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Abstract— In this paper we present a new share-driven server-
based method for scheduling messages sent over the Controller
Area Network (CAN). Share-driven methods are useful in many
applications, since they provide both fairness and bandwidth
isolation among the users of the resource. Our method is the first
share-driven scheduling method proposed for CAN. Our server-
based scheduling is based on Earliest Deadline First (EDF), which
allows higher utilization of the network than using CAN’s native
fixed-priority scheduling approach.

We use simulation to show the performance and properties of
server-based scheduling for CAN. The simulation results show
that the bandwidth isolation property is kept, and they show that
our method provides a Quality-of-Service (QoS), where virtually
all messages are delivered within a specified time.

I. INTRODUCTION

The Controller Area Network (CAN) [1], [2] is widely used
in automotive and other real-time applications. CAN uses a
fixed-priority based arbitration mechanism that can provide
timing guarantees and that is amenable to timing analysis
[3], [4], [5]. However, studies have shown that CAN’s fixed-
priority scheduling (FPS) allows for lower network utilization
than Earliest Deadline First (EDF) scheduling [6], [7].

Today, distributed real-time systems become more and more
complex and the number of micro-controllers attached to CAN
buses continue to grow. CAN’s maximum speed of 1 Mbps
remains, however, fixed; leading to performance bottlenecks.
This bottleneck is further accentuated by the steadily growing
computing power of CPUs. Hence, in order to reclaim some
of the scarce bandwidth forfeited by CAN’s native scheduling
mechanism, novel approaches to scheduling CAN are needed.

In optimising the design of a CAN-based communication
system (and essentially any other real-time communication
system) it is important to both guarantee the timeliness of
periodic messages and to minimize the interference from
periodic traffic on the transmission of aperiodic messages.

Therefore, in this paper we propose the usage of server-
based scheduling techniques (based on EDF) such as Total
Bandwidth Server (TBS) [8], [9], or Constant Bandwidth
Server (CBS) [10], which improves existing techniques since:
(1) Fairness among users of a resource is guaranteed (i.e.,
“misbehaving” aperiodic processes cannot starve well-behaved
processes), and (2) in contrast with other proposals, aperiodic
messages are not sent “in the background” of periodic mes-
sages or in separate time-slots [11]. Instead, aperiodic and
periodic messages are jointly scheduled using servers. This

substantially facilitates meeting response-time requirements,
for both aperiodic and periodic messages.

As a side effect, by using servers, the CAN identifiers
assigned to messages will not play a significant role in the
message response-time. This greatly simplifies the process of
assigning message identifiers (which is often done in an ad-
hoc fashion at an early stage in a project). This also allows
migration of legacy systems (where identifiers cannot easily
be changed) into our new framework.

The paper is organized as follows: In Section II related work
is presented. In Section III we present the server-based CAN
network. Section IV presents an approach to analysis, and in
Section V the proposed method is evaluated using simulation.
Finally, in Section VI we conclude and present future work.

II. BACKGROUND AND RELATED WORK

In this section we will give an introduction to CAN and
present previously proposed methods for scheduling CAN.

A. The Controller Area Network

The Controller Area Network (CAN) [1], [2] is a broadcast
bus designed to operate at speeds of up to 1Mbps. CAN
is extensively used in automotive systems, as well as in
other applications. CAN is a collision-avoidance broadcast
bus, which uses deterministic collision resolution to control
access to the bus (so called CSMA/CA). CAN transmits data
in frames containing a header and 0 to 8 bytes of data.

The CAN identifier is required to be unique, in the sense that
two simultaneously active frames originating from different
sources must have distinct identifiers. Besides identifying the
frame, the identifier serves two purposes: (1) assigning a
priority to the frame, and (2) enabling receivers to filter frames.

