
Modeling, Designing and Analyzing Resource
Reservations in Distributed Embedded Systems

Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

Abstract Distributed embedded systems in many domains are becoming highly
complex, mostly due to ever-increasing demand for advanced computer controlled
functionality. These systems are realized by several embedded systems communi-
cating through network channels. These systems are often required to be predictable,
i.e., their responses to internal or external stimuli should be delivered within the
constraints that are specified on them. Compositional development methods have
been proposed by the research community to lower the software complexity, ensure
predictability and allow flexibility during the development and execution of these
systems. According to these methods, the compute and communication resources
are allocated to each part (or sub-system) of the system, which in turn brings isola-
tion among the parts and eases the system integration. This chapter presents a new
end-to-end resource reservation model for distributed embedded systems that covers
not only the computational nodes but also the communication channels. Moreover,
timing analysis is presented to verify the predictability of the systems. This chap-
ter also describes guidelines to distribute resources efficiently among different parts
of the system. As a proof of concept, the end-to-end resource reservation model is
implemented in the Rubus Component Model. This component model is already
used for the development of control functionalities in vehicular embedded systems
by several international companies. In order to show the usability of the proposed
model, reservation design method, end-to-end timing analysis, and extended compo-
nent model, a vehicular application case study is conducted and several experiments
are performed.

Mohammad Ashjaei
Mälardalen University, Västerås, Sweden, e-mail: mohammad.ashjaei@mdh.se

Nima Khalilzad
Qamcom Research and Technology, Stockholm, Sweden e-mail: nima.khalilzad@qamcom.se

Saad Mubeen
Mälardalen University, Västerås, Sweden e-mail: saad.mubeen@mdh.se

1

2 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

1 Introduction

Embedded systems play a vital role in many domains. These systems are inevitably
becoming part of our daily lives, ranging from small electronic devices to more so-
phisticated systems. Generally, small electronic devices contain only one computing
unit that performs a particular function specific to the device. The computing unit
is called embedded system if it is embedded inside the device that it controls. In
large and sophisticated systems, such as aircrafts and modern vehicles, the func-
tionality is developed over several embedded systems that usually communicate via
one or more networks. Such a system is typically known as a distributed embedded
system. Often, distributed embedded systems are constrained by end-to-end timing
requirements, which requires them to react to the external or internal events within
specified times. Hence, these systems should be predictable.

In the last decades, distributed embedded systems in many domains have become
intricate. This intricacy is contributed not only by advanced functions demanded
by the market, but also by other complementary requirements, such as significant
amount of data exchange within heterogeneous networks, use of powerful com-
puting platforms to fulfill the high resource demand, and the new trend towards
developing the systems in a composable way. Furthermore, the size and complex-
ity of software in such systems has been drastically increasing over time. For in-
stance, the amount of software in a car has increased from 100 lines of code, in
late 1970s, to more than 100 million lines of code in a span of approximately three
decades [13, 61]. This software may consist of as many as 2000 software functions.
One way to deal with such complexity during the development is to split the system
into several sub-systems. The sub-systems are then developed by different teams
or tier-1 suppliers independently. Nevertheless, the sub-systems still share the sys-
tem resources, which are both processor and network resources. In order to support
isolation and independence among the sub-systems after their deployment, a frac-
tion of the system resources is reserved for each sub-system by means of so-called
resource reservation (also called resource partitioning) techniques [57], [19]. For
instance, a portion of processor time can be allocated to a specific sub-system using
the hierarchical reservation framework [39], [51]. Similarly, there are several tech-
niques to achieve temporal isolation among sub-systems in the network domain.
For instance, a multi-level hierarchical framework is presented in [52] that supports
resource reservations in switched Ethernet networks. As a result, the predictability
requirements of each sub-system can be verified independently. The sub-system can
be integrated together without a need for analyzing the complete system as long
as the timing behavior of each part has been independently verified and the set of
reservations is feasible.

As mentioned before, many industrial systems are in fact distributed real-time
embedded systems. This means that a sub-system of such a system can span over
more than one processor, while the processors communicate with each other via a
field bus1 or other kind of real-time networks. The resource reservations for the sub-
1 Typical name given to real-time networks developed specifically for use in industrial plants.

Title Suppressed Due to Excessive Length 3

system includes a joint reservation on computation and communication resources.
Such a reservation is called end-to-end resource reservation. Development of dis-
tributed real-time embedded systems using the end-to-end resource reservations has
received very less attention. One example can be found in [38], which proposes a
distributed kernel to guarantee the end-to-end timeliness. Another example can be
seen in [49] that provides a distributed resource management system, called D-RES.

From the software development point of view, the research community has pro-
posed to use the principles of Model Based Development (MBD) and Component-
Based Software Engineering (CBSE) [29, 15]. MBD uses models to describe func-
tions, structures and other design artifacts. Whereas, CBSE raises the level of ab-
straction for software development by reuse and integration of software components
and their architectures. The development models and techniques that comply with
MBD and CBSE can further mitigate the complexity by allowing flexible develop-
ment and execution of the sub-systems. In this chapter we consider the vehicular
domain for a proof of concept. However, it should be noted that the software devel-
opment techniques presented in this chapter are generally applicable to distributed
real-time embedded systems. The existing support to model resource reservations at
various levels during the development of these systems is shown in Fig. 1.

At the top level in Fig. 1, software architecture of the system is modeled in terms
of software components and their interconnections. The existing component models
and tools in the vehicular domain fully support the modeling of resource reserva-
tions in the network, e.g., SymTA/S tool [28] which is a part of the AUTOSAR [2]
tool chain. There is a very limited support for modeling resource reservations in the
computational nodes by the existing component models and tools. To the best of our
knowledge, no existing component model in the vehicular domain supports model-
ing of end-to-end resource reservations. One of the main objectives of this chapter
is to provide such a modeling support for the software architecture of these systems.

Node

Support for modeling resource reservations in the existing component models

Network Distributed Embedded Systems (End-to-end)

Limited Support Full Support No Support

Existing support for expressing resource reservations at the execution level

Existing support for resource reservations at the run-time level

Node Network Distributed Embedded Systems (End-to-end)

Full Support Full Support Limited Support

Node Network Distributed Embedded Systems (End-to-end)

Full Support Full Support Limited Support

Fig. 1 Existing support for modeling resource reservations at various levels in the vehicular do-
main.

4 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

At the second level in Fig. 1, execution model of the system is developed. At
this level, the focus is on tasks, messages, nodes and networks. An execution model
provides the information regarding : (1) what executes? (2) where does it execute?
and (3) when does it execute? There is a large number of execution-level frameworks
in the vehicular domain that support resource reservations on nodes and networks.
However, there are very few works that support end-to-end resource reservations on
distributed embedded systems at the execution level. The third level, shown in Fig. 1,
provides run-time environment for the executable entities from the second level. At
this level, the focus is on operating system, scheduling, network protocol stack,
interface drivers, etc. There is a strong existing support for resource reservations in
nodes and networks at the run-time level. However, there is a limited support for
end-to-end resource reservations at this level.

This chapter presents a new end-to-end resource reservation model that supports
reservation on both computation and communication resources in predictable dis-
tributed embedded systems2. The model covers several real-time network protocols.
The proposed model is the first comprehensive model to support end-to-end resource
reservations in distributed transactions (chains of tasks and messages) with various
activation patterns such as trigger chains, data chains and mixed chains. These ac-
tivation patterns are commonly used in the industrial control systems [22, 46]. In
order to guarantee the predictability of the model, an end-to-end timing analysis is
presented. The analysis not only computes end-to-end response times, but also end-
to-end data path delays in distributed reserved resources. In particular, the analysis
computes the age and reaction delays which find their importance in the control
systems and body electronics domains of the automotive industry. This chapter also
presents a method to design reservations for both computation and communication
resources in order to guide designers for allocating resources in an efficient way.
Furthermore, this chapter extends a component model to enable the modeling and
design of end-to-end reservations, albeit in the context of vehicular domain. This ex-
tension is carried out in the Rubus Component Model (RCM) [26], which is already
used by several international companies in the vehicular domains. The main reason
for selecting RCM is that it has a small run-time foot print (timing and memory
overhead) compared to several other models such as AUTOSAR. Finally, this chap-
ter presents an experiment to show the performance and usability of the presented
models and techniques.

The rest of the chapter is organized as follows. Section 2 reviews the background
and prior work. Section 3 presents a new end-to-end resource reservation model for
distributed embedded systems, while Section 4 presents the response time and end-
to-end delay analysis. Section 5 presents a design guide for resource reservations.
Section 6 discusses extension of RCM to support the end-to-end resource reserva-
tion technique. An experiment is presented in Section 8 using a case study in the
area of vehicular systems. Finally, Section 9 concludes the chapter and highlights
future challenges in this area.

2 This book chapter is adapted from previously published contributions [8], [44].

Title Suppressed Due to Excessive Length 5

2 Background and Prior Work

This section introduces the background concepts that are required for understanding
the models and techniques. In addition, the work presented in this chapter builds
upon a large body of prior work in the area of real-time systems and component-
based software engineering. Therefore, this section also reviews the relevant state
of the art regarding the presented models and techniques.

