
Technology-preserving transition from single-core to
multi-core in modelling vehicular systems

Alessio Bucaioni1,2, Saad Mubeen1,2, Federico Ciccozzi1, Antonio Cicchetti1, and
Mikael Sjödin1

1 School of Innovation, Design and Engineering
Mälardalen University, Sweden
{name.surname}@mdh.se

2 Arcticus Systems AB, Järfälla, Sweden
{name.surname}@arcticus.se

Abstract. The vehicular industry has exploited model-based engineering for de-
sign, analysis, and develop of single-core vehicular systems. Next generation of
autonomous vehicles will require higher computational power, which can only
be provided by multi-core platforms. Current model-based solutions and related
modelling languages, originally conceived for single-core, can not effectively
deal with multi-core specific challenges, such as core-interdependency and al-
location of software to hardware. In this paper, we propose an extension to the
Rubus Component Model, core of the Rubus model-based approach, for the mod-
elling, analysis, and development of vehicular systems on multi-core. Our goal is
to provide a lightweight transition of a model-based approach from single-core
to multi-core, without disrupting the current technological assets in the vehicular
domain.

Keywords: Model-based engineering, multi-core, vehicular domain, embedded,
real-time, metamodelling.

1 Introduction

Software is ubiquitous in our society. In automotive, vehicles have transitioned from
being mechanics-intensive to software-intensive systems [11]. For instance, the throttle
control system of a modern vehicle is realised by means of Electronic Control Units
(ECUs), sensors, and actuators, connected by several networks, and run by software,
which replace the mechanical linkage between the accelerator pedal and the throttle.
The current trend in the vehicular domain is to go towards vehicles capable of au-
tonomously driving. While most of the current vehicular systems still employ single-
core ECUs, the tendency is to switch to multi-core ECUs. In fact, next generation vehi-
cles, particularly autonomous ones, are expected to require higher computational power,
which can only be provided by multi-core solutions.

On the one hand, the shift to multi-core impacts the way vehicular software is de-
signed, analysed and developed. Current model-based solutions, specifically tailored to
single-core, are not as effective when dealing with multi-core specific challenges, such
as core-interdependency and allocation of software to hardware. On the other hand,

2 Bucaioni et al.

the vehicular industry can not prescind from the current technological assets for many
reasons, among which:

Legacy. It has been estimated that up to 90% of the software of a new vehicle release
can be reused from previous releases when using model-based engineering [37].

Organisation. Original Equipment Manufacturer (OEM) companies define their tech-
nological assets based on decennial contracts with Tier-1 and Tier-2 companies.
Changes to these assets shall not affect these contracts.

Certified run-time support. Functional safety [35] is paramount for the safety critica-
lity of vehicles [36]. Current model-based solutions rely on certified development
environments and real-time operating systems [1]. Typically, the certification pro-
cess adds a development cost overhead between 25 and 100%, and it lasts several
years [28].

We have investigated the extension of Rubus [3], a commercial model-based approach
for vehicular single-core systems, to multi-core with the intent of not disrupting the
current vehicular technological assets related to it. Our hypothesis is two-fold. (H1)
Abstraction provided by models and automation provided by model transformations
can be a game changer in the development of multi-core applications. Abstraction per-
mits to detach software functional modelling from multi-core hardware modelling and
software/hardware allocation modelling. Automation can support the developer in tak-
ing important decisions, such as how to allocate tasks to available cores in order to
maximise a specific quality aspect [12]. (H2) A lightweight transition of a model-based
approach from single-core to multi-core which does not affect critical aspects such as
certified run-time support and lastingness of legacy applications is possible.

In model-based engineering, metamodels play a pivotal role as they define the set
of available modelling entities and relationships for representing the software architec-
ture and its quality attributes. Moreover, they enable automation via model transforma-
tions. However, it is essential that metamodels effectively prescribe the type system, the
structure, and the behaviour of domain-specific applications [33]. In [23] we have dis-
cussed some modelling languages (among which Rubus Component Model) used for
single-core vehicular applications and highlighted the issues arising when using them
for modelling multi-core applications. In particular, existing structural hierarchies lack
concepts for representing multi-core aspects (e.g., cores and partitions) and do not pro-
vide explicit support for core-interdependency and allocation of software to hardware.

