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Thesis Summary





1 Introduction

Software plays a vital role in our daily lives and can be found in a number of
domains, ranging from mobile applications to medical systems. The emergence and
wide spread usage of large complex software products has profoundly influenced
the traditional way of developing software. Nowadays, organizations need to deliver
reliable and high-quality software products while having to consider more stringent
time constraints. This problem is limiting the amount of development and quality
assurance that can be performed to deliver software. Software testing is an important
verification and validation activity used to reveal software faults and make sure that
the expected behavior matches the actual software execution [4]. In the academic
literature a test or a test case is usually defined as an observation of the software,
executed using a set of inputs. A set of test cases is called a test suite. Eldh
[20] categorized the goals used for creating a test suite into the following groups:
specification-based testing, negative testing, random testing, coverage-based testing,
syntax and/or semantic-based testing, search-based testing, usage-based testing,
model-based testing, and combination techniques. For a long time these software
testing techniques have been divided into different levels with respect to distinct
software development activities (i.e., unit, integration, system testing).

If software testing is severely constrained, this implies that less time is devoted to
assuring a proper level of software quality. As a solution to this challenge, automatic
test generation has been suggested to allow tests to be created with less effort and
at lower cost. In contrast to manual testing, test generation is automatic in the
sense that test creation satisfying a given test goal or given requirement is performed
automatically. However, over the past few decades, it has been a challenge for
both practitioners and researchers to develop strong and applicable test generation
techniques and tools that are relevant in practice. The work included in this thesis
is part of a larger research endeavor well captured by the following quotation:

“Test input generation is by no means a new research direction... but
the last decade has seen a resurgence of research in this area and has
produced several strong results and contributions. This resurgence may
stem, in part, from improvements in computing platforms and the pro-
cessing power of modern systems. However, we believe... that researchers
themselves deserve the greatest credit for the resurgence, through advances
in related areas and supporting technologies...”
(A. Orso and G. Rothermel, Software testing: a research travelogue
(2000–2014), Future of Software Engineering, ACM, 2014.)

We notice that “advances in related areas and supporting technologies” refers in
part to contributions to automatic test generation. In the literature, a great number
of techniques for automatic test generation have been proposed [54]. The general idea
behind these techniques is to describe the test goal in a mathematical model, and
then generate a set of inputs for a software program by searching towards the goal of
achieving some coverage or satisfying a certain reachability property. The advantage
of this approach is that it can be used early in the software development cycle to
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reveal software faults and exercise different aspects of a program. However, tools for
automatic test generation are still few and far from being applicable in practice. As a
consequence, the evidence regarding the mainstream use of automatic test generation
is limited. This is especially problematic if we consider relying on automatic test
generation for thoroughly testing industrial safety-critical control software, such as is
found in trains, cars and airplanes. In these kind of applications, software failures can
lead to economical damage and, in some cases, loss of human lives. This motivated
us to investigate the use of automatic test generation and identify the empirical
evidence for, or against, the use of it in practice when developing industrial control
software.

In this thesis we study and develop automatic test generation techniques and tools
for a special class of software known as industrial control software. In particular, we
focus on IEC 61131-3, a popular programming language used in different control
systems.

2 Background
In this section, major aspects of industrial control software and automatic test
generation are discussed. The presented aspects are related to current research in
the field as well as the research done in this thesis.

2.1 Industrial Control Software

An Industrial Control Software (ICS) is a type of software typically used in industries
such as transportation, chemical, automotive, and aerospace to provide supervisory
and regulatory control [72]. This type of software is vital to the operation of critical
infrastructures. ICS has different characteristics that differ from traditional software.
Some of these differences are direct consequences of the fact that the behavioral
logic executing in an ICS has a direct effect on the physical world which includes
significant risk to the health and safety of human lives, serious environment damage,
as well as serious economical issues. ICS have unique performance, reliability and
safety requirements and are often running on domain-specific operating systems
and hardware. Examples of ICS include Supervisory Control and Data Acquisition
(SCADA) software [10], software running on a Distributed Control Systems (DCS)
[15], and control programs running on Programmable Logic Controllers (PLCs) [8].

SCADA software is used to control systems scattered geographically, where the
control behavior is critical to the system operation as a whole [45]. They are used in
water distribution, oil and natural gas pipelines, electrical power grids, and railway
systems. DCS are systems based on a control architecture containing a supervisory
control level overseeing large numbers of locally integrated software or hardware
controllers. PLCs are computer devices used for controlling industrial equipment.
Even if software running on a PLC can be used throughout large SCADA and DCS
systems, they are often the primary components in smaller control systems used to
provide operational process control of such systems as trains, car assembly lines and
power plants. PLCs [45] are used extensively in almost all industries. This thesis
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is focused on developing techniques for testing the behaviors of industrial control
software implemented on PLCs.

2.2 Programmable Logic Controllers

A PLC is a dedicated computer implemented using a processor, a memory, and
a communication bus. PLCs contain a programmable memory for storing pro-
grams exhibiting different behaviors such as logical, timing, input/output control,
proportional-integral-derivative (PID) control, communication and networking, and
data processing. The control software is used to monitor signals, sensors or actuators,
what parameter ranges are acceptable and reliable, and what kind of response the
system should give when any of the parameters are behaving outside their acceptable
values. The semantics of software running on a PLC has the following representative
characteristics:

• execution in a cyclic loop where each cycle contains three phases: read (read-
ing all inputs and storing the input values), execute (computation without
interruption), and write (update the outputs).

• Inputs and outputs correspond to internal signals, sensors, or actuators.

IEC 61131-3 is a popular programming language standard for PLCs used in
industry because of its simple textual and graphical notations and its digital circuit-
like nature [53]. As shown in Figure 1, blocks in an IEC 61131-3 program can be
represented in a Function Block Diagram (FBD). These diagrams form the basis for
composing applications. These blocks may be supplied by the hardware manufacturer
(e.g., Set-Reset (SR), Select (SEL), Greater-Than (GT), AND and XOR), defined by
the user, or predefined in a library (e.g., On-Delay Timer (TON) and Timer-Pulse
(TP)). An application translator is used to automatically transform each program to
compliant code. A PLC periodically scans an IEC 61131-3 program, which is loaded
into the PLC memory. The IEC 61131-3 program is created as a composition of
interconnected blocks, which may have inner data communication. When activated,
a program consumes one set of inputs and then executes the interconnected blocks
to completion. The program runs on a specific PLC hardware.

The IEC 61131-3 [36] standard proposes a hierarchical software architecture
for composing any IEC 61131-3 program. This architecture specifies the syntax
and semantics of a unified control software based on a PLC configuration, resource
allocation, task control, program definition, block repository, and program code [53,
73]. PLCs contain a particular type of blocks called PLC timers. These timers are
real-time instructions that provide the same functions as timing relays and are used
to activate or deactivate a signal or a device after a preset interval of time. There
are two different timer blocks (i) On-delay Timer (TON) and (ii) Off-delay Timer
(TOF). A timer block keeps track of the number of times its input is either true or
false and outputs different signals. In practice many other timing configurations can
be derived from these basic timers.

This thesis is focused on developing automatic test generation techniques for testing
the functional and timing behaviors of IEC 61131-3 control programs running on
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Figure 1: Example of a IEC 61131-3 Program.

PLCs. The following sections will provide details on test generation as a general
concept used in this thesis.

2.3 Test Generation

The process of test generation is that of using methods to find suitable test inputs
using a description of the test goal that guides towards a certain desirable property.
In Figure 2, a typical setting for automatic test generation is shown. This thesis is
mainly concerned with algorithmic test generation techniques where the test goal is
reached automatically, as opposed to techniques that require manual assistance. Such
algorithms derive tests for a desired test goal. A test includes inputs that stimulate
the software. For PLCs this could be parameters to start the software, a sequence
of inputs and the timing when these inputs should be supplied. The automatic test
generation results in a set of tests called a test suite. A test execution framework
runs the test suite against the software under test and produces a test result, which
is compared to the expected result, imposed by the requirement. This results in a
test verdict, ideally being a pass or a fail.

Requirement-based Testing

Like other software engineering disciplines, many of today’s automatic test generation
techniques use requirement models to guide the search towards achieving a certain goal.
Many notations are used for such models, from formal - mathematical descriptions
[17] and semi-formal notations such as the Unified Modeling Language (UML) [51] to
natural language requirements. Formal requirement models with precise semantics
are suitable for automatic test generation [71]. Even so, recent results have showed
that natural language is still the dominant documentation format in control and
embedded software industry for requirement specification [67] even if engineers are
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Figure 2: A typical automatic test generation scenario.

dissatisfied with using natural language for requirements specification. This thesis is
focusing on specifications expressed in a natural language, as this is still a realistic
scenario for testing industrial control software.

A requirement model is an abstraction of a desired software behavior and different
types of abstractions are often needed to construct it. Requirement-based testing
(also known as specification-based testing) is a technique where tests are derived from
a requirement model that specifies the expected behavior of the software. Different
test thoroughness measures based on requirement models have been proposed for
guiding the generation of suitable tests: conformance testing [47, 32, 75], coverage
criteria that are based on the specifications [52, 3, 78], domain/category partitioning
[5, 55], just to name a few.

Requirement-based testing requires the understanding of both the specified require-
ments and the program under test. The specification usually contains preconditions,
input values and expected output values [4] and a tester uses this information to
manually or automatically check the software conformance with the specification. A
test suite should contribute to the demonstration that the specified requirements
and/or coverage criteria have indeed been satisfied. Engineering of industrial control
software typically requires a certain degree of certification according to safety stan-
dards [12]. These standards pose specific concerns on testing (e.g., the demonstration
of requirement testing and/or some level of code coverage). In this thesis we seek
to investigate the implications of using requirement-based testing for IEC 61131-3
control software.

Implementation-based Test Generation

Implementation-based testing is usually performed at unit level to manually or
automatically create tests that exercise different aspects of the program structure.
To support developers in testing code, implementation-based test generation has
been explored in a considerable amount of work [54] in the last couple of years from
code coverage criteria to mutation testing.
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Code Coverage Criteria

Code coverage criteria are used in software testing to assess the thoroughness of test
cases [4]. These criteria are normally used to determine the extent to which the
software structure has been exercised. In the context of traditional programming
languages (e.g., Java and C#), decision coverage is usually referred to as branch
coverage. A test suite satisfies branch coverage if running the test cases causes each
branch in the software to have the value true at least once and the value false at least
once. In this thesis, code coverage is used to determine if the test goal is satisfied.

Numerous techniques for automatic test generation based on code coverage criteria
[23, 11, 74, 82, 44] have been proposed in the last decade. An example of such
an approach is EvoSuite [23], a tool based on genetic algorithms, for automatic
test generation of Java programs. Another automatic test generation tool is KLEE
[11] which is based on dynamic symbolic execution and uses constraint solving
optimization as well as search heuristics to obtain high code coverage. In this thesis,
we investigate how an automatic test generation approach can be developed for IEC
61131-3 control software and how it can be adopted for testing industrial control
software. Moreover, we evaluate and compare such techniques with manual testing
performed by industrial engineers.

Mutation Testing

Recent work [28, 37] suggests that coverage criteria alone can be a poor indication
of fault detection. To tackle this issue, researchers have proposed approaches for
improving fault detection by using mutation analysis as a test goal. Mutation analysis
is the technique of automatically generating faulty implementations of a program
for the purpose of examining the fault detection ability of a test suite [16]. During
the process of generating mutants one should create syntactically and semantically
valid versions of the original program by introducing a single fault or multiple faults
(i.e., higher-order mutation [41]) into the program. A mutant is a new version of a
program created by making a small change to the original program. For example,
a mutant can be created by replacing a method with another, negating a variable,
or changing the value of a constant. The execution of a test case on the resulting
mutant may produce a different output than the original program, in which case
we say that the test case kills that mutant. The mutation score can be calculated
using either an output-only oracle (i.e., strong mutation [79]) or a state change oracle
(i.e., weak mutation [34]) against the set of mutants. When this technique is used to
generate test suites rather than evaluating existing ones, it is commonly referred to as
mutation testing or mutation-based test generation. Despite its effectiveness [43], no
attempt has been made to propose and evaluate mutation testing for PLC industrial
control software. This motivated us to develop an automatic test generation approach
based on mutation testing targeting this type of software.
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3 Summary of Contributions
In this section, the motivation for the thesis is shown based on the challenges and gaps
in the scientific knowledge. In addition, the overall research objective is presented
and broken down into specific research goals that the thesis work aims to achieve.

3.1 Motivation

Numerous automatic test generation techniques [54] provide test suites with high
code coverage (e.g., branch coverage), high requirement coverage, or to satisfy other
related criteria (e.g., mutation testing). However, for industrial control software
contributions have been more sparse. The body of knowledge in automatic test
generation for IEC 61131-3 control programs is limited, in particular in regards
to tool support, empirical evidence for its applicability, usefulness, and evaluation
in industrial practice. The motivation for writing this thesis stems in part from a
fundamental issue raised by Heimdahl [30]:

“...reliance on models and automated tools in software development,
for example, formal modeling, automated verification, code generation,
and automated testing, promises to increase productivity and reduce the
very high costs associated with software development for critical systems.
The reliance on tools rather than people, however, introduces new and
poorly understood sources of problems, such as the level of trust we can
place in the results of our automation.”

From a software testing research point of view, this thesis is also motivated by the
need to provide evidence that automatic test generation can perform comparably
with manual testing performed by industrial engineers. Consequently, we identified
the general problem as:

The need for a tool-supported approach for testing IEC 61131-3
control software that can be usable and applicable in industrial
practice.

In the next sections, we introduce the research objective of the thesis, present the
contributions, and show how the research goals are addressed by the contributions.
This research started with the problem of implementing, adopting and using automatic
test generation in industrial control software development, and ends with proposing a
solution for this problem while building empirical knowledge in the area of automatic
test generation.

3.2 Research Objective

The objective of this thesis is to propose and evaluate an automatic test generation
approach for industrial control software written in the IEC 61131-3 programming
language and identify the empirical evidence for, or against, the use of it in industrial
practice.
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Techniques and Tool 
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Applicabilty 
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Study 1
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Overall Objective

Figure 3: Overview of the how the studies included in this thesis support the three
research goals.

As shown in Figure 3 the research was performed during five studies (i.e., Studies
1-5). Combined, these studies provided support to the overall objective of this thesis
and a contribution to the body of knowledge in automatic test generation for IEC
61131-3 control software. The studies included in this thesis used different research
methods (i.e., case studies and controlled experiments), data collection strategies
(unstructured interviews, document analysis and observation) and data analysis
statistics.

Practically, the research objective was broken down into three research goals:

RG 1. Develop automatic test generation techniques for testing industrial control
software written in the IEC 61131-3 programming language.

This goal refers to building an approach for automatic test generation that would
support IEC 61131-3 control software. This thesis is mainly concerned with test
generation techniques where the test goal is based on the implementation itself (i.e.,
code coverage criteria, mutation testing). In certain application domains (e.g., railway
industry) testing IEC 61131-3 software requires certification according to safety
standards [12]. These standards recommend the demonstration of some level of code
coverage on the developed software. In order to be able to automatically generate
tests, a translation of the IEC 61131-3 software to timed automata is proposed.
The resulting model can be automatically analyzed towards finding suitable tests
achieving some type of code coverage. To tackle the issue of generating tests achieving
better fault detection, an approach is proposed that targets the detection of injected
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faults for IEC 61131-3 software using mutation testing. Support for this research
goal was acquired in studies 1, 2 and 5.

RG 2. Evaluate the applicability of the proposed automatic test generation techniques
in an industrial context.

Applicability refers to its success in meeting efficiency (e.g., generation time) and
test goal requirements (e.g., achieving code coverage). This makes this goal key to
determine the value of its feasibility in an industrial context. The results contributing
to this goal were acquired primarily from studies 1, 2 and 5.

RG 3. Compare automatic test generation with manual testing in terms of cost and
fault detection.

This goal addresses how automatically created tests compare to manually written
ones in terms of effectiveness and cost. This goal also concerns the difference between
designing tests based on requirements and creating test suites solely satisfying code
coverage. Given that recent work [28] suggests that code coverage criteria alone can
be a poor indication of fault detection, with this goal we seek to investigate overall
implications of using manual testing, specification-based testing, code coverage-
adequate and mutation-based automatic test generation for IEC 61131-3 industrial
control software. The aim of this goal was to provide experimental evidence of test
effectiveness in the sense of bug-finding and cost in terms of testing time. Explicit
work to contribute to this goal was performed in studies 3, 4 and 5.

In the next section we describe the main contributions of this thesis. The contri-
bution is divided into three parts: techniques and tool implementation, applicability,
and evaluation of cost and fault detection.

3.3 RG1: Techniques and Tool Implementation

Code Coverage-Based Test Generation

The thesis work began with the development of an automatic test generation technique
that provided initial results in the form of two studies (i.e., study 1 and 2). In study
2 several improvements to the technique proposed in study 1 regarding the model
transformation are described. The main objective of these two studies was to
show how code coverage can be measured on IEC 61131-3 software and how, by
transforming an IEC 61131-3 program to timed automata [2], test suites can be
automatically generated. There have been many models introduced in the literature
for describing industrial control software and PLCs [18, 1, 9, 49, 65, 70, 29]. One
of the most used models is the timed automata formalism. A timed automaton is
a standard finite-state automaton extended with a collection of real-valued clocks.
The model was introduced by Alur and Dill [2] in 1990 and has gained in popularity
as a suitable model for representing timed systems. In this thesis timed automata is
used for modeling the functional and timing behavior of PLCs.

As shown in Figure 4, an approach is devised for translating IEC 61131-3 programs
to a suitable representation containing the exact functional and timing behavior to
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Figure 4: Overview of the implemented automatic test generation techniques.

be used for test generation purposes. Practically, an automatic model–to–model
transformation to timed automata is described. The transformation accurately
reflects the code characteristics of the IEC 61131-3 language by constructing a
complete behavioral model which assumes a read-execute-write program semantics.
The translation method consists of four separate steps. The first three steps involve
mapping all the interface elements and the existing timing annotations. The latter
step produces a behavioral description and coverage instrumentation instructions
for every standard block in the program. The output of these steps is a network of
timed automata which is used by the Uppaal model-checker [48] for test generation.
Uppaal checks that a reachability property describing the code coverage goal is
satisfied and generates a test suite. The main goal with this contribution was to use
code coverage as a test goal for generating tests based on the transformed timed
automata. This allowed us to further investigate other test generation techniques for
IEC 61131-3 programs.

Mutation-based Test Generation

In study 5 a mutation testing technique for IEC 61131-3 programs is implemented.
This is achieved by using a specialized strategy that monitors the injected fault
behavior in each execution and optimizes towards achieving overall better fault
detection. We show how this strategy can be used to automatically generate test
cases that detect certain injected faults.

The objective of study 5 was to show a method for generating test suites that
detect injected faults and as a consequence improve the goals of automatic test
generation for IEC 61131-3 software. This approach is based on a network of timed
automata that contains all the mutants and the original program. Overall, the
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approach is composed of four steps: mutant generation, model aggregation, mutant
annotation and test generation.

The CompleteTest Tool

Study 2 details the development of CompleteTest, a tool for automatic test
generation based on the concepts initially shown in study 1. Code coverage criteria
can be used by CompleteTest to generate test cases. The main goal of the design
of the user interface was to meet the needs of an industrial end user. The function of
the user interface is to provide a way for the user to select a program, generate tests
for a selection of coverage criteria, visualize the generated test inputs, and determine
the correctness of the result produced for each generated test by comparing the
actual test output with the expected output (as provided manually by the tool user).

The tool is built from the following modules: an import editor used for validating
the structure of a provided input file, a translation plugin that creates an XML-
format accepted by the Uppaal model checker, an Uppaal server plugin allowing
CompleteTest to connect as a client to the model checker and verify properties
against the model, and a trace parser that collects a diagnostic trace from the
model checker and outputs an executable test suite containing inputs, actual outputs
and timing information (i.e., the time parameter in the test is used for constraining
the inputs in time).

Further, to advance automatic test generation for IEC 61131-3 software, a study
was performed (i.e., study 5) where CompleteTest was extended to support
mutation testing, a technique for automatically generating faulty implementations
of a program for the purpose of improving the fault detection ability of a test suite
[16]. We used CompleteTest tool for testing industrial IEC 61131-3 programs
and evaluated it in terms of cost and fault detection.

3.4 RG2: Applicability

A series of studies based on industrial use-case scenarios from Bombardier Trans-
portation show the applicability of using automatic test generation in practice. The
results indicate that automatic test generation is efficient in terms of time required
to generate tests and scales well for industrial IEC 61131-3 software.

In study 1 an IEC 61131-3 program part of the Train Control Management
System (TCMS) provided by Bombardier Transportation is used. This program
is transformed to timed automata and the cost needed for generating test suites
fulfilling a certain code coverage criteria is measured. Overall, the results of study 1
show that the proposed test generation approach is efficient in terms of generation
time and memory. We observed that for more complex logic coverage criteria, test
cases are larger in size than for branch coverage. Further, we noted that the use of
timer elements influences the test generation cost. This is explained by the fact that
these timers are varying the timing of the entire program and therefore increasing
the number of execution cycles needed to satisfy certain branches. In study 2 an
extensive empirical study of CompleteTest is carried out by applying the toolbox
to 157 real-world industrial programs developed at Bombardier Transportation. The
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results indicate that model checking is suitable for handling code coverage criteria
for real-world IEC 61131-3 programs, but also reveal some potential limitations of
the tool when used for test generation such as the use of manual expected outputs.
The evaluation in study 2 and 5 showed that automatic test generation is efficient in
terms of time required to generate tests that satisfy code and mutation coverage and
that it scales well for real-world IEC 61131-3 programs.

3.5 RG3: Cost and Fault Detection Evaluation

We compared automatic test generation with manual testing performed by human
subjects both in an academic setting and in industry. This goal aims to bring some
experimental evidence to the basic understanding of how automatic test generation
compares with manual testing. Automatic test generation can achieve similar code
coverage as manual testing performed by human subjects but in a fraction of the
time. The results of this thesis support the conclusion that automatically generated
tests are slightly worse at finding faults in terms of mutation score than manually
created test suites.

A Controlled Experiment

Study 3 was performed in an academic setting comparing requirement-based manual
testing and implementation-based test generation (i.e., manual test creation and
automatic test generation). We manipulated the context and mitigated different
factors that could affect the study’s results. This came at the expense of studying
the phenomenon in an academic context and not in its actual industrial environment.
The experiment design started with the formulation of the research objective that
was broken down into research questions and hypotheses. As part of the laboratory
session, within a software verification & validation course at Mälardalen University,
human subjects were given the task of manually creating tests and generating tests
with the aid of an automatic test generation tool (a total of twenty-three software
engineering master students took part in this experiment). The participants worked
individually on manually designing and automatically generating tests for two IEC
61131-3 programs. Further, the efficiency and effectiveness in terms of fault detection
is measured. Tests created by the participants in the experiment were collected and
analyzed in terms of fault detection score, code coverage, number of tests, and testing
duration. When compared to implementation-based testing, requirement-based
manual testing yields significantly more effective test suites in terms of the number
of faults detected. Specifically, requirement-based test suites more effectively detect
comparison and value replacement type of faults, compared to implementation-based
tests. On the other hand, code coverage-adequate automatic test generation leads to
fewer test suites (up to 85% less test cases) created in shorter time than the ones
manually created based on the specification.
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Case Studies

An industrial case study (i.e., study 4) comparing manual test suites created by
industrial engineers with test suites created automatically was performed. This
case study provided the understanding of automatic test generation and manual
testing in its actual context and heavily used industrial resources. Unstructured
interviews with several industrial engineers were used to explore the actual usage of
manual testing. We analyzed test specification documents to give input to the actual
empirical work done in this case study, e.g., manual test cases were analyzed and
executed on a set of programs provided by Bombardier Transportation. In addition,
a planned observation was used to observe how manual testing was performed at the
company. This study provided an overall view of the opportunities and limitations
of using automatic test generation in industrial practice.

In addition, study 4 provided support for improvement in selecting test goals and
fault detection. Practically, study 4 is a case study in which the cost and effectiveness
between manually and automatically created test cases were compared. In particular,
we measured the cost and effectiveness in terms of fault detection of tests created
using a coverage-adequate automatic test generation tool and manually created tests
by industrial engineers from an existing train control system. Recently developed
real-world industrial programs written in the IEC 61131-3 FBD programming
language were used. The results show that automatically generated tests achieve
similar code coverage as manually created tests but in a fraction of the time (an
improvement of roughly 90% on average). We also found that the use of an automated
test generation tool did not show better fault detection in terms of mutation score
compared to manual testing. This underscores the need to further study how manual
testing is performed in industrial practice. These findings support the hypothesis
that manual testing performed by industrial engineers achieve high code coverage
and good fault detection in terms of mutation score. This study suggests some issues
that would need to be addressed in order to use automatic test generation tools to
aid in testing of safety-critical embedded software.

No attempt has been made to evaluate mutation testing for control software
written in the IEC 61131-3 programming language. This motivated us to evaluate
further mutation-based test generation targeting this type of software in study 5. For
realistic validation we collected industrial experimental evidence on how mutation
testing compares with manual testing as well as automatic decision-coverage adequate
test generation. In the evaluation, manually seeded faults were provided by four
industrial engineers. The results show that even if mutation-based test generation
achieves better fault detection than automatic decision coverage-based test generation,
these mutation-adequate test suites are not better at detecting faults than manual
test suites. However, the mutation-based test suites are significantly less costly
to create, in terms of testing time, than manually created test suites. The results
suggest that the fault detection scores could be improved by considering some new
and improved mutation operators for IEC 61131-3 programs as well as higher-order
mutations.
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4 Related Work

In this section, we identify key pieces of work that are related to the approach
presented in this thesis. This section begins with background information and then
discusses recent improvements to automatic test generation, like model checking,
and how the approach developed in this thesis benefited from these studies. We also
identify other techniques that aim at testing IEC 61131-3 in specific, and discuss
how they are related to the techniques developed in this thesis. For the work on
comparing manual testing with automatic test generation, we discuss how other
studies are related to the results of this thesis.

4.1 Test Generation Technique and Tool Implementation

There have been a number of techniques for automatic test generation developed
during the past few years [23, 76, 57, 74]. For example Randoop [57] creates random
tests by using feedback information as search guidance. EvoSuite [23] is a tool
based on genetic algorithm for Java programs. In the following we briefly describe
the techniques and tools mostly related to the CompleteTest tool and automatic
test generation using model checkers, presented in this thesis.

Test Generation using Model Checking

A model checker has been used to find test cases to various criteria and from programs
in a variety of languages [7, 33]. Black et al. [7] discuss the problems of using a
model-checker for automatic test generation for full-predicate coverage. Rayadurgam
and Heimdahl [63] defined a formal framework that can be used for coverage-based
test generation using a model checker. Rayadurgam et al. [62] described a method for
obtaining MC/DC adequate test cases using a model-checking approach. Similarly
to CompleteTest, the model is annotated and the properties to be checked are
expressible as a single sequence. In contrast to these approaches, we provide an
approach to generate test cases for different code coverage criteria that are directly
applicable to IEC 61131-3 programs. For a detailed overview of testing with model
checkers we refer the reader to Fraser et al. [26].

Test Generation for IEC 61131-3 Control Software

Previous contributions in testing of IEC 61131-3 programs range from a simulation-
based approach [64], verification of the actual program code [6, 39] and automatic
test generation [40, 80, 38, 69, 19]. The technique in [6] is based on Petri Nets. In
comparison to the work in this thesis, they do not cope with the internal structure of
the PLC logical and timing behavior. In CompleteTest we showed that Uppaal
model-checker can be used for automatic test generation based on code and mutation
coverage criteria. The idea of using model-checkers for testing IEC 61131-3 programs
is not new [68]. The work in [68] uses the Uppaal TRON for verification of IEC
61131-3 programs, however the translated model is used for requirement-based
testing. In contrast to the online model-based testing approach used in [68] in this
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thesis we generate tests based on code coverage for offline execution. Recently, several
automatic test generation approaches [40, 80, 38, 69, 19] have been proposed for
IEC 61131-3 software. These techniques can typically produce tests for a given code
coverage criterion and have been shown to achieve high code coverage for various
IEC 61131-3 programs. Compared to the work in this thesis, these works are lacking
the tool support. In addition, CompleteTest augments previous work in this area
with mutation testing.

4.2 Empirical Studies

The number of successful applications of automatic test generation in the literature
is large and expanding. It is impossible to survey each of them in this thesis. We
therefore restrict ourselves to empirical studies closely related to the work of this
thesis.

