying the execution of B until A has passed, we
ensure that the prerequisites for testing B are met. For instance, if the power
system in a train fails to work, the lighting and air conditioning systems will not
function either.

3.1 Architecture and Process of DSS

In this section, we give the basic architecture and process for the decision support
system [1]. We use the term ‘decision support system’ to emphasize that it can
be instantiated in contexts similar to ours, i.e., test cases written in natural
language, meant for testing of integration of subsystems in embedded system
development.

In Fig. 1, we describe the steps of the semi-automated decision support sys-
tem for optimizing integration test selection. New test cases are continuously
collected in a test pool (1) as they are developed. The test cases are initially
not ordered and are candidates for prioritization. As a preparation for the pri-
oritization of the test cases, the values for a selected set of criteria need to be

1

2

3

4

6

5

7

Criteria Determination Prioritization

Execution

TC1 TC8 TC2 TC6

TCn TC5

TC4 TC7 TC3

TC4 TC7

TCn

TC1 TC2

Monitor Stop

Non-Ordered
Test Cases

Re-consider
for execution

Ordered
Test Cases

λ ' 0

Fig. 1: Architecture of the proposed online DSS.

determined (2) for the new test cases. To prioritize among the test cases, the
DSS expects the use of a multi-criteria decision making technique (3, prioritiza-
tion)[24]. Once prioritized, the test cases are in this step executed (preferably)
according to the recommended order (4). The result of executing each test case
could either be Pass or Fail . We have previously in [1] shown that by detecting
the dependency between test cases, we are able to avoid the redundant execu-
tions. When a test case fails during the execution, all its dependent test cases
should be disabled for execution. The failed test cases from the previous step
enter a queue for troubleshooting. The failed test cases will be reconsidered for
execution once the reason of their failure is resolved (5). The results of each
test are monitored (6) to enable (re-)evaluation of the executability condition
(see [1]) of the test cases that are dependent on it. This will determine if the
dependent test case should be selected for execution or not. Furthermore, the
completeness of the testing process will be monitored through the metric fault
failure rate (see [25]), denoted by λ in Fig. 1. This metric is the proportion of
the failed test cases to the total number of executed test cases. The goal is to
reach successful execution of maximum test cases to be able to finish the current
test execution cycle. The current test execution cycle will stop (7) once the fault
failure rate becomes 0. The steps in the DSS are performed in the integration
phase for each iteration/release of the system. This will ensure that the relevant
test are executed in a suitable sequence, and that the tests resources are used in
an optimal way.

4 Economic Model

In this section we describe an economic model for the cost-benefit analysis of
a software integration testing process where test cases are delayed until their
execution requirements are fulfilled. The model is independent on the specific
multi-criteria decision making technique used and of the specific system under
test.

The purpose of the economic model is to adequately capture the costs and
benefits which are directly related to the adoption of a DSS-supported testing
process aiding in the prioritization of test cases. In industry, it is common that

time and cost estimates for software development processes only exist as esti-
mates or averages, if at all. Finally, for an analysis to be useful in practice, the
analysis model should be reasonably lightweight and contain only the absolutely
necessary parameters. Using the proposed economic model, a stochastic ROI
analysis can then be obtained by Monte Carlo simulation. A stochastic analysis
avoids the sensitivity of traditional ROI analyses by considering a large number
of possible parameter values, thereby offsetting some of the disadvantages in
being forced to use less reliable parameter value estimates.

In this paper, we use a cost model with the following parameters:

1. A one-time fixed DSS implementation cost, corresponding to a fixed-price
contract negotiated beforehand,

2. Variable costs for DSS training, on a per person-days of DSS usage basis,
3. Variable costs for DSS maintenance, on a per person-days of DSS usage basis,
4. Variable costs for (a) DSS data collection, (b) test planning, on a per test-

case basis, and
5. Variable costs for (a) test-case execution (per executed test-case) and (b)

troubleshooting (per failed test case).

We make the following simplifying assumptions on the testing process to be
analyzed:

(a) A test case is executed at most once in each release cycle,
(b) If a test case fails, it is delayed until the next release cycle,
(c) Reliability of an already implemented and properly maintained system grows

according to a simplified Goel-Okumoto model [26], and
(d) Test execution and troubleshooting effort is independent of each other and

between test cases.