The basis for the access mechanism is the electrical charac-
teristics of a CAN bus. During arbitration, competing stations
are simultaneously out-putting their identifiers, one bit at the
time, on the bus. Bit value “0” is the dominant value. Hence,
if two or more stations are transmitting bits at the same
time, and one station transmit a “0”, then the value of the
bus will be “0”. By monitoring the resulting bus value, a
station detects if there is a competing higher priority frame
(i.e., a frame with a numerically lower identifier) and stops
transmission if this is the case. Because identifiers are unique
within the system, a station transmitting the last bit of the
identifier without detecting a higher priority frame must be
transmitting the highest priority active frame, and can start



transmitting the body of the frame. Thus, CAN behaves as a
priority based queue since, at all nodes, the message chosen
during arbitration is always the active message with the highest
priority.

B. Scheduling on CAN

In the real-time scheduling research community there exist
several different types of scheduling. We can divide the
classical scheduling paradigms into the following three groups:

1) Priority-driven (e.g., FPS or EDF) [12].
2) Time-driven (table-driven) [13], [14].
3) Share-driven [15], [16].
For CAN, priority-driven scheduling is the most natural

scheduling method since it is supported by the CAN protocol,
and FPS response-time tests for determining the schedulability
of CAN message frames have been presented by Tindell et
al. [3], [4], [5]. This analysis is based on the standard fixed-
priority response-time analysis for CPU scheduling presented
by Audsley et al. [17]. TT-CAN [18] provides time-driven
scheduling for CAN, and Almeida et al. present Flexible
Time-Triggered CAN (FTT-CAN) [19], [20], which supports
priority-driven scheduling in combination with time-driven
scheduling. FTT-CAN is presented in more detail below.
However, share-driven scheduling for CAN has not yet been
investigated. The server-based scheduling presented in this
paper provides the first share-driven scheduling approach for
CAN. By providing the option of share-driven scheduling
of CAN, designers are given more freedom in designing an
application.

1) Flexible Time-Triggered Scheduling: Pedreira and
Almeida present a method to combine event-triggered traffic
with time-triggered [11]. The approach is based on FTT-CAN
(Flexible Time-Triggered communication on CAN) [19], [20].
In FTT-CAN, time is partitioned into Elementary Cycles (ECs)
which are initiated by a special message, the Trigger Message
(TM). This message contains the schedule for the synchronous
traffic that shall be sent within this EC. The schedule is
calculated and sent by a master node. FTT-CAN supports
both periodic and aperiodic traffic by dividing the EC in two
parts. In the first part, the asynchronous window, the aperiodic
messages are sent, and in the second part, the synchronous
window, traffic is sent according to the schedule delivered by
the TM. More details of the EC layout are provided in Fig. 1.

2) EDF Scheduling: As an alternative to the fixed-priority
mechanisms offered by CAN, an approach for EDF was
developed by Zuberi et al. [21]. They propose the usage of a
Mixed Traffic Scheduler (MTS), which attempts to give a high
utilization (like EDF) while using CAN’s 11-bit identifiers
for arbitration. Using the MTS, the message identifiers are
manipulated in order to reflect the current deadline of each
message. However, since each message is required to have a
unique message identifier, they suggested the division of the
identifier field into three sub-fields.

Other suggestions for scheduling CAN according to EDF
include the work by Livani et al. [6], [22] and Di Natale [23].
These solutions are all based on manipulating the identifier of
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Fig. 1. EC layout and TM data contents (FTT-CAN approach).

the CAN frame, and thus they reduce the number of possible
identifiers to be used by the system designers. Restricting the
use of identifiers is often not an attractive alternative, since it
interferes with other design activities, and is even sometimes
in conflict with adopted standards and recommendations [24].

Using FTT-CAN, Pedreiras and Almeida [7] show how
it is possible to send periodic messages according to EDF
using the synchronous window of FTT-CAN. Their method is
based on periodic message sets with fixed deadlines. Pedreiras
and Almeida have also developed a method for calculating
the worst-case response-time of the messages using the asyn-
chronous window [11]. Using their approach, greater flexibility
is achieved since the scheduling is not based on manipulating
the identifiers. Instead, there is a master node performing the
scheduling of the CAN bus.

The drawback of all these methods, for achieving EDF,
is that they require each message to have a fixed, a priori
known, deadline. Thus, using these methods, it is infeasible
to implement a server-based scheduler, since, when using a
server, the message deadlines are not a priori known, but
assigned by the server at the time of message arrival.