Requirement-based Test Generation

There is a substantial body of work on automatic requirement-based test generation
that examines cost, fault detection and coverage in embedded and control systems
across a range of safety-critical industrial systems [26, 14, 59]. Heimdahl et al.
[31] found that specification coverage criteria proposed in the literature (i.e., state,
transition and decision coverage) are inadequate in terms of model fault detection.
Compared to this work, in study 3 we are not using formal specifications and
structural test goals but instead natural language requirement specifications created
by industrial engineers.

Implementation-based Test Generation

A few studies [21, 35] have been concerned with the fault and failure detection
capabilities of automatic test generation based on code coverage criteria. These
studies compare these code coverage-adequate tests with random tests and show
some rather mixed results. None of these studies investigate the relationship between
automatically and manually created tests. Namin and Andrews [50] found that code
coverage achieved by automatically generated test suites is positively correlated with
their fault finding capability. Recently, Inozemtseva and Holmes [37] found rather low
code coverage/fault detection correlation when the number of tests was controlled
for. They also found that generating tests based on stronger code coverage criteria
does not imply stronger fault-finding capability.

Comparison of Implementation-based and Manual Test Generation

There are studies comparing manual testing with automatic implementation-based
test generation. Several researchers have evaluated automatic test generation in case
studies [77, 46, 66, 13] and used already created manual tests while several others
performed studies using controlled experiments [24, 25, 60, 61] with participants
manually creating and automatically generating tests.
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Recently, Wang et al. [77] compared automatically generated tests with manual
tests on several open-source projects. They found that automatically generated tests
are able to achieve higher code coverage but lower fault detection scores with manual
test suites being also better at discovering hard-to-cover code and hard-to-kill type
of faults. Another closely related study done by Kracht el al. [46] used EvoSuite
on a number of open-source Java projects and compared those tests with the ones
already manually created by developers. Automatically-generated tests achieved
similar code coverage and fault detection scores to manually created tests. Recently,
Shamshiri et al. [66] found that tests generated by EvoSuite achieved higher code
coverage than developer-written tests and detected 40% out of 357 real faults. The
results of this thesis indicate that, in IEC 61131-3 software development, automatic
test generation can achieve similar branch coverage to manual testing performed
by industrial engineers. However, these automatically generated tests do not show
better fault detection in terms of mutation score than manually created test suites.
The fault detection rate for automated implementation-based test generation and
manual testing was found, in some of the published studies [24, 25, 46, 77], to be
similar to the results of this thesis. Interestingly enough, our results indicate that
code coverage-adequate tests might even be slightly worse in terms of fault detection
compared to manual tests. However, a larger empirical study is needed to statistically
confirm this hypothesis.

Fraser et al. [24, 25] performed a controlled experiment and a follow-up replication
experiment on a total of 97 subjects. They found that automated test generation
performs well, achieving high code coverage but no measurable improvement over
manual testing in terms of the number of faults found by developers. Ramler et al.
[60] conducted a study and a follow-up replication [61], carried out with master’s
students and industrial professionals respectively, addressing the question of how
automatic test generation with Randoop compare to manual testing. In these specific
experiments, they found that the number of faults detected by Randoop was similar
to manual testing. However, the fault detection rates for automatic implementation-
based test generation and manual specification-based testing were found [60] to be
significantly different from the experiments included in this thesis. This could stem
from the fact that the subjects used Randoop rather than CompleteTest and that
in this thesis they were given more time to manually test their programs compared
to previous controlled experiments. By using a more restrictive testing duration, one
would expect human participants to show less comprehensive understanding of the
task at hand.

Mutation-based Test Generation

Most studies concerning automatic test generation for mutation testing and related
to the work included in this thesis have focused on how to generate tests as quickly as
possible, improve the mutation score and/or compare with code coverage-based auto-
matic test generation [58, 81, 22, 42]. For example, mutation-based test generation
[81] is able to outperform code coverage-directed test generation in terms of mutant
killing. Frankl et al [22] have shown that mutation testing is superior to several code
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coverage criteria in terms of effectiveness. This fact is in line with the results of
study 5. Neither of these studies have looked at comparing mutation testing with
manual tests created by humans. The study of Fraser et al. [27] is the only one,
that we are aware of, comparing mutation-based test generation with manual testing
in terms of fault detection by using manually seeded faults. They report that the
generated tests based on mutation testing find significantly more seeded faults than
manually written tests. In comparison, study 5 shows that mutation-adequate test
suites are not better at detecting seeded faults than manual test suites. This partly
stems from the fact that some of these undetected faults are not reflected in the
mutation operator list used for generating mutation adequate test suites.

5 Conclusions and Future Work
The automatic test generation techniques presented in this thesis are working on iec
industrial control software and are based on model checking for the purpose of covering
the implementation. These techniques are implemented in the CompleteTest tool
and used throughout this thesis. There are many tools for generating tests, such as
KLEE [11], EvoSuite [23], Java PathFinder [76], and Pex [74]. The use of these
tools in this thesis is complicated by the transformation of IEC 61131-3 programs
directly to Java or C, which was shown to be a significant problem [56] because of
the difficulty to translate timing constructs and ensure the real-time nature of these
programs. As a concrete future work, we wish to study some of these tools and their
application on IEC 61131-3 control software.

This thesis suggests that automatically generated tests are significantly less costly
in terms of testing time than manually created tests. The use of CompleteTest in
IEC 61131-3 software development can save around 90% of testing time. The results
of this thesis suggest that automatic test generation is efficient. This has interesting
implications that need to be further studied. As part of this thesis, we used cost
measurements to estimate the efficiency of performing automatic test generation.
Nevertheless, a more sophisticated cost model that supports both indirect and direct
costs affecting the testing process and a real fault detection evaluation needs to be
studied in future work.

The results of this thesis showed that automatically generated tests, based on
branch coverage, can exercise the logic of the software as well as tests written manually.
However, these automatically generated tests do not show better fault detection
compared to manually created tests and it seems that manually created tests are able
to detect more faults of certain types (i.e, logical replacement, negation insertion
and timer replacement) than automatically generated tests. The results of this thesis
suggest the improvement of the test goals used by automatic test generation tools.
Implementation-based test generation needs to be carefully complemented with other
techniques such as mutation testing. This approach was implemented and used to
compare automatic test generation based on mutation testing with manual testing.
The resulting tests are still not better than manual tests. As a highlight from these
results, there is a need for improving the established list of mutation operators used
for mutation testing of IEC 61131-3 control software by the addition of several
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other operators. This new list of mutation operators needs to be further evaluated
in practice.

The results of this thesis support the claim that automatic test generation is
efficient but currently not quite as effective as manual testing. This needs to be further
studied; we need to consider the implications and the extent to which automatic
test generation can be used in the development of reliable safety-critical industrial
control software.

To evaluate the potential application of automatic test generation techniques,
several studies are presented where CompleteTest is applied to industrial control
software from Bombardier Transportation. Even if the results are mainly based on
data provided by one company and this can be seen as a weak point, we argue that
having access to real industrial data from the safety-critical domain is relevant to
the advancement of automatic test generation. More studies are needed to generalize
the results of this thesis to other systems and domains.

6 Outline of the Thesis
The rest of this thesis is divided in five parts: Studies 1, 2, 3, 4, and 5. The main
research objective of study 1 was to show how code coverage can be measured on
IEC 61131-3 software and how, by transforming an IEC 61131-3 program to timed
automata, test suites can be automatically generated using a model checker. In
study 2 we present the development of a tool for automatic test generation based on
the concepts shown in study 1 and a large case study with more elaborate empirical
evaluation of the use and applicability of automatic test generation. In study 3,
the objective was to compare specification— and implementation-based testing of
control software written in the IEC 61131-3 language. The objective of study 4
is to show experimental evidence on how automated test suite generation could be
used in industrial practice and how it compares with, what is considered, rigorous
manual testing performed by industrial engineers. Finally, in paper 5 we describe and
evaluate an automated mutation-based test generation approach for IEC 61131-3
control software.
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Study 1. Using Logic Coverage to Improve Testing
Function Block Diagrams

Eduard Paul Enoiu, Daniel Sundmark, Paul Pettersson

Abstract

In model-driven development, testers are often focusing on functional
model-level testing, enabling verification of design models against their
specifications. In addition, in safety-critical software development, testers
are required to show that tests cover the structure of the implementation.
Testing cost and time savings could be achieved if the process of deriving
test cases for logic coverage is automated and provided test cases are
ready to be executed. The logic coverage artifacts, i.e., predicates and
clauses, are required for different logic coverage, e.g., MC/DC. One way
of dealing with test case generation for ensuring logic coverage is to
approach it as a model-checking problem, such that model-checking tools
automatically create test cases. We show how logic coverage criteria
can be formalized and used by a model-checker to provide test cases for
ensuring coverage on safety-critical software described in the Function
Block Diagram programming language. Based on our experiments, this
approach, supported by a tool chain, is an applicable and useful way of
generating test cases for covering Function Block Diagrams.

1 Introduction

Within the last decade model-checking has turned out to be a useful technique for
generation of test cases from finite-state models [10]. However, the main problem
in using model-checking for testing industrial software systems is the potential
combinatorial explosion of the state space and its limited application to models
used in practice. Safety-critical and real-time software systems implemented in
Programmable Logic Controllers (PLCs) are used in many real-world industrial
application domains. One of the programming languages defined by the International
Electrotechnical Commission (IEC) for PLCs is the Function Block Diagram (FBD).
Programs developed in FBD are transformed into program code, which is compiled
into machine code automatically by using specific engineering tools provided by PLC
vendors. The motivation for using FBD as an implementation model comes from the
fact that this language is the standard in many industrial software systems, such as
rail transport control.

In this paper, our goal is to help testers automatically develop test cases for safety-
critical software systems modeled in FBD that require a certain level of certification.

33



34 1. Introduction

One example of certification includes logic coverage which needs to be demonstrated
on the developed programs. There has been little research on using logic coverage
criteria for FBD programs in an industrial setting. One way is that logic coverage
is analyzed at the code level [6] while tests are designed at the FBD program level,
so time-consuming iterations between levels are required. Even if at the code level,
logic coverage is used, it would be difficult to standardize the code generation scheme
for different PLC tool vendors in order to map directly the criteria to the original
FBD program. Hence, in this model-driven environment it is advantageous to move
as much testing activity from code level to FBD program level as possible.

As the first contribution of this paper, we present a framework suitable for trans-
forming FBD programs to a formal representation of both its functional and timing
behavior. For this, we implement an automatic model–to–model transformation to
timed automata, a well known model introduced by Alur and Dill [2]. The choice of
timed automata as the target language is motivated primarily by its formal semantics
and tool support for simulation and model-checking. Our goal is not to solve all test-
ing issues (e.g., robustness, schedulability, etc.), but to allow the usage of a framework
for formal reasoning about logic coverage on FBD programs. The transformation
accurately reflects the data-flow characteristics of the FBD language by constructing
a complete behavioral model which assumes a read-execute-write program semantics.
The translation method consists of four separate steps. The first three steps involve
mapping all the interface elements and the existing timing annotations. The latter
step produces a formal behavior for every standard component in the FBD program.
These steps are independent of timed automata thus are generic in the sense that they
could also be used when translating an FBD program to another target language.

As the second contribution, we develop a test case generation technique based
on model-checking, tailored for logic coverage of FBD programs. There have been a
number of testing techniques used for defining logic coverage using model-checkers,
e.g., [5, 18, 19]. However, these techniques are not directly applicable to FBD
programs and semantics. We define logic coverage for FBD programs based on the
transformed timed automata model. This copes with both functional and timing
behavior of an FBD program. This formal definition is necessary for the approach to
be applicable to model-checking. We present how a model-checker can be used to
generate test cases for covering an FBD program. Based on our experiments, this
method is — for the real world models provided by Bombardier Transportation AB
— a useful way of generating test cases for logic coverage both in terms of automation
and robustness to changes in the FBD programs as monitored by the model-checker.

The paper is organized as follows. Section 2 briefly overviews PLC software, the
IEC 61131-3 standard, timed automata and logic coverage. Section 3 describes our
overall testing methodology roadmap. Section 4 introduces the modeling approach for
FBD programs and Section 5 shows the transformation scheme into timed automata.
Section 6 and Section 7 presents the test case generation method required for logic
coverage criteria. Next, we apply our method on a Train Startup Mode example in
Section 8. In Section 9 we compare to related work, before concluding in Section 10.
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2 Preliminaries

This paper describes how to generate test cases that cover the logical structure of
FBD programs, by transforming them to networks of timed automata. In this section,
we provide some background details on FBD programs, timed automata and logical
coverage.

2.1 FBD Programs and Timer Components

PLCs are widely used in control software from nuclear plants to train systems. A
PLC is an integrated embedded system that contains a processor, a memory, and a
communication bus. Programs execute in a loop, in which the computation follows
the “read-execute-write” semantics. In this way a PLC reads all inputs, executes
the computation without interruption, and then writes to its output. FBD, a PLC
programming language standardized by IEC 61131-3, is very popular in the industrial
practice because of its graphical notations and its data flow nature [17]. Components
in an FBD program are the base for a structured and hierarchical application. They
are supplied by the manufacturer, defined by the user, or predefined in a library. An
application generator is utilized to automatically transform each component to a C
compliant program with its own thread of execution.

The type of systems we are studying contain a particular type of components
named PLC timers. These timers are output instructions that provide the same
functions as timing relays and are used to activate or deactivate a device after a preset
interval of time. There are two different timer components (i) On-delay Timer (TON)
and (ii) Off-delay Timer (TOF). Basically, a timer counts time-based intervals when
the input instruction is true or false. In practice many other time configurations can
be derived from this basic timers. In order to study how to generate test cases using
a model checker for these types of FBD programs we use a formal representation
that can cope with timers and timing information.

2.2 Networks of Timed Automata

A timed automaton is a standard finite-state automaton extended with a finite
collection of real-valued clocks. The model was introduced by Alur and Dill [2] and
has gained in popularity as a suitable model for real-time systems. We give here a
brief summary for readers unfamiliar with timed automata theory.

Let C be a finite set of real-valued clocks and B(C) the set of clock constraints,
which are finite conjunctions of atomic guards of the form x ./ n, where x ∈ C, n is
a natural number, and ./ ∈ {<,≤,=,≥, >}.

A timed automaton (A) over actions A, atomic propositions P and clocks C is
a tuple 〈N, l0, E, I, V 〉 where N is a finite set of control locations, l0 is the initial
location, E ⊆ N ×B(C)×A×R1 ×N is the set of edges. In the case of and edge
〈l, g, a, r, l′〉 ∈ E, we write l g,a,r−−→ l′ where the label g is a guard of the edge, r is

1R denotes the reset set i.e., assignments to manipulate clock- and data variables.
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the data- or clock reset assignments of the edge, and a is the action of the edge.
I : N → B(C) is a function which for each control location assigns an invariant
condition and V : N → 2P is a function which for each control location gives a set of
atomic propositions true in the location.

The semantics of A is defined in terms of a state transition system, where the
state of A is defined as a pair (l, u), where l is a location and u ∈ RC is a clock
assignment in C. A state of A depends on its current location and on the current
values of its clocks.

We denote by T (A) all traces σ of A starting from the initial state (l0, u0) as a
sequence of alternating transitions σ = (l0, u0)

a1−→ (l1, u1)
a2−→ ...

an−→ (ln, un).
A network of timed automata B0 ‖ ... ‖ Bn−1 is a parallel composition of n timed

automata over C, A and synchronization functions (i.e., a! is correlative with a?).
We refer the reader to [1] for more information on the theory of timed automata.

We consider in this paper model-checking algorithms that perform reachability
analysis to check for properties of the form ∃ ♦ β, with respect to a property β of
the locations and the values of the clock. ∃ is the existential quantifier, and ♦ is the
temporal operator. A reachability property states that there is a path in which β in
A is reached. This type of property serves as a basis for formulating various coverage
criteria and for deriving properties that could be used by a model-checker to produce
test sequences for the timed automaton A.

2.3 Logic-based Coverage Criteria

In this section we briefly describe existing logic-based coverage criteria. In the
literature, there are many similar criteria defined, but with different terminology
[3]. Also, some definitions of coverage criteria (e.g., MC/DC) have some ambiguities.
In order to eliminate the ambiguities and conflicting terminologies, Ammann et al.
[4] abstracted logic criteria with a precise definition and formal representation. A
predicate is an expression that evaluates to a Boolean value. It consists of one or
more clauses. A clause is a predicate that does not contain any logical operators and
can be a Boolean variable, non-Boolean variables used for comparison, or a call to a
Boolean function.

Clauses and predicates are used to introduce a variety of coverage criteria. This
paper presents three different test criteria, each of which requires a different amount
of test cases: (1) Predicate Coverage (PC), (2) Clause Coverage (CC), and (3)
Correlated Active Clause Coverage (CACC). These are defined in the next sections
in terms of the FBD program. We note that modified condition/decision coverage
(MC/DC) is equivalent to CACC and relies on its original definition [4].

3 Testing Methodology and Proposed Solutions

In this section, we describe our approach to automate test-case generation for FBD
programs. Logic coverage criteria are used to define what test cases are needed and
we use a model-checker to generate test traces. In addition, the formal framework
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Figure 1.1: Testing Methodology Roadmap

presented in this paper is tailored for FBD programs, and is composed of the following
steps, mirrored in Figure 1.1:

1. Model Transformation. To test an FBD program we map it to a finite state
system suitable for model checking. In order to cope with timing constraints
we have chosen to map FBD programs to timed automata.

2. Logic Coverage Annotation. We annotate the transformed model such that
one can formulate a condition describing a single test case. This is a property
expressible as a reachability property used in most model checkers.

3. Test Case Generation. We now use the model-checker to generate test traces. To
provide a good level of practicality to our work we use a specific model-checker
called Uppaal which is using timed automata as the input modeling language 2.
The verification language supports reachability properties. In order to generate
test cases for logic coverage of FBD programs using Uppaal, we make use of
Uppaal’s ability to generate test traces witnessing a submitted reachability
property [11]. Currently Uppaal supports three options for diagnostic trace
generation: some trace leading to a goal state, the shortest trace with the
minimum number of transitions, and fastest trace with the shortest time delay.

2The Uppaal tool is available at www.uppaal.org.
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Figure 1.2: An FBD program showing the graphical nature of the language.

While Uppaal is a viable tool for model checking, it is not tailored to test case
generation in practice. We demonstrate how to work around this by automatically
generating traces for logic coverage of FBD programs described in timed automata
and how we transform these traces to actual test cases. We discuss these steps
in further detail in the following sections. First we start by introducing the FBD
programs as a finite syntactical representation to describe its component model
nature.

4 Function Block Diagram Component Model

An FBD program is a component model which obeys the read-execute-write semantics
with a mechanism for monitoring the internal components to determine when the
implementation has terminated. Components can be categorized into functions (FUNC)
and function blocks (FB). A FUNC does not have any internal state and its output is
determined only by the current inputs. An example of an FBD program depicting
a Loadshed Contactor Control is shown in Figure 1.2. Basically the components
are equivalent to predicates and instrumentation points shown in a circuit diagram
fashion. The system consists of basic functions (e.g., AND, OR) and function blocks
(e.g., FAULTEN, RS). In Figure 1.2, AND is a FUNC. In contrast, FAULTEN is an FB
because it maintains an internal state and produces outputs based on this state and
inputs.

Assume an FBD program defined as the following tuple:

FBDProgram , 〈Name, FE, V, P, Con〉,

where Name is the program identifier, FE is the set of components defined as
the union of FUNC and FB instances, V is the variable set, defined as the union
of input (VI) and output (VO) variables, P is the parameter set, defined as the
parameters used internally by the program, and Con is the set of connectors between
all components (e.g., FB and FUNC).

A component in FE has an interface, consisting of a name identifier, input and
output ports, and a list of parameters. The interface is used to access the component
behavior. When the component is activated the behavior is started using the
values read on the input ports. When the behavior ends, i.e., when the component
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implementation terminates its execution, the output ports are updated. The behavior
of a component is typically implemented by a code fragment that updates local
variables. We define a component as a tuple 〈Name, Port, B〉,where Name is the
name identifier, Port is the set ports, defined as the union of input (IP), output
ports (OP), and a list of parameters, whereas B is the behavior description of a
component.

Recall that in order to express timing constraints within one component, standard
PLC timers are used. The timers in a PLC are operated by an internally generated
clock that originates in the processor module. Consider the following PLC timer
TON defined as a tuple 〈TON1, (IN, PT, ET, Q), Bt〉, where TON1 is the name
identifier, IN , PT , ET , and Q are the set of ports and parameters in Port, and
Bt is the behavior description. This timer component is an attempt to specify its
interface and behavior. From a semantic point of view, FBD programs are a special
case of deterministic reactive systems. We use more informative notations to denote
the actual behavior. In the following section we present several such notations to
describe how FBD programs can be handled by the Uppaal model checker.

5 Transforming Function Block Diagrams into Timed
Automata

In this section, we introduce the rules that describe the way we transform FBD
programs into a network of timed automata, being one step away from test suite
generation with the Uppaal tool. Note that the current transformation rules cover
one-level hierarchy only. The transformation maps to timed automata all the interface
elements FE, V, P, and Con alongside the existing timing annotations within the
FBD program. These timing annotations are based on the specifications used from
structure and behavioral elements as defined in the FBD language. The transfor-
mation process starts by creating a timed automaton for the program description.
We place templates of components and list the composed timed automata network
representing the FBD program as FE1 ‖ ... ‖ FEn.

We consider the target model as a network of timed automata named Timed
Automata Component Model (TACM) and defined as a tuple as follows:

TACM , 〈Comp, Pin, Pout, Connections, BTACM〉,

where Comp is the set of components that TACM contains, Pin and Pout are the
input and output dataflow ports, respectively, and BTACM is the TACM ’s behavior.
If Comp = ∅ and Connections = ∅, then TACM is a primitive component.

The mapping is a function π : FBDProgram → TACM , which maps each
component to a TACM primitive component, input variables V I to the TACM ’s
component dataflow input ports, output variables V O to the TACM ’s component
dataflow output ports, connectors to the TACM ’s component connections, and the
behavioral specification of a component to BTACM . The execution of a component is
modeled as a timed automaton. The following rules establish in more details BTACM

with regard to the mapping of an FBDProgram to TACM .
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Figure 1.3: Timed Automaton of a TON component.

An FBD program is executed in a loop and the computation follows the run-to
completion semantics. The timed automaton of the FBD program contains a clock
variable for modeling a delay between the cycles. A cycle starts when the automaton
enters the ReadInputs node and ends in UpdateScanTime node. For a composition
TACM the execute operation of each component is extended according to connections
and Pin and Pout variables. A composition is a set of interconnected components
closed under a specific execution order. The execution order is automatically defined
according to the general rules included in the IEC standard. We use the notion of
precedence to describe such dependencies on the convention of reading such FBD
programs in a top-to-bottom, left-to-right fashion. For each component we assign a
precedence priority to the corresponding timed automaton. A counter is created in
this step to represent the execution priority of a component. In this way we ensure
that components are executed one by one. After the last component is evaluated,
the counter is reset to repeat the scan cycle.

For standard components we assign a timed automaton BTACM with its own logical
execution and no internal concurrency. A component is initially Waiting, and after
performing the read action it starts executing until its internal computation is done.
Reconsider the PLC timer TON as described in Section 4. A rather straightforward
model of the TON component is shown as a timed automaton in Figure 1.3. The
composition interacts with the TON component via execute? action. TON is modeled
by a standard time on timer that sets the output Q to true if IN variable is true at
least as long as the time PT . In this way, we comply with the standard specification
of a PLC timer and the structural definition of the program. The timed automaton
encapsulates the internal behavior with both functional and timing properties. This
means that when we create a TON model we use a separate instantiation of the
behavioral model. Also, every instance of TON needs to contain all the variables
listed in the interface description and for this reason it is necessary to give each
instance of the TON behavioral model a unique identifier.
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Figure 1.4: Test TA Network for a FBD Program.

6 Test Case Generation using the UPPAAL
Model-Checker

As a result of the transformation described in Section 5, we consider that the FBD
program is given as a closed network of timed automata as shown in Figure 1.4.
This model contains two sub-networks, one modeling the FBD Program and the other
one modeling its Environment. In addition, we consider a completely unconstrained
environment that allows all possible interactions between the timed automata network
elements. In this way the cycle scan is used to control the FBD program via read?,
execute?, and write! actions.

Let us assume the generic timed automata network of an FBD program together
with its PLC cycle scan and environment shown in Figure 1.4. A trace produced by
the model checker for a given reachability property defines the set of actions executed
on the FBD program. An example of a diagnostic trace has the following form:

(F0, E0)
a1−→ (F1, E1)

a2−→ ...
an−→ (Fn, En),

where (Fk, Ek) are states of the FBD program and PLC cycle scan with environment
constraints, respectively, and ak are either internal synchronization actions, time-
delays or read?, execute?, and write! global synchronizations. For FBD programs
the sequence represents only the global synchronizations shown in Figure 1.4. Test
cases are obtained by extracting from the diagnostic trace the observable actions
read?, execute?, and write!. Obviously a single test case cannot be obtained for
every test purpose or criterion. By using a program scan cycle we allow the test suite
to be implemented as one or more test sequences separated by resets. To introduce
resets in the model, we annotate the PLC cycle scan with a reset transition leading
to the initial ReadInputs location. On this transition all variables and parameters
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(excluding encoded internal variables) are reset to their default value. This reset is
hardcoded into the PLC scan cycle for any modeled FBD program in Uppaal, being
an atomic communication between all timed automata.

7 Logic Coverage Criteria for Function Block Dia-
grams

The basic approach to generating test cases for logic coverage using model-checking
is to define a test as a finite execution path. By characterizing a logic coverage
criterion as a temporal logic property, model-checking can be used to produce a path
for the test obligation.

Ammann et al. [5] argued that criteria such as logic coverage that have constraints
involving more than one test trace cannot be handled in this way. The core problem
is that each execution is characterized by a temporal formula, and test obligations
span multiple runs of the model checker. This means that to ensure model-checking of
MC/DC test obligations one should satisfy constraints on multiple runs of the model-
checker. However, an FBD program has an implicit control loop, so a reset transition
can occur in the program without modifying the transformed timed automata in any
way. This reset transition restores the program to its initial state, making it possible
to handle test obligations over multiple program executions as a single execution
path containing subpaths separated by resets.

By using a translated FBD program, we use logic coverage to directly annotate
both the model and the temporal logic property to be checked. We propose the
annotation with auxiliary data variables and transitions in such a way that a set
of paths can be used as a finite test sequence. In addition, we propose to describe
the temporal logic properties as logic expressions satisfying certain logic coverage
criteria. Informally, our approach is based on the idea that to get logic coverage of a
specific program, it would be sufficient to (i) annotate the conditions and decisions
in the FBD program, (ii) formulate a reachability property for logic coverage, and
(iii) find a path from the initial state to the end of the FBD program. To apply the
criteria, necessary properties for the integration of logic coverage need to be fulfilled.

For each criterion, model checking allows the generation of paths for logical
predicates showing test obligations satisfaction. To do so, conditions and decisions
have to be formulated as temporal logic formulae. Hessel et al. [12] proposed one
way to apply coverage criteria to specifications described in timed automata. We
extend this approach to apply it to the conditions and decisions in an FBD program.

Decisions in an FBD program are blocks that can be evaluated to a Boolean
value, i.e., true or false. Decisions can be identified from the instrumentation points
in the FBD program (e.g., AND block). Let {di} be the set of decisions in an FBD
program and {cij} be the set of conditions in di.

DC requires every di to evaluate to true and false, and is described by the following
two test obligations:

o1 = di

o2 = ¬di
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These obligations guarantee that each decision di evaluates to both true and false,
not necessarily along the same execution path.

CC requires two test obligations for each clause cij in a decision di, such that cij
evaluates to both true and false:

o1 = cij

o2 = ¬cij

MC/DC imposes two requirements for test cases. First, for each condition cij
in a decision di, test cases must show that cij determines the value of decision di,
and second, cij has to evaluate to true and false. As shown in [3], a condition cij
determines a decision di if there is an assignment of values to all the variables in
di except cij such that the value of di is different for the two values of cij. This
requirement is met if the following logical expression is satisfied 3:

di(cij ,true) ⊕ di(cij ,false)

Combining the two requirements for MC/DC coverage, we have the following two
test obligations:

o1 = cij ∧ (di(cij ,true) ⊕ di(cij ,false))

o2 = ¬cij ∧ (di(cij ,true) ⊕ di(cij ,false)).

For generating tests for DC, CC, and MC/DC we represent the test obligations
over a set of variables monitoring the decisions and conditions as a reachability
property. This approach is implemented in the toolbox by automatically creating a
temporal logic property used by the model checker to produce tests.