In this paper, we propose an extension to the Rubus Component Model (RCM) [17],
core of the Rubus approach, to support multi-core. This represents the first crucial step
in the transition from single-core to multi-core. The contribution of the proposed ex-
tension is two-fold. We provide a modelling language able to prescribe type system,
structure, and behaviour of multi-core applications (H1). In particular, the proposed ex-
tension comprises modelling elements for representing the software architecture, the
hardware platform, and the software to hardware allocation. We ensure backward com-
patibility with legacy single-core applications modelled with RCM and do not entail
any modification to the Rubus run-time layer, the Rubus Kernel (H2).

The remainder of the paper is structured as follows. Section 2 introduces RCM and
motivates its selection as well as its extension. Section 3 presents a comparison between

From single- to multi-core model-based vehicular systems 3

existing related approaches documented in the literature and our solution. Section 4 de-
scribes the proposed solution in all its constituents. Section 5 describes the application
of the proposed solution to an industrial vehicular application. Section 6 and Section 7
discuss the benefits and limitations of our solution and conclude the paper, respectively.

2 The Rubus Component Model

There are several modelling languages used in the vehicular domain, such as RCM,
AUTOSAR [2], ProCom [34], COMDES [20], AADL [15], to name a few. These lan-
guages were not conceived to deal with the complexity of predictable vehicle software
specifically developed to run on multi-core platforms.

We focus on RCM and its extension for multi-core due to the following reasons.
RCM is a good candidate to overcome the issues related to predictability thanks to its
statically synthesised communication as well as its predictable and fine-grained execu-
tion model [24]. RCM uses pipe-and-filter communication and distinguishes between
the control and data flows among its software components. In [25], we showed that
these two features are central for providing early timing verification of the modelled
system, e.g., by supporting end-to-end timing analysis [14]. Another reason for focus-
ing on RCM is the small run-time footprint of the developed software (automatically
generated from RCM models) as compared to other languages [25].

RCM is developed by Arcticus Systems AB3 in collaboration with Mälardalen Uni-
versity. Through the years, RCM has been adopted by several OEM, Tier-1 and Tier-2
companies (e.g., Volvo Construction Equipment, BAE Systems Hägglunds, Hoerbiger
and Knorr Bremse) for the development of embedded real-time software. RCM pro-
vides the Rubus Kernel, a dedicate real-time operating system, which is available for
different processor architectures and certified according to the ISO 26262 [1] standard
ASIL D (Road vehicle – Functional Safety).

RCM was originally thought for providing modelling purposes, but it did not feature
model-based mechanisms, i.e. automation in terms of model transformation. In order to
achieve a full-fledge model-based approach, in [8] we reverse-engineered the RCM
specification in order to express it in a more canonical form, a metamodel, which we
called RubusMM. RubusMM included concepts for expressing software architectures
and concepts for describing timing information of vehicular single-core applications.
In this paper, we extend RubusMM to enable modelling of software applications for
multi-core.

3 Related Work

AUTOSAR [2] is an industrial initiative to provide standardised software architecture
for the development of vehicular software systems. Since the emergence of AUTOSAR
4.0, multi-core support is part of the standard. From a modelling point of view, AU-
TOSAR makes use of a structural hierarchy similar to the one leveraged by RCM and
consisting of system, node, and software component elements. However, it does not

3
https://www.arcticus-systems.com

4 Bucaioni et al.

distinguish between the control and the data flows at the application software level.
In [25], we discussed how this feature is central for providing early timing verifica-
tion of the modelled system. The AUTOSAR modelling language does not provide
clear separation of concerns between the functional (software) and architectural (plat-
form) models [32]. Recently, several works on the use of AUTOSAR for multi-core
have been proposed both from industry and academia. However, their main focus is
on the adaptation of the AUTOSAR run-time support rather than on specific modelling
challenges such as, e.g., allocation of the software components. In [29], the authors in-
vestigated the use of AUTOSAR for virtualised architecture and they identified some
challenges on the use of AUTOSAR for multi-core. They concluded that additional
features for the dynamic allocation of the software were needed. In [22] and [6], the
authors evaluated AUTOSAR systems realised with a centralised architecture where
the layered architecture was entirely allocated to one of the available cores only. Both
the approaches were able to demonstrate that the behaviour of the multi-core software
system and its footprint did not significantly vary from the corresponding single-core
configuration. However, in both approaches, the uneven distribution of the workload
among the cores led to performance and timing verification issues. In [30] and [31] the
authors described AUTOSAR systems based on virtualised architectures where hyper-
visors coordinate multiple software systems with same or different real-time operating
system(s). The use of hypervisors complicates early timing verification as it introduces
additional complexity. From a footprint point of view, the virtualised architecture may
lose its efficiency as each software system can carry a different real-time operating sys-
tem. Both approaches rely on certified versions of AUTOSAR systems.