III. SERVER-BASED SCHEDULING ON CAN

In order to provide guaranteed network bandwidth for real-
time messages, we propose the usage of server-based schedul-
ing techniques instead of the previously proposed methods
described above. We have previously studied CBS end-to-end
system design [25], and we also gave a brief presentation of
a CBS-based scheduling approach for CAN in [26]. In this
paper we will take a more general approach to server-based
scheduling, and describe the basic mechanisms in detail.

Using servers, the whole network will be scheduled as
a single resource, providing bandwidth isolation as well as
fairness among the users of the servers. However, in order
to make server-scheduling decisions, the server must have
information on when messages are arriving at the different
nodes in the system, so that it can assign them a deadline
based on the server policy in use. This information should not
be based on message passing, since this would further reduce
the already low bandwidth offered by CAN. Our method,
presented below, will provide a solution to this.

A. Server Scheduling (N-Servers)

In real-time scheduling, a server is a conceptual entity
that controls the access to some shared resource. Sometimes
multiple servers are associated with a single resource. For



instance, in this paper we will have multiple servers mediating
access to a single CAN bus.

A server has one or more users. A user is typically a process
or a task that requires access to the resource associated with
the server. In this paper, a user is a stream of messages that is
to be sent on the CAN bus. Typically, messages are associated
with an arrival pattern. For instance, a message can arrive
periodically, aperiodically, or it can have a sporadic arrival
pattern. The server associated to the message handles each
arrival of a message.

In the scheduling literature many types of servers are
described. Using FPS, for instance, the Sporadic Server (SS)
is presented by Sprunt et al. [27]. SS has a fixed priority
chosen according to the Rate Monotonic (RM) policy. Using
EDF, Spuri and Buttazzo [8], [28] extended SS to Dynamic
Sporadic Server (DSS). Other EDF-based schedulers are the
Constant Bandwidth Server (CBS) presented by Abeni [10],
and the Total Bandwidth Server (TBS) by Spuri and Buttazzo
[8], [9]. Each server is characterized partly by its unique
mechanism for assigning deadlines, and partly by a set of
variables used to configure the server. Examples of such
variables are bandwidth, period, and capacity.

In this paper we will describe a general framework for
server scheduling of the CAN bus. As an example we will
use a simplified version of TBS. A TBS, � , is characterized
by the variable

���
, which is the server utilization factor, i.e.,

its allocated bandwidth. When the nth request arrives to server
� at time ��� , it will be assigned a deadline according to

� �	� max 
����� � ���������
� ���� (1)

where
� � is the resource demand (can be execution time or, as

in this paper, message transmission time). The initial deadline
is

��� ��� .
1) Server Characterization: Each node on the CAN bus

will be assigned one or more network servers (N-Servers).
Each N-Server, � , is characterized by its period � � , and it
is allowed to send one message every server period. The
message length is assumed to be of worst-case size. A server
is also associated with a relative deadline � � ��� � . At
any time, a server may also be associated with an absolute
deadline

� �
, denoting the next actual deadline for the server.

The server deadlines are used for scheduling purposes only,
and are not to be confused with any deadline associated with
a particular message. (For instance, our scheduling method,
presented below, will under certain circumstances miss the
server deadline. As we will show, however, this does not
necessarily make the system unschedulable.)

2) Server State: The state of a server � is expressed by its
absolute deadline

� �
and whether the server is active or idle.

The rules for updating the server state is as follows:

1) When an idle server receives message � at time � � it
becomes active and the server deadline is set so that

� � � � max 
����!�"� � � � ������ � (2)

2) When an active server sends a message and still has
more messages to send, the server deadline is updated
according to � � � � � ������ �"� �

(3)

3) When an active server sends a message and has no more
messages to send, the server becomes idle.