8 Example: Train Startup Mode

In the previous section we presented a technique to compute logic coverage for FBD
programs. In the following we show empirically that the performance of our technique
is sufficient for practically relevant examples. We have applied our method on a real
world example provided by Bombardier Transportation AB. We present here how our
method is applied to test a part of the MITRAC Train Control and Management
System (TCMS) provided within the ATAC research project. TCMS is a distributed
system, built on open standard IP-technology that allows easy integration of control
and communication functions for high speed trains. We are concerned with both
the transformation of FBD programs to timed automata models and the time and
memory used to generate test cases. The tools used for developing these programs
are based on the MULTIPROG software. The FBD program is transformed using
the MOS tool 4 [7].

3di(cij ,v) denotes di with cij replaced with v.
4MOS is a tool for model-based and search-based testing of safety-critical systems implemented

in FBD language, developed at Mälardalen University since 2012.
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Figure 1.5: Simplified Train Startup Mode modeled as an FBD program.

8.1 Experiments

The experiments reported here are based on an example program, part of TCMS.
We use an FBD program of a train Startup Mode System (TSM) and generate test
cases for logic coverage. In the process, we describe the FBD program, the program
to timed automata model transformation and the annotations made to the model.

The train is built up using motorized cars and intermediate trailer cars with
pantographs. These cars are combined to create a fixed 8-cars train set, each with its
own complete system for control and propulsion. The task of the train operating in
the startup mode is imposed by the controller FBD program depicted in Figure 1.5.
When the first Line Converter Module (LCM) is active, the propulsion unit becomes
active, i.e. any of the four inputs becomes true. When activating the propulsion
system, the program waits an additional five seconds and then sets the output to
false, which means that the train is not in the startup mode anymore. If the NotAct
is true for at least five seconds, the element is reset and the output is set true as in
the startup mode.

To validate our approach for generating test cases for logic coverage, we im-
plemented our method in our previously developed MOS tool for analyzing and
executing FBD programs. The TSM system is transformed automatically in the
fully formal and executable timed automata used by Uppaal. The TSM system
is modeled as a parallel composition of several processes. Several boolean and in-
teger variables are used for recording information: read!, execute! and write!
synchronization channels are used to model the execution of the FBD program, et
is used to keep track of the elapsed time in timer components, lcm1act, lcm2act,
lcm3act, lcm4act for recording the input variables generated by the LCM input
automaton, notact for representing the line voltage activation, TrnStartupMd for
recording the startup mode of the train, pi and ci for recording each covered item,
and pt for recording the delay from the first LCM starts to communicate. The TSM
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program has been transformed and checked by Uppaal model checker for generation
of test suites for logic coverage by reachability analysis.

The parallel processes are:

• plcSupervision This automaton controls the valid structural information for
the other automata. The structure of the FBD program is restricted to reading
inputs, execution of the components, and the writing of the outputs.

• input-i-Act This automaton non-deterministically generates valid input se-
quences for the function-OR1 and function-TON2 automata. Valid sequences
are restricted to boolean values.

• function-OR1 The function-OR1 automaton encodes a boolean OR function
by reading the input values and returning a true or false value for the next
automaton.

• function-TON1 The TON automaton counts time-based intervals when the
input received from the function-OR1 automaton is true and activates its
output after a preset interval five seconds.

• function-TON2 Similar to function-TON1 when activating the NotAct input
for at least five seconds, the element is reset and the output is set true as in
the startup mode.

• function-RS This automaton is a memory function when we turn the SET
input port. The Q output port stays true until we give another RESET signal
by setting the output the function-TON2 automaton to true.

• function-NOT The function-NOT automaton is outputting the negated value
received at it’s input port.

• outputStartupMd The output startup-mode automaton checks the current
value of received from the function-NOT automaton. It also updates the
values of the variables out and n.

three synchronization channels, three clock variables used to keep track of the elapsed
time in TON component. The TrainStartupMd can be true of false depending on the
input variables or based on the state of the program.

By introducing the variables pi and ci in the parallel process, the model checker
is guaranteed to be used for its diagnostic feature. 5

Table 1.1 shows the generation time (in seconds) for test suites generated from
different logic coverage criteria of the TSM example, and the length (number of
program cycles) of the generated test suite. We notice that for CACC test cases
result in longer traces than for PC and CC. The generation time for CACC is slightly

5For reasons of simplicity and clarity in presentation we have chosen only to consider test suites
generated from Uppaal diagnostic trace with breadth first as search order and no state space
reduction. However, the generation extends easily to other settings for controlling the behavior of
the model-checker.
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Table 1.1: Generation time and test suite length for various coverage criteria

Coverage Criterion Generation Time (seconds) Test Suite Length
(program cycles)

PC 18,04 14
CC 18,21 14
CACC 22,86 25

Table 1.2: Results of obtaining PC of the TSM example with increasing timer
elements

Timers Generation Time
(seconds)

Test Suite Length
(program cycles)

Memory Usage (MB)

0 0,62 4 15
1 1,54 5 27
2 3,29 7 61
5 6,38 14 122
10 6,79 18 200
50 31 36 520

higher than the number for PC and CC. However, the number of program cycles is
twice as high because CACC is combining already generated test suites for PC and
CC.

8.2 Logic Coverage and Timing Components

One of the objectives for this experiment is to assess the applicability and scalability
of using logic coverage for testing FBD programs with various sizes and complexities.
An expected characteristic of the FBD program is its associated timing behavior.
For the TSM model, the TON automaton appears to be significantly affecting the
generation time. Therefore, we focus the discussion on timer components (e.g., TON,
TOF, etc.) because these cases lead to a bigger search space. We modify the program
by increasing or decreasing the number of TON components in the TSM model.
We observed that an FBD program consisting of ten or more TON components are
difficult to cover. This is not surprising as the timing components are varying the
timing of the entire model and therefore the number of predicates and clauses in the
program. The programming of two or more timers components together in the same
FBD program is called cascading. From our experiments with timer components
in TCMS (over 300 FBD programs), the number of TON and TOF components
is always lower than five. Nevertheless we were interested to show that —for the
studied program— our method of generating test cases for covering FBD programs
is applicable and scalable.

The results, listed in Table 1.2, show that the memory usage increase essentially
linearly with the number of timing elements. If we compare test suite length with
the generation time, it can be seen that is much cheaper to compute FBD programs
for FBDs with less than ten timer components than computing for fifty timer
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components. We can try to explain this behavior in the sense that timer components
pose restrictions on the solution because it contains more possible behaviors. Thus,
searching through more timer components takes longer. We note that the use of
timer elements restricts the handling of larger systems, with an increased cost of
generation time and used memory.

9 Related Work

Model checkers have been used to produce test cases satisfying various criteria and
for programs in a variety of formal languages [5, 13, 8]. Black et al. [5] discuss
the problems encountered in using a model-checker for test case generation for
full-predicate coverage. They present reasons why model-checking is not directly
applicable for generating tests to satisfy logic coverage criteria. In our previous
work [9], we overcome this issue by providing a way of generating test cases for logic
criteria that are directly applicable to FBD programs. We found that model-checkers
are an appropriate technique for automated test generation in terms of performance
when used on real-world programs.

For data-flow programming languages such as FBD and Lustre, which describe the
relationship between inputs and outputs instead of the control flow of the program,
researchers proposed specific coverage metrics based on the structural aspects of
the programs [15, 14, 16]. For Lustre, structural coverage metrics are based on the
activation condition concept of the language that can be used when data travels
from an input edge to an output edge. In addition, Whalen et al. [20] defined
an alternative approach to measuring logic coverage for data flow programs called
OMC/DC, a combination of MC/DC and an additional obligation to be satisfied
such that faults will be observed through a variable monitored by the criteria.

10 Conclusion

In this paper we have shown how test case generation that aims to satisfy logic
coverage on Function Block Diagrams can be solved as a model checking problem, by
using model checking tools to automatically create traces that can be transformed
into executable tests. We described a toolbox in which logic coverage criteria can
be formalized and used by a model-checker to generate test cases. We carried out
an extensive empirical study of the method by applying the toolbox to 157 real-
world industrial programs developed at Bombardier Transportation. The results
showed that model checking is suitable for handling logic coverage for real-world
FBD programs, and also revealed some potential limitations of the toolbox when
used for test generation. The evaluation showed that the toolbox is efficient in terms
of time required to generate tests that satisfy logic coverage and that it scales well for
most of the programs. Our overall conclusion is that the model-checking approach
provides a positive and useful addition to the testing process for FBD programs.
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Abstract

In software development, testers often focus on functional testing to
validate implemented programs against their specifications. In safety
critical software development, testers are also required to show that tests
exercise, or cover, the structure and logic of the implementation. To
achieve different types of logic coverage, various program artifacts such
as decisions and conditions are required to be exercised during testing.
Use of model-checking for structural test generation has been proposed
by several researchers. The limited application to models used in practice
and the state-space explosion can, however, impact model-checking and
hence the process of deriving tests for logic coverage. Thus, there is a
need to validate these approaches against relevant industrial systems such
that more knowledge is built on how to efficiently use them in practice.
In this paper, we present a tool-supported approach to handle software
written in the Function Block Diagram language such that logic coverage
criteria can be formalized and used by a model-checker to automatically
generate tests. To this end, we conducted a study based on industrial
use-case scenarios from Bombardier Transportation AB, showing how our
toolbox CompleteTest can be applied to generate tests in software
systems used in the safety-critical domain. To evaluate the approach,
we applied the toolbox to 157 programs and found that it is efficient in
terms of time required to generate tests that satisfy logic coverage and
scales well for most of the programs.

1 Introduction
Advances in model-checking tools and technology in the last decade have made it
a pragmatically usable technique for test case generation from finite-state models
[12]. There have been a number of approaches used for defining logic coverage using
model checkers, e.g., [6, 23, 24], however, these techniques are not directly applicable
to real-world programs of critical systems. When industrial software systems are
being tested, there is still the issue of potential combinatorial explosion of the state
space which thereby limits the application to models used in practice.

Many industrial application domains use safety-critical software to implement
the behavior of programmable logic controllers (PLCs). One of the programming

53



54 1. Introduction

languages defined by the International Electrotechnical Commission (IEC) for PLCs is
the Function Block Diagram (FBD). Programs developed in FBD are automatically
transformed into program code, which is compiled into machine code by using
specific engineering tools provided by PLC vendors. The motivation for using
FBDs as a preferred language arises because it is the standard in many industrial
software systems, such as in the railway domain. Such systems typically require a
certain degree of certification [7], such as some level of logic coverage which must
be demonstrated on the developed software. Although all software should aspire
to correctness, safety critical software is generally held to a higher standard than
other types of systems, which should be reflected in their testing. However, there
is no commonly accepted level of test thoroughness for safety-critical software. In
this paper, we show how to efficiently generate test cases that achieve several levels
of coverage, including MC/DC and decision coverage. It should be noted that the
generated tests are not intended to replace requirement-based test design at the FBD
program level, but to complement it with a structural perspective.

In our previous work we proposed the use of logical coverage for FBD programs
[11] and defined a model-based test generation method based on the Uppaal tool.
While this approach is promising, there is a need to validate it using realistic programs
of critical systems. To this end, we conduct an experimental evaluation using 157
programs of a train control system, written in the FBD language. We develop a
toolbox, named CompleteTest1, suitable for transforming an FBD program to a
formal representation of both its functional and timing behavior. This is done by
implementing an automatic model–to–model transformation from FBDs to timed
automata. Timed automata, introduced by Alur and Dill [3], were chosen because
there is an already existing formal semantics and tool support for simulation and
model-checking using Uppaal [21]. The transformation accurately reflects the data-
flow characteristics of the FBD language by constructing a complete behavioral
model which assumes a read-execute-write program semantics. The translation
method consists of four separate steps. The first three steps involve mapping all the
interface elements and the existing timing annotations. The final step produces a
formal behavior for every standard component in the FBD program. These steps
are independent of timed automata and therefore are generic in the sense that they
could also be used when translating an FBD program to a different target language.
The toolbox uses a test generation technique based on model-checking, tailored for
logic coverage of FBD programs. A generated test consists of a sequence of input
vectors. As the main purpose of the tool at present is to generate test cases that
satisfy coverage criteria, the tool does not generate expected outputs. Expected
outputs can be provided manually to the toolbox by a human tester.

The paper is organized as follows. Section 2 provides an overview of PLC software,
the IEC 61131-3 standard, timed automata and logic coverage. Section 3 describes
the transformation scheme into timed automata. Section 4 and Section 5 present
the test case generation method required for logic coverage criteria. In Section 6, we
describe the tool box used for testing FBD software and demonstrate its application

1CompleteTest is available at http://www.completetest.org/.

http://www.completetest.org/
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by showing relevant user scenarios. In Section 7, we evaluate the toolbox on industrial
programs in terms of its efficiency and usability. Section 8 describes related work.
Section 9 presents our conclusions.

2 Preliminaries
This paper describes a toolbox for generating tests that cover the logical structure
of FBD programs, by transforming them first to networks of timed automata. Our
technique will be illustrated throughout this paper using a complete, small, but
non-trivial FBD program that exhibits many of the features of FBDs. We show how
this program can be translated into a timed automaton and used to illustrate the
approach, the toolbox evaluation and its practical implications. In this section, we
provide some background details on FBD programs, timed automata and logical
coverage.

2.1 Programmable Logic Controllers

PLCs are widely used in real-time software for many types of software systems
including nuclear plants and train systems. A PLC is an integrated embedded system
that contains a processor, a memory, and a communication bus. The semantics of a
program running on a PLC has the following representative characteristics:

• programs execute in a cyclic loop where every cycle contains three phases: read
(reading all inputs and storing the input values), execute (computation without
interruption), and write (update the outputs).

• Input and output channels correspond to sensors and actuators respectively.

The language can be specified on an implementable subset of timed automata [3].
Dierks [9] proposed a new class of automata suitable for PLCs and this definition is
the basis for implementing a model-to-model transformation for PLC software.

FBD, a PLC programming language standardized by IEC 61131-3, is very
popular in industry because of its graphical notations and its data flow nature [22].
Blocks in an FBD program form the basis for a structured and hierarchical application.
They may be supplied by the manufacturer, defined by the user, or predefined in a
library. An application generator is utilized to automatically transform each block
to a C compliant program with its own thread of execution. A block cannot be
recursive as it cannot call itself [26]. However, blocks may have multiple instances
within a program.

Although our description is not limited to a particular PLC software development
style for FBD programs, it is exemplified by a generic PLC control application
compliant with the IEC 61131-3 standard. A PLC periodically scans an FBD
application program, which is loaded into the application memory. As an example of
the FBD generic model, we consider first the hierarchical structure of a PLC and
the functional integration. An FBD control program is considered as a hierarchical
application. The FBD program is created as a composition of interconnected blocks,
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Figure 2.1: Running Example: Compressor Start Enable program showing the
graphical nature of the language.

which may have intra-program data flow communication. When activated, a program
consumes one set of input data and then executes to completion. The code is used on
the specific PLC and is the actual application code from the IEC 61131-3 compliant
FBD program.

The IEC 61131-3 standard proposes a hierarchical software architecture for
structuring and running any FBD program. This architecture specifies the syntax
and semantics of a unified control software based on a PLC configuration, resource
allocation, task control, program definition, function and function block repository,
and program code [22, 26].

The systems we are studying contain a particular type of blocks called PLC
timers. These timers are output instructions that provide the same functions as
timing relays and are used to activate or deactivate a device after a preset interval
of time. There are two different timer blocks (i) On-delay Timer (TON) and (ii)
Off-delay Timer (TOF). A timer block keeps track of the number of times its input
is either true and false and outputs different signals based on these counters. In
practice many other time configurations can be derived from these basic timers. In
order to study how to generate test cases using a model checker for these types of
FBD programs, we use a formal representation that can cope with timers and timing
information.
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2.2 The Compressor Start Enable Program

The translation scheme, test generation, and logic coverage will be illustrated by
translation of a complete, small, but typical FBD program that includes many of the
FBD features. Figure 2.1 contains this FBD program for which we will ultimately
generate test cases. It was developed by an engineer from Bombardier Transportation
responsible for developing train control software in Västerås, Sweden.

The train is made up of motorized cars and intermediate trailer cars with pan-
tographs. These cars are combined to create a fixed eight car train, each with its
own complete software control system that applies regulation to a heating and/or
air conditioning system. The task of the train operating the ventilation compressor
mode is imposed by the controller FBD program depicted in Figure 2.1. The program
requests permission to start the ventilation compressor from the auxiliary load con-
trol. When granted, it will forward the command to the ventilation controller. The
Compressor Start Enable will request permission to start the ventilation compressor.
When granted, the signals are forwarded to the ventilation controller.

The request will time out (HVAC_ACO_E_CmprRn) when the compressor start signal
is acknowledged (CmprEnAck) and required (HVAC_ACO_S_CmprEnRq) provided the clock
is greater than or equal to ten seconds. Additionally, the ventilation should be active
(HVAC_ACO_S_CmprRn) when the compressor is running (HVAC_ACO_S_CmprRn_In). The
ventilation request is started (HVAC_ACO_S_CmprStaRq) when the compressor is enabled
(HVAC_ACO_S_CmprEnRq) and the compressor is not running (HVAC_ACO_S_CmprRn_In).
When the external supply (HVAC_ACO_S_CmprEnBypass) is not available, the compressor
should be enabled (CmprStaEn) only when the compressor is allowed to start from
auxiliary load control (HVAC_ACO_S_CmprEnAck). If the external supply is available,
then the compressor is enabled.

The program consists of basic functions (e.g., AND, SEL, MOVE) and function
blocks (e.g., FltDly). In Figure 2.1, AND is a function. In contrast, FltDly is a
function block because it maintains an internal state and produces outputs based on
this state and inputs. Recall that in order to express timing constraints within one
component, standard PLC timers are used. The timers in a PLC are operated by
an internally generated clock that originates in the processor module. Consider the
following PLC timer FltDly defined as a tuple:

FltDly = 〈FltDly1, (IN, PT, ENABLE, FLT, BLK), Bt〉,
where FltDly1 is the name identifier, IN , PT , ENABLE, BLK, and FLT are

the set of ports and parameters in Port, and Bt is the behavior description. This
timer component is an attempt to specify its interface and behavior. From a semantic
point of view, FBD programs are a special case of deterministic reactive systems.
We use more informative notations to denote the actual behavior. In the following
section we present several such notations to describe how FBD programs can be
handled by the Uppaal model checker.

2.3 Networks of Timed Automata

A timed automaton is a standard finite-state automaton extended with a collection
of real-valued clocks. The model was introduced by Alur and Dill [3] and has gained
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Figure 2.2: Example of a network of timed automata.

in popularity as a suitable model for real-time systems. We consider model checking
algorithms that perform analysis to check for a reachability property of the form
∃ ♦ β. ∃ is the existential quantifier, ♦ is the temporal operator meaning eventually,
and β is a formula designed to capture the requirements of a particular type of
logic coverage. The reachability property states that there exists a path σ through
the states of the timed automaton such that β eventually holds. The property is
presented to the model checker, which then attempts to find an actual path that
satisfies the property. A path σ that satisfies the reachability property can be
converted into a test case that satisfies the desired coverage. We use a timed modal
logic to specify properties. The logic may be seen as properties that can be expressed
as logical formulae in the Timed Computational Tree Logic (TCTL) [2].

An example of a network of timed automata modeled in Uppaal is shown in
Figure 2.2. The network consists of an automaton of a lamp and an automaton of a
user. A network of timed automata in this case can be written as Lamp ‖ User. The
user operates the lamp by pressing the on/off switch. By pressing the switch, the
lamp can be in three possible locations: Off, Dim and Bright. The automaton of the
lamp starts at the Switched Off location and contains one clock x. If the user presses
the light switch, the lamp switches to Dim and the clock is reset, by the update
assignment x := 0. When Dim, the lamp remains on as long as the clock is less than
or equal to five time units (i.e., invariant x <= 5). A state of the automaton Lamp
depends on its current location and on the current values of its clocks. If the user
presses the light switch before three time units, then the lamp switches to location
Bright. In this location, the lamp automaton stays ON until the user presses the
light switch again. Both automata synchronize via the actions press! and press? i.e.,
by sending via channel press! and receiving using press?. Based on the states of the
Lamp automaton, one can denote traces starting from the initial state as a sequence of
alternating transitions σ = (Off , 0)

press−−−→ (Dim, 0)
delay−−−→ (Dim, 2)

press−−−→ (Bright, 2).



Study 2. Automated Test Generation using Model-Checking 59

We provide a brief summary of the notation and concepts in Appendix, for readers
unfamiliar with timed automata theory. Further information can be found in [1].

2.4 Logic-based Coverage Criteria

Coverage criteria are a code-based means of assessing the thoroughness of test cases.
They are normally used at the unit test level to check that various aspects of the
code structure have been exercised by the test cases. Out of the many criteria that
have been defined and studied, we have implemented three logic-based criteria that
measure the thoroughness of test coverage of the control flow structure of FBD
programs.

FBD program flow is controlled by atomic Boolean expressions called conditions,
and by decisions made up of conditions combined with Boolean operators (NOT,
AND, OR, XOR, IMPLIES, EQUIV). A condition can be a single boolean variable,
an arithmetic or character comparison with a Boolean value (e.g., A > B or str1 ==
str2), or a call to a function with a Boolean value, but does not contain any Boolean
operators. The test generation tool uses the UPPAAL model checker to generate test
cases that satisfy three types of logic coverage: decision coverage DC (also known
as predicate coverage), condition coverage CC (also known as clause coverage) and
Modified condition decision coverage (MC/DC).

A set of tests satisfies decision coverage if running the test cases causes each
decision in the FBD program to have the value true at least once and the value false
at least once. Note that for any individual predicate, the true and false values might
occur under a single test case or under two different test cases. In general a single
test case will exercise more than one decision, and it is possible, but certainly not
required, that all decisions in a program might have both values exercised by a single
test case. In the context of traditional sequential programming languages, decision
coverage is usually referred to as branch coverage.

Condition coverage requires test cases that cause each individual condition to
be exercised at least once with value true and once with value false. A set of test
cases might satisfy either condition coverage or decision coverage, or both of them.
Modified condition decision coverage captures the idea that the value of a decision
can be controlled by the value of each of its conditions independently of the values
of all other conditions. This means that for each individual condition c in a decision,
there are sets of values of all the other conditions so that the decision’s value differs
for the two possible values of the condition c.

For MC/DC each individual condition in each decision should be shown to be
able to determine the outcome of the decision during testing. MC/DC is a stronger
requirement than CC; any test set that satisfies MC/DC must also satisfy CC. For
most non-trivial decisions, MC/DC is also more strict than DC, even though there
are decisions for which a MC/DC-satisfactory test set does not satisfy DC. CC, DC
and MC/DC, as well as other logic criteria, are defined and exemplified in [8, 4].
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1 plc = plcSupervision ();
2
3 readinput1= input_HVAC_ACO_S_CmprEnRq ();
4 readinput2= input_HVAC_ACO_S_CmprRn_In ();
5 readinput3= input_HVAC_ACO_S_CmprEnAck ();
6 readinput4= input_HVAC_ACO_S_CmprEnBypass ();
7
8 block1= Function_AND1 ();
9 block2= Function_AND2 ();

10 block3= Function_MOVE1 ();
11 block4= Function_SEL1 ();
12 block5= Function_FltDly1 ();
13
14 writeoutput1= output_HVAC_ACO_C_CmprStaEn ();
15 writeoutput2= output_HVAC_ACO_S_CmprStaRq ();
16 writeoutput3= output_HVAC_ACO_S_CmprRn ();
17 writeoutput4= output_HVAC_ACO_E_CmprRn ();
18
19 system plc , readinput1 , readinput2 , readinput3 ,
20 readinput4 , block1 , block2 , block3 , block4 , block5 ,
21 writeoutput1 , writeoutput2 , writeoutput3 ,
22 writeoutput4;

Figure 2.3: Interface elements created from structure and behavioral elements
from the Compressor Start Enable.

3 Translation

The translation scheme will be illustrated on the running example. After translation,
the Uppaal model checker can be applied to test that the program satisfies the
required logic coverage on the FBD program. The translation is performed starting
from signals which are translated into global variables shared by the corresponding
blocks. Additionally, FBD blocks are mapped to input/output behavior (e.g., func-
tional and timing) between signals. This may be done by using predefined Uppaal
operators, as in the case of basic blocks (e.g., AND, SEL, MOVE), or by capturing the
functionality of more complex blocks (e.g., FltDly) from their description.

In practice the timed behavior of an FBD program is defined as a network of
timed automata, extended with data input and output variables. We first perform
an automatic transformation of the FBD program to timed automata that obeys the
read-execute-write semantics of the FBD program, hence preserving the semantics of
FBDs without altering its structure. Next, we specify the execution of each block,
and construct a complete timed automata model by the parallel composition of local
behaviors.

3.1 FBD Structure

For illustration, we start with the translation of the Compressor Start Enable
Program. For each block, a timed automaton is defined for the program description.
Templates of components are included and we list the composed timed automata
network representing the FBD program as

AND1 ‖ AND2 ‖ SEL1 ‖MOV E1 ‖ FltDly1
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1chan execute ,write , read;
2
3// variable definition for the FBD program
4// US_INT OR BOOL VAR_INPUT
5
6// input variable definition
7bool HVAC_ACO_S_CmprEnRq;
8bool HVAC_ACO_S_CmprRn_In;
9bool HVAC_ACO_S_CmprEnAck;
10bool HVAC_ACO_S_CmprEnBypass;
11
12// output variable definition;
13bool HVAC_ACO_C_CmprStaEn;
14bool HVAC_ACO_S_CmprStaRq;
15bool HVAC_ACO_S_CmprRn;
16bool HVAC_ACO_E_CmprRn;
17
18// internal intermediate variables
19bool AND1;
20bool AND2;
21bool MOVE1;
22bool SEL1;
23bool FltDly1;
24clock BLK;
25bool ENABLE;
26const int PT=10;

Figure 2.4: Input, Output, and Internal Signals translated for the Compressor
Start Enable Program.

The top-level structure of the Uppaal model is shown in Figure 2.3 and represents
a parallel composition of several processes corresponding to inputs (lines 3-6), outputs
(lines 14-17), and blocks (lines 8-12).

An input named in the program HVAC_ACO_S_CmprEnAck will be automatically
translated into a timed automata template named input_HVAC_ACO_S_CmprEnAck().
When an input signal in FBD has a name, the name is preserved during translation.
However, it is often the case that signals in FBDs are not named (e.g., in the
Compressor Start Enable program there are simply "wires“ connecting two blocks).
In such a case, the name given to the signal corresponds to the name of the block which
produces the signal. For example, the output signal produced by Function_AND2()
will correspond to an Uppaal variable named bool AND2 as shown in Figure 2.4.

Several Boolean and integer variables are used for recording information in the
Uppaal model and are shown in Figure 2.4: read, execute and write synchroniza-
tion channels are used to hard code the execution of the program, the BLK clock
variable is used to keep track of the elapsed time in FltDly, other variables (e.g.,
bool HVAC_ACO_S_CmprEnRq) are used for recording the inputs generated by the
input automaton, PT represents the fault delay, while ENABLE records the compressor
enable.

3.2 Cycle Scan and Triggering

A block in an FBD has an interface, consisting of a name identifier, input and
output ports, and a list of parameters. The interface is used to access the block
behavior. When the block is activated the behavior is started using the values read
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Figure 2.5: Timed Automaton of a Program Cycle Scan and Execution Order.

on the input ports. When the behavior ends, i.e., when the block implementation
terminates its execution, the output ports are updated. The behavior of a block is
typically implemented by a code fragment that updates local variables. In addition,
the program contains a clock variable for modeling a delay between the cycles. We
show in Figure 2.5 how a cycle starts when the automaton enters the ReadInputs
node and ends its computation in UpdateScanTime node. For an FBD program,
the execute operation of each block is extended according to connections and IN
and OUT variables corresponding to the program inputs and outputs. A program
composition is a set of interconnected blocks closed under a specific execution order.
The execution order N is automatically defined according to the general rules included
in the IEC 61131-3 standard. This predetermined order directly dictates the data
dependency. Using the program cycle requires deterministic program execution, by
restricting the underlying timed transition system. The program is executed in a loop
and the computation follows the run-to completion semantics. We use the notion of
precedence to describe such dependencies on the convention of reading such FBD
programs in a top-to-bottom, left-to-right fashion. To show an example of a program
cycle scan as shown in Figure 2.5 different actions are executed:

• read(IN) for reading variables from IN.

• write(OUT) for writing variables onto output ports.

• When the execution order holds, the ports are updated by read(IN), and
write(OUT).

For the Compressor Start Enable program, the execution order is AND1, FltDly1,
AND2, SEL1, and MOVE1. For each block we assign a precedence priority to the
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Figure 2.6: An automaton showing the AND logical block.