In the model, we only include the costs and benefits which are affected by
using the DSS, and hence, do not need to consider other efforts such as the effort
of testing for test cases that pass or that fail for other reasons than dependency.
The following cost model is used for the approach in each release cycle t:

Ct = CI
t + dt ·

(
CT
t + CM

t

)
+ nt ·

(
CD
t + CP

t

)
+ γt · λt · nt ·

(
CE
t + CB

t

)
, (1)

where CI is the implementation cost, dt is the number of person-days in t,
CT is the training cost, CM is the maintenance cost, nt is the number of test
cases, CD is the data collection cost, CP is the test order planning cost, includ-
ing possible preprocessing, test case data input, DSS runtime, post-processing
and test case prioritization output, λt is the fraction of failed test cases in the
release cycle, γt is the fraction of test cases that failed due to a fail-based-on-fail
dependency (out of the failed test cases), CE is the average test execution cost,
and CB is the average troubleshooting cost. The last term, γt ·λt ·nt ·

(
CE
t + CB

t

)
,

calculates the cost for unnecessarily running test cases which will surely fail due
to dependencies. This is the only runtime cost we need to consider when com-
paring a DSS-supported process and the baseline process without DSS support,
as the other costs for running test cases will remain the same.

Over the course of time, the maintenance cost for a deployed system with a
small number of adaptations will be approximately proportional to the failure
intensity of the system. In this paper, we therefore assume that the DSS software
reliability grows according to a simplified Goel-Okumoto model (see [26]), i.e.,
that the failure intensity decrease exponentially as λ(d) = λ0e−σd, where λ(d)
is the failure intensity at time d, λ0 is the initial failure intensity, and σ is the
rate of reduction. Further, for any release cycle t, each test case belonging to t
is assumed to be tested exactly once within t. It is therefore logical to assume
that there is no decrease in the test case failure rate during any single release
cycle. Under these assumptions, the expected maintenance cost in release cycle
t can be calculated as follows.

CM
t = CM

0 ·Dt · e−σDt , (2)

where CM
0 is the initial maintenance cost and Dt =

∑t
i=1 di is the total

project duration at release cycle t, where di is the duration of a single cycle i.
Apart from the implementation cost CI, there are other unrelated infrastruc-

ture costs which are not affected by the process change and can therefore be
disregarded from. Likewise, full staff costs are not included, as the team size
remains constant, and we instead focus on measuring the savings in work ef-
fort cost from a change in process. In the model in Eq. (1), the savings of a
process change taking test case dependencies into account can be measured as
a difference in costs, under the assumption that all other costs are equal. As
each integration test case is normally executed once in each release cycle, after
each cycle there is a set of failed test cases that needs to be retested in the next
cycle. In this paper, we are interested in estimating the economic benefits of
delaying test cases whose testability depend on the correctness of other parts of
the system. In other words, we are interested in estimating the number of test
cases which fail solely due to dependencies. For these test cases, we can save
executing and troubleshooting efforts. If γt · λt number of the test cases fail due
to dependencies, then, from Eq. (1), we have that by delaying the execution of
such test cases, the saving (i.e. benefit) of changing the process can be at most:

Bt = γt · λt · nt
(
CE
t + CB

t

)
. (3)

The estimate is an upper bound as in reality we may not be able to capture
all dependencies in our analysis. Further, there is a possibility that the analysis
falsely identifies dependencies which do not exist. The effect of delaying the cor-
responding test cases to the next phase is to delay the project slightly; however,
this effect is likely small and we therefore disregard from it in this paper.

4.1 Return on Investment Analysis

A Return on Investment (ROI) analysis represents a widely used approach for
measuring and evaluating the value of a new process and product technology
[27]. In this study we consider all costs directly related to the process change
to be part of the investment cost. If we also assume that the sets of test cases

to execute for all release cycles are disjoint, we can calculate the total costs
and benefits by adding the costs and benefits for each release cycle. We use the
following ROI model based on the net present value of future cash flows until
time T and an interest rate r.

Rt =

∑T
t=0Bt

/
(1 + r)t∑T

t=0 Ct
/

(1 + r)t
− 1 (4)

We assume that the implementation cost is paid upfront, so that CI
t = 0

when t ≥ 1, and that there are no other benefits or costs at time t = 0. In other
words, B0 = 0, C0 = CI

0 and, consequently, R0 = −1. The interest rate r is used
to discount future cash flows, and is typicallt the weighted average cost of capital
for the firm, i.e., the minimum rate of return that investors expect to provide
the needed capital.