B. Medium Access (M-Server)

The native medium access method in CAN is strictly
priority-based. Hence, it is not very useful for our purpose
of scheduling the network with servers. Instead we introduce
a master server (M-Server) which is a piece of software
executing on one of the network nodes. Scheduling the CAN
bus using a dedicated “master” has been previously proposed
[7], although in this paper the master’s responsibilities are a
bit different. Here the M-Server has two main responsibilities:

1) Keep track of the state of each N-Server.
2) Allocate bandwidth to N-Servers.

The first responsibility is handled by guessing whether or
not N-Servers have messages to send. The initial guess is to
assume that each N-Server has a message to send (e.g., initially
each N-Server � is assigned a deadline

� � �#� �
). Later we

will see how to handle erroneous guesses.
In fact, the N-Servers’ complete state is contained within

the M-Server. Hence, the code in the other nodes does not
maintain N-Server states. The code in the nodes only has
to keep track of when bandwidth is allocated to them (as
communicated by the M-Server).

The M-Server divides time into Elementary Cycles (ECs),
similar to the FTT-CAN approach presented in Section II-B.1.
We use �$�% to denote the nominal length of an EC. ��$�% is the
temporal resolution of the resource scheduled by the servers, in
the sense that N-Servers can not have their periods shorter than
�$�% . When scheduling a new EC, the M-Server will (using
the EDF principle based on the N-Servers’ deadline) select
the N-Servers that are allowed to send messages in the EC.
Next, the M-Server sends a Trigger Message (TM). The TM
contains information on which N-Servers that are allowed to
send one message during the EC. Upon reception of a TM, the
N-Servers allowed to send a message will enqueue a message
in their CAN controllers. The messages of the EC will then
be sent using CAN’s native priority access protocol. Due to
the arbitration mechanism, we do not know when inside an
EC a specific message is sent. Hence, the bound on the delay
of message transmissions will be proportional to the size of
the EC.

Once the TM has been sent, the M-Server has to determine
when the bus is idle again, so the start of a new EC can be
initiated. The M-Server does this by sending a stop1 message
(STOP) with the lowest possible priority. After sending the
STOP message to the CAN controller, the M-Server reads all

1A small delay before sending STOP is required. We need to make sure
that this message is not sent before the other nodes have both processed the
TM (in order to find out whether they are allowed to send or not), and (if
they are allowed to send) enqueued the corresponding message.
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Fig. 2. EC layout and TM data contents (server approach).

messages sent on the bus. When it reads the STOP message
it knows that all N-Servers have sent their messages2. Fig. 2
presents the layout of the EC when using servers. Note that
the servers that are allocated to transmit a message in the EC
are indicated by a ’1’ in the corresponding position of the TM,
and that the actual order of transmission is determined by the
message identifiers, and not by the server number.

After reading the STOP message the EC is over and the
M-Server has two tasks to complete before starting the next
EC:

1) Update the state of the N-Servers scheduled during the
EC.

2) Decide how to reclaim the unused bandwidth (if any)
during the EC.

The following two sections describe how these tasks are
solved.

1) Updating N-Server States: At this point it is possible
for the M-Server to verify whether or not its guess that N-
Servers had messages to send was correct, and to update
the N-Servers’ state accordingly. For each N-Server that was
allocated a message in the EC we have two cases:

1) The N-Server sent a message. In this case the guess
was correct and the M-Servers next guess is that the N-
Server has more messages to send. Hence it updates the
N-Server’s state according to rule 2 in Section III-A.2.

2) The N-Server did not send a message. In this case the
guess was incorrect and the N-Server was idle. The new
guess is that a message now has arrived to the N-Server,
and the N-Server state is set according to rule 1 in
Section III-A.2.

2) Reclaiming Unused Bandwidth: It is likely that not all
bandwidth allocated to the EC has been completely used.
There are three sources for unused bandwidth (slack):

1) An N-Server that was allowed to send a message during
the EC did not have any message to send.

2) One or more messages that were sent was shorter than
the assumed worst-case length of a CAN message.

3) The bit-stuffing that took place was less than the worst-
case scenario.