Figure 2.7: A Timed Automaton showing a FltDly timer block.

corresponding timed automaton. A counter is created in this step to represent the
execution priority of a block. In this way we ensure that block are executed one by
one. After the last block is evaluated, the counter is reset to repeat the scan cycle.

3.3 Translation of basic blocks

Simple FBD blocks are translated into predefined Uppaal operators. In particular:

• The Logical Operator blocks are translated using the logical Uppaal opera-
tors and, not, or.

• The Arithmetic Operator blocks are translated using the arithmetic Uppaal
operators +, =, - , /, *.

• The Comparison blocks are translated using the relational operators Uppaal
<, >, <=, >=, =.

• The Selection blocks are translated using if-then-else statements.

The behavior mapped onto a basic block is modeled as an Uppaal automaton as
shown in Figure 2.6 for an AND logical block. The execution of the translated FBD
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program is determined in terms of the execution order N. A block is therefore initially
in location Waiting, and after performing the read action it starts executing until
its internal computation is done. After completing the write action, which forwards
data from the output ports via connections, the block becomes Waiting again.

The parallel processes translated for the basic blocks for the Compressor Start
Enable program are the following:

• plcSupervision The automaton in Figure 2.5 controls the valid structural
information for the other automata. The structure of the FBD program is
restricted to reading inputs, execution of the components, and the writing of
the outputs.

• input_name This automaton non-deterministically generates valid input se-
quences for the translated blocks. Valid sequences are restricted to Boolean
and Integer values.

• block_AND1 and block_AND2 The automaton in Figure 2.6 encodes a Boolean
AND function by reading the input values and returning a true or false value
for the next automaton.

• block_SEL1 Selects one of two inputs depending on the value of a Boolean
input. Then the translation would be:

SEL1= if(G=true) then SEL1=IN1 else SEL1=IN0.

• block_MOVE1 This automaton is a memory function when we turn on the input
port.

• output_name The output startup-mode automaton checks the current value
received from the function automaton. It also updates the values of the variables
OUT and IN.

More stateful blocks are translated into Uppaal automata. In particular:

• The Bistable blocks (e.g., SR and RS latches) are elements whose output
depends not only on the current inputs, but also on previous inputs and
outputs. These blocks can be implemented using logical, relational Uppaal
operators and if-then-else statements.

• The Edge Detection blocks are translated using Uppaal expressions involving
Boolean operators.

• The Counters blocks are translated by the use of Uppaal ++ increment and –
decrement operators.

• The Timer blocks are translated as a special automaton that is initially in
location Waiting. After reading its inputs, it starts executing in location
Running until its internal computation is done. After computing the on-delay
timer, it forwards data to output ports and the block becomes Waiting again.
One example of a Timer block from the Compressor Start Enable program is
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shown in Figure 2.7. The FltDly automaton counts time-based intervals when
the input is true and activates its output after a preset interval of ten seconds.
The cycle scan interacts with the timer block via the execute? action. The
timer sets the output FltDly1 to true if IN variable is true at least as long as
the time PT and ENABLE are set to true.

4 Testing Function Block Diagram Software using
the UPPAAL Model-Checker

In this section, we describe an approach to automatically generating tests for FBD
programs. Logic coverage criteria are used to define what test cases are needed
and we use a model-checker to generate test traces. In addition, the methodology
presented in this paper is tailored for FBD programs, and is composed of the following
steps, mirrored in Figure 2.8:

1. Model Transformation To test an FBD program we map it to a finite state
system suitable for model checking. In order to cope with timing constraints
we have chosen to map FBD programs to timed automata.

2. Logic Coverage Annotation We annotate the transformed model such that a
condition describing a single test case can be formulated. This is a property
expressible as a reachability property used in most model checkers.

3. Test Case Generation We now use the model-checker to generate test traces. To
provide a good level of practicality to our work, we use a specific model-checker
called Uppaal which uses timed automata as the input modeling language 2.
The verification language supports reachability properties. In order to generate
test cases for logic coverage of FBD programs using Uppaal, we make use of
Uppaal’s ability to generate test traces witnessing a submitted reachability
property [14]. Currently Uppaal supports three options for diagnostic trace
generation: some trace leading to a goal state, the shortest trace with the
minimum number of transitions, and fastest trace with the shortest time delay.

While Uppaal is a viable tool for model checking, it is not directly tailored
to test case generation in practice. We demonstrate how to work around this by
automatically generating traces for logic coverage of the control flow of FBD programs
described in timed automata and how we transform these traces to actual test cases.
We discuss these steps in further detail in the following sections.

As a result of the translation described in Section 3, we consider that the FBD
program is given as a closed network of timed automata as shown in Figure 2.9.
This model contains two sub-networks, one modeling the FBD Program and the other
one modeling its Input and Output Model. In addition, we consider a completely
unconstrained input environment that allows all possible interactions between the
timed automata network elements. In this way the cycle scan is used to control

2The Uppaal tool is available at http://www.uppaal.org.

http://www.uppaal.org
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Figure 2.8: Testing Methodology Roadmap.

the FBD program via read!, execute!, and write! actions. This corresponds to
synchronization actions implemented in Uppaal as a hand-shaking synchronization:
two automata take a transition at the same time, one will have an a! and the other
an a?, a being the synchronization channel.

Let us assume the generic timed automata network of the Compressor Start
Enable program together with its cycle scan (plcSupervision()) and Input/Output
models shown in Figure 2.9. A trace produced by the model checker for a given
reachability property defines the set of actions executed on the Compressor Start
Enable program which in our case is considered the system model sys. An example
of a diagnostic trace has the following form:

(sys0)
a1−→ (sys1)

a2−→ ...
an−→ (sysn),

where (sysk) are states of the FBD program and PLC supervision with input
environment constraints, respectively, and ak are either internal synchronization
actions, time-delays or read!, execute!, and write! global synchronizations. For
FBD programs, the sequence represents only the global synchronizations shown in
Figure 2.9. Test cases are obtained by extracting from the test path the observable
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Figure 2.9: Timed Automata Network of the Compressor Start Enable Program.

actions read!, execute!, and write!. Obviously all the test obligations cannot be
satisfied by a single test case. By using a scan cycle we allow the test to be
implemented as one or more paths separated by resets. To introduce resets in the
model, we annotate the cycle scan with a reset transition leading to the initial
ReadInputs location. On this transition all variables and parameters (excluding
encoded internal variables) are reset to their default value. This reset is hardcoded
into the PLC supervision for any modeled FBD program in Uppaal, being an atomic
communication between all timed automata.

5 Analyzing Logic Coverage

The basic approach to generating test cases for logic coverage using model-checking
is to define a test as a finite execution path. By characterizing a logic coverage
criterion as a temporal logic property, model-checking can be used to produce a path
for the test obligation.

Ammann et al. [6] argued that criteria such as logic coverage that have constraints
involving more than one test trace cannot be handled in this way. The core problem
is that each execution is characterized by a temporal formula, and test obligations
span multiple runs of the model checker. This means that to ensure model-checking of
MC/DC test obligations one should satisfy constraints on multiple runs of the model-
checker. However, an FBD program has an implicit control loop, so a reset transition
can occur in the program without modifying the transformed timed automata in any
way. This reset transition restores the program to its initial state, making it possible
to handle test obligations over multiple program executions as a single execution
path containing subpaths separated by resets.
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By using a translated FBD program, we use logic coverage to directly annotate
both the model and the temporal logic property to be checked. We propose the
annotation with auxiliary data variables and transitions in such a way that a set
of paths can be used as a finite test sequence. In addition, we propose to describe
the temporal logic properties as logic expressions satisfying certain logic coverage
criteria. Informally, our approach is based on the idea that to get logic coverage of a
specific program, it would be sufficient to (i) annotate the conditions and decisions
in the FBD program, (ii) formulate a reachability property for logic coverage, and
(iii) find a path from the initial state to the end of the FBD program. To apply the
criteria, necessary properties for the integration of logic coverage need to be fulfilled.

For each criterion, model checking allows the generation of paths for logical
predicates showing test obligations satisfaction. To do so, conditions and decisions
have to be formulated as temporal logic formulae. Hessel et al. [15] proposed one
way to apply coverage criteria to specifications described in timed automata. We
extend this approach to apply it to the conditions and decisions in an FBD program.

Decisions in an FBD program are blocks that can be evaluated to a Boolean
value, i.e., true or false. Decisions can be identified from the instrumentation points
in the FBD program (e.g., AND block). Let {di} be the set of decisions in an FBD
program and {cij} be the set of conditions in di.

DC requires every di to evaluate to true and false, and is described by the following
two test obligations:

o1 = di

o2 = ¬di
These obligations guarantee that each decision di evaluates to both true and false,
not necessarily along the same execution path.

CC requires two test obligations for each clause cij in a decision di, such that cij
evaluates to both true and false:

o1 = cij

o2 = ¬cij
MC/DC imposes two requirements for test cases. First, for each condition cij

in a decision di, test cases must show that cij determines the value of decision di,
and second, cij has to evaluate to true and false. As shown in [4], a condition cij
determines a decision di if there is an assignment of values to all the variables in
di except cij such that the value of di is different for the two values of cij. This
requirement is met if the following logical expression is satisfied 3:

di(cij ,true) ⊕ di(cij ,false)

Combining the two requirements for MC/DC coverage, we have the following two
test obligations:

o1 = cij ∧ (di(cij ,true) ⊕ di(cij ,false))

o2 = ¬cij ∧ (di(cij ,true) ⊕ di(cij ,false)).
3di(cij ,v) denotes di with cij replaced with v.
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Figure 2.10: User Menu of the Toolbox

Figure 2.11: Graphical Interface of the Toolbox

For generating tests for DC, CC, and MC/DC we represent the test obligations
over a set of variables monitoring the decisions and conditions as a reachability
property. This approach is implemented in the toolbox by automatically creating a
temporal logic property used by the model checker to produce tests.

6 Overview of the Toolbox

In this section we outline some of the main aspects of the toolbox, including the user
interface and the architecture. We also present several technical solutions used in its
implementation to fully support the complexity required for model-checking while at
the same time presenting a clean and minimal user interface.

6.1 User Interface

The main goal for the design of the user interface was to meet the exact needs of an
industrial end user. Although there is a possibility for fine tuning the configuration
parameters of the underlying Uppaal model-checker, most of them are set to default
values, making the toolbox immediately ready for use upon startup. Figure 2.10
depicts menu options for the toolbox, listing chosen default values for the parameters
and the coverage criteria.
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Use-Case Scenario 1: Basic Test Generation

A very basic use-case scenario to get started with the toolbox would consist of:

1. Opening an FBD Progam XML file (File → Open FBD Programs)

2. Generating tests (File → Generate Tests)

These actions cause the tool to attempt to generate a set of test cases that
cover all of the decisions. The attempt continues until either all decisions have
been covered, or the tool has run for 10 minutes even if there are decisions
still uncovered. We found that pragmatically, when the toolbox is applied to
FBD programs produced at Bombardier Transportation AB, the model checker
has been able to generate tests in 0.05 to 133 seconds. Figure 2.11 depicts
an output of the toolbox for this use-case scenario executed on our running
example (as defined in Section 2). The figure shows several types of information
presented to the user in a table with the test data (points 1,2,3 in the figure),
and a set of additional information and actions (points 4, 5 and 6 in the figure).
The numbered points in the figure are:

1. Steps and Timing information regarding when the specific test data is
provided to the running FBD program.

2. Generated test input data needed to achieve a maximum coverage of the
given program.

3. Editable area of the test output data, where the user can provide expected
outputs for a specific set of test inputs based on a defined behavior in the
requirement. To maintain efficient use of space in the toolbox, expected
values for test outputs are provided in the form of a drop-down selection
list for boolean values (true/false) or as a text field for other non boolean
values (integers, doubles, etc.).

4. Percentage of the logic coverage achieved by using generated tests.

5. Diagnostic information with respect to the time spent on generating tests,
memory usage and size of the state space.

6. Optional action to compare expected values with computed ones. Invoking
the ”Validate Test Items” button causes the entries in section 3 of the test
data table to be colored with green where the expected value matches the
computed one, and with red where there is a mismatch. Any subsequent
updates to the expected values will automatically update the coloring of
that entry.
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Table 2.1: Test inputs generated for Decision Coverage (DC) and Condition
Coverage (CC) on the running example. In order for decisions to achieve a certain
state, test inputs have to be provided for several time units due to the usage of a
timer.

Logic
Coverage
Criteria

Step Time H
VA

C
_
A
C
O
_
S_

C
m
prE

nR
q

H
VA

C
_
A
C
O
_
S_

C
m
prR

n_
In

H
VA

C
_
A
C
O
_
S_

C
m
prE

nA
ck

H
VA

C
_
A
C
O
_
S_

C
m
prE

nB
ypas

1 0 false false false false
2 0 true false true false

DC 3 9 true false true false
4 10 true true true true
1 0 false false false false

CC 2 0 true true true true

Use-Case Scenario 2: Selecting A Logic Coverage Criterion

Tests generated using Use-Case Scenario 1 aim at achieving maximum decision
coverage. If a user would like to use a logic coverage measurement other than the
default decision coverage (DC), this can be selected from the "Coverage" menu.
Table 2.1 presents test inputs for the running example when the toolbox is using
both decision and condition coverage. Since the running example includes a
timer function block (FltDly), achieving maximum decision coverage is possible
only if we provide test inputs for a certain number of time units. In the running
example, the FltDly function block expects an input value to be true for at
least 10 seconds. This is why inputs to the program are set to true in steps 2,
3 and 4 for decision coverage representing the state of the system at time=0,
time=9 and time=10. Since there are no observable changes in the way the
system behaves between time=1 and time=8, the toolbox does not display
those test steps. For an industrial user, this minimization of test steps is very
important, because it saves manual effort in providing expected output values
for the system under test.

Use-Case Scenario 3: Changing Configuration Parameters

In addition to the basic use-case scenario of the toolbox, a user can perform
various configuration changes to the way tests are obtained. This is done
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Table 2.2: Manual fault discovery by checking the output (no negated input signal
for the AND block in Compressor Start Enable Program). When generating tests
with DC for a faulty program, the Compressor Start Request signal will indicate an
erroneous false status when the Compressor is not running and there is a request
for enabling the compressor.
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1 (Original Program) 0 false false false
2 0 true false true
3 9 true false true
4 10 true true false
1 (Faulty Program) 0 false false false
2 0 true false true
3 9 true false true
4 10 true true false

by modifying the model-checker’s settings in the "Parameters" menu of the
tool-box. For example, the user can set the search algorithm to be "Breadth
First", and/or set the output trace of the model-checker to a "Fastest" one,
etc.

Use-Case Scenario 4: Fault Detection in FBD Programs

This example compares the expected values and computed values produced
by the program. We created a typical fault in the Compressor Start Enable
program, by removing the negated input for the AND block corresponding to
the compressor running (HVAC_ACO_S_CmprRn_In). Then we generated tests
that satisfy DC for both the original program (assumed to be correct) and the
faulty program, as shown in Table 2.2 (only three signals are shown because
these are the inputs that affect the output). For the original program we observe
that the specification described in Section 2.2 agrees with the actual output
and therefore in all cases (step 1-4) the output is green. Now by examining
the output of the faulty program, the user can determine that the ventilation
request is not started (HVAC_ACO_S_CmprStaRq) when the compressor is en-
abled (HVAC_ACO_S_CmprEnRq) and the compressor is not running (HVAC_ACO
_S_CmprRn_In), revealing a bug in the program.
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Figure 2.12: Overview of the Toolbox Architecture.

Use-Case Scenario 5: Exporting Test Results

As a final use-case scenario of the toolbox, a user can export the resulting tests
in a comma separated values (CSV) format by selecting "File → Export Test
Results". In this case, all the information from the test data table is saved,
including both computed and expected (i.e., user provided) output values. Such
data could be used outside of the toolbox for creation of a custom test report.

6.2 Toolbox Architecture

An overview of the toolbox architecture is presented in Figure 2.12. The actual
toolbox was developed as a Java Swing application using the NetBeans integrated
development environment and following a modular approach in the design of the
toolbox architecture. This resulted in the following modules being part of the toolbox:

• FBD Import Editor. This module is used for validating whether the struc-
ture of a provided XML file represents a valid PLCOpenXML file containing
an FBD Program.

• Translation Plugin. Once the FBD Import Editor module has been executed,
the PLCOpenXML file containing the FBD Program is translated into an XML-
format accepted by the Uppaal model checker. This translation is carried out
by following the rules of translation defined in Section 3.

• UPPAAL Server. The Uppaal Server module is used for external invoking
of the Uppaal model checker. Uppaal provides support for formal verification
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using a client-server architecture, allowing the toolbox to connect as a client to
the model checker and verify properties against the model.

• Trace Parser. The Trace Parser toolbox module collects diagnostic trace
output from the Uppaal model checker and parses this output into a JavaCC
structure corresponding to a set of inputs and outputs for a given model. This
parsing mechanism is further explained in Section 6.5.

• User Interface. The function of the user interface is to provide a way for the
user to communicate with the tool including: (1) the selection of which FBD
program to import and generate tests for, (2) the selection of the coverage
criterion to be used for test generation, (3) the presentation of generated test
inputs, and (4) the determination of correctness of the result produced for each
generated test by comparing the actual test output with the expected output
(as provided manually by the tool user).

6.3 PLCOpen XML Standard

The PLCOpen XML interchange format for PLC applications is the base for the
model translation to timed automata. PLCOpen is a vendor independent standard
aiming to provide a common programming interface for the use of the IEC 61131-3
standard. In the toolbox, the XML file used as input for the translation to timed
automata is in accordance to the PLCOpen standard defining the FBD programming
language. Figure 2.13 depicts an example of a PLCOpen XML file corresponding to
the Compressor Enable Program. The program consists of specific XML elements
consisting of the program name (lines 5), the interface information (lines 6-20),
and the block specification for AND and FltDly (lines 22-53). The XML scheme is
mainly storing program information such the identifier for blocks and dependencies.
As shown in Figure 2.13, localId indicates the identifier of a block, and every
refLocalId in the connection tag represents the dependency identifier for the
connection to a certain block or input variables. This structural format is used in
the implemented translation from FBD to timed automata.

6.4 Implemented Model Translation

We define a translation inside the toolbox, which consists of the formal definition
of the FBD language. A program consists of the following elements: composite
programs, basic blocks, library blocks, connections, ports, and timing constraints.

The toolbox considers that each modeling element, except for the composite
programs, has a set of ports through which it can exchange data. Ports are associated
by a set of data types, which are used for data representation, e.g., integer with a
specific range. A Port is associated with the same type of data as the associated
internal variable.

For an FBD program the read-execute-write semantics means that input ports
may only be accessed at the beginning of each computation, and output ports are
only written at the end of the computation. Therefore, the behavior is augmented
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1<?xml version ="1.0" encoding ="UTF -8"?>
2<project xmlns="www.plcopen.org/xml/tc6.xsd">
3<types><dataTypes/>
4<pous>
5<pou name="HVAC_ACO_CmprEn" pouType="fBlock">
6<interface >
7<inputVars retain="false">
8<variable name="HVAC_ACO_S_CmprEnRq">
9<type><BOOL/></type>
10</variable >
11<variable name="HVAC_ACO_SCmprRnIn">
12<type><BOOL/></type>
13</variable >
14</inputVars >
15<outputVars retain="false">
16<variable name="HVAC_ACO_C_CmprStaEn">
17<type><BOOL/></type>
18</variable >
19</outputVars >
20</interface >
21<body><FBD>
22<block typeName="AND" localId="11">
23<inputVariables >
24<variable formalParameter="IN1"
25negated="true">
26<connection refLocalId="14"></connection >
27</variable >
28<variable formalParameter="IN2"
29hidden="true">
30<connection refLocalId="13"></connection >
31</variable >
32</inputVariables >
33<inOutVariables/>
34<outputVariables >
35<variable formalParameter="OUT"
36hidden="true">
37</variable >
38</outputVariables >
39</block >
40<block typeName="FltDly" localId="66">
41<inputVariables >
42<variable formalParameter="IN">
43<connection refLocalId="18"
44formalParameter="OUT">
45</connection >
46</variable >
47<variable formalParameter="PT">
48<connection refLocalId="21"/>
49</variable >
50<variable formalParameter="ENABLE">
51<connection refLocalId="22"/>
52</variable >
53</inputVariables >
54<inOutVariables/>
55<outputVariables >
56<variable formalParameter="FLT"></variable >
57<variable formalParameter="BLK"></variable >
58</outputVariables >
59</block >
60</FBD></body>
61</pou>
62</pous>
63</types >
64<instances ><configurations/></instances >
65</project >

Figure 2.13: PLCOpen XML format for the Compresor Enable Program
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Figure 2.14: Model Export from an FBD Program to UPPAAl Model Checker.

with an external interface. The interface of a block consists of ports and the execution
order information. An input port has an associated variable holding the current data
values. The internal computation of a block starts with reading all input ports. This
internal data is used together with the behavioral model during execution, before
writing the variables to the output ports.

We have developed the model transformation shown in Figure 2.14. In order
to simplify the semantics of an FBD program, we focus on the PLCOpen language
constructs relevant to functional and timing modeling elements.

The PLCOpen language is implemented as an XML profile that provides the ability
to describe FBD programs using this profile. The PLCOpen language provides both
structural and graphical information needed for implementing the actual translation.
The toolbox generates PLCOpen files in an XML format. As shown in Figure 2.14,
we introduce the timed automata as the interface between the FBD program and
the Uppaal input model. The Compressor Start Enable Program conforms to the
PLCOpen profile and meta-model. The structural translation described in Section 3
maps an FBD program into timed automata. The structure of the timed automata
model is the basis of the model to text transformation into the Uppaal input model.

The modeling elements of an FBD program used in the translation are described
in Figure 2.15. These elements represent the structure of the model, the behavior, and
the timing information. The meta-model elements provide concepts used in compo-
nent based design. A Block element can be translated with Type, ExecutionOrder
and Model elements. Blocks can be composed using connections and ports. Further-
more, a Block element can have a behavioral description as a Model element. The
model provided after the translation represents the model annotated with triggering
and timing information with assumed functionality.
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Figure 2.15: Class Diagram representing the meta-model elements of the Function
Block Diagram.

6.5 Dynamic Traces - JavaCC - Test Cases

Uppaal model-checking tool is mainly used for the verification of a certain property
of a model, resulting in a affirmative or a negative response. However, it is also
possible to obtain a full trace used in the process of verifying that property on a
model. An excerpt of such a trace for the running example is shown in Figure 2.16.
To interpret dynamic traces generated by Uppaal, a grammar file was created for
JavaCC4 parser generator. The trace starts with the initial state and is followed by
pairs of transitions and states, i.e. the state can be reached from the previous state
via the transition. A state in the trace contains locations (lines 3-9), clocks (line 12),
internal variables (lines 12-20), decisions and conditions (lines 22-25) in the same
order as they appear in the Uppaal input file. The trace parsing using JavaCC
is the process of analyzing the trace, transforming the trace into a state machine,
extracting the necessary information (i.e., values of the input and output variables,
clock valuation) needed for testing of an FBD program. In the end tests are merged
based on the program cycle scan as one or more test cases separated by resets.

7 Experimental Evaluation and Discussions
Our goal in this section is to evaluate the toolbox on industrial FBD programs and
to acquire experience regarding its efficiency and usability. We therefore conduct
a set of analyses using programs developed by Bombardier Transportation AB in
Sweden. The system has been in development for more than two years and uses
processes influenced by safety-critical requirements and regulations including the
EN 50128 standard [7] which requires different logic coverage levels (e.g., DC and
MC/DC). In 2014 its source code was made up of more than 350.000 lines of C code
generated from FBD programs. The development teams use both automated and
manual testing from unit testing through system testing.

4The JavaCCTMis available at https://javacc.java.net/.

https://javacc.java.net/
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1State
2(
3plc.ExecuteProgram readinput1.Process
4readinput2._id10 readinput3.Process
5readinput4._id12 and1.Update
6and2._id18 fltdly1.Waiting
7sel1._id15 move1._id16
8writeoutput1._id5 writeoutput2._id6
9writeoutput3._id7 writeoutput4._id8
10)
11
12fltdly1.ET <=0 steps =1 HVAC_ACO_S_CmprEnRq =1
13HVAC_ACO_S_CmprRn_In =1 HVAC_ACO_S_CmprEnAck =0
14HVAC_ACO_S_CmprEnBypass =1 HVAC_ACO_C_CmprStaEn =0
15HVAC_ACO_S_CmprStaRq =0 HVAC_ACO_S_CmprRn =0
16HVAC_ACO_E_CmprRn =0
17
18AND1=0 AND2=0 FltDly1 =0 SEL1=0 MOVE1=0
19
20N=1 IN=5 OUT=1
21
22decisions [0]=0 decisions [1]=0 decisions [2]=0
23decisions [3]=0 decisions [4]=0 decisions [5]=0
24decisions [6]=0 decisions [7]=0 decisions [8]=0
25decisions [9]=0
26
27fltdly1.counter =0 move1.firstTime =0
28move1.RS_local =0 move1.decision =0
29
30Transitions:
31plc.ExecuteProgram ->plc.UpdateOutputs
32{ IN == InputVariables , execute!, 1 }
33
34and1.Update ->and1.Update
35{ !( HVAC_ACO_S_CmprEnAck && HVAC_ACO_S_CmprEnRq) &&
36N == 1, execute?, AND1 := 0, N++, decisions [0] := 1
37}

Figure 2.16: An excerpt of a trace in response to a command to UPPAAL for the
Compressor Enable Program.

We investigate the following questions regarding the tool’s performance:

• Q1, Efficiency: What is the time required for the tool to generate tests that
satisfy the DC, CC and MC/DC logic coverage criteria?

• Q2, Coverage: How close does the tool come to generating tests that achieve
100% coverage of each of the criteria?

The industrial system studied in this paper is the TCMS (Train Control and Man-
agement System), developed by Bombardier Transportation AB engineers, which
has been deployed to the field. In this research we, have used all TCMS programs
written in the FBD standard language resulting in a total of 157 artifacts. Each of
the programs is sizable and representative of industrial programs used in the train
system’s development. Information regarding the size of the system and number of
blocks is provided in Table 2.3.

For each program, the tool generated a model version in Uppaal. Then, for each
implementation of a program, the toolbox:
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Table 2.3: Information about the 157 subject programs.

Blocks Inputs Outputs Decisions
Maximum per Program 32 15 29 196
Average per Program 6.9 2.7 5.9 30

Table 2.4: Average, median, minimum, and maximum generation times for 123 of
the 157 programs.

CC MC/DC DC
Average Generation Time (s) 1.53 4.54 1.93
Median Generation Time (s) 0.27 0.51 0.34
Minimum Generation Time (s) 0.05 0.06 0.06
Maximum Generation Time (s) 35.37 133.60 72.125

• Generated test input vectors for three different coverage criteria. We used a
reachability-based approach for generation of tests aimed at satisfying DC, CC
and MC/DC. If the model checker is able to find a path to satisfy a reachability
property, given that such a path exists, then the approach is guaranteed to
generate a test suite that achieves maximum possible coverage of the program.

Hence, if the model checker succeeds in finding paths to satisfy all the reach-
ability properties for a given criterion, then the method will achieve 100%
coverage for that criterion. We have used the Uppaal model checker in our
experiments. Our reachability-based test generation approach produces one test
for each coverage criterion as our goal is to assess the coverage and efficiency
of the toolbox in terms of time to generate tests. To generate the tests, the
tool uses the random-depth first search algorithm provided by the Uppaal
model checker. The tool terminates the generation by determining the coverage
requirements satisfied by each test.

• Assessed efficiency of each test based on coverage, and collected complexity
measures for each program. We measured the generation time for each program
and determined the number of test requirements for each coverage criterion.

To answer Q1 and Q2, the tool generate tests aimed at achieving maximum
logic coverage. Since we are using a model checker for generating tests, the toolbox
simply produces the maximum achievable coverage with a proof that uncovered test
obligations are not coverable. For 123 of the 157 programs (78%) the tool provided
tests that covered 100% of the required entities for each of the three coverage criteria.
Table 2.4 gives the performance figures in terms of time needed to generate the tests.
The generation time for MC/DC averaged approximately twice as long as for DC. The
results are summarized as boxplots in Figure 2.17 with the kernel density distribution
of the generation time shown in Figure 2.18. The kernel densities estimates for the
generation time for DC (red), CC (green) and MC/DC (blue) are plotted on the
same graph. It is quite clear on the graph that the distribution of generation times
is more variable for MC/DC. It is also worth noting that the generation time modes
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Figure 2.17: Experimental results: Generation Time Distributions.