5 Case Study

In order to analyze the economic feasibility of our approach, we carried out a case
study at Bombardier Transportation (BT) in Sweden, inspired by the guidelines
of Runeson and Höst [28] and specifically the way guidelines are followed in the
paper by Engström et al. [4]. We investigated the software/hardware integra-
tion testing process for the train control management subsystem (TCMS) in the
Trenitalia Frecciarossa 1000, a non-articulated high-speed trainset. The process
aims to identify faults at the interface of software and hardware. The case study
spanned six releases of 13 major and 46 minor function groups of the TCMS
during a time period of 2.5 years, which involved in total 12 developers and
testers for a total testing time of 4440 hours. The testing process is divided into
different levels of integration, following a variation of the conventional V-model.
The integration tests are performed manually in both a simulated environment
and in a lab in the presence of different equipment such as motors, gearboxes and
related electronics. The testing for each release have a specific focus, and there-
fore, there are only minor overlaps between the test cases in different releases.
Each test case has a specification in free-text form, and contain information
(managed using IBM Rational DOORS) on the (1) test result, (2) execution
date and time, (3) tester ID, and (4) testing level.

The test result is one of the following: (a) Failed, (i.e., all steps in the test
case failed), (b) Not Run, (i.e., the test case could be not executed), (c) Partly
Pass, (i.e., some of the steps in the test case passed, but not all), and (d) Pass
(i.e., all steps in the test case passed).

According to the test policy in effect, all failed test cases (including “Not
Run” and “Partly Pass” test cases) should be retested in the next release. Fur-
thermore, each of these initiates a troubleshooting process that incurs cost and
effort. In the rest of this paper, we therefore use the term failed to mean any
test verdict except “Pass”. The objective of the case study is to analyze the
improvement potential for the integration testing process at BT from decreasing

the number of unsuccessful test executions using knowledge of test-case depen-
dencies. The chosen method is to estimate the economic effect on BT in the form
of earned ROI using Monte-Carlo simulation. We answer the following research
question in this case study:

RQ: What is the economic effect of introducing a DSS for reducing the number
of unsuccessful integration test executions based on dependency knowledge?

The data collection for the case study was done through both expert judg-
ment, inspection of documentation and a series of semi-structured interviews.
The initial parameter value estimates for CI, CT and CM were made by the
author team, as it was judged that the members of the team, having deployed
several decision support systems in the past (see e.g. [29, 30]), possessed the nec-
essary experience for this evaluation. Likewise, CP was estimated by the research
team through multiple meetings and re-evaluations. The documentation consists
of the test case specification and verdict records in DOORS. In particular, the
fault failure rate (λ) was calculated directly by counting the corresponding test
case reports, and the fraction of dependent test cases (γ) was estimated through
manual inspection of the comments in the same set of reports. Finally, a series
of semi-structured interviews were conducted to both estimate the parameter
values for the testing process itself, and to cross-validate the full set of param-
eter values already identified. The interview series were made with two testers
(T1 & T2), a developer (D), a technical project leader (PL), a department man-
ager (DM) and an independent researcher (R) in verification and validation. The
composition and main purpose of the interviews are shown in Table 1. The final
parameter values can be found later in this paper in Table 2 and Table 3.

Table 1: Series of interviews to establish parameter values

T1 T2 D PL DM R Main purpose

1 × Estimate CD from dependency questionnaire.
2, 3 × × × Identify criteria for dependencies. Validate CD.
4 × Validate dependencies.
5, 6 × × × × Validate number of dependencies (γ). Estimate CE.
7 × Estimate CB.
8 × × Validate CE, CB, CI, CT, CM and CP.
9 × × × Validate CI, CT and CM.

5.1 Test Case Execution Results

To estimate the number of result dependencies between test cases, we performed
a preliminary analysis of the results for 4578 test cases. The analysis was based
on an early discussion with testing experts, in which test result patterns that
were likely to indicate a dependency were identified. The patterns have previ-
ously been independently cross-validated on a smaller set of 12 test cases by
other test experts at BT (see [1]). We classified the test results using the same

patterns, resulting in 823 possible dependency failures out of 1734 failed test
cases, resulting in a total estimate of γ ≈ 0.476. In the semi-structured inter-
views, two testers independently estimated that approximately 45% of the failed
test cases were caused by dependencies, which is close to our estimate. Table 2
shows the full results for the six release cycles.