2.1 Real-time systems

Embedded systems are mostly components of a larger system, where they often in-
teract with the environment through sensors and actuators. Many embedded systems
are constrained by timing requirements, i.e, the response by the system must be de-
livered within a specified time, e.g., a deadline or a delay constraint. In these systems
the logical correctness of the response is as important as the time at which the re-
sponse is delivered. Such systems are called real-time embedded systems. Depend-
ing upon the consequences that may occur because of a violated timing requirement,
a real-time system can be categorized into two groups: Hard and Soft. If violation of
a timing requirement (e.g., missing a deadline) results in the failure of the system,
the system is referred to as hard real-time system. On the other hand, if the conse-
quences of violating a timing cause performance degradation but the response has
some utility for the system, the system is called soft real-time system.

2.2 Schedulability analysis

As the major requirement of real-time systems is to provide actions in a timely
manner, an accurate prediction of timing behavior is required. In order to verify that
the actions by the system meet their respective timing requirements, schedulability
analysis techniques have been developed [56, 9, 10]. This section discusses two such
techniques, namely response-time analysis and end-to-end delay analysis. These
techniques are commonly used for the timing analysis of real-time systems.

2.2.1 Response time analysis

One schedulability analysis technique is based on calculating the worst-case re-
sponse times of tasks/messages and comparing them to the corresponding deadlines.
This technique is known as Response Time Analysis (RTA) [34]. The response time
of a message is the time interval between its activation time at the source node
and its reception at the destination node. RTA is a well-known method in the real-
time community and it has been used in many domains including single-core sys-

6 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

tems, networks, multi-core systems and distributed systems. When using this tech-
nique the response time of a task/message is calculated iteratively with a pseudo-
polynomial run-time complexity, with the aim of finding the worst-case scenario for
the task/message. The interference from the other tasks/messages and their activa-
tion frequencies are also taken into account in the calculations.

In the context of single-core systems and assuming the fixed-priority preemptive
scheduling [56, 10], the worst-case scenario for a task occurs when all higher pri-
ority tasks are released simultaneously with the task, known as the critical instant
for the task [41]. In the above mentioned situation (i.e., at critical instant), the re-
sponse time Ri of a task τi is calculated by the sum of the task computation time Ci,
the interference from higher priority tasks denoted by Ii and blocking due to shar-
ing a common resource with lower priority tasks, denoted by Bi. Eq. 1 shows the
response-time calculation for task τi.

Ri =Ci +Bi + Ii (1)

The interference from higher priority tasks is calculated according to Eq. 2 con-
sidering all activations of higher priority tasks during the response time of task τi,
where hp(i) is the set of tasks with priority higher than that of τi. Tj represents the
period of a higher priority task.

Ii = ∑
∀ j∈hp(i)

⌈
Ri

Tj

⌉
C j (2)

Combining equations 1 and 2 derives an iterative equation shown in Eq. 3, where
R0

i = Ci and the result is derived when Rn+1
i = Rn

i or the deadline is violated (the
system is unschedulable).

Rn+1
i =Ci +Bi + ∑

∀ j∈hp(i)

⌈
Rn

i
Tj

⌉
C j (3)

Note that the response time calculations presented above are valid for the fixed-
priority preemptive scheduling. In the case of Earliest Deadline First (EDF) schedul-
ing, the computation is different [27].

The same algorithms can be applied for messages considering different way of
dealing with interference, blocking and critical instants. Davis et al. [17] presented
the calculations for worst-case response times for messages in Controller Area Net-
work (CAN) [33]. In the case of Ethernet AVB networks, Bordoloi et al. [12] com-
puted the response time of traffic class A and B. Furthermore, Marau et al. [43] and
Santos et al. [52] used this technique to compute the worst-case response times of
Ethernet messages in a switched Ethernet network.

Title Suppressed Due to Excessive Length 7

2.3 End-to-end delays

In a real-time system, tasks may be executed with precedence constraints. This
means that a task is only allowed to be executed after the finishing time of its prede-
cessor task (among which the precedence constraint exist). Moreover, a task may get
input data from the execution of another task even when they are executed indepen-
dently. This makes a task chain, where each task may be triggered by its predecessor
task or independently. When a system is modeled with task chains then the schedula-
bility of the system can be determined by calculating end-to-end response time and
end-to-end delays in each chain and comparing them with the corresponding dead-
lines. In order to understand the difference between the end-to-end response time
and end-to-end delays consider two task chains as shown in Fig. 2. Both task chains
contain three tasks and each task is assumed to have the Worst Case Execution Time
(WCET) of 1 ms. The tasks have equal priorities and they communicate with each
other by writing to and reading from the registers3. There is only one activating
source for the first chain, shown in Fig. 2(a), that activates τ1 periodically with a
period of 8 ms. The rest of the tasks in the chain are activated by their predecessors.
Such a chain is called a trigger chain [46]. The input of the chain corresponds to the
data read by τ1 from register Reg-1. The input may correspond to the data that ar-
rives from a sensor. On the other hand, the data written by τ3 to Reg-4 is considered
as the output of the task chain. The output may correspond to the control data for
an actuator. The end-to-end response time of the task chain is defined as the amount
of time elapsed between the arrival of an event at the first task and production of
the response by the last task in the chain. The arrival of an event corresponds to the
periodic activation of task τ1. Assuming no interferences, the end-to-end response
time of the chain can be calculated by summing up the WCETs of all tasks in the
chain, which is 3 ms in this example.

(a)

Task triggering

Data propagation

Task

Reg-X Register X

Reg-1 Reg-2 Reg-3

Period = 8ms

WCET = 1ms

Reg-41 2

2

WCET = 1ms

3

3

WCET = 1ms

WCET = 1ms WCET = 1ms WCET = 1ms

(b) Reg-1 Reg-2 Reg-3

Period = 8

Reg-4

Period = 8 Period = 4

1

Fig. 2 Activation patterns: (a) a trigger chain, (b) a data chain.

Now consider the task chain shown in Fig. 2(b). In this chain, each and every task
is activated independently, that means no task is activated by its predecessor. Such
a chain is called a data chain [46]. It should be noted that a mixed chain includes

3 A register may correspond to a port of a software component which is realized by the task at
run-time.

8 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

both trigger and data sub-chains. The periods of activation for tasks τ1, τ2 and τ3 are
8 ms, 8 ms and 4 ms, respectively. Since each task in the chain is activated indepen-
dently with a different clock, there can be several time paths through which the data
can traverse from the input to the output. Hence, there can be multiple outputs that
correspond to one single input of the chain as shown by the uni-directional curved
arrows in Fig. 3. As a result there are different delays between the arrival of the
input data and production of the output data by the chain.

1
0 20105 15 25

0 20105 15 25

0 20105 15 25

Age delay = 15

Reaction delay = 19

Task arrival

Data

propagation

Task execution3

2

Fig. 3 A possible execution trace for the transaction in Fig. 2(b).

In this work, two such delays are described, namely age and reaction [22]. The
data age delay is equal to the time elapsed between the arrival of data at the input and
the latest availability of the corresponding data at the output. For example, assume
that the data is available in Reg-1 (input of the chain) at time 8 when it is read by the
first task (τ1). Task τ1 writes the corresponding data to Reg-2 at time 9. The data is
read by task τ2 from Reg-2 at time 15. Task τ2 then writes the corresponding data to
Reg-3 at time 16. Task τ3 reads the same data from Reg-3 at two different times, i.e.,
at 18 and 22. Moreover, task τ3 writes the corresponding data to Reg-4 (output of
the chain) at times 19 and 23. It can be seen that there are two samples of output data
corresponding to one single sample of the input data. In the age delay, the longest
time difference between the input data and corresponding output data is of interest.
On the other hand, the data reaction delay corresponds to the earliest availability
of the data at the output corresponding to the data that just missed the read access
at the input. Assume that just after task τ1 started its execution at time 0, new data
arrives in Reg-1. Hence, the new data just misses read access of τ1. The new data
has to wait in Reg-1 until it is read by τ1 at time 8. The earliest effect of this data
appears at the output at time 19 which corresponds to the data reaction delay. In this
example, the age delay is 15 ms, while the reaction delay is 19 ms.

The data age delay is important, in particular, for control applications where
freshness of the data is of value. Whereas, the data reaction delay is important in
the applications where the first reaction to the input is of value.

2.4 Resource Reservation

The sub-systems, after being split from a system, still share the system resources
in terms of processors and network bandwidth. In order to support isolation and

Title Suppressed Due to Excessive Length 9

independence among the subsystems after their development, resource reservation
techniques are used. This section describes methods for reserving resources in pro-
cessors, networks and distributed embedded systems.

2.4.1 Reservation in the processor domain

There are many resource reservation techniques in the processor domain such as
virtual machines [11] and reservation support for time-sensitive multimedia appli-
cations [23]. Shared-driven scheduling is an alternative scheduling method in which
different sub-systems can be scheduled in isolation and with different policies. This
method of scheduling, i.e., using server-based scheduling, helps in reserving re-
sources for each sub-system. In this scope, several proposals are presented in the
literature based on different types of servers, such as using deferrable servers [60],
sporadic servers [59] and hierarchical partitions [51]. In the above mentioned works,
the proposals are complemented with a response time analysis. In order to present a
tight analysis, many methods are adopted. Lipari et al. [39] proposed an analysis for
periodic servers. The analysis for hierarchical partitioned scheduling is presented
by Shin et al. [57], which considers a generic periodic server model for both fixed-
priorities and EDF scheduling algorithms. The analysis presented by Almeida and
Pedreiras [5] uses the same concept as in [57], however it covers a more realistic
task model with release jitter.