(i.e., most frequent values in the generation time data set) of a distribution are close
to each other for all criteria. We can observe that a few outliers caused the average
generation time to greatly exceed the median generation time for all coverage criteria.

For 34 of the 157 programs, the tool did not terminate after running for a substan-
tial period of time. After discussions with engineers from Bombardier Transportation
AB regarding the needed time for a tester to provide a set of tests for a desired
coverage, we concluded that 10 minutes was a reasonable cut-off point for the model
checker to terminate its search. Recall, however, that the aim of these experiments
was not to provide measures of test effectiveness in the sense of bug-finding, but
instead to evaluate the applicability of using a model checking technique for test
generation and its success in meeting coverage requirements. We wanted to work
with a realistic cut-off time that could be used in practice if this approach is to be
adopted. Therefore, in each case a run of the model checker was terminated after 10
minutes.

As noted above, for 22% of the programs in this study, the tool did not generate the
required test suite in an acceptable period of time. To determine the circumstances
under which the toolbox does or does not successfully generate test suites that satisfy
one of the logic coverage criteria (Q2) we collected the average number of decisions
for both the case when the model checker finishes its execution (Case 1) and the case
when we forcefully terminated the tool because the running time reached 10 minutes
(Case 2). Table 2.5 provides information about these two cases. Case 1 consists of
the 78% for which the tool generated tests achieving 100% DC, CC and MC/DC.
The number of decisions for Case 1 ranged from 1 to 22 with the average being 5. In
contrast, for Case 2, the set of programs for which the tool exceeds the allocated time
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Figure 2.18: Generation Time Distribution by Coverage Criteria.

before generating a test set satisfying the coverage criterion, the decisions ranged
from 12 to 196 with the average being 38. This indicates that as the number of
decisions increases, the performance deteriorates and the cost of using the tool may
become prohibitive. This factor contributes to a scalability issue which results in
longer test sequences, especially when generating tests for MC/DC.

It is important to note that during model-checking the reachability-based genera-
tion used by the toolbox is guided to achieve a desired coverage, and not to minimize
or optimize the test. A generated test may not be the minimal way to satisfy the
coverage criterion. However, a generated test might be able to satisfy more than one
test obligation. From the point of view of limiting the number of tests generated, we
note that our approach would perform better than other approaches including trap
property generation [24, 13], which can lead to a large number of duplicate tests
because these properties are derived by using the model-checker’s ability to generate
counterexamples.

Engineers from Bombardier Transportation AB indicated that their certification
process involves achieving a minimum of 80% DC for all programs. For 78% of
the programs in this study, the tool automatically generated tests achieving 100%
DC, CC and MC/DC. For the other 22% of the programs, the results were less
satisfactory. The data about the achieved coverage is shown in Table 2.5. As can be
seen from this data, the tool generated tests with 82% DC on average. We conclude
that we have provided evidence that this is a suitable tool for test generation tailored
to FBD programs; it scaled well for most of the programs in this study and it is
fully automated. There are, however, some drawbacks. Most importantly, for 22%
of the programs, even though the tests generated for the coverage criteria achieved
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Table 2.5: Achieved coverage for all Programs.

Case 1 2
Percentage of all Programs 78% 22%
Average DC Achieved 100% 82%
Average CC Achieved 100% 88%
Average MC/DC Achieved 100% 65%

on average at least 65% coverage, we cannot determine whether the remaining test
requirements are actually achievable, or if tests satisfying the requirements are longer
that the search depth. This is an issue particularly for MC/DC where a fair number
of test obligations were not satisfied.

From these experiments, it is clear that the toolbox can be sensitive to the number
of decisions and as a consequence to the length of the tests required to achieve the
desired coverage. In addition, the number of inputs considered during model checking
is affecting the efficiency of the test generation technique. However, model checking
does allow one to use a heuristic or meta-heuristic search technique [5, 25] to find
the desired tests. We plan to investigate this approach in future work. In addition,
the idea of combining symbolic execution or static analysis with model checking
to achieve test generation has been proposed [19], and may allow more efficient
model checking. Fraser et al. [12] noted that there is a lack of empirical evidence on
how these model-checking techniques compare to each other in practice, making it
hard to select an appropriate technique for a specific test purpose. We also plan to
investigate how various approaches compare in future work.

8 Related Work

Model checkers have been used to produce test cases satisfying various criteria and
for programs in a variety of formal languages [6, 16, 10]. Black et al. [6] discuss
the problems encountered in using a model-checker for test case generation for
full-predicate coverage. They present reasons why model-checking is not directly
applicable for generating tests to satisfy logic coverage criteria. In our previous work
[11], we overcome this issue by providing a way of generating test cases for logic
criteria that are directly applicable to FBD programs. We found that model-checkers
are an appropriate technique for automated test generation in terms of performance
when used on real-world programs.

For data-flow programming languages such as FBD and Lustre, which describe the
relationship between inputs and outputs instead of the control flow of the program,
researchers proposed specific coverage metrics based on the structural aspects of
the programs [18, 17, 20]. For Lustre, structural coverage metrics are based on the
activation condition concept of the language that can be used when data travels
from an input edge to an output edge. In addition, Whalen et al. [27] defined
an alternative approach to measuring logic coverage for data flow programs called
OMC/DC, a combination of MC/DC and an additional obligation to be satisfied
such that faults will be observed through a variable monitored by the criteria.
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9 Conclusion

In this paper we have shown how test case generation that aims to satisfy logic
coverage on Function Block Diagrams can be solved as a model checking problem, by
using model checking tools to automatically create traces that can be transformed
into executable tests. We described a toolbox in which logic coverage criteria can
be formalized and used by a model-checker to generate test cases. We carried
out an extensive empirical study of the method by applying the toolbox to 157
real-world industrial programs developed at Bombardier Industries. The results
showed that model checking is suitable for handling logic coverage for real-world
FBD programs, and also revealed some potential limitations of the toolbox when
used for test generation. The evaluation showed that the toolbox is efficient in terms
of time required to generate tests that satisfy logic coverage and that it scales well for
most of the programs. Our overall conclusion is that the model-checking approach
provides a positive and useful addition to the testing process for FBD programs.
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Appendix: Networks of Timed Automata

Let C be a finite set of reall-valued clocks and B(C) the set of clock constraints,
which are finite conjunctions of atomic guards of the form x ./ n, where x ∈ C, n is
a natural number, and ./ ∈ {<,≤,=,≥, >}.

A timed automaton (A) over actions A, atomic propositions P and clocks C is
a tuple 〈N, l0, E, I, V 〉 where N is a finite set of control locations, l0 is the initial
location, E ⊆ N × B(C)×A× R5 ×N is the set of edges. In the case of an edge
〈l, g, a, r, l′〉 ∈ E, we write l g,a,r−−→ l′ where the label g is a guard of the edge, r is
the data- or clock reset assignments of the edge, and a is the action of the edge.
I : N → B(C) is a function which for each control location assigns an invariant
condition and V : N → 2P is a function which for each control location provides a
set of atomic propositions that are true in the location.

The semantics of A is defined in terms of a state transition system, where the
state of A is defined as a pair (l, u), where l is a location and u ∈ RC is a clock
assignment in C. A state of A depends on its current location and on the current
values of its clocks.

A state of an automaton A is defined as a pair (l, u), where l is a location, u ∈ RC

a clock assignment in C to a value in R+, with the initial state (l0, u0), where u0
assigns all clocks in C to zero.

5R denotes the reset set i.e., assignments to manipulate clock- and data variables.
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The semantics of A is given by the timed transition system 〈S, s0, E, V 〉, where
S is the set of states of A, s0 is the initial state (l0, u0), E is the transition relation
defined as follows:

• (l, u)
d−→ (l, u⊕ d), where u⊕ d is the result obtained by incrementing all clocks

of the automata with the delay amount d such that for any 0 ≤ d′ ≤ d, the
invariant of l holds.

• (l, u)
a−→ (l′, u′), corresponding to taking an edge l g,a,r−−→ l′ for which the guard

g is satisfied by u. The clock valuation u′ of the target state is derived from
reseting u according to updated r.

We denote by T (A) all traces σ of A starting from the initial state (l0, u0) as a
sequence of alternating transitions σ = (l0, u0)

a1−→ (l1, u1)
a2−→ ...

an−→ (ln, un).
A network of timed automata B0 ‖ ... ‖ Bn−1 is a parallel composition of n timed

automata over C, A and synchronization functions (i.e., a! is correlative with a?).
We refer the reader to [1] for more information on the theory of timed automata.
We consider a timed modal logic to specify properties. The logic may be seen as
properties of A than can be expressed as logical formulae in the Timed Computational
Tree Logic (TCTL) [2].
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Abstract

In engineering of safety critical systems, regulatory standards often put
requirements on both traceable specification-based testing, and structural
coverage on program units. Automated test generation techniques can
be used to generate inputs to cover the structural aspects of a program.
However, there is no conclusive evidence on how automated test generation
compares to manual test design, or how testing based on the program
implementation relates to specification-based testing.

In this paper, we investigate specification— and implementation-based
testing of embedded software written in the IEC 61131-3 language, a
programming standard used in many embedded safety critical software
systems. Further, we measure the efficiency and effectiveness in terms of
fault detection. For this purpose, a controlled experiment was conducted,
comparing tests created by a total of twenty-three software engineering
master students. The participants worked individually on manually de-
signing and automatically generating tests for two IEC 61131-3 programs.
Tests created by the participants in the experiment were collected and
analyzed in terms of mutation score, decision coverage, number of tests,
and testing duration. We found that, when compared to implementation-
based testing, specification-based testing yields significantly more effective
tests in terms of the number of faults detected. Specifically, specification-
based tests more effectively detect comparison and value replacement
type of faults, compared to implementation-based tests. On the other
hand, implementation-based automated test generation leads to fewer
tests (up to 85% improvement) created in shorter time than the ones
manually created based on the specification.

1 Introduction
The IEC 61131-3 language [18] is a programming standard for process control soft-
ware, commonly used for Programmable Logic Controllers (PLCs) in the engineering
of embedded safety-critical software (e.g., in the railway and power control domains)
[28]. Engineering of this type of systems typically requires a certain degree of certifi-
cation according to safety standards [4]. These standards pose specific requirements
on program testing for both specification-based testing and implementation-based
testing (e.g., the demonstration of some level of implementation coverage on the

89
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developed software). Several studies [8, 35, 19, 7] have looked at how to generate test
input data achieving high implementation coverage for a domain-specific language
like IEC 61131-3. Generally, implementation-based testing techniques automati-
cally generate a set of tests that, when fed to the system under test, systematically
exercises the implementation (e.g, covering all branches). However, there is little
evidence on the extent to which such techniques contribute to the development of
reliable systems. Given that recent work [15] suggests that implementation coverage
criteria alone can be a poor indication of testing effectiveness, we seek to investigate
the implications of testing safety-critical embedded software. In addition, there is
some evidence [14] to suggest that testing is still performed, to some extent, manually
by industrial practitioners. In this context, we study the behavior of manual and
automated test generation.

In this paper, we seek to compare the efficiency and effectiveness of testing
programs written in IEC 61131-3 by comparing tests manually written by human
subjects based on a specification, tests manually written based on the implementation
and tests produced with the help of an automated test generation tool named
CompleteTest [8] based on the implementation. The research objective can be
stated as follows:
To compare the efficiency and effectiveness of tests manually written based on a speci-
fication with implementation-based tests written manually or generated automatically.

To address this objective, an experiment was conducted with master students
enrolled in a software verification and validation course at Mälardalen University
during autumn 2014. Twenty-three master level students in software engineering took
part as subjects in a controlled experiment. The subjects were given two IEC 61131-
3 programs and were asked to construct tests manually based on a specification,
and with the help of an automated implementation-based test generation tool. In
addition, students were asked to manually create tests for covering the implementation.
All tests created during the experiment were analyzed using the following metrics:
mutation score, decision coverage, number of tests, and testing duration.

The results of this study show that tests created manually based on a specification
are more effective, in terms of fault detection, than tests created based on the
implementation either manually or with the help of an automatic test generation tool.
Generally, compared to the implementation-based tests, specification-based tests
more effectively detect comparison and value replacement type of faults. Our results
also show that tests created manually based on the specification perform significantly
better than randomly generated tests of equal size (up to 31% more faults found).
Additionally, we found that implementation-based automated test generation leads
to less costly tests in terms of number of tests and testing duration than either
manual specification-based testing or manual implementation-based testing. Finally,
implementation-based automated tests perform better, in terms of faults found, than
random tests of equal size.

We draw two conclusions from these results. First, specification-based testing
does, for the twenty-three study participants and the programs used in the experiment,
yield effective tests relative to their size. Second, the use of automatic test generation
tools coupled with implementation coverage criteria required by some safety standards
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(a) An example of an FBD program showing the graphical
nature of the language.

(b) Graphical Interface of CompleteTest

Figure 3.1: The CompleteTest tool, generating tests for an FBD program.

should be carefully studied further.
Our results highlight the need for more research in how different test design

techniques for embedded software can influence the efficiency and effectiveness of
testing this type of software.

2 Testing PLC Embedded Software

Programmable Logic Controllers (PLC) are real-time systems used in numerous
industrial domains, i.e., nuclear plants and train systems. A program running on
a PLC [21] executes in a cyclic loop where every cycle contains three phases: read
(reading all inputs and storing the input values), execute (computation without
interruption), and write (update the outputs). Function Block Diagram (FBD)
[18] is an IEC 61131-3 language, that is very popular in automation industry for
programming PLC software [21]. An FBD programmer uses graphical notations
and describes the program in a data flow manner. As shown in Figure 3.1a, blocks
(e.g., RS, OR, AND and TON) and connections between blocks are the basis for
creating an FBD program. These blocks are supplied by the PLC manufacturer,
defined by the user, or predefined in a library. An application generator is utilized
to automatically translate each FBD program to a compliant executable program
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with its own thread of execution.
The motivation for using IEC 61131-3 FBD as the target language in this study

comes from the fact that it is the programming standard [21] in many embedded
systems, such as PLCs in the railway and power domain. According to a Sandia
National Laboratories study [28] from 2007, PLCs are widely used in a large number
of industries with a global market of approx. $ 8.99 billion.

2.1 Specification-Based Testing of IEC 61131-3 Software

In testing IEC 61131-3 FBD programs in the railway domain, the engineering
processes of software development are performed according to safety standards and
regulations [4]. Specification-based testing of FBD programs is mandated by the EN
50128 standard to be used to design tests. This process requires the understanding
of both the specified requirements and the FBD program. The specification contains
preconditions, input values and expected output values [1]. The tester checks the
FBD program conformance with every statement in the specification. Each test
should contribute to the demonstration that a specified requirement has indeed been
satisfied.

Software specifications can be expressed in a variety of forms from natural
languages, semi-formal languages to full formal representations. Recent results
have showed that natural language is still the dominant documentation format in
embedded software industry for requirement specification [30]. In this experiment we
are focusing on specification-based testing using functional specifications expressed
in a natural language, as this is a realistic scenario for testing FBD programs.

2.2 Implementation-Based Testing for IEC 61131-3 Software

Coverage criteria are an implementation-based means of assessing the thoroughness
of tests. They are normally used at the unit test level to manually or automatically
create tests that exercise different aspects of the implementation structure. In
the railway domain, EN 50128 safety standard [4], recommends a certain level of
implementation coverage on the developed IEC 61131-3 FBD software (e.g., decision
coverage which is also known as branch coverage).

Even if implementation-based tests can be created manually, this process can
be tedious and error prone because of its nature. As an alternative, automated
implementation-based test generation is a research direction that has received much
attention lately [3, 11, 32]. Specifically for the IEC 61131-3 FBD software, Com-
pleteTest [8] is an automated test input generation tool which automatically
produces tests for a given coverage criterion. The tool stops searching for test inputs
when it achieves 100% coverage or when a stopping condition is achieved (i.e, timeout
or out of memory). The user interface of CompleteTest is shown in Figure 3.1b.
The interface shows several types of information presented to the user. The numbered
points in Figure 3.1b represent:

1. steps and timing information regarding when the specific test input is provided
to the program,
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2. generated test inputs needed to achieve a maximum coverage for the given
program,

3. editable area of the test outputs where the user can provide expected outputs
for a specific set of test inputs based on a defined behavior in the specification,

4. percentage of the code coverage achieved by the generated test inputs, and

5. an action to compare expected outputs with the actual ones, computed by the
program under test.

A generated test consists of a timed and ordered sequence of inputs. As the main
purpose of CompleteTest at present is to generate tests that satisfy a certain
coverage criteria, the tool does not generate expected outputs. Expected outputs are
provided manually in the user interface, shown in Figure 3.1b, by a human tester.

3 Experiment Design

In this section we report the description of the performed controlled experiment.
Additional details on the study (e.g, instruction material and programs used) can be
found at the experiment website for replication and review purposes1.

3.1 Research Questions

We defined the following research questions as a starting point in the experiment
design:

RQ1: Does manually-written specification-based tests detect more faults than tests
manually or automatically created based on the implementation of the program under
test?

RQ2: Are manually-written specification-based tests more costly to perform (prepare,
write, execute and check the result) than tests manually or automatically created
based on the implementation of the program under test?

In addition to these questions we are interested in identifying improvement potentials
for automated test input generation, such that it becomes a more efficient and
effective technique.

Based on these research questions, our experiment handles two independent
variables: the testing method used to solve the tasks (e.g., specification-based manual
testing) and the object of study (i.e., program under test). The dependent variables
of our experiment are: mutation score (i.e., measure of effectiveness in terms of faults
detected), testing duration and number of tests (i.e., measures of efficiency).

1We provide all experimental material of this study at the following website http://www.
testinghabits.org/completetest/

http://www.testinghabits.org/completetest/
http://www.testinghabits.org/completetest/
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3.2 Experimental Setup Overview

As part of the laboratory session, within the CDT414 software verification & validation
course at Mälardalen University, the subjects were given the task of manually creating
tests and generating tests with the aid of an automated test input generation tool.
We present the design of this experiment around the subjects and the selected objects.

Study Subjects

As the study setting available to use was limited to a non-industrial environment
and a physical space at Mälardalen University in Västerås, Sweden, we restricted
the experiment as part of a final-year master level course on software verification &
validation. The subjects earned credits for participation but were informed that the
final grade for the course would be influenced only by their written exam, and not
by their performance in the experiment.

Table 3.1: Study Objects: “LOC” refers to the number of XML code lines contained
on each of the programs, “NOD” refers to the number of decision outcomes.

Program LOC NOD Inputs Outputs
X Trip 297 14 4 1
Fan Control 755 28 1 6

Object Selection

The objects of study were chosen manually, based on the following criteria:

• The programs should have a natural language specification that is understand-
able and sufficiently rich in details for a tester to write executable tests.

• The programs should represent different types of real testing scenarios in
different areas where the IEC 61131-3 standard is used.

• The programs should be developed using the IEC 61131-3 FBD language.

• The CompleteTest tool should be able to automatically generate tests for
the programs. This excludes programs for which the underlying search engine
does not support the data types used (i.e., strings).

We investigated the industrial libraries provided by Bombardier Transportation
AB, a leading, large-scale company focusing on development and manufacturing
of trains and railway equipment, used in our earlier studies [8, 9]. From a total
of 157 artifacts we identified 14 candidate programs matching our criteria. The
programs should not be trivial, yet fully manageable to test within 90 minutes and
no domain-specific knowledge should be needed to understand the programs. We
then assessed the relative difficulty of the identified programs by manually writing
and automatically generating tests using CompleteTest. This process resulted
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in the identification of one suitable program written in the IEC 61131-3 FBD
programming language. This program, named Fan Control, was selected from a
train control management system developed by industrial engineers from Bombardier
Transportation AB in Sweden. The system is in development and uses processes
influenced by safety-critical requirements and regulations including the EN 50128
standard [4]. In addition, we searched through previous research studies on testing
IEC 61131-3 software. This process resulted in the identification of another suitable
program written in IEC 61131-3 FBD. This program, is a function used in a nuclear
power plant controlling the shutdown system for calculating th_X_Trip, as taken
from the paper by Jee et al. [20] (Figure 1 in [20]). In the rest of the paper, this
program is named X Trip. Details on the programs used in the experiment can be
found in Table 3.1. We note here that an FBD program is written in a graphical
environment that can be saved in an PLCOpen XML format2.

For both programs a specification document written in natural language is
available and contains all necessary detailed requirements of the program. All things
considered, natural language specifications are less understood than code with regard
to size and complexity [5] and therefore we are reporting here just the specification
document size. The specification document for the Fan Control program is a collection
of natural language functional requirements that contains 236 words. This document
is created by an industrial requirements engineer in Bombardier Transportation AB.
On the other hand the specification document for the X Trip program has 103 words
and contains requirements expressed in natural language as described in the paper
by Jee et al. [20].

3.3 Operationalization of Constructs

In this experiment, we compare the effect of using different test techniques on the
implementation coverage, effectiveness and efficiency of the resulting tests.

Decision Coverage. Implementation coverage criteria are used in software testing to
assess the thoroughness or adequacy of tests [1]. These criteria are normally used at
the code level to assess the extent to which the program structure has been exercised
by the tests.

Out of the many criteria that have been defined, logic coverage [10] can be used
to measure the thoroughness of test coverage for the structure of FBD programs.
The flow in an FBD program is largely controlled by atomic Boolean connections
called conditions, and by blocks called decisions made up of conditions combined
with Boolean operators (not, and, or, xor). A condition can be a single Boolean
variable, an arithmetic comparison with a Boolean value (e.g., out1 > in2), or a call
to a function with a Boolean value, but does not contain any Boolean operators. A
set of tests satisfies decision coverage if running the tests causes each decision in the
FBD program to have the value true at least once and the value false at least once.

2While XML has no procedural statements and contains just structural declarations, it can be
argued that FBD programs in XML require significant effort in software development and lines of
code in an XML file should be counted and considered in the details of the selected objects.
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In the context of traditional sequential programming languages, decision coverage is
usually referred to as branch coverage.

In this experiment, implementation coverage is operationalized using decision
coverage criteria. For the selected study objects, the EN 50128 standard [4] requires
different implementation coverage levels (e.g., statement coverage). For the object
developed by Bombardier Transportation AB, engineers developing IEC 61131-3
software indicated that their certification process for FBD programs, as the ones
selected for this experiment, involves achieving high decision coverage. In this
experiment we use decision coverage as the criterion for which tests are automatically
generated. A coverage score indicator of the created tests is obtained for each
individual solution.
Effectiveness. Mutation analysis is the technique of creating faulty implementations
of a program (usually in an automated manner) for the purpose of examining the
fault detection ability of a test [6]. A mutation score is calculated by automatically
seeding faults to measure the fault detecting capability of the written tests. Using
this approach we obtain a mutation score indicator of the created tests for each
individual solution. During the process of generating mutants, a mutation tool
typically creates syntactically and semantically valid versions of the original program
by introducing a single fault into the program. As exhaustive categorization of all
possible faults that may occur when using the FBD language is impractical, we rely
on previous studies that looked at commonly occurring FBD faults [23, 29]. By
considering these specific faults we used the following mutation operators:

• Logic Block Replacement (LRO): replacing a logical block with another block
from the same function category (e.g., replacing an OR block with an XOR
block).

• Comparison Block Replacement (CRO): replacing a comparison block with
another block from the same function category (e.g., replacing a Greater-Than
(GT) block with a Greater-or-Equal (GE) block).

• Arithmetic Block Replacement (ARO): replacing an arithmetic block with
another block from the same function category (e.g., replacing an adder (ADD)
block with a subtraction (SUB) block).

• Negation Insertion (NIO): Negating a boolean input or output connection (e.g.,
an input variable in becomes NOT(in)).

• Value Replacement (VRO): Replacing the value of a constant variable connected
to a block (e.g., replacing a constant value (const = 0) with its boundary values
(const = −1 and const = 1)).

To generate mutants, each of the mutation operators was automatically applied
to each program element whenever possible. In total, for both objects, 138 mutants3
(faulty programs based on LRO, CRO, NIO and VRO operators) were generated
by automatically introducing a single fault into the correct implementation. We

338 and 100 mutants were created for X Trip and Fan Control, respectively.
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computed the mutation score using an output-only oracle against the set of mutants.
For both objects, we assessed the fault-finding effectiveness of each set of tests by
calculating the ratio of mutants killed to the total number of mutants.

Efficiency Metrics. In addition to fault finding effectiveness, we determined estimates
of efficiency when writing tests. This is an important aspect to consider as it
emphasize the practical usage of a specific test approach. We measured efficiency
using the following indicators:

• Duration: Number of minutes spent on testing the program. This surrogate
measure of cost includes the following actions: preparing, writing, executing
the tests, and checking the expected versus actual outputs.

• Number of tests: This metric is defined by the number of created tests. Recall
from Section 2 that each FBD program operates as a large loop receiving input
and producing output. In this way, a generated set of tests is thus a finite
number of steps, with each step (i.e., test) corresponding to a set of test inputs,
actual and expected outputs.

3.4 Instrumentation

Two sessions were organized for the sake of the experiment: the first one for writing
tests manually based on the specification and the other one for implementation-based
manual and automated testing:

• Session 1. The subjects were given the task to test (to the extent they consider
sufficient based on a given specification) two programs already implemented.
They were instructed to read the specification and create tests to provide
evidence that each behavior specified has been covered. The subjects were not
grouped and the specification document needed for testing the program was
provided digitally and in written form.

• Session 2. The subjects were given the task to test (to achieve full decision
coverage) the same two programs tested in Session 1 by (i) manually creating
tests to achieve full decision coverage and (ii) by automatically creating tests
to achieve full decision coverage. The CompleteTest tool was used to
generate, execute and check tests. Before commencing session 2, a short
tutorial of approximately 10 minutes on IEC 61131-3 and FBD language
syntax was provided to the subjects in order to avoid further problems with
subjects’ unfamiliarity with the concepts used. The tutorial included screencasts
demonstrating programming and testing of FBD programs both manually and
automatically using CompleteTest.

Detailed information about the problem and instructions were provided in each
experiment session.
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3.5 Data Collection Procedure

As part of the instructions, subjects uploaded their solutions using a learning platform
at the end of each assignment. This way we had a complete log of subjects’ activities.
Data from both experiment sessions were then exported in a comma separated values
(.csv) file format.

4 Experiment Conduct

Once the experiment design was defined, the requirements for executing the experi-
ment were in place. Session 1 and 2 were held one week apart from each other and
preceded by a theoretical lecture on specification-based testing and implementation-
based testing respectively. These theoretical lectures were held two days before each
session.

In total, twenty-three students participated in our experiment. Initially, thirty
participants showed up during each of the two sessions of the experiment. Before
starting the experiment the participants were informed that their work would be used
for experimental purposes. The participants had the option of not participating in
the experiment and not allowing their data to be used in this way. The data provided
by seven of the subjects had to be considered separately, as these participants
produced the tests a long time after the experiment had finished. As these tests were
produced outside the frame of the experiment we decided to discard this data from
our experimental analysis.

The subjects worked individually during the experiment; the first two authors
of this paper briefly interacted with the participants to ensure that everybody had
sufficient understanding of the involved tools without getting involved in the writing
of the solution. All subjects used machines provided in the university premises of
the same hardware configuration. The experiment was fixed to three hours per lab
session. To complete the assignments in both sessions, the subjects were given the
same time to work on testing the programs according to the given instructions. For
measuring the mutation score, the achieved decision coverage, the number of tests
and the testing duration, we provided a template to enforce the usage of the same
reporting interface. By having a common template for test reporting we eased the
process of performing the data collection and analysis.

To finish the assignment, we required the participants to provide the produced
tests as soon as they finished writing the tests. During the experiment the subjects
were not allowed to directly communicate with others in order to avoid introducing
any bias.

We had a complete log of activities during the experiment with the ability to
obtain the tests. After each student finished their assignment, a complete solution
was saved containing the tests and the timing information for each student solution.
In addition, we separated the data provided by the twenty-three participants from
their names.
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Table 3.2: Results for each metric and for both programs. We report several
statistics relevant to the obtained results: minimum, median, mean, maximum
and standard deviation values.

(a) X Trip

Metric Method Min Median Mean Max SD

Mutation
score
(%)

SMT 68, 42 97, 37 93, 94 100, 00 8, 99
IMT 57, 89 73, 68 72, 31 92, 11 9, 01
IAT 63, 16 71, 05 72, 54 84, 21 5, 66

Decision
coverage
(%)

SMT 92, 86 100, 00 99, 15 100, 00 2, 27
IMT 85, 71 100, 00 97, 21 100, 00 4, 16
IAT 100, 00 100, 00 100, 00 100, 00 0, 00

No. of Tests
SMT 6, 00 32, 00 33, 08 95, 00 21, 48
IMT 3, 00 3, 0 5, 13 16, 00 3, 32
IAT 3, 00 5, 0 4, 82 6, 00 1, 11

Duration
(min.)