Table 2: Quantitative numbers on various collected parameters per release. Note
that the γ rate is reported as a fraction of the fault failure rate (λ).

Release number
Parameter 1 2 3 4 5 6 Total

Working Days (d) 62 89 168 65 127 44 555
Test cases (n) 321 1465 630 419 1458 285 4578
Fault failure rate (λ) 0.545 0.327 0.460 0.513 0.346 0.246 0.379
Fail based on fail. rate (γ) 0.411 0.267 0.393 0.753 0.630 0.457 0.475

5.2 DSS Alternatives under Study

We analyzed three different DSS variants, which all prioritize the test cases by
aligning them with the identified dependencies but vary in the amount of au-
tomation they offer. The goal was to identify the tool-supported process change
which is most cost-effective (as measured by the ROI metric) within a reasonable
time horizon. The following DSS variants were considered:

– Manual version: prioritization and selection of test cases in the level of
integration testing manually. In this version, a questionnaire on the time
for test execution, troubleshooting and set of dependencies to other test
cases, is sent to the testing experts. To be manageable for an individual, the
questionnaire is partitioned into smaller parts according to the subsystem
breakdown. To increase precision and decrease recall, it is preferable that
several experts answers the same questionnaire; however, the exact num-
ber should be decided based on the experience level of the testers. One of
the commercially and publicly available toolboxes for multi-criteria decision
analysis (such as FAHP or TOPSIS) are then used for prioritization of test
cases. Data is fed manually into and out of the DSS, and a spreadsheet is
used to filter, prioritize and keep track of the runtime test case pool.

– Prototype version: Dependencies are collected as in the manual version.
However, the DSS is custom-made to read the input in a suitable format,
automatically prioritize, filter and keep track of the runtime test case pool,
and can output a testing protocol outline, suitable for the manual integration
testing process.

– Automated version: in addition to the prototype version, the DSS detects
the dependencies automatically by utilizing a publically-available toolbox
(such as Parser [31]). The criteria determination step (in Figure 1) would be
applied on the test cases by utilizing some learning algorithms (for example

a counting algorithm for calculating the number of test steps in a test case
for estimating the execution time for a test case).

As explained earlier in Section 4, we divide the total cost needed for software
testing into fixed (one-time cost) and variable cost. The fixed cost includes the
DSS cost for three versions which includes implementation, maintenance and
training costs.

The variable cost contains execution cost and also troubleshooting cost for
the failed test cases. The variable cost changes in proportion to the number of
executed test cases and the number of failed test cases per project.

5.3 ROI Analysis Using Monte-Carlo Simulation

The three version of the DSS were evaluated on the six release cycles described
before. As many other mathematical methods, ROI analyses are sensitive to
small changes in the input parameter values. As an effect, the calculated ROI
can fluctuate depending on the varying time estimates. For this reason we chose
to both evaluate the ROI model above using Monte Carlo simulation, as detailed
below, and to perform sensitivity analysis by varying the expected value of some
of the time estimates, as detailed in the results section. The parameters for the
three versions are shown in Table 3.

Table 3: DSS-specific model parameters and distributions

Distribution param.
Param. Comment Distr. Manual Semi Auto

γt Failed TC rate Constant See Table 2.
λt Failed dep. TC rate Poisson See Table 2.
CE TC execution time, per TC Rayleigh 2 2 2
CB TC troubleshooting time, per TC Rayleigh 4 4 4
CI Total implementation time Rayleigh 120 825 1650
CT Training time, per year Rayleigh 540 360 360
CM Maintenance time, per year Rayleigh 40 165 330
CD DSS data collection time, per TC Rayleigh 69.2 69.2 0.00
CP DSS run time, per TC Rayleigh 32.3 5.37 0.00

The focus on initial analysis means that estimation efforts should be kept
low. For this reason, a single-parameter Rayleigh distribution, which is the basis
in the Putnam model (see [32], [33]), was chosen for the distribution of effort for
software testing and implementation tasks. Test-case failures were sampled from
a Poisson distribution.