Besides technologies specific to the vehicular domain, several works have discussed
the use of UML and the UML profile for MARTE [4]. Being general-purpose, these
technologies are often used as complementary to domain-specific languages as, e.g.,
AUTOSAR and RCM. In [21], the authors present the VERTAF/Multi-core UML-based
framework for the development of multi-core software. Within VERTAF/Multi-core,
the software system is described by means of UML class diagrams, timed state ma-
chines and sequence diagrams. Model transformations are used for generating exten-
sions to these models for checking the viability of the design with respect to schedu-
lability and conformance to the specifications. In [13] and [26] MARTE is used for
representing the high-level architecture of the software system and as enabler for code-
generation. In the first approach, UML is used for modelling the software components
while MARTE is used for modelling hardware and software to hardware allocations.
Starting from these models, code is automatically generated and timing verification
through simulation is run. The second approach focuses on the system deployment of
component-based systems. MARTE is used for modelling high level description models
from which different models representing allocations of components are generated by
means of code generation. In [12], MARTE is used for describing a task model and the
allocations of tasks to cores for combined simulation- and execution-based task allo-
cation optimisation. In [16] the authors introduce a MARTE-based framework, named
GASPARD, for the design of parallel embedded systems. Herrera et al. [18] discuss a
framework for the design space exploration of embedded systems based on MARTE.

From single- to multi-core model-based vehicular systems 5

The framework, called COMPLEX, uses MARTE for describing the different architec-
ture solutions composing the design space.

AADL [15] is an architecture description language developed for the avionic do-
main, but currently used for modelling embedded systems in general. AADL provides
multi-core support and a clear separation of concerns between software and hardware
elements.

4 Extending Rubus Component Model for Multi-core

In this section, we describe the extension to RCM for modelling vehicle software on
multi-core. The extension is formalised by means of metamodelling. We compare the
extended RCM with its previous definition, given in [8], thus highlighting differences
and commonalities. The extension comprises the addition of modelling packages, clas-
sifiers, features, and relations as well as the modification of some hierarchical structures.

With respect to the previous definition, we have introduced packages for ensuring
a better separation of concerns, improving the understandability of the metamodel, and
simplifying future extensions. The RubusMM packages involved in the extension are
RCM COMMON, RCM HW and RCM SW4. RCM HW contains the elements for mod-
elling the hardware platform: Node, Target, Allocator, Core, and Partition. RCM SW
contains the elements for modelling the software architecture: Allocatable, Mode, As-
sembly, and Software Circuit. RCM COMMON contains elements which are common
to different packages as, for instance, System and port elements. Fig. 1 shows a frag-
ment of RubusMM containing elements from RCM HW for modelling the hardware
platform. System represents the system under development. As all the elements in Ru-
busMM, it inherits from the abstract metaclass NamedElement which provides two at-
tributes: name and ID. We extended System with the reference timingConstraint for
enabling the specification of timing constraints, occurrences and events which are used
for timing verification.5 These constraints are used for running timing analysis, but we
employed them for automatically generating the set of RCM models satisfying a given
set of timing requirements too [7].

A System contains one Network, one or more Node elements, and one or more Mode
elements. A Network element models all the messages exchanged among the Node ele-
ments. It has two attributes, protocol and speed, which specify the protocol (e.g., Con-
trolled Area Network (CAN) [19]) and the speed of the network in Kbit/s, respectively.
A Node is an abstraction of a Target, which models an ECU.

A Node can be concretised by means of different Target elements (e.g., Infineon
XC167-32 and MPC555 from NXP). Its reference activeTarget defines which Target
is active in each given execution. The definition of Node has been extended with the
references timingConstraint, portIO, and portNetwork. portIO and portNetwork model
the peripherals and the inter-node communication, respectively.