SMT 17, 40 59, 78 58, 43 120, 90 25, 11
IMT 10, 07 27, 57 30, 05 54, 08 12, 18
IAT 0, 78 3, 87 4, 49 9, 58 1, 94

(b) Fan Control

Metric Method Min Median Mean Max SD

Mutation
score
(%)

SMT 97, 00 98, 00 98, 57 100, 00 1, 34
IMT 80, 00 84, 00 88, 76 100, 00 7, 31
IAT 85, 00 92, 00 90, 78 98, 00 4, 08

Decision
coverage
(%)

SMT 92, 86 100, 00 97, 83 100, 00 3, 36
IMT 78, 00 100, 00 96, 73 100, 00 6, 18
IAT 100, 00 100, 00 100, 00 100, 00 0, 00

No. of Tests
SMT 8, 00 10, 00 10, 04 17, 00 1, 94
IMT 3, 00 4, 00 5, 96 15, 00 2, 99
IAT 5, 00 6, 00 5, 83 7, 00 0, 78

Duration
(min.)

SMT 11, 35 29, 42 31, 85 61, 85 12, 75
IMT 12, 33 27, 58 26, 43 45, 25 7, 20
IAT 2, 05 3, 67 4, 10 9, 30 1, 93

5 Experiment Analysis

This section provides an analysis of the data collected in this experiment. In analyzing
the data, we followed the guidelines on statistical procedures for assessing randomized
algorithms in software engineering provided by Arcuri and Briand [2].

For each program under test and each testing technique (i.e., SMT stands for
Specification-based Manual Testing, IMT is short for Implementation-based Manual
Testing, and IAT stands for Implementation-based Automatic Testing), each subject in
our study provided a set of tests. These tests were used to conduct the experimental
analysis. For each set of tests produced, we derived four distinct metrics: mutation
score, decision coverage, number of tests, and testing duration. These metrics form
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Table 3.3: Results of the experiment. For each metric we calculated the effect
size of each method compared to each other. We also report the p-values of a
Wilcoxon-Mann-Whitney U-tests with significant effect sizes shown in bold.

(a) X Trip
Metric Method Effect Size p-value

Mutation
score

SMT 0,900 < 0,001
IMT
IMT 0,507 0,920
IAT
SMT 0,911 < 0,001
IAT

Decision cov-
erage

SMT 0,607 0,066
IMT
IMT 0,339 < 0,001
IAT
SMT 0,439 0,040
IAT

Number of Tests
SMT 0,928 < 0,001
IMT
IMT 0,426 0,341
IAT
SMT 0,946 < 0,001
IAT

Duration
SMT 0,819 < 0,001
IMT
IMT 0,958 < 0,001
IAT
SMT 0,958 < 0,001
IAT

(b) Fan Control
Metric Method Effect Size p-value

Mutation
score

SMT 0,848 < 0,001
IMT
IMT 0,398 0,205
IAT
SMT 0,923 < 0,001
IAT

Decision cov-
erage

SMT 0,511 0,859
IMT
IMT 0,359 0,004
IAT
SMT 0,359 0,004
IAT

Number of Tests

SMT 0,844 < 0,001
IAT
IMT 0,366 0,087
IAT
SMT 0,958 < 0,001
IAT

Duration

SMT 0,614 0,147
IMT
IMT 0,958 < 0,001
IAT
SMT 0,958 < 0,001
IAT

the basis for our statistical analysis towards the goal of answering the research
questions from Section 3.1. Statistical analysis was performed using the R software
[31].

Table 3.2 lists the detailed statistics on the obtained results, like minimum values,
median, mean and standard deviation. The results of this study are also summarized
in the form of boxplots in Figure 3.2.

Our observations are drawn from an unknown distribution. To evaluate if there is
any statistical difference between each testing technique without any assumption on
the distribution of the collected data, we use a Wilcoxon-Mann-Whitney U-test [17],
a non-parametric hypothesis test for determining if two populations of samples are
drawn at random from identical populations. This test is used for checking if there
is any statistical difference among the three groups for each metric. In addition, the
Vargha-Delaney test [33] was used to calculate the standardized effect size, which is
a non-parametric effect magnitude test that shows significance by comparing two
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populations of samples and returning the probability that a random sample from one
population will be larger than a randomly selected sample from the other. According
to Vargha and Delaney [33] statistical significance is determined when the effect size
measure is above 0,71 or below 0,29.
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Figure 3.2: Test metrics comparing specification-based manual testing (SMT)
against implementation-based manual testing (IMT) and implementation-based
automated testing (IAT); boxes spans from 1st to 3rd quartile, black middle lines
mark the median and the whiskers extend up to 1.5x the inter-quartile range and
the circle symbols represent outliers.

For each metric, we calculated the effect size of SMT, IMT and IAT. To this end,
we reported in Table 3.3 the p-values of these Wilcoxon-Mann-Whitney U-tests with
statistical significant effect sizes shown in bold.

5.1 Fault Detection

For both programs, as shown in Figure 3.2a, the fault detection scores of tests
manually written based on the specification (SMT) were superior to tests written
based on the implementation with statistically significant differences between SMT
and IMT or IAT (effect size of over 0,844 in Table 3.3). For example, tests written
for X Trip using SMT show an average fault detection of 93,94% compared to 72,31%
for IMT and 72,54% for IAT. For Fan Control, SMT tests detect in average 98,57%
of the faults versus 88,76% for IMT and 90,78% for IAT. None of the cases show any
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statistically significant differences in fault detection between IMT and IAT (at 0,05),
as the lowest p-value is equal to 0,205 for Fan Control.

Answer RQ1: Specification-based manual testing yields significantly more effective
tests in terms of the number of faults detected than implementation-based manual
or automated testing.
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Figure 3.3: Mutation scores comparing specification-based manual testing (SMT)
against implementation-based manual testing (IMT) and implementation-based
automated testing (IAT); NIO is the negation insertion operator, CRO is the
comparison block replacement operator, LRO is the logical block replacement
operator, and VRO is the value replacement operator.

A question emerging from these results concerns why tests written using specifica-
tion based manual testing are far better than the ones written using implementation-
based testing. For the purpose of shedding some light on this matter, we investigated
if these results could be explained by the fact that tests generated based on the
implementation are particularly weak in detecting certain type of faults. More
precisely, we examined what type of mutants were killed by tests written using SMT



Study 3. A Controlled Experiment in Testing 103

to tests written using IMT and IAT. For each of the mutation operators described
in Section 3, we examined the faults detected by each technique for both programs.
The results of this analysis are shown in Figure 3.3 in the form of box plots. For the
Fan Control program, both negation type of faults (NIO) and logical type of errors
(LRO) are 100% detected by all three testing techniques. This shows that, for this
program, all LRO and NIO injected faults are easily detected by every participant’
test. On the other hand, tests written using SMT detect, on average, 7,9% more
comparison type of faults (CRO) than tests produced using IAT. The increase is
bigger for value replacement type of faults (VRO) with tests produced using SMT
detecting, in average, 19,1% more faults than IAT. For the X Trip program, the
situation is relatively similar, with SMT detecting more comparison (with 30% more
faults in average), logical (with 38% more faults in average) and value replacement
faults (with 51% more faults in average) than IAT. For both programs the NIO
type of faults are detected by the majority of tests produced using all three testing
techniques.

To further investigate the differences in fault detection for different mutation
operators, we looked at one particular set of tests automatically generated using IAT
by one of the participants using the CompleteTest tool for the X Trip program.
These specific five tests achieve 81,58% mutation score with seven mutants not being
detected. This set of tests achieved 100% decision coverage on the non-mutated
version of the X Trip program. Interestingly enough the tests exercise all decisions
also on the mutated program except for one mutant on which the tests achieved
just 92,85% decision coverage. There is an obvious reduction in achieved coverage
of the generated set of tests for that specific mutant but not for the other mutants.
To determine if this behavior stems from the generation of poor tests and what
tests would improve the mutation score, we observed that one extra test targeting
the detection of the value replacement fault in the X Trip program would detect
this specific mutant and, as a byproduct, all comparison replacement mutants. In
addition, three extra tests were created targeting the detection of the remaining
undetected logical replacement mutants. With a final set of tests of nine, all mutants
were detected. In this case, the addition of four tests targeting the detection of the
remaining faults has improved the fault-finding effectiveness. As a secondary result
this particular example shows that for achieving better tests one should not solely
rely on a decision coverage criterion alone.

5.2 Decision Coverage

As seen in Figure 3.2b, for both X Trip and Fan Control programs, the use of
CompleteTest (IAT) entails 100% decision coverage (which is natural, as covering
all decisions is the search objective for the test generation). Considering the effect
sizes and the corresponding p-values in Table 3.3, results for both programs are not
strong in terms of effect size and we did not obtain any significant statistical difference
for decision coverage. The results for both programs matched our expectations: even
if IAT achieves tests for both programs satisfying 100% decision coverage, tests
written using SMT achieved relatively high coverage (in average 99,15% for X Trip
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and 97,83% for Fan Control). This shows that, for the two programs studied in this
experiment, SMT achieves high implementation coverage for both programs. This is
likely due to the relatively limited complexity of the studied programs. It is possible
that a more complex program would yield greater coverage differences between tests
written using SMT and IAT or IMT.

5.3 Number of Tests

Based on the results highlighted in Figure 3.2c, the use of IAT and IMT consistently
results in less number of tests for both programs compared to SMT. This is perhaps
most pronounced for IAT, for which we can see in average less number of tests with
42% to 85,5% when using the CompleteTest tool than SMT. Examining Table 3.3,
we see the same pattern in the statistical analysis: standardized effect sizes being
higher than 0,844, with p-values below the traditional statistical significance limit of
0,05. The effect is the strongest for the Fan Control program with a standardized
effect size of 0,958. It seems that a human tester, given sufficient time will create
much more tests using SMT than IMT or IAT. This can be explained, for IAT, by
considering that CompleteTest tool optimizes for decision coverage. It is likely
that specification-based manual testing (SMT) will in practice achieve more tests for
a similar level of coverage.

Answer RQ2: The use of implementation-based testing results in less number of
tests than the use of specification-based testing.

A question emerging from these results concerns why the number of tests written
using specification-based manual testing is higher than the number of tests written
using implementation-based testing. To investigate the effect of the number of tests
on fault-finding effectiveness we produced purely random tests of equal size as the
ones created by the participants using SMT (see Figure 3.4a) and purely random
tests of equal size as the ones generated by participants using IAT (see Figure 3.4b).
In this way we controlled random tests for their number. The results are shown in
Figure 3.4 as box plots. For all programs, random generated tests with the same size
as SMT and IAT are less effective in terms of mutation score than tests written using
SMT and IAT, respectively. Overall, this indicates that tests produced using SMT
are good indicators of test effectiveness, with a mutation score larger on average by
15% to 31% compared to random tests of equal size. When comparing random tests
with implementation-based automated tests, we can observe from Figure 3.4 that,
for both programs, decision coverage alone is a better indicator of tests effectiveness
than random tests of equal size. In addition, we provided evidence that SMT is
a good indicator of test effectiveness with factors other than the number of tests
impacting the testing process.

5.4 Testing Duration

Analyzing testing duration is partially related to the number of tests analysis, but
this metric gives a slightly different picture as the effort per created tests is not
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Figure 3.4: The effect of the number of tests on mutation score using random tests
of the same size as the ones created by the study subjects.
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Figure 3.5: The relation between cost and effectiveness for tests manually written
based on the specification (SMT), tests manually written based on the imple-
mentation (IMT) and implementation-based tests generated automatically using
CompleteTest (IAT).
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necessarily constant over the different techniques under investigation. As seen in
Figure 3.2d, the duration of writing tests using CompleteTest (IAT) is consistently
significantly lower than for manually derived tests based on the specification (SMT).
First, consider the data related to both programs (Figure 3.2d); CompleteTest
assisted subjects have a shorter completion time (from 85,5% to 15,5% shorter
in average) over specification-based manual testing (SMT) and implementation-
based manual testing (IMT). Examining Table 3.3, we observe that there is enough
evidence to claim that these results are statistically significant with p-values below
the traditional statistical significance limit of 0,05 and a standardized effect size of
0,958.

Answer RQ2: Implementation-based automated tests are less costly in terms
of testing duration than manually created specification-based manual tests or
implementation-based manual tests.

5.5 Cost-effectiveness Tradeoff

One important question in software testing is how the use of the investigated testing
techniques affect the cost-effectiveness relation. In Figure 3.5 we show the relation
between cost and effectiveness for tests written using SMT, tests written using IMT
and tests generated with IAT. We use a proxy measure for cost, duration time
(preparation, creation, execution of tests and checking the results) and a surrogate
measure for effectiveness, namely mutation score. Obviously for both programs the
ideal scenario would be to have low values for duration time while achieving high
mutation scores. As shown in Figure 3.5a, for the X Trip program, the set of tests
derived using SMT provided a good mutation score (93,94% in average) and an
inconsistent testing duration that spans from 17,40 minutes to 120,90 minutes. On
the other hand, tests derived using IAT are significantly consistent in terms of testing
duration (between 0,78 minutes to 4,49 minutes) while achieving lower mutation
scores than SMT (72,31% in average) but similar to the effectiveness shown by test
written using IMT. In addition, Figure 3.5b shows that the achieved mutation scores
for SMT are very consistent for both programs even if this comes at the price of
having expensive tests in terms of testing duration. Specifically for X Trip, tests
generated using IAT are cheap (completion time between 2,05 to 9,30 minutes) with
fairly good fault-detection capability between 85,00% to 98,00% mutation score.

5.6 Limitations of the Study and Threats to Validity

External Validity. All of our subjects are students and have limited professional
software development experience. This fact has been shown to be of somehow
minor importance in certain conditions in a study by Höst et al. [16] with software
engineering students being good substitutes in experiments for software professionals.
Furthermore, in the light of our results regarding specification-based testing being
better at fault detection than implementation-based testing, we see no reason why
the use of professionals in our study would yield a completely different result. Testing
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professionals with experience in IEC 61131-3 FBD software would intuitively write
better tests at detecting common faults than tests written by student subjects.
Internal Validity. All subjects were assigned to perform specification-based testing
in the first experiment session and after one week the same subjects were asked to
perform implementation-based testing. This was dictated by the way the software
verification and validation course was organized with lectures being followed by
practical work. A potential bias is that participants can be expected to generate
better tests in the second session. We controlled for that by putting the most
mechanical process (i.e., IMT and IAT) last, that is, the process that uses the least
knowledge from the participant.
Construct Validity. In our study we automatically seeded faults to measure the
fault detecting capability of the written tests. While it is possible that faults created
by industrial developers would give different results, there is scientific evidence [22]
to support the use of injected faults as substitutes for real faults.
Conclusion Validity. The results of this study are based on an experiment using 23
participants and two FBD programs. For each program all participants performed
the study which is a relatively small number of subjects. Nevertheless, this was
sufficient to obtain a statistical power showing an effect between specification-based
testing and implementation-based testing.

6 Related Work

Among the various fields of research in software testing, automated test generation
has gain a considerable amount of work [24] in the last couple of years. Automated
test generation techniques are used for generating a set of input values for a program,
typically with the final aim of fulfilling a certain coverage criteria or reachability
property.

A wide range of techniques for automated test input generation [11, 34, 25, 32]
have been proposed in the last decade to replace or complement manual testing and
are mainly targeting object-oriented programs. For example Randoop [25] creates
random test inputs by using feedback information as guidance. EvoSuite [11] is a
tool based on genetic algorithm for Java programs. The CompleteTest tool is
using model checking and it is tailored to testing IEC 61131-3 FBD programs used
in embedded software development.

While the application of automated test generation has been increasing the last
few years, there have been a few studies involving human subjects that are addressing
the question of how these techniques compare to manual specification-based testing.
Ramler et al. [26] conducted a study and a follow-up replication [27], carried out with
master students and industrial professionals respectively, addressing the question of
how automated testing compare to manual testing. In these specific experiments, they
found that the number of faults detected by the automated testing tool was similar
to manual testing. Recently, Fraser et al. [12, 13] performed a controlled experiment
and a follow-up replication experiment on a total of 97 subjects. They found that
automated test generation, and specifically the EvoSuite tool, leads to high code
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coverage but no measurable improvement over manual testing in terms of number of
faults found by developers. Fault detection rate between automated implementation-
based test generation and manual specification-based testing was found, in some
of the studies [13, 26], to be relatively different from our experiment. This could
stem from the fact that the subjects were given more time to manually test their
programs compared to previous controlled experiments. By using a more restrictive
testing duration, we would expect human participants to show less comprehensive
understanding of the task at hand.

7 Conclusions and Future Work
In this paper we compared the efficiency and effectiveness of specification-based
manual testing, implementation-based manual testing, and implementation-based
automated testing for embedded safety-critical software developed using the IEC
61131-3 FBD language.

The results of this experiment indicate that while the use of implementation-based
automated testing yields high structural coverage and improves the number of tests
and the testing time over specification-based manual testing, this is not reflected in
the ability of the written tests to detect more faults. Our results shows the need to
take caution in selecting test generation objectives when using tools for automated
test input generation, as well as continued research in establishing more effective test
adequacy criteria.

To perform a full, in-depth, study on testing embedded software, the experiment
would need to be performed in an industrial setting on a larger number of programs.
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Abstract

The recent maturation of techniques and tools for automated test gen-
eration offers the opportunity to produce test suites with high code
coverage in a matter of seconds. Nonetheless, it is not very well stud-
ied how such test suites compare to manually written ones in terms of
cost and effectiveness. To a certain extent such comparisons have been
made using open-source programs. However, evidence on how automated
coverage-directed test generation could be used for industrial software
is sparse. This is particularly true for industrial control software, where
strict requirements on both specification-based testing and code coverage
typically are met with rigorous manual testing. To address this issue, we
conducted a case study in which we compared the cost and effectiveness
between manually and automatically created test suites. In particular,
we measured the cost and effectiveness in terms of fault detection of test
suites created using a coverage-directed automated test generation tool
and test suites manually created by industrial engineers for an existing
train control system. We used recently developed real-world industrial
programs written in the IEC 61131-3 FBD, a popular programming lan-
guage for developing safety-critical systems using programmable logic
controllers. The results show that automatically generated test suites
achieve similar code coverage as manually created test suites, but in a
fraction of the time (an average improvement of roughly 90%). We also
found that the use of an automated test generation tool does not result
in better fault detection in terms of mutation score compared to manual
testing. Specifically, manual test suites more effectively detect logical,
timer and negation type of faults, compared to automatically generated
test suites. The results underscore the need to further study how manual
testing is performed in industrial practice. We suggest some improvement
opportunities for supporting the use of automated test generation tools
in testing of industrial control software.

1 Introduction
Testing is an important activity in engineering of safety-critical control software. In
certain application domains (e.g., the railway industry) engineering software requires
certification according to safety standards [3]. These standards mandate the use
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of specification-based testing and recommends the demonstration of some level of
code coverage on the developed software. In this way, a developer needs to check
software conformance with the specification: each test case should contribute to the
demonstration that a specified requirement has indeed been satisfied. To achieve a
certain level of code coverage, the designed test cases, when fed to the system under
test, should systematically exercise the implementation (e.g., covering all branches).
Naturally, developers want their test cases to be of high quality: test cases should
be cost-effective and good at detecting faults. To support developers in testing,
researchers have proposed different approaches for producing good test cases. In
the last couple of years a wide range of techniques for automated test generation
[10, 36, 28, 34] have been explored with the goal of complementing manual testing.
Even though there is some evidence suggesting that automatically generated test
suites may even cover more code than those manually written by developers [11],
this does not necessarily mean that these tests are effective in terms of detecting
faults. As manual testing and automated code coverage-directed test generation are
fundamentally different and each strategy holds its own inherent limitations, their
respective merits or demerits should be analyzed more extensively in comparative
studies.

In this paper, we empirically evaluate automated test generation and compare
it with test suites manually created by industrial engineers on 61 programs from
a real industrial train control system. This system contains software written in
IEC 61131-3 [15], a popular language in safety-critical industry for programming
control software [19, 29]. We have applied a state-of-the-art test generation tool for
IEC 61131-3 software, CompleteTest [9], and investigated how it compares with
manual testing performed by industrial engineers in terms of code coverage, cost and
fault detection.

Our case study indicates the following main results:

1. For IEC 61131-3 safety-critical control software, automated test generation
can achieve similar code coverage as manual testing performed by industrial
engineers but in a fraction of the time.

2. Even when achieving full code coverage, automatically generated test suites are
not necessarily better at finding faults than manually created test suites. In
our case study, 56% of the test suites generated using CompleteTest found
less faults than test suites created manually by industrial engineers. Overall,
it seems that manually created tests are able to detect more faults of certain
types (i.e, logical replacement, negation insertion and timer replacement) than
automatically generated tests.

3. Automatically generated test suites are significantly less costly in terms of
testing time than manually created test suites. The use of automated test
generation in IEC 61131-3 software development can potentially save around
90% of testing time.

These results point out important issues that need to be addressed in order
to use automated test generation tools in testing safety critical control software.
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Investigating the quality of the test suites revealed the need for improving the
detection of faults. We found that there are more manually created test suites that
are effective at detecting certain fault types than the automatically generated test
suites. By using these fault types in addition to structural properties as the coverage
criterion used by an automated test generation tool, we could generate more effective
test suites. This can be achieved by considering an automated approach to generate
test suites that can detect these specific faults. We argue that based on the results
of this study, automated test generation could potentially be improved and be used
in industrial practice for IEC 61131-3 software development to aid manual testing.

2 Related Work
Software testing is an important verification and validation activity used to reveal
software faults and make sure that the expected behavior matches the actual software
execution. In the software testing literature [1] a test case is a test executing the
program, corresponding to a set of test inputs and expected outputs. A set of test
cases is called a test suite. In this way, a test suite is thus a finite number of test
cases executing one after the other.

Implementation-based testing is usually performed at unit level to manually or
automatically create tests that exercise different aspects of the program structure. To
support software developers in testing of their programs, automated test generation
has been explored in a considerable amount of work [26] in the last couple of years.
Numerous techniques for automated test generation [10, 2, 36, 34, 39, 21] have been
proposed in the last decade to complement manual testing. Many of these techniques
mainly target object-oriented programs. Specifically, EvoSuite [10] is a tool based
on genetic algorithms, for search-based testing of Java programs. Another automated
test generation tool is KLEE [2] which is based on dynamic symbolic execution and
uses constraint solving optimization as well as search heuristics to obtain high code
coverage.

In the context of developing safety-critical control software, IEC 61131-3 [19] has
become a very popular programming language used in different control systems from
traffic control software to nuclear power plants. Several automated test generation
approaches [18, 38, 17, 32, 9, 7] have been proposed in the last couple of years for
IEC 61131-3 software. These techniques can typically produce test suites for a
given code coverage criterion and have been shown to achieve high code coverage for
different IEC 61131-3 industrial software projects.

While high code coverage has historically been used as a proxy for the ability
of a test suite to detect faults, recently Inozemtseva et al. [16] and Gay et al. [12]
found that coverage should not be used as a measure of quality mainly because
of the fact that it is not a good indicator for fault detection. In other words, the
fault detection capability of a test suite might rely more on other test design factors
than the extent to which the structure of the code is covered. For example, in the
safety-critical control software domain, software testing processes are influenced
by different safety standards mandating and recommending different test design
techniques, and one might speculate that other factors may affect the test suite
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quality. This motivated us to investigate a thorough comparison between manual
testing and implementation-based automated test generation.

There are studies investigating the use of both manual testing and automated
implementation-based testing of real-world programs. Several researchers have
performed case studies [37, 22, 30] and focused on already created manual test
suites while others performed controlled experiments [11] with human participants
manually creating and automatically generating test suites. In 2015, Wang et al.
[37] compared KLEE-based test suites with already created manual test suites on
several open source programs. They found that automatically generated test suites
are able to achieve higher code coverage but lower fault detection scores with manual
test suites being also better at discovering hard-to-cover code and hard-to-kill type
of faults. Another closely related study done by Kracht el al. [22] used EvoSuite
on a number of open-source Java projects and compared those test suites with the
ones already manually created by developers. EvoSuite-based test suites achieved
similar code coverage and fault detection scores to manually created test suites.
In addition, Fraser et al. [11] performed a controlled experiment and a follow-up
replication experiment on a total of 97 subjects. They found that automated test
generation, and specifically the EvoSuite tool, leads to high code coverage but no
measurable improvement over manual testing in terms of number of faults found by
developers. EvoSuite was used in another study by Shamshiri et al. [30] which
found that test suites automatically generated achieved higher code coverage than
developer-written test suites and detected 40% out of 357 real faults from different
open-source projects.

These results kindled our interest in studying how manual testing compares
to automated implementation-based test generation in an industrial safety-critical
control software domain. For such systems, there are strict requirements on both
traceable specification-based and implementation-based testing. Is there any evidence
on how these code coverage-directed automated tools compare with, what is perceived
as, rigorous manual testing?

3 Method

We designed a case study according to the method shown in Figure 4.1. From
a high level view we started the case study by considering:(i) manual test suites
created by industrial engineers and a tool for automated test generation named
CompleteTest, (ii) a set of real industrial programs from a recently developed train
control management system (TCMS), (iii) a cost model and (iv) a fault detection
and code coverage metric. Consequently, we aimed to answer the following research
questions:

• RQ1: Are automatically generated test suites able to detect more faults than
tests suites manually created by industrial engineers?

• RQ2: Are automatically generated test suites less costly than tests suites
manually created by industrial engineers?



Study 4. A Comparative Study of Manual and Automated Testing 119

IEC 1131-3 Programs

TCMS

Industrial 
Engineer

Automated Test 
Generation Tool

Test 
Suite

Test 
Suite

Original Programs
+

Mutated Programs

Mutat ion 
Score

Code
Coverage

Cost 
Model

generates

creates executed 
on

data collected

Figure 4.1: Overview of the experimental method. For each program in the Train
Control Management System (TCMS), test suites are collected, generated and
executed on both the original and the mutated programs.

We considered an industrial project containing IEC 61131-3 programs and for
each selected program, we executed the test suites produced by both manual testing
and automated test generation and collected the following measures: code coverage in
terms of achieved decision coverage, the cost of performing testing and the mutation
score as a proxy for fault detection. In order to calculate the mutation score, each
test suite was executed on the mutated version of the original TCMS program to
determine whether it detects the injected fault or not. This section describes in
detail the case study procedure.

3.1 Case Description

The studied case is an industrial system actively developed in the safety-critical
domain by Bombardier Transportation, a leading, large-scale company focusing on
development and manufacturing of trains and railway equipment. The system is
a train control management system (TCMS) that has been in development for
several years and is engineered with a testing process highly influenced by safety
standards and regulations. TCMS is a distributed control system with multiple types
of software and hardware components, and is in charge of much of the operation-
critical, safety-related functionality of the train. TCMS runs on Programmable
Logic Controllers (PLC) which are real-time controllers used in numerous industrial
domains, i.e., nuclear plants and avionics. The system allows for integration of
control and communication functions for high speed trains and contains all functions
controlling the train. These functions are developed as software programs using
an IEC 61131-3 graphical programming language named Function Block Diagram
(FBD) [15].

A program running on a PLC [19] executes in a loop where every cycle contains
the reading of input values, the execution of the program without interruption and
the update of the outputs. As shown in Figure 4.2, predefined logical and/or stateful
blocks (e.g., bistable latch SR, OR, XOR, AND, greater-than GT and timer TON)
and connections between blocks represent the behavior of an FBD program. These
blocks are supplied by the hardware manufacturer or defined by a developer. PLCs
contain particular types of blocks, such as timers (e.g., TON) that provide the same
functions as timing relays and are used to activate or deactivate a device after a
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Figure 4.2: A program with eight inputs and three outputs written using the IEC
61131-3 FBD programming language.

preset interval of time. An FBD program is translated to a compliant executable
PLC code. For more details on this programming language we refer the reader to
the work of John et al. [19].

3.2 Test Suite Creation

As a baseline, we used manual test suites created by industrial engineers in Bombardier
Transportation from a TCMS project delivered already to customers. A test suite
created for an FBD program contains a set of test cases containing inputs, expected
and actual outputs and timing information (i.e., Time parameter in the test suite is
expressing timing constraints within one program).

Manual test suites were collected by using a post-mortem analysis [5] of the test
data available. In testing IEC 61131-3 FBD programs in TCMS, the engineering
processes of software development are performed according to safety standards and
regulations. Specification-based testing is mandated by the EN 50128 standard [3] to
be used to design test cases. Each test case should contribute to the demonstration
that a specified requirement has indeed been covered and satisfied. Executing test
cases on TCMS is supported by a test framework that includes the comparison
between the expected output with the actual outcome. The test suites collected in
this study were based on functional specifications expressed in a natural language.