To not reclaim the unused bandwidth would make the M-
Server’s guessing approach of always assuming that N-Servers
have messages to send extremely inefficient. Hence, for our

2Another way of determining when the EC is finished would be that the
CAN controller itself is able to determine when the bus becomes idle. If this
is possible, there is no need for the STOP message. However, by using a
STOP message we are able to use standard CAN controllers.

method to be viable we need a mechanism to reclaim this
bandwidth.

In the case that the EC ends early (i.e., due to unused
bandwidth) the M-Server reclaims the unused bandwidth by
reading the STOP message and immediately initiating the next
EC so no bandwidth is lost.

IV. APPROACH TO ANALYSIS

The server-based scheduling proposed in this paper provides
a high level of Quality-of-Service (QoS), in the sense that N-
Servers, � , almost always deliver their messages within the
bound � � � �$�% , as can be seen in the simulation results
(Section V). A condition for providing this QoS is that the
N-Servers in the system have a total utilisation that fulfils (4).
We can not allocate N-Servers with a total utilisation higher
than (4), since such an allocation of N-Servers could cause
the system to be overloaded. Hence, the total utilisation of the
system is not allowed to exceed� �

�
������ � �
	����� � � � � � ����� � ��� � ������������ �$�% 	 (4)

where � is a N-Server in the system,
�

is the length of a
message (typically worst-case which is 135 bits),

�
is the

network speed in bits/second, � � is the period of the N-Server.
TM and STOP are the sizes of the TM and the STOP messages
in bits, typically 135 and 55 bits, and � ��������� is taking into
account the time representing the computational overhead of
decoding the TM and updating the deadlines after receiving the
STOP message, and ��$�% is the length of the EC in seconds.

A. Message Delivery

Due to the nature of scheduling with ECs, we never know
exactly when inside an EC the message is delivered. This is
because all messages allowed to be sent within an EC will
be sent to the CAN controllers, where the CAN arbitration
mechanism decides the order in which the messages will be
delivered.

Since the deadline of an N-Server may not be on the
boundary between ECs and we have no control of message
order within an EC it may be the case that an N-Server misses
its deadline. Thus, even if an N-Server is scheduled within the
EC where its deadline is, it may be the case that the N-Server
misses its deadline with as much as ��$�% .

Also affecting the message delivery time is the effectiveness
of the M-Server’s guesses about N-Server states. When the
system is not fully utilised (e.g., when one or more N-Servers
do not have any messages to send), the EC will terminate
prematurely and cause a new EC to be triggered. This, in turn,
increases the protocol overhead (since more TM and STOP
messages are being sent). However, it should be noted that this
increase in overhead only occurs due to unutilised resources
in the system. Hence, when the system is fully utilised no
erroneous guesses will be made and the protocol overhead is
kept to a minimum.



However, when a system goes from being under-utilised
to being fully utilised (for instance when a process that was
sleeping is woken up and starts to send messages to its server)
we may experience a temporary overload situation due to the
protocol overhead. If (4) holds for the system then we are
guaranteed that this overload will eventually be recovered.
However, during the time it takes for the overload to be
recovered the M-Server may be unable to schedule each N-
Server in the EC where its deadline is. Hence, occasionally an
N-Server may miss its deadline with as much as �

� ��$�% .

V. EVALUATION

In order to evaluate the performance of our server approach
we have performed simulations. We chose to perform two
different experiments and, for each experiment, investigate
three different scenarios. We have investigated both close
to maximum usage of the bandwidth, and somewhat lower
than maximum usage of the bandwidth. Hence, the difference
between the two experiments is the total bandwidth usage by
the N-Servers.

Each simulation was executed for 20000 milliseconds (ms)
and all message response times were measured. The properties
of the simulations are summarised in Table I.

Experiment 1 Experiment 2
Network speed (bits/ms) 125 125

EC size (in messages) 5 4
EC period (including TM & STOP) (ms) 6.92 5.84

Message transmission time (ms) 1.08 1.08
TM transmission time (ms) 1.08 1.08

STOP transmission time (ms) 0.44 0.44
Number of N-Servers 15 15

Maximum utilisation (according to (4)) 0.780347 0.739726
Utilisation of simulation (N-Servers) 0.614244 0.727838

Utilisation of simulation (% of maximum) 78.71 93.27
Simulation time (ms) 20000 20000

TABLE I

PROPERTIES OF THE TWO EXPERIMENTS.