4 The complete explanation of RubusMM is not in the scope of this work. The interested reader
may refer to [8].

5 TimingConstraint and other elements from different RCM packages are not part of this exten-
sion. However, they are put in relation to the extension as they contribute to a holistic view of
the language and its peculiarities. .

6 Bucaioni et al.

Fig. 1: Fragment of the RCM HW package for modelling the hardware platform.

In the previous definition of RubusMM, Node contained Target, which in turns con-
tained Mode, representing the software application. However, the containment relation
between Target and Mode was too restrictive for modelling multi-core applications.
Such a containment prescribed in fact that Mode elements, representing software, were
structurally contained by hardware, represented by Target elements. Although not pro-
viding a clear separation between software and hardware, this structural containment
suited the single-core case, since allocation of software to hardware was not variably
splitted across different cores. Modelling for multi-core demanded more flexibility,
since allocation of software to hardware is a variability point, which can hardly be
represented by a structural containment.

In order to provide such a flexibility, while ensuring backward compatibility with
legacy RubusMM models, we have modified the existing hierarchy as follows. We have
added the metaclasses TargetLegacy and TargetMulticore, both inheriting from the ab-
stract metaclass Target. TargetLegacy represents a single-core ECU and it contains one
or more Mode elements. This containment is specified through the reference mode. Tar-
getMulticore represents a multi-core ECU and contains one or more Core elements,
which in turn can contain Partition elements. Both Core and Partition elements inherit
from the abstract metaclass Allocator, representing hardware elements to which soft-
ware elements, represented by the metaclass Allocatable), can be allocated. The meta-
classes Allocator and Allocatable, together with the reference isAllocated, provide the
flexible mechanism for the allocation of software to hardware that we needed, without
any structural containment.

The metaclass Target provides the following attributes: speed, which specifies its
speed in MHz, and type, which specifies whether it is a physical or a simulated target

From single- to multi-core model-based vehicular systems 7

and it is used for timing verification purposes. For instance, in case of a simulated
Target, timing analysis would not make sense as the speed of the Target would be equal
to the speed of the hosting machine. In this case, timing is verified by simulation rather
than by timing analysis.

Both TargetLegacy and TargetMulticore inherit speed and type. Moreover, Target-
Multicore provides additional multi-core specific attributes. numberOfCores specifies
the number of cores composing the TargetMulticore and it is used by the model-based
timing analysis and to automatically allocate software to hardware. The reference core
links Core elements to their respective TargetMulticore. Core may contain Partition el-
ements. The attribute numberOfPartitions specifies the number of partitions within a
Core and the reference partition links them to the Core. The attribute criticalityLevel
specifies the safety criticality level according to the ISO 26262 standard. There are four
criticality levels (A to D) in this standard. A is the lowest criticality level, whereas D is
the highest criticality level (the Rubus Kernel supports and is certified for all of them).
Target, TargetLegacy, TargetMulticore, Core, Partition, Allocator, Allocatable, as well
as their attributes and related references were not part of the previous RubusMM defi-
nition.

Fig. 2 shows a fragment of the RubusMM containing elements from the RCM SW
and the RCM COMMON packages for modelling the software architecture. In RCM a

Fig. 2: Fragment of the RCM SW package for modelling the software architecture.

software circuit, represented in RubusMM by SWC, is the lowest-level hierarchical el-
ement that encapsulates basic software functions. A SWC contains one Interface which
groups all its ports. As RubusMM distinguishes between the data and control flows, an
Interface containsPortData and PortTrig elements. The PortData elements manage the

8 Bucaioni et al.

data communication among SWC deployed on the same Target. The PortTrig elements
manage the activation of the SWC elements.

A PortNetwork is a port for the data communication of SWC elements deployed
on different Target elements. The PortData elements of a Core are referenced to the
PortData elements of the SWCs allocated on that Core. Similarly, the PortNetwork ele-
ments of a Node are referenced to the PortNetwork elements at SWC level. An Assembly
groups SWC and Assembly elements in a hierarchical fashion.