The three different DSS versions were simulated by sampling 100 000 values
for each data point using the parameters in Table 2 and 3. The mean cumulative
results are shown in Fig. 2 for the studied project at BT. In the experiments,
utilizing all three versions of DSS resulted in a positive ROI at the end of the
six release cycles. Moreover, the maximum value of ROI was found for the man-
ual DSS version, where the maintenance and implementation costs are low as

●

●

●

●

●

● ●
●

● ●

●

● ● ●
● ●

●

● ●

−1

0

1

2

0 2 4 6
Year

R
O

I
Decision support

● Automatic

Manual

Semi−automatic

Fig. 2: Expected ROI for the three DSS versions. The vertical dotted line indicate
the end of the six release cycles; later cycles are simulated using repeated data.

compared to the other versions. By evaluating in total three identical projects
in sequence, thereby simulating one team of developers working on three larger
projects over the course of almost seven years, it can be noted that the prototype
tool is the most promising from an expected ROI perspective. The initial imple-
mentation effort and the continued maintenance costs of the automatic version
makes it less promising even after seven years of deployment.

5.4 Sensitivity Analysis

To increase the validity of the study, we also performed a sensitivity analysis by
varying key parameters. In particular, the ROI analysis is sensitive to changes
in the fixed and variable costs for the DSS. For this purpose, we varied the
implementation costs, i.e., the fixed up-front cost for the DSS variant, and the
maintenance costs, i.e., a critical part of the variable costs. The evaluation was
performed using the same parameters as in the previous section, with the excep-
tion that the time horizon was fixed to the six development cycles in the case
study project, with a duration of approximately 2.2 calendar years. The results
of the experiments are shown in Figure 3. Each data point shows the mean result
of 100 000 Monte-carol simulations, each consisting of six release cycles.

As can be seen, when increasing the implementation cost, the relationship
between the three variants are the same. The manual variant is profitable even
up to an implementation cost factor of 16. If the implementation factor is below
0.5, the prototype tool is the most profitable. It is worth noting that going to
the left from the normative case, the ROI of the manual variant changes little,
which is due to the fact that the implementation costs for the manual variant
is small compared to the other variants. There is no change in the relationship
between the variants when varying the maintenance costs by equal factors (Fig-
ure 3.b). Further, changing the cost factor of any single variant by less than 8
still maintains this relationship.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0

1

2

3

0.0625 0.1250 0.2500 0.5000 1.0000 2.0000 4.0000 8.0000 16.0000
Implementation cost factor (log2)

R
O

I

Decision support
● Automatic

Manual

Semi−automatic

(a) Implementation costs.

● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

0.0625 0.1250 0.2500 0.5000 1.0000 2.0000 4.0000 8.0000 16.0000
Maintenance cost factor (log2)

R
O

I

Decision support
● Automatic

Manual

Semi−automatic

(b) Maintenance costs.

Fig. 3: Sensitivity analysis results for DSS costs.

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ●

0.0

2.5

5.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Lambda factor

R
O

I

Decision support
● Automatic

Manual

Semi−automatic

(a) Fault failure (λ) rate.

●

●

●

●

●

●

●

●

●

●
●

● ● ●
● ● ● ● ● ● ●

0

2

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Gamma factor

R
O

I
Decision support

● Automatic

Manual

Semi−automatic

(b) Fail based on fail (γ) rate.

Fig. 4: Sensitivity analysis results when varying test case failure rates (λ and γ).

Figure 4 shows the results from varying λ, the fault failure rate, and γ, the
fail-based-on-fail rate, using a coefficient between 0.0 and 5.0 individually for
each release cycle. As can be seen, for both λ and γ the average ROI is above
zero when the coefficient is above 0.5, corresponding to average rates of 0.189
and 0.237, respectively. Further, it can be observed that, for the 6 release cycles,
the relationship between the three DSS variants are the same for all coefficients.
The tailing-off effect which can be observed for higher coefficients occurs because
for each individual release cycle, there is a natural upper limit of 1.0 for both
rates, which is enforced after sampling.

6 Discussion and Threats to Validity

In this paper, we have analysed the cost-benefit of utilizing a dependency-based
DSS in integration-level testing. It is clear that our results are based on simu-
lation and it will be more convincing to do a similar investigation on real data
from an actual project. This is one of our future goals with this direction of
research. Our simulation results indicate that a DSS that considers dependen-
cies in prioritizing test cases for integration level testing may be economically
beneficial, but that the extent to which the method should be automated highly
depends on the characteristics of the context in which the DSS should be in-
troduced. It should be noted that prioritization based on test dependencies is