2.4.2 Reservation in the network domain

Generally, the same concept as used in the processor domain is also used for re-
source management in networks. A general category of resource management in
networks is traffic shapers [42]. Shapers limit the amount of load submitted to the
network by using different policies such as credit-based shaping, e.g., as done by
Ethernet AVB networks. Moreover, some real-time Ethernet protocols enforce a
cyclic-based transmission in which each cycle is divided into several transmission
phases. This way, a transmission window is allocated to a set of messages, resem-
bling server-based scheduling inherent in the processor domain. In addition, the
hierarchical scheduling model has been used in the network domain, such as the
hierarchical scheduling framework implemented by the FTT-SE protocol [31] and
the HaRTES architecture [52].

2.4.3 Reservation in distributed system domain

In the context of distributed embedded systems, very few works have addressed the
reservation of resources, where the resources include both processors and networks.
Some of these works consider soft real-time systems targeting multimedia applica-
tions, such as [58] and [20]. An adaptive QoS control is developed by Cucinotta et

10 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

al. [16] to control the reservation during run-time. An alternative framework is pro-
posed by Khalilzad et al. [36] that supports real-time components containing several
tasks and messages. However, the above frameworks are presented for soft real-time
systems.

A distributed kernel framework is developed by Lakshmanan et al. [38]. It guar-
antees the satisfaction of end-to-end timing requirements in distributed real-time
applications. The application model is based on a distributed task graph, where each
application is divided into several sub-tasks that communicate with each other. Each
sub-task is allocated to one processor and the end-to-end deadline is decomposed
to local deadlines. The reservation on the network is achieved by traffic shaping. A
general model, called Q-RAM [50], provides sharing of resources among multiple
applications by controlling QoS in the system. The Q-RAM model has been ex-
tended to cope with the systems with rapid changes [25]. However, the main focus
in these works is on distributed tasks while the network protocols have not received
much attention.

A global resource management model, called D-RES [49], supports reservations
on both nodes and networks with end-to-end timing guarantees. In this model a
sub-system contains tasks and message, albeit with one task executing in each node.
Section 3 presents a distributed resource reservation model, which seemingly resem-
bles the model in D-RES. Nevertheless, the model in this work allows a sub-system
to contain multiple distributed transactions each of which consists of several tasks
executing in a single node. Moreover, the model supports various activation patterns
for transactions such as trigger, data and mixed chains.

2.5 Reservation design

Some of the above mentioned proposals already address the problem of designing
servers. For instance, the work in [5] discusses the problem of assigning server pa-
rameters with the goal of using least system resources. Search-based approaches
are proposed for this purpose. The work in [40] presents a technique to design pe-
riodic servers in a hierarchical framework targeting the schedulability of real-time
applications. In order to find the best server parameters, the work defines a cost
function according to the processor overhead. Within the hierarchical scheduling
framework, the work in [18] investigates the problem of selecting the server param-
eters. Several techniques are presented in the work to select the server parameters
given that the rest of the system parameters are known. The techniques include the
binary search and greedy algorithms. Moreover, the recent work presented in [6] ad-
dresses a server-based reservation mechanism for control applications. The goal for
designing the servers in these applications is to provide optimum bandwidth such
that the control tasks are stabilized. To solve the problem, the work proposes to use
the Karush-Kuhn-Tucker (KKT) necessary conditions which are used in nonlinear
programing.

Title Suppressed Due to Excessive Length 11

The work in [32] focuses on the design of server reservation for the multi-level hi-
erarchical framework applied in the network, unlike the previous works that mostly
consider a two-level hierarchy. In order to provide the server parameters, the ap-
proach in [6] uses two steps. The first step provides the parameters of the leaf
servers. Whereas, the second step generates the parameters for the intermediate and
root servers. The reservation design solution presented in this work considers the
end-to-end reservation rather than one reservation.

The work in [24] presents a polynomial-time algorithm to allocate bandwidth to
handle sporadic tasks that are scheduled by earliest deadline first with EDP server
models. The algorithm gives an approximation on the partitions for real-time com-
ponents. In the same context, the work presented in [62] uses real-time calculus to
design the servers based on a given interface. The algorithm computes demand and
service curves for components in real-time systems.

2.6 Component models

There are several component models and modeling languages for vehicular dis-
tributed embedded systems. EAST-ADL [4] is an architecture description in the
automotive domain. It is complemented by the TADL2 language [1] to support
modeling of timing information. EAST-ADL and EAST-ADL-like models4 that are
used in the industry do not support modeling of end-to-end resource reservations.
AUTOSAR [2] is a standardized software architecture for automotive embedded
systems. It is complemented with a strong tool chain that supports various devel-
opment steps, i.e., from modeling of the software architecture to its execution. The
tool chain supports the modeling of resource reservations but only in the networks.
For example, the approach used in SymTA/S tool allows modeling and analysis of
switched Ethernet networks. It supports modeling of resource reservation only at
the network level. In comparison, we aim to support the modeling of end-to-end
resource reservations at the distributed system level. There are several other com-
ponent models, e.g., ProCom [55], COMDES [35] and middleware approaches like
CORBA [3]. However, none of these models and approaches support end-to-end
resource reservations in the software architectures.

The modeling technique discussed in this chapter is an extension of RCM and
Rubus-ICE to support modeling of end-to-end resource reservation. The Rubus con-
cept, developed by Arcticus Systems5, provides a collection of methods and tools
for model- and component-based development of control functionality in vehicles.
It has been used in the vehicle industry for over 20 years [45]. The Rubus con-
cept is based around RCM and its tool suite, Rubus-ICE that consists of modeling
tools, code generators, analysis tools and run-time infrastructure. The main goal of
Rubus is to be aggressively resource efficient and to provide means for develop-

4 For example, SE Tool and SystemWeaver (http://www.systemweaver.se).
5 http://www.arcticus-systems.com.

12 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

ing predictable, timing analyzable and synthesizable control functions in resource-
constrained embedded systems. The highest-level hierarchical element in RCM is
called the system. It contains nodes (ECUs) and networks. The lowest-level hier-
archical component in RCM is called the Software Circuit (SWC). It encapsulates
basic functions and has run-to-completion semantics. Note that the software circuit
is synonymous to a software component in component-based software engineering.

3 End-to-end Reservation Model

We consider the model of a real-time distributed embedded system that consists
of multiple nodes. The nodes are connected to a single network that allows real-
time communication. The nodes are assumed to be single-core processors executing
real-time tasks according to the fixed-priority preemptive scheduling. The system,
denoted by S , consists of N number of applications as shown in Eq. 4. An applica-
tion performs a specific function and is commonly distributed over several nodes.
Note that an application is a formal definition of a sub-system in this model. For
example, the cruise control function in a car is one application.

S = {A(1), ...,A(N)} (4)

3.1 Application and transactional models

An application consists of a set of M transactions as shown in Eq. 5. A transaction
is denoted by Γ

(h)
i , where i denotes its identifier and h denotes the identifier of the

application to which it belongs. The transaction identifiers are unique within one
application. However, two transactions belonging to different applications can have
same transaction identifiers.

A(h) = {Γ(h)
1 , ...,Γ

(h)
M } (5)

A transaction consists of a chain (or sequence) of real-time tasks and messages
which can have different activation patterns, i.e., a task or a message can be activated
(released for execution or transmission) independently (e.g., either periodically by
a clock or sporadically by an external event) or by its predecessor task or message.
The tasks and messages in transaction Γ

(h)
i are presented in Eq. 6.

Γ
(h)
i = {τ j,i,k, ...;mi,k, ...} (6)

The subscript, k, in τ j,i,k represents the task identifier, whereas the first and sec-
ond subscripts, j and i, specify the identifiers of the node and transaction to which
this task belongs. We allow any two transactions to share the same task or message,
provided that the transactions belong to the same application. Note that sharing of

Title Suppressed Due to Excessive Length 13

tasks or messages between two applications is not allowed. A transaction can in-
clude more than one task from the same node. The task identifiers are assumed to
be unique within each node. For instance, τ1,2,2 is task 2 in transaction 2 and it ex-
ecutes in node 1, whereas τ2,2,2 is also task 2 in transaction 2, however it executes
in node 2. Moreover, in Eq. 6, mi,k represents message k in transaction i. Since we
consider one network and assume the message identifiers to be unique, we do not
use network identifier with the message.

It should be noted that a transaction cannot initiate or terminate with a message
because a message must have a sender task and, at least, one receiver task. The
transactional model is general in the sense that it can accommodate any number of
tasks and messages that are in a chain. A transaction can also be composed of only
one task, e.g., Γ

(1)
1 = {τ1,1,1}. Such a transaction does not generate any message.