Its reference timingConstraint enables the specification of timing constraints, occur-
rences and events which are used for timing verification. With respect to the previous
definition, SWC and Assembly have been extended with the inheritance relation from
the abstract metaclass Allocatable. A Mode groups Assembly and SWC elements and it
is used for modelling a specific application of the software architecture (e.g., start-up
or error mode). The attribute globalReference serves for creating a reference among
all the Mode elements contributing to the same application. With respect to its previ-
ous definition, Mode has been extended with the inheritance relation from the abstract
metaclass Allocatable. The metaclasses Allocatable and Allocator together with the
reference isAllocated enable the specification of the allocation of software to hardware.
More precisely, an Allocatable element can be deployed to an Allocator element by set-
ting the isAllocated reference. Allocatable, Allocator, and related references were not
part of the previous RubusMM definition.

5 Modelling the Brake-by-wire System

In this section, we leverage the extended RubusMM for modelling the Brake-by-wire
(BBW) vehicular application. The BBW system is a stand-alone braking system equipped
with an anti-lock braking (ABS) function, which allows to control the brakes through
electronic means. To this end, it does not employ any mechanical connection between
the brake pedal and the brake actuators. Fig. 3 depicts the block diagram of the BBW
system.

Fig. 3: Block diagram of the BBW system.

From single- to multi-core model-based vehicular systems 9

Fig. 4: RubusMM model representing the software architecture of the BBW system.

A sensor, attached to the brake pedal, acquires the signal expressing the position of
the pedal. The signal is sent to a computational unit which translates it into a brake
torque. A sensor on each wheel acquires the signal expressing the speed of the wheel.
The speed of each wheel, together with the computed brake torque, is sent to a compu-
tational unit which calculates the brake torque for each wheel. Also, the speed of each
wheel is sent to a computational unit which calculates the speed of the vehicle. The
speed of the vehicle and the brake torque of each wheel are used from the ABS units
for calculating the optimal brake torque for each wheel for avoiding locking the brakes.
Finally, the actuators on the wheels produce the actual brake. Fig. 4 shows a RubusMM
model depicting the software architecture of the BBW system.

The model consist of 16 software circuits where i) Brake Pedal models the sensor
on the brake pedal, ii) Speed FR, Speed FL, Speed RR, and Speed RL model the speed
sensors on the wheels, iii) Brake Torque, Brake Controller, Speed Estimator, ABS FR,
ABS FL, ABS RR, and ABS RL model computational units and iv) Brake FR, Brake FL,
Brake RR, and Brake RL model the actuators on the wheels.

In order to show how the extended RubusMM supports the modelling of multi-
core applications (H1), while ensuring backward compatibility with legacy single-core
applications (H2), we propose two different deployment configurations. In the first con-

10 Bucaioni et al.

figuration, the BBW system is deployed to a MPC5744Pmicrocontroller, which is a
32-bit unicore microcontroller designed for vehicular applications.

Fig. 5: Serialisation of the BBW system deployed to a unicore microcontroller.

Fig. 5 shows an Ecore serialisation of such a configuration. Note that, according to what
described in Section 4 regarding the modelling of legacy applications, the deployment
on single-core is expressed leveraging the containment relation between the ’TargetLe-
gacy’ MPC574xP and the ’Mode’ element Operational.

In the second configuration, the BBW system is deployed to an Infineon SAK-
TC299TP-128F300S BBmicrocontroller, which is a tricore microcontroller developed
for applications with high demands of performance and safety.

Fig. 6: Serialisation of the BBW system deployed to a tricore microcontroller.

Fig. 6 shows an Ecore serialisation of this configuration. In this case, the deployment
information is modelled by means of the ’isAllocated’ reference expressed between
’Allocatable’ and ’Allocator’ elements. More precisely, the software circuits modelling

From single- to multi-core model-based vehicular systems 11

the sensors, the computation units and the actuators of the two front wheels (Wheel-
Speed FR, WheelSpeed FR, Abs FR, Abs FL, Brake FR, Brake FL) are allocated to
Core 1 of the SAK-TC299TP-128F300S BB target, as shown by the arrow in the top-
right corner of Fig. 6. Similarly, the SWCs modelling the sensors, the computation units
and the actuators of the two rear wheels (WheelSpeed RR, WheelSpeed RR, Abs RR,
Abs RL, Brake RR, Brake RL) are allocated to Core 2 of the SAK-TC299TP-128F300S
BB target. The remaining SWCs modelling the computational units are allocated to Core
3 of the SAK-TC299TP-128F300S BB target. As discussed in Section 4, the extended
RubusMM leverages a clearer separation of concerns between software and hardware
elements as well as an explicit and more flexible allocation mechanism. Let us suppose
that the allocation specified in Fig. 6 does not satisfy a given set of fault-tolerance re-
quirements. One way of addressing this would be to model a lockstep [27] configuration
of the BBW system where each core runs the whole software, in parallel. In order to
model such an allocation with the extended RubusMM, it is sufficient to allocate all
software circuits composing a ’Mode’ to each single ’Core’.