just one way to reduce effort of integration testing, and the DSS is not inher-
ently limited to dependency-based prioritization. There are a number of other
techniques to reduce effort such as system design planning and scheduling imple-
mentation. In fact, prioritization of the systems and sub-systems under test can
reduce the degree of dependency between test cases. Another point to consider is
earlier fault detection [34] which can be enabled by prioritization based on fault
detection probability. It should further be noted that the costs in our model,
as well as the calculated values of ROI are based on estimates. Consequently,
the experimental uncertainty is inherent in the study design. We have tried to
mitigate this uncertainty by dividing the costs into smaller units. For example,
design cost and implementation cost for a test case are considered as two sep-
arated costs. By further defining the execution cost as a separate cost in our
cost model, we account for the fact that a test case can be designed and created
one time, but can be executed more than one time. We also separate the staff
(testers and developers) cost between test case implementation and execution
cost. In addition, the gathered data from BT is another source of uncertainty.
As discussed in Section 5.4, by performing various sensitivity analyses we have
identified and evaluated how different factors can impact the cost-benefit and
ROI of the application of the DSS. In terms of validity threats, in the economic
model, we assume that if test case A fails then running B (which depends on
A) after A yields no additional information. This assumption could be invalid in
other systems, where execution and failure result of test case B could still pro-
vide additional information, which in turn may affect the results of the analysis.
Similarly, there are other assumptions related to our work (see Section 4), which
can be invalid in the real world. Further, in our study we detect dependencies
between test cases from test result reports to measure the percentage of fail-
based-fail in the analyzed project. Considering the fact that the identification of
dependencies by testers to some extent is subjective, other studies using other
subjects may result in differences in dependency identification, and estimated
gains from the DSS could thus be affected.

7 Conclusion and Future Work

In this paper, we introduced and assessed cost and benefits of applying a decision
support system (DSS) for reducing the efforts at integration level testing. We
identified the cost factors relevant in integration testing and provided a cost
estimation model for calculation of return on investment based on which we
evaluated where the use of our proposed DSS will be economically beneficial
and result in cost reductions. The proposed decision support system has been
applied to an industrial case study of a safety-critical train control subsystem
and a brief analysis of the result was given. The results of the BT case study
indicate that utilizing the proposed DSS can reduce test execution efforts and
achieve a positive value for ROI for a system of that size and complexity, where
higher test execution efficiency was enabled by identifying and avoiding test
redundancies based on their dependencies. Moreover, by applying the proposed
DSS, we can detect the hidden faults in the system under test earlier and fault

failure rate increases with time, as we have demonstrated in [24]. The ROI of the
proposed DSS increases in situations where the number of test cases is large, the
system under test is complex consisting of dependent modules and subsystems,
and there exist additional limitations, such as budget, deadline, etc. The level
of ROI depend on various cost factors, such as the cost for implementing and
maintaining the tool, personnel training, execution time of the decision making
algorithms, total number, size and execution time of test cases. This leads also
to the conclusion that for a system which is small in the sense that the number of
test cases is very small and there are no extra limitations for performing testing
activities, a high ROI value may not be achieved by using the DSS.

Acknowledgements

This work was supported by VINNOVA grant 2014-03397 through the IMPRINT
project and the Swedish Knowledge Foundation (KKS) grant 20130085 through
the TOCSYC project and the ITS-EASY industrial research school. Special
thanks to Johan Zetterqvist, Ola Sellin and Mahdi Sarabi at Bombardier Trans-
portation, Väster̊as-Sweden.

References

1. Tahvili. S, Saadatmand. M, Larsson. S, Afzal. W, Bohlin. M, and Sudmark. D.
Dynamic integration test selection based on test case dependencies. In The 11th
Work. on Testing: Academia-Industry Collaboration, Practice and Research Tech-
niques (TAIC PART). 2016.

2. Yoo. S and Harman. M. Regression testing minimization, selection and prioritiza-
tion: A survey. Software Testing, Verification and Reliability, 22(2):67–120.

3. Catal. C and Mishra. D. Test case prioritization: A systematic mapping study.
Soft. Qual. Journal, 2013.

4. Emelie Engström, Per Runeson, and Andreas Ljung. Improving regression testing
transparency and efficiency with history-based prioritization–an industrial case
study. pages 367–376, 2011.

5. Bell. J. Detecting, isolating, and enforcing dependencies among and within test
cases. In 22nd Inte. Symp. on Foundations of Software Engineering, 2014.