The simulations show the bandwidth isolation property.
Hence, the N-Servers are not sending more than one message
each � � . If a user of a N-Server is sending messages more
frequently than their allocated bandwidth, the message will be
queued at the server. Different queuing policies can be used.
However, this is not the focus of this paper.

A. Scenario 1

In this scenario only 2 of the totally 15 N-Servers are having
messages to send. N-Server 14 has one message to send every
server period. N-Server 1 also has one message to send every
server period from time 7500 to time 12500. Both N-Servers
deliver their messages within their periods. The result of the
first experiment is shown in Fig. 3, where the N-Server periods
(ms) are ��� �  �� ��� � ����� ���	�
� ��� , and the result of the second
experiment is shown in Fig. 4, where the N-Server periods
(ms) are ��� ���
� ��� � ����� ������� �� .
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Fig. 3. Experiment 1 (medium bandwidth usage) – scenario 1.
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Fig. 4. Experiment 2 (high bandwidth usage) – scenario 1.

What we see in this scenario is that even though we have
a huge amount of erroneous guesses (since 13 of the N-
Servers have no messages to send, the M-Server will always
make an erroneous guess for them), the N-Servers which have
messages to send are being served as intended, i.e., allowed
to send a message every server period. Hence, the measured
response-times never exceed the N-Server period. Note that the
response-time for N-Server 14 decreases when N-Server 1 has
messages to send. This is due to that the number of erroneous
guesses is less, decreasing the overhead of the protocol.

B. Scenario 2

In this scenario all N-Servers, except N-Server 8, have
a message to send in each server period. N-Server 8 has
one message to send each server period from time 7500 to
time 12500. The result of the first experiment is shown in
Fig. 5, where the period (ms) of N-Servers 1, 8, and 14 are
��� �  �� ��� � ��� �����
� � � ����� ���	�
� ��� . The result of the second
experiment is shown in Fig. 6, where the period (ms) of N-
Servers 1, 8, and 14 are � � � �
� ��� � ��� ������ � � ����� ������� �� .
For simplicity, only N-Servers 1, 8, and 14 are shown in the
graph.

What we can see in the first experiment, is that even though
the bandwidth usage is quite high, the bandwidth isolation
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Fig. 5. Experiment 1 (medium bandwidth usage) – scenario 2.
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Fig. 6. Experiment 2 (high bandwidth usage) – scenario 2.

property is kept and all three N-Servers deliver their messages
within their respective � � . Looking at the whole set of N-
Servers, only 3 of the servers deliver a total number of 5
messages (N-Server 5 and N-Server 7) as late as � � � �$�% .
In the whole simulation a total of 10947 messages were sent.

When running the second experiment, with the close to max-
imum bandwidth requirement, all N-Servers deliver messages
as late as � � � �$�% , and one of the servers (N-Server 4) deliver
one message in � � � �

� �$�% . We believe this is due to the
increased protocol overhead caused by erroneous guesses done
by the M-Server regarding message readiness, as described in
Section IV. Note that only 1 message from a total of 12964
messages was delivered as late as � � � �

� �$�% .

C. Scenario 3

In this scenario all N-Servers have a message to send in
each server period. In the first experiment, which consisted of
a total of 11380 messages, only 3 messages (all from N-Server
10) were delivered at a time later than � � . The 3 late messages
were all delivered in � � � �$�% , i.e., the EC following their
server’s deadline.

When running the second experiment, with the close to
maximum bandwidth requirement, all N-Servers have some
messages delivered in an EC following the server’s deadline.

Also, a total of 20 messages (the simulation had a total of
13477 messages) deliver a message in � � � �

� �$�% .

D. Discussion

The data obtained from all 3 scenarios under both experi-
ments is presented in Table II, where N is the N-Server (0 -
15), S is the scenario (1-3), � � is the N-Server period,

� ���
is the worst-case measured response-time, �

���
is the best-

case measured response-time, � is the number of messages
sent through the N-Server, “ �  ” is the number of messages
which were delivered in � � �"�$�% , and “ � � ” is the number
of messages which were delivered in � � � �

� �$�% .