6 Lesson Learned

In this paper, we have proposed an extension to RCM for modelling next generation of
vehicular multi-core systems (H1). The main challenge faced during the extension of
RCM was how to introduce the new modelling elements without affecting the lasting-
ness of legacy RCM applications (H2). In the first definition of RCM, pragmatic choices
for more efficient modelling and analysis of single-core applications were made when
defining the language. In addition to not providing clear separation of concerns be-
tween hardware and software, these choices complicated the extension of RCM, as in
the case of the containment relation between Target and Mode discussed in Section 4.
In fact, that structural containment, although dramatically simplifying model navigation
for analysis and code generation purposes in case of single-core applications, did not
suit variability of software to hardware allocation in the multi-core case. In this respect,
the proposed extension prescribes an allocation mechanism which is more flexible and
apt to be automated by means of model transformations. Please note that, we have pre-
viously provided RubusMM with support for variability modelling [9]. This feature can
be very valuable for representing sets of allocations of software components to multiple
cores, all in a single model with variability points representing allocations.

To maximise backward compatibility, we introduced the new modelling elements as
leaves in the metamodel hierarchy, as in the case of, e.g., Core and Partition. This choice
could demand additional modelling effort as the engineer can be required to model the
entire hierarchy in order to design valid models from scratch. This can be mitigated
by tooling features, allowing the modeller to directly model a leaf, while automatically
generating the path to the model root populated with a set of default values.

In Section 2, we have pointed out early timing verification as one of the main reasons
which made RCM very appreciated in the vehicular domain and its extension for multi-
core compelling. In this respect, when extending RCM, we have explicitly addressed
timing verification by allowing the specification of timing constraints, occurrences and
events at several levels of the structural hierarchy by means of the references timing-

12 Bucaioni et al.

Constraint. This ensures full compatibility with the existing model-based timing anal-
ysis provided by Rubus. Moreover, it enables the use of the most recent timing analysis
for vehicular embedded systems on multi-core [10]. Without the extension provided in
this paper, the timing analysis for multi-core would not have been possible in Rubus
due to missing structural and timing information.

Functional safety is paramount for the safety criticality of vehicular systems. For
being adopted in the vehicular domain, model-based solutions must provided certified
run-time support, e.g., real-time operating system, along with modelling languages able
to capture all the characteristics of a vehicular application. The Rubus Kernel is certified
according to the ISO 26262 standard ASIL D while Rubus ICE (i.e., the development
environment supporting Rubus) is undergoing the same certification. In this respect, we
have extended RCM according to the virtualisation design option, as described in [5],
which enables the reuse of the certified Rubus Kernel. On the one hand, the reuse of the
Rubus Kernel makes also the explicit modelling of the memory not necessary since the
mapping of data ports to physical memory is handled by the Rubus Kernel itself. On
the other had, this makes the current definition of RCM not suited for approaches where
explicit modelling of the memory is pivotal. Moreover, despite the Rubus Kernel foot-
print is significantly small, the virtualised design option increases the overall footprint
of the developed vehicular application since each core or partition can host a separate
instance of the Rubus Kernel.

7 Conclusion and Future Work

In this paper, we have discussed the extension of the Rubus Component Model for mod-
elling vehicular multi-core applications while ensuring backward compatibility with
legacy single-core applications. We have leveraged an industrial vehicular application
to validate the proposed extension, also in terms of backward compatibility.

One line of future work will investigate how to support the analysis and verification
of vehicular embedded systems with multi-criticality levels on multi-core with respect
to predictable timing behaviour. Moreover, we will investigate how to adapt the certified
Rubus Kernel for providing run-time support to these systems on multi-core. Another
line of future work will investigate how to provide automatic support for the allocation
of software to hardware. In particular, we are developing model transformations that,
starting from a model with no modelled allocations and a set of timing constraints,
produce a set of models featuring the set of different allocations of software to hardware
optimised for satisfying the set of timing constraints. We are planning to represent the
set of generated models by means of the compact notation presented in [9]. Such a
notation uses modelling with variability for representing a multitude of models with
one single model with variability points.