In order to understand the sharing of tasks among transactions, consider the ex-
ample of a system that consists of three nodes and one network as shown in Fig. 4.
There are three tasks in Node 1; two tasks in Node 2; three tasks in Node 3; and two
messages in the network. There is one application in the system that consists of two
transactions denoted by Γ

(1)
1 and Γ

(1)
2 as depicted in Fig. 4. Both of these transac-

tions are initiated by the same task (i.e., the task with identifier 1 are shared between
two transactions) in Node 1. This task is denoted by τ1,1,1 in transaction Γ

(1)
1 and by

τ1,2,1 in transaction Γ
(1)
2 . A shared task among two or more transactions can be iden-

tified by comparing the first and third subscripts of each task in one transaction with
the first and third subscripts of each task in every other transaction within the same
application. The sequence of tasks and messages included in Γ

(1)
1 and Γ

(1)
2 are as

follows.
Γ
(1)
1 : τ1,1,1→ τ1,1,2→ m1,1→ τ3,1,1→ τ3,1,2→ τ3,1,3

Γ
(1)
2 : τ1,2,1→ τ1,2,3→ m2,2→ τ2,2,1→ τ2,2,2.

τ1,1,1

τ1,1,2 m1,1 τ3,1,1

τ2,2,1

τ3,1,2 τ3,1,3

τ2,2,2

Γ1
(1)

τ1,2,1
τ1,2,3 m2,2

Γ2
(1)

Node 1 Network

Node 2

Node 3

Fig. 4 An example of two transactions with task sharing.

3.2 Task model

Each task is characterized by the following tuple.

14 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

τ j,i,k =< Tj,i,k,C j,i,k,Pj,i,k,J j,i,k,O j,i,k,Vj,i,k > (7)

A task can be activated periodically or sporadically. In the case of periodic acti-
vation, Tj,i,k represents its activation period. Whereas, in the case of sporadic activa-
tion, Tj,i,k represents the minimum inter-arrival time between any two consecutive
activations of the task. If the task is activated by its predecessor, a precedence con-
straint is specified between the task and its predecessor. Such information is stored
in Vj,i,k, which is null if the task is not activated by its predecessor. Note that in this
model each task can have only one predecessor which activates the current task. The
terms C j,i,k, Pj,i,k and J j,i,k in Eq. 7 represent the WCET, priority and maximum re-
lease jitter of the task. Note that the lower the value of Pj,i,k, the higher the priority.
The offset for a periodic task is denoted by O j,i,k. An offset is an externally imposed
delay between the times when the task can be released for execution. Offsets for
sporadic tasks are assumed to be zero. We assume that there is no synchronization
among tasks, i.e., the tasks do not use locks to protect shared data.

3.3 Message model

A message is characterized by the following tuple.

mi,k =< Ti,k,Ci,k,Pi,k,Ji,k,Oi,k,Vi,k,Li,k > (8)

A message can be queued for transmission either periodically or sporadically. If
the message is periodic, Ti,k represents its period. Whereas, if the message is spo-
radic then Ti,k specifies the minimum inter-arrival time that should elapse between
the queuing of its any two consecutive instances. The worst-case transmission time,
priority and release jitter of the message are denoted by Ci,k, Pi,k and Ji,k. Note that
the higher priority is shown by the lower value for Pi,k. The offset of the message is
denoted by Oi,k. The identifier of the task that sends the message mi,k is specified in
Vi,k. The message model is applicable to several real-time network protocols such as
real-time switched Ethernet extensions and Controller Area Network (CAN). In the
case of switched Ethernet, we assume the communication is full duplex. This means
that each network connection is composed of two independent unidirectional links
with opposite directions. The message traverses through a set of links, denoted by
Li,k, that are modeled in Eq. 9, where lx and ly are the first and last links the message
crosses through. Note that the index of a link is unique within the network and they
are shared among applications.

Li,k = {lx, ..., ly} (9)

Title Suppressed Due to Excessive Length 15

3.4 Resource model

Each application consumes a set of q resources. As shown in Eq. 10, R(h) denotes
the resource set for hth application, whereas rq represents the qth resource. The re-
source index, denoted by q, is unique within the system. Eq. 10 includes node and
communication resources. In a switched Ethernet network, one resource is defined
per link.

R(h) = {r1, ...,rq} (10)

The total resources consumed by the system are obtained by performing the
union operation on the resources consumed by all applications as shown in Eq. 11.

R =
⋃
∀h∈S
{R(h)} (11)

The resources are allocated to the applications using the periodic resource reser-
vation policy. According to this policy, each application periodically receives a por-
tion of bandwidth in each resource that it requires. We define the interface of an
application A(h) as the properties of its reservations on q resources, and we denote
the application interface using I(h):

I(h) =< {Π(h)
1 , ...,Π

(h)
q },{Θ(h)

1 , ...,Θ
(h)
q },{Ψ(h)

1 , ...,Ψ
(h)
q }> . (12)

Above, the replenishment period for resource ri is denoted by Π
(h)
i . The amount

of budget to be replenished is denoted by Θ
(h)
i . In addition, we define a priority for

the resource reservation which is represented by Ψ
(h)
i for resource ri. The motivation

behind the inclusion of the priority for each reservation is explained in the next
subsection.

3.5 Node model

In order to support the resource reservation in nodes, we consider periodic servers
[60]. We assume that there is one server per application per node that schedules
the tasks assigned to it. Each node implements a two-level hierarchical scheduler,
where both levels use the fixed-priority preemptive scheduling. The top-level sched-
uler, called the global level scheduler, schedules the servers based on the priority of
each reservation (Ψ). The second-level scheduler is called the local level scheduler
that schedules the tasks assigned to it. Fig. 5 shows an example of one node that
implements a two-level hierarchical scheduler. The global level scheduler schedules
two servers that schedule tasks belong to two applications within the node. Each
server has its own local scheduler to schedule the tasks that are assigned to it.

16 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

Node 1

Global
Scheduler

Server 1 (𝐴(1)) Server 2(𝐴(2))

Local
Scheduler

Local
Scheduler

Task
1

Task
2

Task
3

Task
4

Fig. 5 Example of a node with a two-level hierarchical scheduler.

3.6 Network model

For the network model any communication protocol that can support a resource
reservation mechanism can be used. The response-time analysis for messages is
specific for each network protocol. Therefore, as a proof of concept, we chose
the HaRTES architecture [7] because it allows independent activation of messages
unlike the CAN and AVB networks. Moreover, the reservation mechanism in the
HaRTES switch is more flexible than other technologies due to the hierarchical
framework. Hence, we describe the HaRTES architecture in more details. The
HaRTES switch is a modified Ethernet switch that provides real-time communi-
cation with a resource management mechanism. The HaRTES architecture is de-
veloped by connecting several HaRTES switches in a tree topology. The HaRTES
architecture separates the traffic into two classes, synchronous (periodic) and asyn-
chronous (sporadic). The transmission is performed within pre-configured Elemen-
tary Cycle (EC), which is a fixed-duration time slot. Each EC is divided into two
transmission windows, one per traffic class. The EC along with the two windows
for a link is shown in Fig. 6. Note that the size for the windows in each link can be
different according to the load on the link.

Link 1 Sync Window Async Window

Elementary Cycle (EC)

Guard Win Transmission Window

Fig. 6 The EC in the HaRTES architecture for two links.

The switch that is connected to the producer of a periodic message determines
its transmission, making sure that it occurs within the associated window. The ac-
tual transmission is triggered by the switch with a Trigger Message (TM), transmit-
ted within the Guard Window (see Fig. 6). The sporadic messages are transmitted
whenever they are activated without waiting for the TM, yet within Asynchronous

Title Suppressed Due to Excessive Length 17

Window. The arriving message in the switch is buffered in a priority queue. The
switch forwards the message as long as there is enough time in the associated win-
dow within the current EC. Otherwise, it is kept in the queue for the next EC. The
HaRTES architecture allows consistent ECs in all links by time synchronizing all
nodes and switches. For more details the reader is referred to [7]. For the purpose of
this model, we implement two servers per application per network resource (i.e., per
link), one for Synchronous Window and the other for Asynchronous Window. It is
important to dedicate a server per link for an application as each link in the network
may share between several applications. Therefore, better tuning for the application
resource allocation is possible. The reason behind using two servers per application
per link is that the synchronous and asynchronous transmissions should be isolated
to keep the fundamental feature of the HaRTES architecture. Therefore, if there are
two messages in one application crossing a link and from different types, they are
served by two different servers. If there is an application with one type of message
(i.e., all messages are synchronous) only, then one server for the application per link
is sufficient. Note that we may combine synchronous and asynchronous traffic that
belong to the same application in one link to allocate one server for them. In such
a case we loose the possibility of isolating the two types of traffic, while from the
application perspective it is tolerated as both types belong to the same application.

3.7 Alternative network models

The end-to-end resource reservation model allows for alternative network technolo-
gies, provided these technologies support resource reservation mechanisms. In this
section we discuss two network alternatives, Ethernet AVB [30] representing an
Ethernet-based technology and CAN with server-based scheduling [48] represent-
ing a broadcast communication scheme.