6. Zhang. S, Jalali. D, Wuttke. J, Mucslu. K, Lam. W, Ernst. M, and Notkin. D.
Empirically revisiting the test independence assumption. In Int. Symp. on Software
Testing and Analysis, 2014.

7. Campanella. J. Principles of quality costs: Principles, implementation and use.
ASQ Quality Press, 1999.

8. Black. R. What it managers should know about testing: How to analyze the return
on the testing investment, 2004.

9. British Standards Institution. Guide to the economics of quality. Proc. cost model.
B.S. (Series). BSI, 1992.

10. Crosby. P. Quality is free: The art of making quality certain. Penguin, 1980.
11. Slaughter. S, Harter. D, and Krishnan. M. Evaluating the cost of software quality.

Communications of the ACM, 41(8):67–73, 1998.

12. Krasner. H. Using the cost of quality approach for software. Crosstalk: The Jour.
of Defense Software Engineering, 11:6–11, 1998.

13. Boehm. B, Huang. L, Jain. A, and Madachy. R. The ROI of software dependability:
The iDAVE model. IEEE Software, 21(3):54–61, 2004.

14. Afzal. W, Alone. S, Glocksien. K, and Torkar. R. Software test process improve-
ment approaches: A systematic literature review and an industrial case study. Jour.
of Systems and Software, 111:1 – 33, 2016.

15. Wagner. S. Software product quality control. Springer, 2013.
16. Nikolik. B. Software quality assurance economics. Info. and Software Technology.
17. Leung. H and White. L. A cost model to compare regression test strategies. In

Proc. of the 1991 Conf. on Software Maintenance, 1991.
18. Black. R. Managing the testing process: Practical tools and techniques for managing

hardware and software testing. Wiley Publishing, 3rd edition, 2009.
19. Münch. S, Brandstetter. P, Clevermann. K, Kieckhoefel. O, and Reiner Schäfer. E.

The return on investment of test automation. Pharmaceutical Engineering.
20. Hayduk. B. Maximizing ROI and avoiding the pitfalls of test automation, 2009.

Real-Time Technology Solutions, Inc.
21. Hoffman. D. Cost benefits analysis of test automation, 1999. Software Quality

Methods, LLC.
22. Mohacsi. S, Felderer. M, and Beer. A. Estimating the cost and benefit of model-

based testing: A decision support procedure for the application of model-based
testing in industry. In Proc. of the 2015 41st Euromicro Conf. on Software Engi-
neering and Advanced Applications, SEAA ’15.

23. Felderer. M and Beer. A. Estimating the return on investment of defect taxon-
omy supported system testing in industrial projects. In Proc. of the 2012 38th
Euromicro Conf. on Software Engineering and Advanced Applications, SEAA ’12.

24. Tahvili. S, Afzal. W, Saadatmand. M, Bohlin. M, Sundmark.D, and Larsson. S.
Towards earlier fault detection by value-driven prioritization of test cases using
ftopsis. In Proc. of the 13th Int. Conf. on Inform. Tech.: New Generations, 2016.

25. Debroy. V and Wong. W. On the estimation of adequate test set size using fault
failure rates. The Jour. of Systems and Software, page 587–602, 2011.

26. Musa. J and Okumoto. K. A logarithmic poisson execution time model for software
reliability measurement. In Proc. of the 7th Int. Conf. on Software engineering.

27. Rico. D. ROI of Software Process Improvement. J Ross Publishing, 2004.
28. Runeson. P, Höst. M, Rainer. A, and Regnell. R. Case Study Research in Software

Engineering. WILEY, 2012.
29. Bohlin. M and Wärja. M. Maintenance optimization with duration-dependent

costs. Annals of Operations Research, 224(1):1–23, 2015.
30. Bohlin. M, Holst. A, Ekman. J, Sellin. O, Lindström. B, and Larsen. S. Statistical

anomaly detection for train fleets. In Proc. of the 21st Innovative Applications of
Artificial Intelligence Conf., 2012.

31. Marneffe. M and Manning. C. Stanford typed dependencies manual. Tech. report,
Stanford University, 2008.

32. Putnam. L. A general empirical solution to the macro software sizing and estimat-
ing problem. IEEE transactions on Software Engineering, 4(4):345, 1978.

33. Putnam. L. A macro estimating methodology for software development. 1976.
34. Hunt. B, Abolfotouh.T, Carpenter. J, and Gioia.R. Software test costs and roi

issues. University Lecture, 2014.