In addition, we used test suites automatically generated using an automated test
generation tool. For the programs in the TCMS system, EN 50128 recommends
the implementation of test cases achieving a certain level of code coverage on the
developed IEC 61131-3 FBD software (e.g., decision coverage which is also known
as branch coverage). To the best of our knowledge, CompleteTest [9] is the
only available automated test generation tool for IEC 61131-3 FBD software that
produces tests for a given coverage criterion. As input for the test case generation,
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the tool requires a standard PLCopen XML implementation of the program under
test. CompleteTest supports different coverage criteria with the default criterion
being decision coverage. The tool stops searching for test inputs when it achieves
100% coverage or when a stopping condition is achieved (i.e, timeout or out of
memory). CompleteTest uses the Uppaal [23] model-checker as the underlying
search engine and can be used both in a command-line and a graphical interface.
A developer using CompleteTest can automatically generate test suites needed
to achieve a maximum achievable code coverage for a given FBD program and can
manually provide the expected outputs for a specific test case based on the defined
behavior written in the specification. The tool will automatically run the tests and
compare expected outputs with the actual ones, computed using the program under
test.

It should be noted that in case CompleteTest is unable to achieve full coverage
for a given program (which may happen since some coverage items may not be
reachable, or that the search space is too large), a cutoff time is required to prevent
indefinite execution. Based on discussions with engineers developing TCMS regarding
the time needed for CompleteTest to provide a test suite for a desired coverage,
we concluded that 10 minutes was a reasonable timeout point for the tool to finish its
test generation. As a consequence, the tests generated after this timeout is reached
will potentially achieve less than 100% code coverage.

3.3 Subject Programs

We used a number of criteria to select the subject programs for our study. We
investigated the industrial library contained in TCMS provided by Bombardier
Transportation. Firstly, we identified a project containing 114 programs. Next, we
excluded 32 programs based on the lack of possibility to automatically generate test
cases using CompleteTest, primarily due to the fact that those programs contained
data types or predefined blocks not supported by the underlying model checker (i.e.
string and word data types). The remaining 82 programs were subjected to detailed
exclusion criteria, which involved identifying the programs for which engineers from
Bombardier Transportation had created tests manually. This resulted in 72 remaining
programs, which were further filtered out by excluding the programs not containing
any decisions or logical constructs (since these would not be meaningful to test using
logic criteria). A final set of 61 programs was reached. These programs contained
on average per program: 825 lines of IEC 61131-3 FBD code, 18 decisions (i.e.,
branches), 10 input variables and 4 output variables.

For each of the 61 programs, we collected the manually created test suites. In
addition we automatically generated test suites using CompleteTest for covering
all decisions in each program. As a final step we generated additional test cases for
all 61 programs using random test suites.
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3.4 Measuring Code Coverage

Code coverage criteria are used in software testing to assess the thoroughness of
test cases [1]. These criteria are normally used to assess the extent to which the
program structure has been exercised by the test cases. In this study, code coverage
is operationalized using the decision coverage criterion. For the TCMS system the
EN 50128 safety standard [3] requires different code coverage levels (e.g., statement
coverage). For the programs selected in this study and developed by Bombardier
Transportation AB, engineers developing IEC 61131-3 software indicated that their
certification process involves achieving high decision coverage. In the context of
traditional programming languages (e.g., Java and C#), decision coverage is usually
referred to as branch coverage. A decision coverage score is obtained for each
individual test suite. A test suite satisfies decision coverage if running the test cases
causes each decision in the IEC 61131-3 program to have the value true at least once
and the value false at least once. Decision coverage was previously used by Enoiu et
al. [9] to measure the thoroughness of code coverage for the specific structure of IEC
61131-3 programs. In this study we used our own tool implementation to collect the
decision coverage achieved by each test suite.

3.5 Measuring Fault Detection

Fault detection was measured using mutation analysis. For this purpose, we used
our own tool implementation to generate faulty versions of the subject programs. To
describe how this procedure operates, we must first give a brief description of mutation
analysis. Mutation analysis is the technique of creating faulty implementations of a
program (usually in an automated manner) for the purpose of examining the fault
detection ability of a test suite [6].

A mutant is a new version of a program created by making a small change to the
original program. For example, in an IEC 61131-3 program, a mutant is created by
replacing a block with another, negating a signal, or changing the value of a constant.
The execution of a test suite on the resulting mutant may produce a different output
as the original program, in which case we say that the test suite kills that mutant. A
mutation score is calculated by automatically seeding mutants to measure the mutant
detecting capability of the written test suite. We computed the mutation score using
an output-only oracle (i.e., expected values for all of the program outputs) against
the set of mutants. For all programs, we assessed the fault-finding capability of each
test suite by calculating the ratio of mutants killed to the total number of mutants.
Just et al. [20] showed that if a test suite can detect or kill most mutants, it can
also detect real software faults, thus providing evidence that the mutation score is a
fairly good proxy for real fault detection ability.

In the creation of mutants we rely on previous studies that looked at commonly
occurring faults in IEC 61131-3 software [25, 31]. We used these common faults in
this study for establishing the following mutation operators:

• Logic Block Replacement Operator (LRO). Replacing a logical block with
another block from the same function category (e.g., replacing an AND block
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with an OR block).

• Comparison Block Replacement Operator (CRO). Replacing a comparison
block with another block from the same function category (e.g., replacing a
Greater-Than (GT) block with a Greater-or-Equal (GE) block).

• Arithmetic Block Replacement Operator (ARO). Replacing an arithmetic block
with another block from the same function category (e.g., replacing a maximum
(MAX) block with a subtraction (ADD) block).

• Negation Insertion Operator (NIO). Negating an input or output connection
(e.g., an input variable in becomes NOT(in)).

• Value Replacement Operator (VRO). Replacing a value of a constant variable
connected to a block (e.g., replacing a constant value (const = 0) with its
boundary values (e.g., const = −1)).

• Timer Block Replacement Operator (TRO). Replacing a timer block with
another block from the same function category (e.g., replacing a Timer-On
(TON) block with a Timer-Off (TOF) block).

To generate mutants, each of the mutation operators was systematically applied to
each program element wherever possible. In total, for all of the selected programs,
5161 mutants (faulty programs based on ARO, LRO, CRO, NIO, VRO and TRO
operators) were generated by automatically introducing a single fault into the original
implementation.

3.6 Measuring Efficiency

Many factors affect the cost of testing IEC 61131-3 FBD programs. According to
Leung and White [24], testing involves two cost types: direct and indirect costs.
A direct cost includes the implementer time for performing all activities related
to unit testing and the machine resources such as the test infrastructure. Indirect
costs include: the management of the testing process, test tool development, and
execution history. Ideally, the effort is captured by measuring the time required for
performing different testing activities. However, since this is a post-mortem study
of a now-deployed system and the development was undertaken a few years back,
this was not practically possible in our case. Instead, efficiency was measured using
a cost model that captures the context that affects the testing of IEC 61131-3
software. We focused on the unit testing process as it is implemented in Bombardier
Transportation for testing the programs selected in this case study. Figure 4.3
presents a timeline depicting the unit testing process for a single program. The EN
50128 safety standard requires that a software design is produced for each program
and that each program is then tested using the design as the test oracle. For the
TCMS system used in this case study, the test specification, execution and reporting
are performed by the implementer of the IEC 61131-3 software. In the rest of the
paper we will not use the cost of creating the design of the software because even if
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time
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Figure 4.3: Program Testing Cycle for IEC 61131-3 FBD software in TCMS.

Table 4.1: Constituent cost components and factors that cause the cost to vary
when using both manual testing (MT) and automated test generation (ATG).
T represents the number of test cases created in a single test suite, δ, ε, α and
τ represent the average estimated time an engineer spends to manually create,
execute, check and report a test case, respectively.

Component MT ATG
Test Creation (Cδ) δ · T

teTest Execution (Cε) ε · T
Test Result Check (Cα) α · T α · T
Test Reporting (Cτ) τ · T tr

it varies with the size and characteristics of each program and requirement, the cost
is constant between manual and automated test generation.

In the cost model, we concentrated on the following components (mirrored in Table
4.1): the test creation cost (Cδ) represents the cost of writing the necessary
test suite, the test execution cost (Cε) represents the cost of executing a test
suite, test result check cost (Cα) represents the cost of checking the result of
the test suite, and test reporting cost (Cτ) represents the cost of reporting a
test suite. The cost model does not include the required tool preparation. However,
preparation entails exporting the program to a format readable by CompleteTest
and opening the resulting file. This effort is comparable to that required for opening
the tools needed for manual testing. To formulate a cost model incorporating the
cost components shown in Table 4.1, we must measure costs in identical units. To
do this, we recorded all costs using a time metric. For manual testing all costs are
related to human effort. For automated test generation the cost of checking the
test result (i.e., Cα in Table 4.1) is related to human effort with the other costs
(i.e., the combined generation and execution time te and the reporting time tr when
using CompleteTest) measured in machine time needed to compute the results.
In this case study we consider that all cost components are related to the number
of test cases. The higher the number of tests cases, the higher are the respective
costs. We assume this relationship to be linear (δ, ε ,α and τ in Table 4.1 are factors
representing the average time spend by an engineer in each cost component for a test
case). Practically, we measured the costs of these activities directly as an average of
the time taken by three industrial engineers (working at Bombardier Transportation
implementing some of the IEC 61131-3 programs used in our case study) to perform
manual testing.
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(a) Mutation score comparison
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Figure 4.4: Mutation score, achieved code coverage and number of test cases
comparison between manually created test suites (MT), automatically generated
test suites (ATG), pure random test suites (Rand) of the same size as the ones
created manually by industrial engineers, and coverage-adequate tests with equal
size as manual tests (ATG++); boxes spans from 1st to 3rd quartile, black middle
lines mark the median and the whiskers extend up to 1.5x the inter-quartile range
and the circle symbols represent outliers.
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Table 4.2: Results for each metric. We report several statistics relevant to the
obtained results: minimum, median, mean, maximum and standard deviation
values.

Metric Test Min Median Mean Max SD
Mutation
Score(%)

MT 18, 51 94, 73 86, 30 100, 00 19, 66
ATG 25, 00 89, 47 82, 93 100, 00 18, 37

Coverage
(%)

MT 63, 63 100, 00 96, 33 100, 00 8, 08
ATG 54, 16 100, 00 97, 45 100, 00 8, 65

# Tests MT 2, 00 8, 00 12, 80 47, 00 10, 57
ATG 2, 00 4, 00 7, 42 31, 00 7, 35

4 Results

This section provides an analysis of the data collected in this case study. For each
program and each testing technique considered in this study we collected the produced
test suites. The overall results of this study are summarized in the form of boxplots
in Figure 4.4. Statistical analysis was performed using the R software [33]. In Table
4.2 we present the mutation scores, coverage results and the number of test cases in
each collected test suite (i.e., MT stands for manually created test suites and ATG
is short for test suites automatically generated using CompleteTest). This table
lists the minimum, median, mean, maximum and standard deviation values. As our
observations are drawn from an unknown distribution, we evaluate if there is any
statistical difference between MT and ATG without making any assumptions on
the distribution of the collected data. We use a Wilcoxon-Mann-Whitney U-test
[14], a non-parametric hypothesis test for determining if two populations of data
samples are drawn at random from identical populations. This statistical test was
used in this case study for checking if there is any statistical difference among
each measurement metric. In addition, the Vargha-Delaney test [35] was used to
calculate the standardized effect size, which is a non-parametric magnitude test that
shows significance by comparing two populations of data samples and returning the
probability that a random sample from one population will be larger than a randomly
selected sample from the other. According to Vargha and Delaney [35] statistical
significance is determined when the effect size is above 0.71 or below 0.29.

4.1 Fault Detection

How does the fault detection of manual test suites compare with that of automatically
generated test suites based on decision coverage? For all programs, as shown in
Figure 4.4a, the mutation scores obtained by manually written test suites are higher
in average with 3% compared with the ones achieved by automatically generated test
suites. However, there is no statistically significant difference at 0.05 as the p-value
is equal to 0.087 (effect size 0.600 in Table 4.3). Consequently, a larger sample size,
as well as additional studies in different contexts, would be needed to obtain more
confidence to claim that automatically created test suites are actually worse than
manually created test suites.
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Table 4.3: For the mutation score we calculated the effect size representing
the magnitude of the difference between manual testing (MT), automated test
generation (ATG) and random testing (Rand). We also report the p-values of a
Wilcoxon-Mann-Whitney U-tests with significant effect sizes shown in bold.

Measure Method Effect Size p-value

Mutation
Score

MT 0.600 0.087
ATG
MT 0.897 < 0.001
Rand

Answer RQ1: Using automatically generated test suites does not yield better fault
detection than using manually created test suites.

The difference in effectiveness between manual and automated testing could be
due to differences in test suite size. As shown in Figure 4.4c, the use of automated
test generation results in less number of test cases than the use of manual testing
(a difference of roughly 40%). To control for size, we generated purely random test
suites of equal size as the ones manually created by industrial engineers (Rand in
Figure 4.4a) and coverage-adequate test suites with equal size as manual test suites
(ATG++ in Figure 4.4a). Our results suggest that fault detection scores of manually
written test suites are clearly superior to random test suites of equal size, with
statistically significant differences (effect size of 0.897 in Table 4.3). In addition,
even coverage-adequate test suites with equal size as manual test suites (ATG++ in
Figure 4.4a) are not showing better fault detection than the ones manually created.
This shows that the effect of reduced effectiveness for automated test generation is
not only due to smaller test suites. This is not an entirely surprising result. Our
expectation was that manual test suites would be similar or better in terms of
fault detection than automatically created test suites based on decision coverage.
Industrial engineers with experience in testing IEC 61131-3 FBD programs would
intuitively write good test cases at detecting common faults. Our results are not
showing any statistically significant difference in mutation score between manual test
suites and CompleteTest-based test suites.

4.2 Fault Detection per Fault Type

To understand how automatically generated test suites can be improved in their fault
detection capability, we examined if these tests suites are particularly weak or strong
in detecting certain fault types. We concern this analysis to what type of faults were
detected by both manual testing and CompleteTest. For each mutation operator
described in Section 3.5, we examined what type of mutants were killed by tests
written using manual testing and CompleteTest. The results of this analysis are
shown in Figure 4.5a in the form of box plots with mutation scores broken down
by the mutation operator that produced them. There are some broad trends for
these mutation operators that hold across all programs considered in this study. The
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(a) Mutation scores comparing manual testing (MT) against
implementation-based automated test generation (ATG).
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(b) Distribution of different types of mutants killed by man-
ual versus automated test generation and categorized ac-
cording to their effectiveness level.

Figure 4.5: Mutation analysis results per fault type: LRO is the logical block
replacement fault type, CRO is the comparison block replacement fault type, NIO
is the negation insertion fault type, VRO is the value replacement fault type,
ARO is the arithmetic block replacement fault type and TRO is the timer block
replacement fault type.



Study 4. A Comparative Study of Manual and Automated Testing 129

fault detection scores for arithmetic (ARO), value (VRO) and comparison (CRO)
replacement fault types are not showing any significant difference between manually
created test suites and automatically generated test suites. On the other hand, test
suites written using manual testing detect, on average, 12% more logical type of
faults (LRO) than test suites generated automatically using CompleteTest. The
increase is slightly similar for negation (NIO) and timer (TRO) replacement type of
faults with manually written test suites detecting, in average, 13% more NIO and
TRO fault types than automatically generated test suites. Overall, it seems that one
of the reasons behind manual testing success, seems to do with its strong ability to
kill mutants from certain operators.
Manual test suites are detecting more logical, timer and negation type of faults
than automatically generated test suites.

We further classified all manual and automated test suites into three types as
follows:(i) Effective: Test suites that score above 95% on a specific fault type.
Test suites achieving this kind of mutation score have been shown [13] to be very
effective at finding faults. (ii) Average: Test suites that score between 5 and
95% on a specific fault type. (iii) Ineffective: Test suites that score lower than
5% on a specific fault type. Each test suite type has meaningful implications. For
example, effective tests indicate strong fault detection effectiveness per fault type
while ineffective tests indicate weak fault detection for a certain type of fault. The
results of this analysis are shown in Figure 4.5b in the form of bar plots. For
logical (LRO) faults, 48% of the manual test suites are effective at detecting this
type of faults, an improvement of 13% over automatically generated test suites.
We found more manual test suites being effective at detecting comparison (CRO)
replacement and negation insertion (NIO) faults (an improvement of 6% and 13%,
respectively) over automatically generated test suites. The increase is bigger for
timer replacement (TRO) faults with manual testing having 16% more effective test
suites than automated test generation. On the other hand, for value replacement
(VRO) fault types, we found more effective automatically generated test suites than
manually created test suites (an improvement of 6%). For arithmetic (ARO) faults,
there is no difference between manual and automatically-generated effective test
suites. In addition, in Figure 4.5b, we can observe that automated test generation
results in more ineffective tests compared to manual testing when considering logical
replacement (LRO), negation insertion (NIO) and timer replacement (TRO) fault
types.

To identify the reasons behind the differences in mutation score per fault type
between manual testing and CompleteTest, we investigated deeper the nature of
each mutation operator. For both the negation insertion and the timer replacement
fault type it seems that CompleteTest with branch coverage as the stopping crite-
rion, achieves a poor selection of test input conditions with too few test cases being
produced; a certain input value that fails to kill the NIO and TRO type of mutant
could have been made more robust with further test inputs. Logical replacement
type of faults where an AND block is replaced by an OR block and vice versa tends
to be relatively trivial to detect by both manual testing and CompleteTest. This
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Table 4.4: For code coverage we calculated the effect size representing the difference
between manual testing (MT), automated test generation (ATG) and random
testing (Rand). We also report the p-values of a Wilcoxon-Mann-Whitney U-tests
with significant effect sizes shown in bold.

Measure Method Effect Size p-value

Coverage

MT 0.449 0.192
ATG
MT 0.971 < 0.001
Rand

comes from the fact that these faults are detected by any test cases where the inputs
evaluate differently and the change is propagated to the output of the program. This
does not mean that all logical faults can be easily detected. Consider an LRO type
of mutant where OR blocks are replaced by XOR. The detection of this type of fault
is harder, with manual test suites detecting 24% more LRO type of mutants where
a logical block is replaced by XOR than test suites generated automatically. The
detection in this case happens only with one specific test case that propagates the
change in the outputs. It seems that manual testing has a stronger ability to detect
these kind of logical faults than automated test generation because of its inherent
limitation of only searching for inputs that are covering the branches of the program.

4.3 Coverage

As seen in Figure 4.4b, for the majority of programs considered, manually created
test suites achieve 100% decision coverage. Random test suites of the same size
as manually created ones achieve lower decision coverage scores (in average 61%)
than manual test suites (in average 96%). The coverage achieved by manually
created test suites is ranging between 63% and 100%. As shown in Table 4.2, the
use of CompleteTest achieves in average 97% decision coverage. Results for all
programs (in Table 4.4) show that differences in code coverage achieved by manual
versus automatic test suites are not strong in terms of any significant statistical
difference (with an effect size of 0.449 and a p-value of 0.192). Even if automatically
generated test suites are created by CompleteTest having the purpose of covering
all decisions, these test suites are not showing any significant improvement in achieved
coverage over the manually written ones.

Overall, we confirm that the code coverage scores achieved by CompleteTest-
based test suites are similar to the ones created manually by industrial engineers.
While developing TCMS programs, engineers manually writing test suites have to
demonstrate the use of specification-based testing while maintaining a certain degree
of decision coverage. After discussions with three engineers developing IEC 61131-3
FBD software at Bombardier Transportation, functional specifications seem to be the
main source of information for performing manual testing in our case study. From
our results one question arises: Is high decision coverage achieved by test suites just
a byproduct of performing specification-based manual testing? This underscores the
need to study further how manual testing is actually performed in practice and what
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Table 4.5: Cost measurement results for both manual testing and automated test
generation using CompleteTest.

(a) Manual Testing

Cost (min.) Min Median Mean Max SD
Cδ 13, 2 52, 8 84, 5 310, 2 70, 5
Cε 6, 6 26, 4 42, 2 155, 1 35, 2
Cα 5, 0 20, 0 32, 0 117, 5 26, 7
Cτ 1, 0 4, 0 6, 4 23, 5 5, 3
Ctotal 25, 8 103, 2 165, 2 606, 3 137, 8

(b) Automated Test Generation using CompleteTest

Cost(min.) Min Median Mean Max SD
Cδ + Cε 0, 003 0, 012 1, 120 10, 900 3, 185
Cα 5, 000 10, 000 18, 563 77, 500 18, 597
Cτ < 0, 001 < 0, 001 < 0, 001 < 0, 001 < 0, 001
Ctotal 5, 003 15, 007 19, 684 77, 683 18, 433

makes it so good at achieving high code coverage and fault detection.

4.4 Cost Measurement Results

This section aims to answer RQ2 regarding the relative cost of performing manual
testing versus automated test generation. The conditions under which each of the
strategies is more cost effective were derived. The cost variables presented in Section
3.6 are measured in time (i.e., minutes) spent, and their calculation depends on
several cost components.

For manual testing (MT) the total cost Ctotal involves only human resources. We
interviewed three engineers working on developing and manually testing TCMS soft-
ware and asked them to estimate the time (in minutes) needed to create (δ), execute
(ε), check the result (α) and report a test suite (τ). All engineers independently
provided very similar cost estimations. We averaged the estimated time given by
these three engineers and based on the formulae in Table 4.1 we calculated each
individual cost using the following average estimations: δ = 6.6, ε = 3.3, α = 2.5
and τ = 0.5. The overall cost measures are reflected in Table 4.5. In addition, for
automated test generation the total cost of performing automated test generation
involves both machine and human resources. We calculated the cost of creating,
executing and reporting test suites for each program, by measuring the time required
to run CompleteTest, and the time required to execute each test case (i.e., te in
Table 4.1). For the cost of checking the test result we used the average time needed
by three industrial engineers to check the results using manual testing (α = 2.5).
The resulting cost measures are reflected in Table 4.5.

Analyzing the cost measurement results is directly related to the number of test
cases giving a picture of the effort per created test case. As seen in Table 4.5, the
cost of performing testing using CompleteTest is consistently significantly lower
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than for manually created tests; automatic generated tests have a shorter testing
cost (145.5 minutes shorter testing time in average) over manual testing.

Answer RQ2: Automatically generated tests are significantly less costly in terms
of testing time than manually created tests.

Based on these results, we can clearly see that when using automatic test gener-
ation tools, the creation, execution and reporting costs are very low compared to
manual testing. While these cost are low, the cost of checking the results is human
intensive and is a consequence of the relative difficulty to understand each created
test.

5 Discussions and Future Work
Developers of safety critical control software use different test design techniques
for testing their programs. We showed in Section 4 the results obtained from a
case study performed at Bombardier Transportation, a large-scale company focusing
on development of trains. The programs considered in this study have been in
development and are used in different train products all over the world. The obtained
results could prove useful for both practitioners, tool developers and software testing
researchers. To further explore the results of our case study we considered the
implications for future work and the extent to which automated test generation can
be used in the development of reliable systems.

Our results indicate that, in IEC 61131-3 software development, automated
test generation can achieve similar decision coverage to manual testing performed
by industrial engineers. However, these automatically generated test suites are not
yielding better fault detection in terms of mutation score than manually created
test suites. The fault detection rate between automated implementation-based test
generation and manual testing was found, in some of the published studies [11, 22,
37], to be relatively similar to our results. Interestingly enough, our results indicate
that CompleteTest-based test suites might even be slightly worse in terms of
fault detection compared to manual test suites. However, a larger empirical study is
needed to statistically confirm this hypothesis.

Our study is the first to consider fault detection per fault type in an industrial
context to understand how automatically generated test suites can be enhanced.
From our results we highlight the need for improving the goals used by automated test
generation tools for creating test suites. Code coverage-based test generation needs
to be carefully complemented with other techniques such as mutation testing. We
found that there are more manually created test suites that are effective at detecting
certain type of faults than automatically generated test suites. By considering
generating test suites that are detecting these fault types one could improve the
goals of automated test generation by using a specialized mutation testing strategy.
This needs to be carefully considered in future studies.

As part of our study, we used cost measurements to estimate the efficiency
of performing automated test generation. Our study suggests that automatically
generated test suites are significantly less costly in terms of testing time than
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manually created test suites. The use of CompleteTest in IEC 61131-3 FBD
software development can potentially save around 90% of testing time. The fact that
automated test generation is faster, cheaper and possibly as good as manual testing,
stands as a significant progress in aiding developers performing unit testing.

6 Threats to Validity
In our study we automatically seeded mutants to measure the fault detection ca-
pability of the written tests. While it is possible that faults created by industrial
developers would yield different results, there is some scientific evidence [20] to
support the use of injected faults as substitutes for real faults.

There are many tools (e.g., KLEE [2], EvoSuite [10], Java PathFinder [36],
and Pex [34]) for automatically generating tests and these may give different results.
The use of these tools in this study is complicated by the transformation of IEC
61131-3 programs directly to Java or C, fact shown to be a significant problem [27]
because of the difficulty to transform timing constructs and ensure the real-time
nature of these programs. Hence, we went for a tool specifically tailored for testing
IEC 61131-3 programs. To the best of our knowledge, CompleteTest is the only
openly available such tool.

The results are based on a case study in one company using 61 programs and
manual test suites created by industrial engineers. Even if this number can be
considered quite small, we argue that having access to real industrial test suites
created by engineers working in the safety-critical domain can be representative.
More studies are needed to generalize these results to other systems and domains.

We note here that the cost of automatically testing IEC 61131-3 FBD programs
is heavily influenced by the human cost of checking the test result. We assumed that
the average time of checking the results per test case for automated testing is the
same as in the case of manual testing. In practice, this might not be the real situation.
A test strategy, that requires every decision in the program to be executed, could
contain test cases that are not specified. This might increase the cost of checking
the test case result. If we assume that the cost of checking the result for automatic
tests is different by one order of magnitude, α (in Table 4.1) could be about ten
times different in quantity. Hypothetically, the cost of automatically generating test
suites could be slightly higher (with 20 minutes in average) than manually testing. A
more accurate cost model would be needed to obtain more confidence to claim that
CompleteTest actually is worse in terms of testing time than manual testing.

A final threat is that we did not use other stronger criteria than decision coverage
for automatically generating test suites, such as MCDC and its variants [4, 1].
Intuitively, MCDC-based test suites would show better fault detection than decision
coverage-based test suites. We did not consider these criteria in our study for two
reasons. First, engineers from Bombardier Transportation AB testing the programs
considered in this study suggested that their certification process recommends the
use of decision coverage for assessing the thoroughness of their test suites. Second,
a recent study [8] on the complexity of both safety-critical and non-critical Java
programs has shown that MCDC and similar criteria are only needed on a small
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fraction of programs containing more complex branches or decisions. We therefore
argue that using decision coverage for automatically generating test suites is a suitable
and realistic scenario for many programming languages.

7 Conclusions
In this paper we investigated, in an industrial context, the quality and cost of
performing manual testing and automated test generation. The study is based on
61 real-world programs from a recently developed safety-critical control software
and manual test suites produced by industrial professionals. We posed our first
research question RQ1 (i.e., Are automatically generated test suites able to detect
more faults than test suites manually created by industrial engineers?) in order to
understand how good in terms of fault detection are automatically generated tests by
comparing them with manual test suites. Our results do not confirm the hypothesis
that automatically generated test suites are better at finding faults in terms of
mutation score than manually created test suites. In addition, we showed that the
effect of reduced fault detection for automated test generation is not only due to
smaller test suites. Overall, it seems that manual testing shows a stronger ability to
detect faults of certain type than automated test generation. With regard to the
second research question RQ2 (i.e., Are automatically generated test suites less costly
than test suites manually created by industrial engineers?) we aimed to bring some
industrial experimental evidence to the basic understanding of how automated test
generation compare in terms of testing cost with manual testing. Our results suggest
that automated test generation can achieve similar decision coverage as manual
testing performed by industrial engineers but in a fraction of the time.
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Abstract

Testing is an important activity in engineering of industrial embedded
software. In certain application domains (e.g., railway industry) engi-
neering software is certified according to safety standards that require
extensive software testing procedures to be applied for the development
of reliable systems. Mutation analysis is a technique for creating faulty
versions of a software for the purpose of examining the fault detection
ability of a test suite. Mutation analysis has been used for evaluating
existing test suites, but also for generating test suites that detect injected
faults (i.e., mutation testing). To support developers in software testing,
we propose a technique for producing test cases using an automated test
generation approach that operates using mutation testing for software
written in IEC 61131-3 language, a programming standard for safety-
critical embedded software, commonly used for Programmable Logic
Controllers (PLCs). This approach uses the Uppaal model checker and
is based on a combined model that contains all the mutants and the
original program. We applied this approach in a tool for testing industrial
PLC programs and evaluated it in terms of cost and fault detection. For
realistic validation we collected industrial experimental evidence on how
mutation testing compares with manual testing as well as automated
decision-coverage adequate test generation. In the evaluation, we used
manually seeded faults provided by four industrial engineers. The results
show that even if mutation-based test generation achieves better fault
detection than automated decision coverage-based test generation, these
mutation-adequate test suites are not better at detecting faults than man-
ual test suites. However, the mutation-based test suites are significantly
less costly to create, in terms of testing time, than manually created
test suites. Our results suggest that the fault detection scores could be
improved by considering some new and improved mutation operators
(e.g., Feedback Loop Insertion Operator (FIO)) for PLC programs as well
as higher-order mutations.