The Ethernet AVB standard foresees up to 8 classes of traffic. Commonly, two
classes of traffic, i.e., classes A and B, are being used in automotive and automa-
tion domains, where class A has higher priority than class B. Within each class the
transmission of messages is based on a single FIFO queue per output port. Accord-
ing to the standard, each class of traffic has a separate reservation per output port
that is enforced by a traffic shaper called the Credit-Based Shaper (CBS). The CBS
is allocated a part of total bandwidth to each class using credits. While the class has
zero or positive credit, it can access the port for transmission, otherwise it is has to
wait for replenishment of the credit. The increasing and decreasing rate of the credit
is constant which is defined by a designer for each port according to the reserved
bandwidth. In this technology, the link and message are defined according to the
network model discussed in Section 3.6. However, in Ethernet AVB, two priority
levels can be used only for classes A and B. The resource reservation model can
be applied to Ethernet AVB by assigning each application to separate class with a
bandwidth reservation in each link. If two applications use the same class of traffic
in one link, intuitively speaking, the applications loose their temporal isolation as

18 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

they can interfere each other by using the same FIFO queue. Although the case of
using Ethernet AVB introduces limitations on the number of applications per link,
it can still be considered as an alternative technology for the proposed end-to-end
reservation model.

In the server-scheduled CAN, there is one shared network resource correspond-
ing to the CAN bus, which is in contrast to the Ethernet-based technologies with
several network resources. According to the proposal presented in [48], multiple
network servers (N-Servers) can be implemented on each node connected to the
CAN bus. This concept resembles implementing multiple servers mediating access
to a single resource (CAN bus). Each server is characterized by a period and it is
allowed to send one message within the period. These servers are scheduled by a
master server (M-Server) which is implemented in a particular node connected to
the CAN bus. The M-Server is responsible for keeping track of the deadline that
is defined for each N-Server. The M-Server is also responsible for allocating band-
width for N-Servers. The M-Server further coordinates the access of N-Servers and
provides isolations among them. We refer the reader to [48] for the details about
the algorithms. The presented message model still holds for this network technol-
ogy with a difference that Li,k contains no element. The resource model also holds
where the resources are only nodes. There is no need to define a server with period,
budget and priority for the network because the CAN bus is controlled through the
nodes via N-Servers.

3.8 End-to-end timing requirements

The end-to-end timing requirements on each transaction Γ
(h)
i belonging to applica-

tion A(h) are specified as a set of constraints, denoted by Cr(h)i . These constraints in-
clude an end-to-end deadline, denoted by D(h)

i ; an age constraint, denoted by Age(h)i ;
and a reaction constraint, denoted by Reac(h)i . It is up to the user to specify one or
more of these constraints on each transaction.

Cr(h)i = {D(h)
i ,Age(h)i ,Reac(h)i } (13)

3.9 System development model

We assume a system development model which involves the following two roles: (i)
application developer; (ii) system integrator. Applications that are followed with the
above model are developed by application developers. The application developers
abstract the timing requirements of their application using the application interfaces
(Eq. 12). The timing behavior of the applications, provided in an interface, is in-
vestigated using the analysis presented in Section 4. Designing interfaces, however,

Title Suppressed Due to Excessive Length 19

is addressed in Section 5. The system integrators, on the other hand, are responsi-
ble for integrating various applications while examining the timing correctness of
the entire system. In this work we propose a compositional development model in
the sense that the system integrators only need to use the application interfaces for
investigating the timing properties of the system composed of several applications.
The schedulability of the entire system can be done by a state of the art analysis
given the interfaces by the application integrators.

3.10 Illustrative Example

Consider an example of a distributed system with two applications, A(1) and A(2).
The system consists of two HaRTES switches that connect four nodes as shown in
Fig. 7.

x Node x

s Switch s

S1 S2

τ1,1,1 τ1,1,2

𝑚1,2

τ4,1,1 τ4,1,2

τ4,1,3

𝑚1,1

τ3,1,1

τ1,2,3 τ1,2,4 𝑚2,3

τ3,2,2τ1,1,5

τ2,1,2

𝑚1,4

τ2,1,1 τ3,2,3

𝐴(1)

𝐴(2)

Γ1
(2):

Γ1
(1):

Γ2
(1):

𝑟5 𝑟6

𝑟9

𝑟8

𝑟7

𝑟10

𝑟1

𝑟2
𝑟3

𝑟4

Fig. 7 An example to illustrate the system model.

There are two transactions in A(1) and one transaction in A(2). The transactions
for the two applications are as follows.

Γ
(1)
1 = {τ1,1,1,τ1,1,2,m1,1,τ4,1,1,τ4,1,2,τ4,1,3,m1,2,τ3,1,1}

Γ
(1)
2 = {τ1,2,3,τ1,2,4,m2,3,τ3,2,2,τ3,2,3}

Γ
(2)
1 = {τ1,1,5,m1,4,τ2,1,1,τ2,1,2}

In Fig. 7, the node resources are identified by r1 to r4, whereas the communica-
tion resources are identified by r5 to r10. Note that the resources r7 and r8 represent
two directions of the network connection (i.e., one for each link). The two applica-
tions share resources in Node 1, denoted by r1, and the link between Node 1 and
Switch 1, denoted by r5. The resources used by the two applications are represented
as follows.

20 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

R(1) = {r1,r3,r4,r5,r6,r7,r8,r9}
R(2) = {r1,r2,r5,r10}

According to the reservation model, a reservation should be defined for each
resource that an application uses. For instance, the reservation in resource r4 for ap-
plication A(1) is {Π(1)

4 ,Θ
(1)
4 ,Ψ

(1)
4 }. This means that a server should be implemented

in Node 4 with a period of Π
(1)
4 , a budget of Θ

(1)
4 and a priority of Ψ

(1)
4 . This server

schedules three tasks, namely τ4,1,1, τ4,1,2 and τ4,1,3 as shown in Fig. 7. Since r1 is
shared between the two applications, two servers should be implemented in Node 1.
The first server, with parameters {Π(1)

1 ,Θ
(1)
1 ,Ψ

(1)
1 }, is responsible for scheduling

the four tasks in A(1), namely τ1,1,1, τ1,1,2, τ1,2,3 and τ1,2,4, that belong to Node 1.
Whilst, the second server, with parameters {Π(2)

1 ,Θ
(2)
1 ,Ψ

(2)
1 }, schedules the only

task, namely τ1,1,5, in A(2) that belongs to Node 1.

4 Timing Analysis

The proposed system model strictly isolates the applications by resource reserva-
tions and by restricting sharing of tasks and messages among the applications.
Therefore, schedulability of an application can be evaluated independently of the
other applications. An application is said to be schedulable if all of its transactions
are schedulable. That is, the end-to-end response times, age and reaction delays
in each transaction satisfy their corresponding constraints. In this section, first we
present the response-time analyses for tasks and messages conforming to the model
discussed in the previous section. In these analyses, we consider the implicit dead-
line model, i.e., the task and message deadlines are assumed to be equal to the cor-
responding periods. Then we build upon these analyses and present the end-to-end
response-time and delay analyses with resource reservations.

4.1 Response time analysis of tasks

We adapt the analysis presented in [5] as it is compatible with the presented model,
e.g., the analysis is based on the assumption that the release jitter and deadline of
each task are equal to or less than the task period. The analysis is based on a supply
bound function (sbf) and a request bound function (rbf). The sbf (t) is the minimum
effective capacity that the resource provides within a time interval of [0, t]. On the
other hand, the rbf i(t) is the maximum load generated by one task (τi) including the
load of its higher priority tasks within the time interval of [0, t]. The earliest time
where the sbf (t) becomes equal to or larger than the rbf i(t) is the response time of
τi. This method has been used in various models with different names for the supply
and request bound functions.

Title Suppressed Due to Excessive Length 21

The sbf for an application A(h) in node j corresponding to the resource rq is
the lower bound on the availability of a server to handle the tasks belonging to the
application. In order to sketch the lower bound, we must assume that the server is
always available at the end of its period, except the first activation which is available
at the beginning to make the worst case when the server is not available. Such a
lower bound is depicted in Fig. 8. In the first period the server is available at the
beginning of the period, while in the second period the server is available at the end
of the period. Then, this patterns continues. Therefore, the sbf for each point in time
has a value. As we assumed that the server is not available for almost two periods
of the server, the supply bound function is zero.

Π

0

Θ ΘΘ

Π − Θ
Δ

Π Π

𝑠𝑏𝑓

Fig. 8 The lower bound of the server availability.

Such a supply bound function, which is depicted in Fig. 8 is formulated in Eq. 14.

sbf (h)q (t) =


0 if t < ∆

t− (∆+ k× (Π
(h)
q −Θ

(h)
q)) if ∆+ k×Π

(h)
q ≤ t < ∆+ k×Π

(h)
q +Θ

(h)
q

(k+1)×Θ
(h)
q if ∆+ k×Π

(h)
q +Θ

(h)
q ≤ t < ∆+(k+1)×Π

(h)
q

(14)

where k = b(t−∆)/Π
(h)
q c; while ∆ is the worst-case latency of the server which is

2× (Π
(h)
q −Θ

(h)
q) .