Acknowledgments. The work in this paper is supported by the Swedish Knowledge
Foundation (KKS) through the PreView and MOMENTUM projects, and by the Swedish
Research Council (VR) through the SynthSoft project. We thank our industrial partners
Arcticus Systems, Volvo Construction Equipment and BAE Systems Hägglunds, Swe-
den.

From single- to multi-core model-based vehicular systems 13

References

1. ISO 26262-1:2011: Road Vehicles in Functional Safety. http://www.iso.org/
2. AUTOSAR Techincal Overview, Version 4.3, The AUTOSAR Consortium, Dec., 2016.

http://autosar.org
3. Rubus ICE-Integrated Development Environment, http://www.arcticus-systems.com
4. The UML Profile for MARTE: Modeling and Analysis of Real-Time and Embedded Sys-

tems, 2010. OMG Group (January 2010)
5. Becker, M., Dasari, D., Nélis, V., Behnam, M., Miguel, P.L., Nolte, T.: Investigation on

AUTOSAR-Compliant Solutions for Many-Core Architectures. In: 18th Euromicro Confer-
ence on Digital System Design. vol. 18 (August 2015)

6. Böhm, N., Lohmann, D., Schröder-Preikschat, W.: A Comparison of Pragmatic Multi-core
adaptations of the AUTOSAR system. In: 7th annual Workshop on Operating System Plat-
forms for Embedded Real-Time Applications (OSPERT). pp. 16–22 (2011)

7. Bucaioni, A., Cicchetti, A., Ciccozzi, F., Eramo, R., Mubeen, S., Sjödin, M.: Anticipating
Implementation-Level Timing Analysis for Driving Design-Level Decisions in EAST-ADL.
In: International Workshop on Modelling in Automotive Software Engineering (September
2015)

8. Bucaioni, A., Cicchetti, A., Ciccozzi, F., Mubeen, S., Sjödin, M.: A Metamodel for the Rubus
Component Model: Extensions for Timing and Model Transformation from EAST-ADL.
Journal of IEEE Access 5(1) (December 2016)

9. Bucaioni, A., Cicchetti, A., Ciccozzi, F., Mubeen, S., Sjödin, M., Pierantonio, A.: Handling
Uncertainty in Automatically Generated Implementation Models in the Automotive Domain.
In: 42nd Euromicro Conference series on Software Engineering and Advanced Applications
(September 2016)

10. Burns, A., Davis, R.: Mixed Criticality Systems - A Review, eighth edition.
Tech. rep., Dept. of Computer Science, University of York (2016), https://www-
users.cs.york.ac.uk/burns/review.pdf

11. Charette, R.N.: This car runs on code. IEEE Spectrum 46(3), 3 (2009)
12. Ciccozzi, F., Feljan, J., Carlson, J., Crnković, I.: Architecture optimization: speed or accu-

racy? both! Software Quality Journal pp. 1–24 (2016)
13. Ciccozzi, F., Seceleanu, T., Corcoran, D., Scholle, D.: UML-Based Development of Embed-

ded Real-Time Software on Multi-Core in Practice: Lessons Learned and Future Perspec-
tives. IEEE Access 4, 6528–6540 (2016)

14. Feiertag, N., Richter, K., Nordlander, J., Jonsson, J.: A Compositional Framework for End-
to-End Path Delay Calculation of Automotive Systems under Different Path Semantics. In:
Proceedings of the IEEE Real-Time System Symposium ? Workshop on Compositional The-
ory and Technology for Real-Time Embedded Systems, (2008)

15. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design language (AADL):
An introduction. Tech. rep., DTIC Document (2006)

16. Gamatié, A., Le Beux, S., Piel, É., Ben Atitallah, R., Etien, A., Marquet, P., Dekeyser, J.L.:
A model-driven design framework for massively parallel embedded systems. ACM Transac-
tions on Embedded Computing Systems (TECS) 10(4), 39 (2011)