1 Introduction
Software testing is an important verification and validation activity used to reveal soft-
ware faults and make sure that actual software behavior matches its expected behavior

141
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[2]. Safety-critical and real-time software systems implemented in Programmable
Logic Controllers (PLCs) are used in many real-world industrial application domains.
One of the programming languages defined by the International Electrotechnical
Commission (IEC) for PLCs is the Function Block Diagram (FBD) language. In
testing IEC 61131-3 FBD programs in the railway domain, the engineering processes
of software development are performed according to safety standards and regulations
[5]. As an alternative to manually testing software, a few techniques for automated
test generation have been proposed [9, 4]. While high code coverage has historically
been used as a proxy for the ability of a test suite to detect faults, recent results
(e.g., [17]) indicate that code coverage may not be a good measure of fault detection
effectiveness. As an alternative to coverage-based test generation, mutation testing
has been proposed [7, 11]. In mutation testing, test cases are generated based on
the concept of mutants– small syntactic modifications in the program, intended to
imitate real faults. A set of test cases that can distinguish a certain program from its
mutants is sensitive to faults, and it thus hypothesized to be good at detecting real
faults (a hypothesis that has strong empirical support [21]). However, for domain
specific languages used in embedded software development (i.e., IEC 61131-3), there
is a lack of mature approaches and tools for performing mutation test generation.

In this paper, we describe and evaluate an automated mutation-based test
generation approach for IEC 61131-3 embedded software. The main contributions
of the paper are:

• An approach for mutation test generation of IEC 61131-3 programs using a
model checker by combining all the mutants and the original program into a
single combined model that is monitored dynamically.

• An evaluation of the approach in an industrial case study. The results show
that mutation-adequate test suites are worse at detecting faults than manual
test suites with the cost of performing mutation testing being consistently lower
than the cost of manually testing IEC 61131-3 software.

• The identification of new mutation operators for mutation testing of IEC 61131-
3 software. The reduction in fault detection between manual and mutation
testing was attributed based on our analysis to an incomplete list of mutation
operators for IEC 61131-3 software. We propose new operators simulating
this kind of faults (e.g., Feedback loop Insertion Operator (FIO)).

The rest of the paper is organized as follows. Section 2 introduces PLC embedded
software, automated test generation and mutation testing. Section 3 describes the
approach for mutation test generation for IEC 61131-3 programs using a model
checker. Section 4 explains the experimental method, while the results are provided
and discussed in Section 5. Finally, Section 6 concludes the paper.

2 Background and Related Work
This paper describes a method for mutation testing for PLC embedded programs
implemented in the IEC 61131-3 FBD language. In this section, we provide
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Figure 5.1: An FBD program with six inputs and two outputs.

a background on PLC embedded software, automated test suite generation and
mutation testing.

2.1 PLC Embedded Software
Safety-critical embedded systems implemented using Programmable Logic Controllers
(PLCs) are used in many industrial application domains such as electric, transporta-
tion, chemical, pharmaceutical, etc.. One of the programming languages defined
by the International Electrotechnical Commission (IEC) for PLCs is the Function
Block Diagram (FBD) language [16]. Programs developed in FBD are compiled
into program code, which in turn is compiled into machine code by using specific
engineering tools provided by PLC vendors. The motivation for using FBD as the
target language in this study comes from the fact that it is the de facto standard in
many industrial systems [26], such as the ones in the railway transportation domain.
Programs running on a PLC execute in a loop, in which the iteration follows the
“read-execute-write” semantics. FBD is popular because of its graphical notations
and its usefulness in applications with a high degree of data flow between control
components. As shown in Figure 5.1, predefined logical and/or stateful blocks (i.e.,
SR, XOR, TOF, LT and TON in Figure 5.1) and signals (i.e., connections) between
blocks represent the behavior of an FBD program. The blocks are supplied by the
hardware manufacturer or defined by a developer. PLCs contain particular types of
blocks called timers (e.g., TON and TOF) that provide the same functions as timing
relays in electrical circuits and are used to activate or deactivate a device after a
preset interval of time. For more details on this programming language we refer the
reader to the work of John et al. [20].

2.2 Automated Test Generation for PLC Embedded Software

In general, automated test generation has been explored in a considerable amount
of work [25] in the last couple of years. Numerous techniques for automated test
generation using code coverage criteria (e.g., [9, 4]) have been proposed in the last
decade, since test suites can be created and executed with reduced human effort and
cost. However, for domain specific languages used in embedded software development,
contributions have been more sparse. For IEC 61131-3 software, a few automated
test generation approaches [30, 18, 28] have been proposed in the last couple of years,
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but currently there is a lack of tool support. In our previous work, we developed
an automated test input generation approach and tool named CompleteTest
[8], which automatically produces test suites for a given coverage criterion and an
IEC 61131-3 program written using the FBD language. CompleteTest supports
different code coverage criteria with the default criterion being decision coverage.

2.3 Mutation Testing

Recent work [13, 17] suggests that coverage criteria alone can be a poor indication of
fault detection in testing. To tackle this issue, researchers have proposed approaches
for improving fault detection by using mutation analysis as a test criterion. Mutation
analysis is the technique of automatically generating faulty implementations of a
program for the purpose of examining the fault detection ability of a test suite [6].
A mutant is a new version of a program created by making a small change to the
original program. The execution of a test case on the resulting mutant may produce a
different output as the original program, in which case we say that the test case kills
that mutant. The mutation score is calculated using either an output-only oracle (i.e.,
strong mutation [29]) or a state change oracle (i.e., weak mutation [15]) against the
set of mutants. For all programs, one needs to assess the fault-finding effectiveness of
each test suite by calculating the ratio of mutants killed to total number of mutants.
When this technique is used to generate test suites rather than evaluating existing
ones, it is commonly referred to as mutation testing or mutation-based test generation.
Despite its effectiveness [21], to the best of our knowledge, no attempt has been
made to propose and evaluate mutation testing for PLC embedded software written
in the IEC 61131-3 FBD programming language. This motivated us to develop an
automated test generation approach based on mutation testing targeting this type of
software.

3 Mutation Test Generation for PLC Embedded Soft-
ware

Within the last decade model-checking has turned out to be a useful technique for
generation of test cases from models [10]. In this paper, we describe an approach to
automatically generate test suites using a model checker based on mutation testing
for PLC embedded software. Overall, the approach is composed of the following
steps, mirrored in Figure 5.2:

1. Mutant Generation. This first step (described in detail in Section 3.1)
entails systematically making small syntactic changes (mutants) to a program
based on a set of predefined operators (e.g., mimicking programming errors).
The output of this step is a set of replicas of the original program, each with
one inserted mutant.

2. Model Aggregation. The second step (described in detail in Section 3.2) is
used for combining a program and the set of mutants into a single model. The
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Figure 5.2: Overview of mutation testing for IEC 61131-3 FBD programs.

output of this step is a model containing the original structure and behavior of
the program together with all inserted mutants.

3. Mutant Annotation. The third step (described in Section 3.3) involves the
annotation of the combined model with instrumentation instructions for the
detection of each mutant. This means that the mutation detection monitor
is used to record the mutant execution and detection, thus for all mutants a
property is created for checking the detection of mutants.

4. Test Suite Generation. The fourth step (described in Section 3.4) requires
the use of the Uppaal model checker [22] to generate a set of test cases
satisfying the detection of mutants by using the model checker’s ability to
export abstract traces witnessing a submitted property.

3.1 Mutation Generation

To facilitate mutation testing, we begin by generating mutated versions of the
original program. The mutation generator parses a given program and processes
the structural elements for performing mutations. In particular, for each mutation
operator, the program is traversed invoking the corresponding mutation function at
all possible locations, each mutation resulting in a separate mutant version of the
program. For the creation of mutants, we rely on previous studies that looked at
commonly occurring faults in IEC 61131-3 software [23, 27]. We used these common
faults in this study for establishing the following mutation operators:
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• Logic Block Replacement Operator (LRO) replaces a logical block with another
block from the same function category (e.g., replacing an XOR block with an
OR block),

• Comparison Block Replacement Operator (CRO) replaces a comparison block
with another block from the same function category (e.g., replacing a Less-Than
(LT) block with a Less-or-Equal (LE) block),

• Arithmetic Block Replacement Operator (ARO) replaces an arithmetic block
with another block from the same function category (e.g., replacing a maximum
(MAX) block with a subtraction (ADD) block),

• Negation Insertion Operator (NIO) negates an input or output connection (e.g.,
an input variable IN1 becomes not(IN1)),

• Value Replacement Operator (VRO) replaces a value of a constant variable
connected to a block (e.g., replacing a constant value (const = 20s) with its
boundary values (e.g., const = 19s and const = 21s)), and

• Timer Block Replacement Operator (TRO) replaces a timer block with another
block from the same function category (e.g., replacing a Timer-On (TON) block
with a Timer-Off (TOF) block).

These mutation operators are systematically applied to the entire program (i.e.,
blocks, variables, constants, connections) and thus resulting in a set of mutants, each
simulating one syntactic change.

3.2 Model Aggregation

We start the model aggregation step with the translation of a program and its set of
mutants to a timed automata representation. We have shown in a previous study [8]
how the mapping of an IEC 61131-3 program to timed automata is implemented.
Timed automata, introduced by Alur and Dill [1], were chosen because there is an
already existing formal semantics and tool support for simulation and model-checking
using Uppaal [22] and automated test generation using CompleteTest [8]. A
timed automaton is a standard finite-state automaton extended with time (i.e., real-
valued clocks are used for measuring time progress). A model in Uppaal consists of
a network of processes that are composed of locations. Transitions between these
locations define how the model behaves. The semantics of a timed automaton A is
defined in terms of a state transition system, where the state of A is defined as a
pair (l, u), where l is a location (i.e. node) and u is a clock assignment. A state of A
depends on its current location and on the current values of its clocks. A network of
timed automata B0 ‖ ... ‖ Bn−1 is a parallel composition of n timed automata over
synchronization functions (i.e., a! is correlative with a?). Further information on
timed automata can be found in [1]. In our previous work [8] we showed that an IEC
61131-3 FBD program can be transformed to a formal representation containing
both its functional and timing behavior. In this study, the model aggregation is
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using this already developed translation for obtaining the model needed for running
mutation-based test generation. Let M be a finite set of of mutants, each of which
contains one syntactic change in the original program P . The model aggregation
step is applied as follows:

• Create a timed automaton P corresponding to the original FBD program, and
construct the structure of the program representing the set of blocks bn, set of
signals sm and set of variables vp in P: b1 ‖ ... ‖ bn, s1 ‖ ... ‖ sm and v1 ‖ ... ‖ vp.

• For each mutant mi in M , created by changing a block, signal or variable in P ,
create a duplicate version of it (e.g., b11 is a duplicate of b1) having a different
identifier and output than the original. This duplicate version has an interface,
consisting of a name identifier. In addition, this duplicate version contains
the same inputs as the original behavior, but different output variables and
internal parameters in case of a mutated block. The interface is used to access
both the block behavior and its duplicated version.

• Create a supervision automaton that executes each block and its mutants
according to the order of execution. The execution order N is automatically
defined according to the general rules included in the IEC 61131-3 standard
[16]. This predetermined order directly dictates the data dependency in a
program. Basically, each mutated entity executes in parallel with its original
counterpart.

As a result of the model aggregation step we consider that the combined model
is a closed network of timed automata. This model, briefly shown in Figure 5.2,
contains four processes, two modeling the program and its mutants and the other
two supervising the overall execution and monitoring the mutant detection. To
show an example of an aggregated model cycle scan, different actions are executed:
read(IN) for reading input variables, write(OUT) for updating the output variables,
and write(OUT(mi)) for updating the duplicated output variables corresponding to
each mutant mi. When the execution order holds, the input variables are updated
and the execution continues to the next block.

3.3 Mutant Annotation

Informally, our approach is based on the idea that in order to kill all mutants of a
specific program, it would be sufficient to (i) annotate the mutants in an FBD program
by adding a mutation detection monitor, (ii) formulate a reachability property for
the mutation score (i.e., what portion of the existing mutants have been killed), and
(iii) find a path from the initial state to some state where the mutation score is
100%. Thus, using auxiliary variables, we annotate the aggregated model such that
a condition describing whether a single mutant is killed or not can be expressed.

For annotation, it should be noted that there are different interpretations of how
to implement mutation analysis. The most common implementation, called strong
mutation deals with the comparison of the original and mutated program outputs
at the end of the execution cycle. Another way is weak mutation, which compares
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the state of the program immediately after the execution of the mutated part of the
program. As these implementations can be useful in their different interpretation of
mutation analysis, our approach employed both approaches.

Weak Mutation.

A mutant is weakly killed in an FBD program if it leads to a block output change
(i.e., block infection) compared to the original program behavior. For each mutation
operator we define a detection monitor that precisely describes the decision that leads
to a change in block output. In model checking we require a reachability property
and a mutant detection monitor that guides the search towards detection. We define
this weak mutation monitor for individual mutation operators. For each mutant
mi in M , where M is the entire set of mutants, there is a weak mutation monitor
wmi(M) that looks at the block output change; if wmi(M) is 1 then mi is detected.
Using a model checker, the aim of weak mutation testing is to achieve a state where
all mutants are killed with respect to the block output change. For generating tests
for weak mutation we represent the test obligations over a set of variables monitoring
the original behavior and its mutants as a reachability property.

Strong Mutation.

Weak mutation testing for an FBD program results in a test suite where an internal
block is infected; however, a change in block output does not necessarily propagate to
an observable program output. Using a model checker, we propose to propagate the
mutated behaviors to the output of the program using additional data variables and
signals and monitor the change in output using a strong mutation monitor. For each
mutant mi in M , where M is the entire set of mutants, the output of each mutant
is propagated to the depended blocks until it reaches the program output. There
is a strong mutation monitor smi(M) that looks at the program output change; if
smi(M) is 1 then mi is detected. Using a model checker, the aim of strong mutation
testing is to achieve a state where all mutants are killed with respect to the program
output change. In our scenario, a mutant is killed if there exists a path in the model
such that a test input shows that the mutated program output differs from the
output of the original program.

3.4 Test Generation

In order to generate a test suite for mutation testing of FBD programs using Uppaal,
we make use of Uppaal’s ability to generate traces witnessing a submitted reachability
property. A trace produced by the model checker for a given reachability property
defines the set of actions executed on an FBD program which in our case is considered
the system model fbd. An example of a diagnostic trace has the following form
(fbd0)

t1−→ (fbd1)
t2−→ ...

tn−→ (fbdn), where (fbdk) are states of the combined model
and ak are either internal synchronization actions, time-delays or read!, execute!,
and write! global synchronizations. Test cases are obtained by extracting from the
test path the observable actions read! and write! as these actions contain updates
on input and output variables. In summary, the output of this step is a set of ordered



Study 5. Mutation-Based Test Generation for PLC 149

Faulty and 
Original 

Programs

Faulty Programs

Mutation-Based Test 
Generation

TESTTESTTest 
Suite

Original Programs

Manual Testing 

TESTTESTTest 
Suite

generates

generates

executed on

executed on

Faulty Programs

Decision Coverage-
Based Test Generation

TESTTESTTest 
Suite

generates executed on

Figure 5.3: Overview of the experimental setup used to perform the case study.

test cases containing inputs, actual outputs and timing information (i.e., the time
parameter in the test suite is expressing timing constraints within one program).

4 Experimental Evaluation
In order to evaluate the proposed mutation test generation technique, we designed
an industrial case study. In particular, we aimed to answer the following research
questions:

• RQ1: Does mutation adequate test suites detect more faults than tests suites
manually created by industrial engineers or automatically created test suites
based on decision coverage?

• RQ2: Are mutation adequate test suites less costly than tests suites manually
created by industrial engineers or automatically created test suites based on
decision coverage?

The case study setup is shown in Figure 5.3. From a high level view we started
the case study by collecting: (i) a set of real industrial programs from a recently
developed train control management system (TCMS), and (ii) manual test suites
created for the above programs by industrial engineers. The studied programs were
already thoroughly tested and are currently used in a set of operational trains. For
all programs, test suites were also generated for weak mutation, strong mutation and
decision coverage (as detailed below).

In order to measure fault detection, realistic faulty versions of the programs under
test are required. However, the data set did not contain any information about
what faults occurred during development, as Bombardier Transportation AB does
not keep any such data in a format that could be directly collected post-mortem
at this level of testing. To overcome this issue, several engineers from Bombardier
were asked to manually create a number of faults for the programs considered in this
study. We obtained faults from engineers at Bombardier Transportation manually
introducing relevant faults in some of the programs considered in this study. Since
mutation-based test generation is using an existing program implementation to guide
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the search, we automatically generate all tests suites using the seeded faults instead
of the original programs. This corresponds to the realistic situation where an engineer
has made a fault located in the program to be tested. In summary, we used a TCMS
system containing 61 programs provided by Bombardier Transportation AB. These
programs contained on average per program: 828 lines of IEC 61131-3 FBD code,
22 decisions (i.e., branches), 11 input variables and 5 output variables.

Manually Seeding Faults.

For the TCMS programs, we provided four engineers working at Bombardier Trans-
portation AB, who were not involved with the study with a document on doing fault
seeding together with all the 61 programs. We asked each engineer to seed faults
into the set of programs; we followed a specific fault seeding procedure using the
IEC 61131-3 programming tools the engineers are using for developing the programs
and instructed them to insert faults that were as realistic as possible. In particular,
we instructed the engineers to insert any number of relevant faults, based on their
experience, in the set of programs we provided as a TCMS project. We specifically
instructed them to try to insert multiple faults in the same program one at the
time and seed faults in at least ten programs from the total of 61. To avoid any
misunderstanding, the fault seeding procedure document included information about
the type of faults we were interested in: any fault that they might have encountered
in their experience, as long as the interface (i.e., inputs and outputs) remained the
same. This includes, but is not limited to, faults associated with variables, blocks,
connections and constants. The fault seeding procedure resulted in 77 faults, versions
of 33 (out of 61 in total) original programs containing a single fault (i.e., each fault
contained one or more changes in the program). Each of the collected and generated
test suites was executed on each of the faulty versions and its original counterpart
so that a fault detection score could be calculated. Practically, each faulty variant
contained one fault that had been manually seeded. A fault was considered to be
detected by a test suite if the output from the faulty program differed from that of
the original program.

Test Generation

For each faulty program, we ran mutation and decision-coverage test generation ten
times using a random-depth-first search (RDFS) strategy with random seed (i.e.,
test suites are varying from run to run), each test generation run with a stopping
time limit for the search of 10 minutes. The stopping criteria for the search is
three-fold: achieving 100% mutation score, reaching the time limit of 10 minutes,
or getting a memory exception. We chose a time limit of 10 minutes for the sake
of this experiment. In addition, we used manual test suites created by industrial
engineers in Bombardier Transportation from a TCMS project delivered already to
customers. Manual test suites were collected by using a post-mortem analysis of the
test data available. The test suites collected in this study were based on functional
specifications expressed in a natural language. Practically, we considered the original
TCMS programs and for each faulty program, we executed the test suites produced
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by manual testing for the original program. Finally, for all test suites we collected
the following measures: generation time, execution time, number of test cases and
fault detection score. In order to calculate the fault detection score, each test suite
was executed on both the original program and its faulty counterpart. In case the
results differed between the executions, the fault was considered to be detected.

Measuring Cost.

We measured the cost of performing testing focusing on the unit testing process as it
is implemented in Bombardier Transportation for testing the programs selected in
this case study. For the TCMS system, the creation and execution of test cases is
performed by the implementer of the IEC 61131-3 software. In the cost measure, we
use the creation cost, the execution cost, and the result check cost. The cost does not
include the required tool preparation, the reporting and the maintenance of the test
suite. We consider that all cost components related to human effort are depended
to the number of test cases. The higher the number of tests cases, the higher are
the respective costs. We assume this relationship to be linear with a constant factor
representing the average time spend by an engineer in each cost component for a test
case. Practically, we measured the costs of these activities directly as an average of
the time taken by three industrial engineers (working at Bombardier Transportation
implementing some of the IEC 61131-3 programs used in our case study) to perform
manual testing.

5 Experimental Results and Discussion

The case study presented us with a fault detection score and a cost measurements
for each of the collected test suites (i.e., manually created test suites by industrial
engineers (MAN), mutation-adequate test suites (i.e., weak-mutation testing (WM),
strong-mutation testing (SM)) and automatically generated test suites based on
decision coverage (DC)). The overall results of this study are summarized in the
form of boxplots1 in Figure 5.4 and 5.5.

Fault Detection.

To answer RQ1 regarding the fault detection, in terms of detection of manually
seeded faults, we focused on comparing all DC, WM, SM and MAN test suites. For
all programs, as shown in Figure 5.4, the fault detection scores obtained by manual
written test suites are higher in average with 9% and 6% than those achieved by
weak mutation and strong mutation respectively. The difference in fault detection
is slightly greater between strong-mutation testing and decision coverage-adequate
testing (i.e., a difference of almost 12% on average). To understand how manual
test suites achieve better fault detection than mutation-adequate test suites, we
examined if the test suites are particularly weak or strong in detecting certain type

1boxes spans from 1st to 3rd quartile, black middle lines mark the median and the whiskers
extend up to 1.5x the inter-quartile range and the circle symbols represent outliers.
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Figure 5.4: Fault detection results for manual testing (MAN), decision coverage-
directed test generation (DC), weak mutation testing (WM) and strong mutation
testing (SM).

of faults. We concern this analysis to what kind of faults were detected by manual
testing and not by strong-mutation test generation. From a total of 77 faults, we
identified eight faults (i.e., for exemplification purposes these faults are named Fault
1-8) that were not detected by any strong-mutation test suite while being detected
by manual test suites. To produce meaningful results the remaining 69 faults are
not included in this fault detection analysis because there is no consistent difference
between manual and strong-mutation test suites. There are some broad trends for
eight faults that can be used for explaining at least the difference in fault detection
between manual and strong-mutation testing. Test suites written using manual
testing are able to detect all of these eight faults. Mutation test suites are achieving
a poor selection of test inputs produced for detecting certain faulty behaviors; for
six faults, strong mutation testing generated test suites achieving 100% mutation
score while for the remaining two faults, the model checker was unable to find a test
suite detecting all mutants, given the 10 minutes time limit. It seems that manual
testing has a stronger ability to detect these faults than mutation testing because of
its inherent advantage of relying also on the specification of the program under test.
For four of the faults, multiple changes in the program have been seeded (e.g, two
or more blocks and variables have been replaced, deleted or inserted). For example,
Fault 1 contains three changes combining three simpler faults corresponding to the
application of CRO and VRO mutation operators. Fault 2 contains a combination
of seeded changes corresponding to the creation of mutants using LRO and NIO
mutation operators. In addition, Faults 3 and 4 contain multiple changes that were
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Figure 5.5: Cost measurement results for manual testing (MAN), decision coverage-
directed test generation (DC), weak mutation testing (WM) and strong mutation
testing (SM).

not captured by previously defined mutation operators. On the other hand, four
of the faults are first order faults containing only one change in the program. A
feedback loop signal connecting one of the outputs of the programs with one of the
blocks was seeded in Faults 5 and 6. On the other hand, Fault 7 contains an extra
logical block that was added to the original program while in Fault 8 a constant
variable has been replaced to a non-boundary value. As a direct result, we discuss in
Section 5.1 the improvement of mutation-based test generation for PLC software by
considering additional mutation operators not considered before in the literature [23,
27] to model possible faults.

Cost.

We interviewed three engineers working on developing and manually testing TCMS
software and asked them to estimate the time (in minutes) needed to create, execute
and check the result of a test suite. All engineers independently provided similar
cost estimations. We averaged the estimated time given by these three engineers
and we calculated each individual cost using the following constants: 6.6 minutes
for the creation of a test case, 3.3 minutes for the execution of a test case and 2.5
minutes for the checking of the result of a test case. Practically, for answering RQ2,
we used these constants and the number of test cases in each test suites to represent
the average time spend by an engineer to manually test each program. In addition,
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for mutation-based and decision coverage-directed test generation the total cost
involves both machine and human resources. We calculated the cost of generating
and executing a test suite by directly measuring the time required by the tool to run
the test generation and the time required to execute each test case. For the cost of
checking the test result we used the same average time as for manual testing (i.e. 2.5
minutes for the checking of the result of a test case). The resulting cost measures
are reflected in Figure 5.5. The cost of performing testing using mutation testing
either weak or strong is consistently significantly lower than for manually created
test suites; automatically generated test suites have a smaller testing cost (110 and
115 minutes shorter testing time on average for WM and SM respectively) than the
cost of using manual test suites. A more detailed cost measurement would be needed
to obtain more confidence in the cost results obtained in this study.

5.1 Discussion

To explore the results of our study we consider the implications for future work and
the extent to which mutation testing for PLC programs can be improved.

Improving Mutation Testing for PLC Programs.

The results of this study indicate that fault detection scores obtained by manual test
suites are better than the ones achieved by mutation testing. While comparing just
strong-mutation testing with manual testing, we discovered that some of these faults
are not reflected in the mutation operator list used for generating mutation adequate
test suites, as described in Section 3.1. From our results, we highlight the need for
improving the list of mutation operators used for mutation testing of PLC software
by the addition of the following new mutation operators:

• Feedback loop Insertion Operator (FIO) is inserting a signal connecting an
output variable to any block that is connected with the input variables.

• Logical Block Insertion Operator (LIO) is inserting a logical block between any
other two logical blocks in the program.

• Logical Block Deletion Operator (LDO) is deleting a logical block and connecting
the inputs of this block to the next logical block in the program.

In addition there are couple of already implemented mutation operators (shown in
Section 3.1) that can be improved by considering the following operators:

• Value Replacement Operator-Improved (VRO-I) is replacing a value of a con-
stant variable value connected to a block not only with its boundary values
but also with a selection of non-boundary values including 0, 1, -1.

• Logical Block Replacement Operator-Improved (LRO-I) is replacing a logical
block not only with logical blocks from the same category but also with other
blocks with Boolean inputs (e.g., replace an AND block with an SR block).
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By generating test suites that detect faults created based on these mutation operators,
one could improve the goals of mutation testing for PLC programs. In addition, we
recommend the use of higher-order mutation [19] for PLC software in order to find
more complex faults.

Mutation Testing using Model Checking.

Our study is the first to consider mutation testing using model checking for PLC
programs written in IEC 61131-3 FBD language. Model checking is a formal
technique based on state exploration that has been applied to mutation testing
by either using a process named reflection [3], by state machine duplication [24],
or by explicitly evaluating the fault coverage over multiple mutants [12, 14] thus
creating test cases for manifesting fault propagation. The performance of this kind of
approaches is depended not only on the model size but also the time spent on checking
each and every mutated model or property against its original counterpart. This way
of using the model checker for mutation testing can introduce unnecessary runs of
the model checker and can considerably affect the feasibility of these approaches in
practice. The method proposed in this study for the IEC 61131-3 FBD language is
using a rather different approach for mutation testing, by combining all the mutants
and the original model into a single combined model that is monitored dynamically
using a model checking approach. By considering this way of utilizing the model
checker one could potentially improve the cost of using mutation testing for other
languages and models; the detection can be verified in a single run of the model
checker for all mutated models rather than considering each individual case and thus
removing the unnecessary model checking runs needed for detecting trivial mutants.
This needs to be carefully considered in future studies and compared with other
approaches on mutation testing using model checking.

6 Conclusions
In this paper we introduced mutation testing for PLC programs written in IEC 61131-
3 programming language using a model checker. We implemented our approach
in a tool and used this implementation to evaluate mutation testing on industrial
programs and manually seeded faults. Our results show that mutation testing
achieves lower fault detection compared to manual testing but with a significant
lower cost in terms of testing time. We found out that these fault detection scores
can be improved by considering some new and improved mutation operators for PLC
programs as well as higher-order mutation.
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