The rbf for the task τ j,i,k that belongs to the application A(h) in node j is pre-
sented in Eq. 15. The tasks that are shared between transactions are excluded by
checking the condition (k 6= v), i.e., if the task identifiers are not the same. If the
interfering task τ j,p,v is triggered by its predecessor, the period of its predecessor is
extracted from Vj,p,v. The extracted period is then used instead of Tj,p,v.

rbf (h)j,i,k(t) =C j,i,k + ∑
∀τ j,p,v∈A(h)

∧ k 6=v∧ Pj,p,v≤Pj,i,k

⌈
t + J j,p,v

Tj,p,v

⌉
C j,p,v

(15)

The response time of the task τ j,i,k, denoted by RTj,i,k, is derived from Eq. 16.
The inequality should be evaluated for all t in the interval that is equal to the period
of τ j,i,k.

22 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

RTj,i,k = min(t > 0) : sbf (h)q (t)≥ rbf (h)j,i,k(t) (16)

4.2 Response time analysis of messages

Among the existing analyses, the closest analysis that could be applied to our model
is the response-time analysis for a single-switch architecture [52], which is based
on Explicit Deadline Periodic (EDP) resource model [21]. However, the presented
model considers that the messages traverse through multiple HaRTES switches with
resource reservations. We present analysis for the multi-hop HaRTES architecture
by adapting the existing analysis and using the sbf for the servers presented in [57].
A server is implemented for each network resource to schedule the messages that
belong to one application, provided that the server is used during either Synchronous
or Asynchronous Windows which depends upon the activation patterns of the mes-
sages. The scheduling in the network link is performed in a hierarchical fashion,
where the EC and its two windows constitute the top level while the servers within
the windows represent the second level in the hierarchy. We provide the sbf for
a message mi,k belonging to transaction i in application A(h) that crosses link lq,
which is denoted by sbf (h)i,k,q(t). Note that in the analysis we consider that messages
are not larger than the maximum Ethernet size, hence there is no fragmentation of
messages.

Since the messages cannot be preempted during their transmission, a portion of
the budget in the server can be wasted. We define this wasted time as the idle time.
Fig. 9 shows a scenario in which a message cannot fit within the remaining budget
in the first period of the server, hence it has to be sent after the replenishment during
the next period. The idle time is upper bounded by the maximum size of the message
in the set that includes mi,k and all the higher priority messages that cross the link
lq; belong to the same application; and have the same activation pattern as that of
mi,k. The idle time is denoted by Id(h)

i,k,q and is calculated in Eq. 17, where AP(mi,k)
presents the activation pattern for mi,k.

𝒓𝒒

Π𝒒 𝟐Π𝒒0

θ𝒒

m

𝑰𝒅

θ𝒒

Fig. 9 Example demonstrating the inserted idle time.

Id(h)
i,k,q = max

∀mz,p∈A(h)∧ Pz,p≤Pi,k∧ lq∈Lz,p
∧ p6=k∧ AP(mz,p)=AP(mi,k)

{Cz,p}
(17)

Title Suppressed Due to Excessive Length 23

Therefore, in the calculation of the sbf , the idle time should be subtracted from
the budget, i.e., Θ

′(h)
q = Θ

(h)
q − Id(h)

i,k,q. The sbf can be computed as follows.

sbf (h)i,k,q(t) =
{

y.Θ′(h)q +max{t− x− y.Π(h)
q ,0} if t ≥Π

(h)
q −Θ

′(h)
q

0 otherwise
(18)

where x = 2(Π(h)
q −Θ

′(h)
q) and y =

⌊
t−(Π(h)

q −θ
′(h)
q)

Π
(h)
q

⌋
.

The rbf is defined as the maximum load generated by a message with respect
to its critical instant. The critical instant, in this case, corresponds to releasing the
message with all its higher priority messages at the same time. The interference and
blocking received by a message in the HaRTES architecture has been derived in [7].
These interferences for mi,k are categorized as follows: (i) the interference from the
higher and equal priority messages that share the link with the message, denoted
by I(h)i,k,q, and (ii) the blocking from the lower priority messages that share the link

with the message, denoted by B(h)
i,k,q. The rbf for the message mi,k belonging to the

application A(h) crossing the link lq is presented in Eq. 19.

rbf (h)i,k,q(t) =Ci,k + I(h)i,k,q +B(h)
i,k,q (19)

The interference of higher or equal priority messages is calculated according to
Eq. 20. Similar to the case of response-time analysis for tasks, the messages that are
shared among transactions should be excluded by checking the message identifier,
i.e., p 6= k.

I(h)i,k,q = ∑
∀mz,p∈A(h)∧ Pz,p≤Pi,k∧ p 6=k
∧ lq∈Lz,p∧ AP(mz,p)=AP(mi,k)

⌈
t

Tz,p

⌉
Cz,p

(20)

When a message is ready to be forwarded in the switch, it might be blocked
by a lower priority message that is already under transmission. The blocking delay
is the maximum size of the message within the messages that belong to the same
application as mi,k and cross the link lq.

B(h)
i,k,q = max

∀mz,p∈A(h)∧ Pz,p>Pi,k∧ p 6=k
∧ lq∈Lz,p∧ AP(mz,p)=AP(mi,k)

{Cz,p}
(21)

The response time of mi,k crossing the link lq is computed in Eq. 22. The period
of the message should be decomposed for each link. This can be done in proportion
to the load of the links or by equally distributing the load over the links. We refer
the reader to the existing works (e.g., [14]) for details about the decomposition of
deadlines. Eq. 22 should be evaluated for all t until the decomposed deadline for
link lq.

24 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

RTi,k,q = min(t > 0) : sbf (h)i,k,q(t)≥ rbf (h)i,k,q(t) (22)

The response time of mi,k is derived in Eq. 23, where ε represents the switch
fabric delay.

RTi,k =
|Li,k|

∑
q=1

RTi,k,q + |Li,k|× ε (23)

4.3 Timing analysis of transactions

The end-to-end response time for a transaction is the sum of the response times of
tasks and messages that belong to it. The transaction is schedulable if its end-to-end
response time, denoted by RT (h)

i , is less than or equal to its end-to-end deadline,
denoted by D(h)

i . The end-to-end response time for transaction Γ
(h)
i is computed as

follows.

RT (h)
i = ∑

∀τ j,i,k∈Γ
(h)
i

RTj,i,k + ∑
∀mi,k∈Γ

(h)
i

RTi,k (24)

When the tasks and messages in a transaction have independent activation
sources, the age and reaction delays should be computed. In order to calculate these
delays, all reachable time paths for a transaction should be derived. For example,
in Fig. 3 one reachable time path is τ1 (first instance), τ2 (second instance) and τ3
(third instance). Note that the time paths that are not reachable are excluded from
the analysis, e.g., τ1 (second instance), τ2 (second instance) and τ3 (third instance).
A set of Boolean functions are presented in [22] to derive such reachable time paths.
However, time paths presented in [22] are only applicable for networks in which the
messages cannot be independently initiated. In the HaRTES architecture a message
may be triggered independent of the sender task in case the message is synchronous
message in the HaRTES. Therefore, independent activations of the messages in the
transaction should be included in the time paths. Fig. 10 shows a transaction with
two tasks and a message. The message is triggered by the switch regardless of the
sender task (τ1). In this figure, five time paths (identified by A to E) are illustrated.
However, not all of these time paths are reachable. For example, time path D is not
reachable as the data cannot travel back in time.

Title Suppressed Due to Excessive Length 25

1
0 20105 15 25

0 20105 15 25

0 20105 15 25

2

1m
B CA

D

E

Fig. 10 An example of time paths including a message

The algorithm to compute the delays for Γ
(h)
i is presented in Algorithm 1. In order

to compute the longest time path, all reachable time paths are extracted based on
the activation patterns of the tasks and messages in the transaction. The extraction
is done by the two functions in lines 1 and 2. Basically, every valid time path is
verified against the reachability condition. This condition for two neighboring tasks
(or a task and a message) is as follows. Let αw(i) and αr(i) denote the activation
times of the ith instances of the reader and writer tasks respectively. Also, let RTw(i)
denotes the response time of the writer task.

1. The activation time of the writer should be earlier than the reader, i.e., αr(i) ≥
αw(i). For instance, time path D in Fig. 10 does not satisfy this condition between
m1 and τ2.

2. The execution of the writer and reader should not overlap, i.e., αr(i) ≥ αw(i)+
RTw(i). For example, time path A in Fig. 10 does not satisfy this condition be-
tween τ1 and m1.

3. The writer and reader can have overlap only if both of them execute on the same
node or link, and the priority of the reader is lower than the priority of the writer.

4. There could be a time path in which the output of an instance of the writer is
over-written by its next instance. For example, time path E in which the second
instance of τ1 over-writes the data from its previous instance. Such time paths
are excluded from the list of reachable time paths.

In order to compute the reaction delay, a subset of reachable time paths is ex-
tracted. In this subset, no time path exists that shares the same start instance of the
first task in the transaction and has an earlier end instance of the last task in the
transaction.

The function in line 5 of the algorithm provides the age delay of the transaction
for a given time path. The function uses Eq. 25 to compute the age delay [22],
where αn and α1 represent the activation times of the last task and the first task in
the transaction. Note that a transaction cannot start or finish with a message.