Experiment 1 Experiment 2
N S ��� � %
	 � %
	 � � � �� ��� � %
	 � %
	 � � � ��
0 1 13.84 0 0 0 0 0 11.68 0 0 0 0 0

2 13.84 9.00 3.24 1446 0 0 11.68 12.56 3.24 1713 3 0
3 13.84 9.04 3.24 1446 0 0 11.68 12.52 4.36 1713 23 0

1 1 13.84 2.84 1.12 362 0 0 11.68 2.60 1.12 429 0 0
2 13.84 7.92 2.16 1446 0 0 11.68 12.68 2.16 1713 11 0
3 13.84 7.96 2.16 1446 0 0 11.68 12.72 3.28 1713 48 0

2 1 13.84 0 0 0 0 0 11.68 0 0 0 0 0
2 13.84 6.84 1.08 1446 0 0 11.68 12.64 1.08 1712 16 0
3 13.84 6.88 1.08 1446 0 0 11.68 12.76 2.20 1712 57 0

3 1 20.76 0 0 0 0 0 17.52 0 0 0 0 0
2 20.76 10.72 1.64 964 0 0 17.52 18.40 1.12 1142 1 0
3 20.76 11.40 2.16 964 0 0 17.52 24.20 1.16 1141 262 14

4 1 20.76 0 0 0 0 0 17.52 0 0 0 0 0
2 20.76 11.84 1.08 964 0 0 17.52 23.68 4.84 1141 257 1
3 20.76 10.84 1.08 964 0 0 17.52 25.08 5.60 1141 319 2

5 1 27.68 0 0 0 0 0 23.36 0 0 0 0 0
2 27.68 28.12 1.76 723 4 0 23.36 27.88 9.92 856 87 0
3 27.68 27.60 2.76 723 0 0 23.36 29.88 7.08 856 146 3

6 1 27.68 0 0 0 0 0 23.36 0 0 0 0 0
2 27.68 27.04 4.68 723 0 0 23.36 29.00 12.52 856 51 0
3 27.68 26.52 1.68 723 0 0 23.36 28.84 10.24 856 110 0

7 1 34.60 0 0 0 0 0 29.20 0 0 0 0 0
2 34.60 34.68 8.44 578 1 0 29.20 33.24 15.04 685 21 0
3 34.60 34.20 9.24 578 0 0 29.20 34.76 12.80 685 34 0

8 1 34.60 0 0 0 0 0 29.20 0 0 0 0 0
2 34.60 28.76 2.88 145 0 0 29.20 32.16 17.20 172 16 0
3 34.60 33.12 8.16 578 0 0 29.20 35.00 15.68 685 71 0

9 1 41.52 0 0 0 0 0 35.04 0 0 0 0 0
2 41.52 40.80 25.00 482 0 0 35.04 39.64 22.36 570 27 0
3 41.52 40.84 26.60 482 0 0 35.04 39.32 20.80 570 36 0

10 1 41.52 0 0 0 0 0 35.04 0 0 0 0 0
2 41.52 39.72 25.76 482 0 0 35.04 40.12 24.96 570 52 0
3 41.52 43.80 25.52 482 3 0 35.04 39.68 24.48 570 75 0

11 1 48.44 0 0 0 0 0 40.88 0 0 0 0 0
2 48.44 47.52 21.96 413 0 0 40.88 44.72 27.48 489 15 0
3 48.44 47.60 23.08 413 0 0 40.88 47.08 24.60 489 18 1

12 1 48.44 0 0 0 0 0 40.88 0 0 0 0 0
2 48.44 46.44 22.6 413 0 0 40.88 44.12 29.24 489 23 0
3 48.44 46.52 22.00 413 0 0 40.88 46.00 27.20 489 45 0

13 1 55.36 0 0 0 0 0 46.72 0 0 0 0 0
2 55.36 52.32 29.44 361 0 0 46.72 49.16 32.92 428 2 0
3 55.36 52.36 30.36 361 0 0 46.72 51.40 30.32 428 17 0

14 1 55.36 41.52 37.2 361 0 0 46.72 39.12 31.92 428 0 0
2 55.36 51.24 30.36 361 0 0 46.72 50.20 35.52 428 28 0
3 55.36 51.28 29.28 361 0 0 46.72 50.32 34.08 428 51 0

TABLE II

SUMMARY OF SIMULATION RESULTS.