17. Hänninen, K., Mäki-Turja, J., Sjödin, M., Lindberg, M., Lundbäck, J., Lundbäck, K.L.: The
Rubus Component Model for Resource Constrained Real-Time Systems. In: 3rd IEEE Inter-
national Symposium on Industrial Embedded Systems (June 2008)

18. Herrera, F., Posadas, H., Peñil, P., Villar, E., Ferrero, F., Valencia, R., Palermo, G.: The COM-
PLEX methodology for UML/MARTE Modeling and design space exploration of embedded
systems. Journal of Systems Architecture 60(1), 55–78 (2014)

14 Bucaioni et al.

19. ISO 11898-1: Road Vehicles Interchange of Digital Information Controller Area Network
(CAN) for high-speed communication, ISO Standard-11898, Nov. 1993.

20. Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: A Component-Based Framework for Gen-
erative Development of Distributed Real-Time Control Systems. In: 13th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
2007. pp. 199 –208 (August 2007)

21. Lin, C.S., Hsiung, P.A., Chang, C.H., Hsueh, N.L., Koong, C.S., Shih, C.H., Yang, C.T., Chu,
W.C.C.: Model-Driven Multi-core Embedded Software Design (2011)

22. Morgan, G., Borg, A.: Multi-core automotive ECUs: Software and hardware implications.
Tech. rep., ETAS Group, Tech. Rep (2009)

23. Mubeen, S., Bucaioni, A.: Modeling of Vehicular Distributed Embedded Systems: Transition
from Single-core to Multi-core. In: 14th International Conference on Information Technol-
ogy : New Generations. Springer (April 2017)

24. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Communications-Oriented Development of
Component- Based Vehicular Distributed Real-Time Embedded Systems. Journal of Sys-
tems Architecture 60(2), 207–220 (2014)

25. Mubeen, S., Nolte, T., Sjödin, M., Lundbäck, J., Lundbäck, K.L.: Supporting timing analysis
of vehicular embedded systems through the refinement of timing constraints. Software &
Systems Modeling pp. 1–31 (2017)

26. Nicolas, A., Posadas, H., Peñil, P., Villar, E.: Automatic deployment of component-based
embedded systems from UML/MARTE models using MCAPI. In: Design of Circuits and
Integrated Circuits (DCIS), 2014 Conference on. pp. 1–6. IEEE (2014)

27. Poledna, S.: Fault-tolerant real-time systems: The problem of replica determinism, vol. 345.
Springer Science & Business Media (2007)

28. Pop, P., Scholle, D., Hansson, H., Widforss, G., Rosqvist, M.: The SafeCOP ECSEL Project:
Safe Cooperating Cyber-Physical Systems Using Wireless Communication. In: Digital Sys-
tem Design (DSD), 2016 Euromicro Conference on. pp. 532–538. IEEE (2016)

29. Reinhardt, D., Kaule, D., Kucera, M.: Achieving a scalable e/e-architecture using autosar
and virtualization. SAE International Journal of Passenger Cars-Electronic and Electrical
Systems 6(2013-01-1399), 489–497 (2013)

30. Reinhardt, D., Kucera, M.: Domain Controlled Architecture-A New Approach for Large
Scale Software Integrated Automotive Systems. PECCS 13, 221–226 (2013)

31. Reinhardt, D., Morgan, G.: An embedded hypervisor for safety-relevant automotive E/E-
systems. In: Proceedings of the 9th IEEE International Symposium on Industrial Embedded
Systems (SIES 2014). pp. 189–198. IEEE (2014)

32. Sangiovanni-Vincentelli, A., Di Natale, M.: Embedded system design for automotive appli-
cations. Computer 40(10) (2007)

33. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer 39(2),
25–31 (Feb 2006)

34. Sentilles, S., Vulgarakis, A., Bures, T., Carlson, J., Crnkovic, I.: A Component Model for
Control-Intensive Distributed Embedded Systems. In: 11th International Symposium on
Component Based Software Engineering (CBSE), 2008. pp. 310–317. Springer (October
2008)

35. Smith, D., Simpson, K.: Functional safety. Routledge (2004)
36. Storey, N.R.: Safety critical computer systems. Addison-Wesley Longman Publishing Co.,

Inc. (1996)
37. Thorngren, P.: keynote talk: Experiences from east-adl use. In: EAST-ADL Open Workshop,

Gothenberg (2013)