New Age = αn(T P)+RTj,i,k−α1(T P) (25)

The reaction delay derived in line 11 of the algorithm for a given time path is
computed using Eq. 26, where Pred(T P) is the instance of the first task in the trans-
action that belongs to the previous reachable time path.

26 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

Algorithm 1 Find the age and reaction delays for Γ
(h)
i

1: TP Age = FindAllValidAgeTimePaths(i)
2: TP Reac = FindAllValidReacTimePaths(i)
3: Age Delay(h)i = 0;Reac Delay(h)i = 0
4: for all T P Age do
5: New Age = ComputeAge(T P Age)
6: if New Age > Age Delay(h)i then
7: Age Delay(h)i = New Age
8: end if
9: end for

10: for all TP Reac do
11: New Reac = ComputeReac(T P Reac)
12: if New Reac > Reac Delay(h)i then
13: Reac Delay(h)i = New Reac
14: end if
15: end for
16: return Age Delay(h)i ,Reac Delay(h)i

New Reac = αn(T P)+RTj,i,k−α1(Pred(T P)) (26)

In Eq. 25 and Eq. 26, RTj,i,k represents the response time of the last task in Γ
(h)
i

which executes in node j. The transaction meets its constraints if:

Age Delay(h)i ≤ Age(h)i & Reac Delay(h)i ≤ Reac(h)i (27)

4.4 Schedulability of applications

In order to verify the schedulability of applications, the response time of servers
corresponding to each application should be evaluated on both nodes and network
links. The servers are schedulable if their response times are less than or equal to
their respective periods. The response time of a server for A(h) in a node corresponds
to resource rq. It is recursively calculated using Eq. 28.

RT (h)
q = ∑

∀A(f)∈S∧Ψ
(f)
q ≤Ψ

(h)
q

⌈
RT (h)

q

Π
(f)
q

⌉
Θ

(f)
q (28)

On the network links, the servers use a portion of bandwidth, i.e., in the Syn-
chronous or Asynchronous Windows. Therefore, the analysis based on the sbf and
rbf is used. The Synchronous Window becomes available every EC at a known point
in time, which is always after the Guard Window. Fig.11 shows the availability of
windows and the sbf for the Synchronous Window in link lq, where LEC is the size
of the EC; and LSq and LAq are the sizes of the Synchronous and Asynchronous
Windows in link lq respectively. In order to calculate the supply for a given time in-

Title Suppressed Due to Excessive Length 27

terval t, we consider that the interval starts at the beginning of the EC as the resource
is periodic in a fixed position within the EC. There are three scenarios for the time
interval: (a) it finishes before the window, (b) it finishes within the window, and (c)
it finishes before the end of the EC but consumes the whole window.

𝑙𝑞

𝐿𝐸𝐶

Sync Win Async Win

𝑠𝑏𝑓

𝑡

𝐼𝑑

Async Win

𝐼𝑑

Async Win

𝐼𝑑

Sync Win Sync Win

𝑡

𝑡

𝐿𝐸𝐶
× (𝐿𝑆𝑞 − 𝐼𝑑) 𝜌

𝐿𝑆𝑞 𝐿𝑆𝑞 𝐿𝑆𝑞𝐿𝐴𝑞 𝐿𝐴𝑞 𝐿𝐴𝑞

(𝑏)

(𝑐)

𝐿𝐸𝐶 𝐿𝐸𝐶

Fig. 11 Supply bound function for the Synchronous Window.

The time interval t in Fig. 11 is calculated using Eq. 29, where ρ is a part of the
supply in the last EC and Idq is the idle time. The calculations for the idle time in
the servers will be explained later in this section.

sbf (h)q (t) =
⌊

t
LEC

⌋
× (LSq− Idq)+ρ (29)

We compute the supply in the last EC for the scenarios (b) and (c) as depicted in
Fig. 11. If the interval finishes in the middle of the Synchronous Window (i.e., sce-
nario (b)), ρ is computed using Eq. 30. Note that this scenario also covers scenario
(a) by using the max operation in Eq. 30.

ρ = max{t−
⌊

t
LEC

⌋
×LEC− (LEC−LSq−LAq),0},

if
⌊

t
LEC

⌋
×LEC ≤ t ≤

⌊
t

LEC

⌋
×LEC +(LEC−LAq− Idq)

(30)

However, if the time interval finishes after the Synchronous Window but before
the end of the EC (i.e., scenario (c)), the calculations for ρ are different as shown in
Eq. 31.

ρ = max{t−
⌊

t
LEC

⌋
×LEC− (LEC−LSq + Idq),0},

if t >
⌊

t
LEC

⌋
×LEC +(LEC−LAq− Idq)

(31)

28 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

The Asynchronous Window becomes periodically available at known point in
time within the EC. Hence, the sbf for it is computed in a similar fashion as follows.

sbf (h)q (t) =
⌊

t
LEC

⌋
× (LAq− Idq)+ρ (32)

The resource in the last EC (ρ) is computed for the scenarios using Eq. 33 and
Eq.34.

ρ = max{t−
⌊

t
LEC

⌋
×LEC− (LEC−LAq),0},

if
⌊

t
LEC

⌋
×LEC ≤ t ≤

⌊
t

LEC

⌋
×LEC +(LEC− Idq)

(33)

ρ = max{t−
⌊

t
LEC

⌋
×LEC− (LEC−LAq + Idq),0},

if t >
⌊

t
LEC

⌋
×LEC +(LEC− Idq)

(34)

In order to find the idle time, we derive the maximum message size that crosses
the window in link lq and belongs to A(h). Eq. 35 calculates the idle time, where ω

represents the periodic and sporadic activation pattern if the idle time is calculated
in the Synchronous and Asynchronous Windows respectively.

Idq = max
∀mz,p∈A(h)∧ lq∈Lz,p
∧ AP(mz,p)=ω

{Cz,p}
(35)

The rbf for the servers within the transmission windows is calculated using
Eq. 36, where the interference from the higher priority servers is accounted for.

rbf (h)q (t) = ∑
∀A(f)∈S∧Ψ

(f)
q ≤Ψ

(h)
q

⌈
t

Π
(f)
q

⌉
Θ

(f)
q (36)

Finally, the response time of the server is calculated when the sbf is equal to or
larger than the rbf , as shown in Eq. 37.

RT (h)
q = min(t > 0) : sbf (h)q ≥ rbf (h)q (37)

The system S is schedulable if all the servers in the nodes and network links
are schedulable. Therefore, the applications should be schedulable in each node and
network link. The schedulability of servers can be verified by the existing analysis
depending on the scheduler algorithm for the global level scheduler. For instance,
if the global level scheduler is the fixed-priority preemptive scheduler according to
RM, the response time analysis corresponding to that is used.

Title Suppressed Due to Excessive Length 29

5 Reservation Design

In this section we address the problem of designing application interfaces, i.e., the
end-to-end reservations. The interface design is performed by application develop-
ers. Therefore, we consider the problem of designing an end-to-end reservation for
one application at a time and, for notational convenience, we drop the application
index in this section. The problem of interface design for an application involves
designing reservation periods and budgets. The system integrator assigns the priori-
ties of the reservations such that the reservations are schedulable in the global level.
The priority assignment is out of the scope of this chapter.

A common practice in designing reservation for a single resource is to compute
the bandwidth reservation in which the response times are equal to the correspond-
ing deadlines. In the case of end-to-end resource reservations, however, the problem
is more complex. It is not possible to compute each reservation separately because
the end-to-end response times depend on all application reservations.

We model the end-to-end reservation design problem as a Constraint Satisfaction
Problem (CSP) [37]. The reservation design using CSP formulation provides sep-
aration of concerns in the sense that the problem formulation is independent from
the solving technique. To this end, we can use different solving techniques that are
provided by the solver and evolved over the time to solve the same problem formula-
tion. This approach is potentially complete and finds the optimum solution provided
enough time.

A CSP is a triple of finite set of variables, values and constraints. A CSP solver
searches for feasible variable assignments, i.e., a function from the variables to the
values such that the constraints are satisfied. The CSP formulation allows consider-
ing all reservations simultaneously and designing an end-to-end reservation which
is overall efficient. The solution for a CSP is the set of all assignments which sat-
isfy all constraints. A CSP solver performs constraint propagation, branching and
search in an intertwined manner. Propagation uses the constraints and removes in-
feasible values from the value set. For instance, in our case, constraint propagation
removes budget values that result in deadline misses. Branching constructs a search
tree based on the remaining values in the value set. The search selects a node from
the tree that is constructed by branching to be explored. In the following we describe
the variables, values and constraints in our CSP formulation.

5.1 Variables

The design problem is to select values for the reservation budgets Θ j and reserva-
tion periods Π j for all reservations corresponding to an application. Therefore, the
variable set of the CSP is as follow:

{Θ1, . . . ,Θq,Π1, . . . ,Πq}.

30 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

We define the bandwidth of a reservation as follows: β j =
Θ j
Π j

. The application foot-
print γ on the resources is the sum of all reservation bandwidths that belong to the
application, i.e. γ = ∑ j∈R β j.