Since deadlines occur inside an EC, it is natural that some
messages are delivered at a time of � � � �$�% , since we never
know exactly when a specific message is sent inside an EC (as
discussed in Section IV-A). Therefore, occasionally, a message
is the last message delivered within an EC, even though its
corresponding N-Server’s deadline is earlier.



For the second experiment, some messages are delivered
at a time of � � � �

� �$�% . This is caused by bandwidth
overload due to erroneous guesses, and messages have to be
scheduled in a later EC than the one containing their N-
Server’s deadline (as discussed in Section IV-A). However,
this is a rare phenomenon that only occurs in the second
experiment when the bandwidth demand by the N-Servers is
near to the theoretical maximum expressed by (4).

VI. CONCLUSIONS

In this paper we have presented a new approach for schedul-
ing of the Controller Area Network (CAN). The difference
between our approach and existing methods is that we make
use of server-based scheduling (based on Earliest Deadline
First (EDF)). Our approach allows us to utilize the CAN
bus in a more flexible way compared to other scheduling
approaches such as native CAN, and Flexible Time-Triggered
communication on CAN (FTT-CAN). Servers provide fairness
among the streams of messages as well as timely message
delivery.

The strength of server-based scheduling for CAN, compared
to other scheduling approaches, is that we can cope with
streams of aperiodic messages. Aperiodic messages on native
CAN would make it (in the general case) impossible to give
any real-time guarantees for the periodic messages sharing
the bus. In FTT-CAN the situation is better, since periodic
messages can be scheduled according to EDF using the
synchronous window of FTT-CAN, thus guaranteeing real-
time demands. However, no fairness can be guaranteed among
the streams of aperiodic messages sharing the asynchronous
window of FTT-CAN.

One penalty for using the server method is an increase of
CPU load in the master node, since it needs to perform the
extra work for scheduling. Also, compared with FTT-CAN, we
are sending one more message, the STOP message, which is
reducing the available bandwidth for the system under heavy
aperiodic load. However, the STOP message is of the smallest
size possible and therefore it should have minimal impact on
the system. However, if the CAN controller is able to detect
when the bus is idle (and pass this information to the master
node), we could skip the STOP message, and the overhead
caused by our protocol would decrease (since this would make
it possible to use our server-based scheduling without STOP-
messages).

As we see it, each scheduling policy has both good and bad
properties. To give the fastest response-times, native CAN is
the best choice. To cope with fairness and bandwidth isolation
among aperiodic message streams, the server-based approach
is the best choice, and, to have support for both periodic
messages with low jitter, and aperiodic messages (although
no fairness among aperiodic messages) and hard real-time,
FTT-CAN is the choice.

Using server-based scheduling, we can schedule for un-
known aperiodic or sporadic messages by guessing that they
are arriving, and if we make an erroneous guess, we are
not wasting much bandwidth. This since the STOP message,

together with the arbitration mechanism of CAN, allow us to
detect when no more messages are pending so that we can
reclaim potential slack in the system and start scheduling new
messages without wasting bandwidth.

However, the approach presented in this paper is not suit-
able for handling background traffic, since all bandwidth is
allocated for the proposed protocol. Traditionally, background
traffic could be assigned priority lower than real-time traffic.
Hence, traffic without real-time demands could use unused
bandwidth without interfering with the real-time traffic.

One future direction is to provide an upper bound on
message delivery. Moreover, we want to investigate whether
unused bandwidth may be shared among servers. Also it would
be interesting to see how the number of allowed messages to
be sent within an EC, assigned to each server, can be varied
in order to provide for example better response-times for the
aperiodic messages.
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