5.2 Values and constraints

We assume that the system designer imposes the minimum reservation periods con-
sidering the context switch related overheads and the time resolution of the operat-
ing system. Also, we assume that the reservation periods should never exceed the
shortest task/message period within the application since larger periods will require
significanly higher budgets. Therefore, we have:

∀ j ∈ R Π
min ≤Π j ≤ Pmin, (38)

where Πmin represents the minimum allowed period and Pmin is the minimum value
among all task/message periods within the application. We also assume that the
reservation periods are integer multiples of Πmin.

The reservation budgets cannot exceed the corresponding periods:

∀ j ∈ R Θ j ≤Π j. (39)

The reservation bandwidth corresponding to the application on the processor re-
source r j should be more than the utilization of the tasks assigned to r j:

β j ≥∑
∀i,k

C j,i,k

Tj,i,k
. (40)

We have a similar constraint for the network resource. However, in the case of net-
work resource r j, the corresponding reservation bandwidth β j has to be more than
or equal to the sum of the bandwidths of all the involved messages:

β j ≥ ∑
∀i,k | l j∈Li,k

Ci,k

Ti,k
. (41)

It is also possible to impose an upper limit for the reservation bandwidth on a par-
ticular resource. For instance, when a new application is being developed on top of
an existing system, the resources are already allocated to the existing applications.
In this case, the new application can only use the remaining slacks on the resources
to meet its timing requirements. Therefore, the system integrator may impose max-
imum allowed bandwidth on the resources for the new application based on the
slacks.

The timing requirements of the applications must be respected, i.e., the corre-
sponding deadlines of all transactions have to be respected:

Title Suppressed Due to Excessive Length 31

∀Γi ∈ A RTi ≤ Di (42a)
Age Delayi ≤ Agei (42b)
Reac Delayi ≤ Reaci, (42c)

where RTi, Age Delayi and Reac Delayi represent the response time, age delay
and reaction delay of transaction Γi within application A .

5.3 Optimization

The CSP formulation allows to search for the optimal solution with respect to a
criterion. In this case the solver uses the branch-and-bound algorithm to prune the
search tree. Basically, instead of evaluating the entire search tree, the solver prunes
the nodes that do not improve over the best solution found until the current stage of
the search. In this work we consider the following four optimization cases.

5.3.1 Case 1: Minimum Footprint

Each application occupies a bandwidth (β j) of the resources in our end-to-end reser-
vation scheme. It is desirable to reserve minimum bandwidths for the applications to
allow integration of more applications on the same underlying resources. Therefore,
the optimization objective is:

Minimize: γ = ∑
j∈R

β j,

Subject to: (38) (39) (40) (41) (42a) (42b) (42c).

In this case, we assume that the system integrator has not imposed any upper bound
on the allowed reservation bandwidths while the application under analysis has
deadlines for response times, age delays and reaction delays. Then, the objective
is to minimize the application footprint.

5.3.2 Case 2: Best Performance

In this case the system integrator has imposed an upper bound on the application
footprint γ and the application designer is interested in finding a design in which
the application performance is maximized, i.e., the response times, age delays or
reaction delays are minimized. For instance, if the response times are of interest, the
optimization objective is as follows:

32 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

Minimize: ∑
∀Γi∈A

RTi,

Subject to: (38) (39) (40) (41) (42b) (42c) ,
γ≤maximum allowed bandwidth.

When multiple objectives are of interest for optimizations, then we combine the
criteria in one objective function and optimize based on a new criterion which is a
weighted sum of all the criteria.

5.3.3 Case 3: Minimum Overhead

Another possible target is to minimize the overhead imposed by the reservations
management mechanism in processor resources, namely their periodic activation
and associated context switching. In such cases we can optimize for the following
objective:

Maximize: ∑
∀ j∈Rcpu

Π j,

Subject to: (38) (39) (40) (41) (42a) (42b) (42c),

where, Rcpu is the set of all processor resources of the application.

5.3.4 Case 4: Combined Footprint and Performance

Often multiple objectives are of interest when designing an end-to-end reservation
for an application. In such cases, we use a linear combination of different criteria as
the optimization objective. For instance, the application footprint and performance
are two important yet contradicting objectives since larger footprints usually result
in designs with better performance than small footprint. Therefore, the goal is to
combine these two objectives and search for designs which have smaller footprints
as well as good performance.

Minimize: wγγ+ ∑
∀Γi∈A

wiRTi,

Subject to: (38) (39) (40) (41) (42a) (42b) (42c),

where wγ and wi are the weights associated to the footprint and response time ob-
jectives respectively. These weights are used to adjust the trade off among different
objectives.

Title Suppressed Due to Excessive Length 33

5.4 Design tool

We have developed an open-source C++ exploration tool which implements the
above CSP formulation6. The set of tasks and messages as well as the set of trans-
actions are provided as inputs to the tool in XML format. The users can select the
optimization criterion by specifying it in a setting file. We have used the Gecode
toolkit [54] for modeling and solving the CSP. The analysis presented in Section 4
should be encoded in our constraint model, however, this analysis is very complex
and cannot be expressed using the standard constraints provided by Gecode. To
this end, we have implemented a new constraint propagator which implements the
schedulability analysis.

6 End-to-end Resource Reservations in RCM

In this section, we discuss how an existing component model can be extended to
support the proposed end-to-end resource reservation model. As a proof of concept,
we select RCM. First, we discuss what is missing in RCM to support the model-
ing of end-to-end resource reservations as shown in Fig. 12. Then we describe the
extensions in RCM.

System
Applications (missing)

Nodes
Targets
Modes

Assemblies
Software Circuits

Networks
Network Configuration (partly missing)

Switches
(missing)

Messages
Signals Links

(missing)
Network

Specification

Fig. 12 Structural hierarchy in RCM along with missing elements.

6.1 Extending the structural hierarchy in RCM

The highest-level hierarchical element in the structural hierarchy of RCM is the sys-
tem model that contains the models of nodes and networks. The node contains one
or more targets. A target is a hardware and operating system specific instance of a

6 The tool is available at: https://github.com/nimazad/e2e-res

34 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

node. It defines the run-time environment. Several targets can be assigned to a single
node such as the PowerPC processor, ARM processor and simulation target. Each
target contains one or more modes that define different states of the system, e.g.,
start-up mode and running mode. A mode may contain one or more assemblies.
An assembly is a container to encapsulate software circuits (synonymous to soft-
ware components). The network model contains models of messages and network
configuration. Each message contains one or more signals that are mapped to the
message. The network configuration contains the network specification object that
specifies both protocol-dependent and protocol-independent information. We refer
the reader to [47] for details about the network specification.

The structural hierarchy in RCM contains most of the elements that are required
to support resource reservations in the software architecture. However, the model of
the application is missing from the RCM hierarchy. We introduce a new object in
RCM to represent the model of an application as shown in Fig. 13. This object is
introduced as the second-highest hierarchical element in RCM. Note that the net-
work object in RCM is also the second-highest hierarchical object. There are only
two properties associated to this object, i.e., a name and an unique identifier.

System

Applications

Nodes Networks

Software Components Messages Network Configuration

System

Nodes

Networks

Software Components

Messages Network Configuration

System

Applications

Nodes

Networks

Software Components

Messages Network Configuration

Fig. 13 Application model in RCM.

In RCM, the nodes are assumed to have unique identifiers. However, with the ad-
dition of the application model, this assumption does not remain valid because sev-
eral applications can share the same node. In order to be consistent with the RCM
approach that identifies objects with unique identifiers, we still assign a unique iden-
tifier to each node in the system. However, we add a new property to the node model,
denoted by “Usage Name” in Fig. 16. For example, consider two applications. The
first application contains two nodes with identifiers 1 and 2; whereas, the second ap-
plication contains three nodes with identifiers 3, 4 and 5. If node 1 and node 3 have
the same usage name then these two nodes correspond to one physical node which
is shared by the two applications. This allows the applications to be developed in
isolation and independent of each other, despite sharing resources.

Title Suppressed Due to Excessive Length 35

6.2 Augmenting the network model with resource reservation

In order to specify resource reservations at the network level, the existing network
model in RCM is extended by augmenting it with several new properties as shown
in Fig. 14. Since a network can be shared by two or more applications, each ap-
plication is provided with a copy of the network. The application is not allowed to
modify global properties of the network, e.g., network speed and maximum reserv-
able bandwidth. Hence, we add the usage name property to the network model. We
also add two new protocols, namely Ethernet AVB and HaRTES, to the “Active Pro-
tocol” property. Two more properties are added to reserve the maximum bandwidth
of the network for class A and class B traffic in AVB. Another new property corre-
sponds to the size of the elementary cycle. In addition, two properties are added that
represent sizes of the synchronous and asynchronous windows in the elementary cy-
cle. The last three properties in Fig. 14 are specific to the HaRTES protocol. The last
five properties in Fig. 14 are not used by CAN and its higher-level protocols. Hence,
these properties are disabled by the development environment if such protocols are
selected. Similarly, the two properties for bandwidth reservation in class A and class
B traffic are disabled if HaRTES is selected. Whereas, the last three properties are
disabled if Ethernet AVB is selected.

(a)

Newly added properties

Newly added properties

Newly added properties

Fig. 14 Newly added properties to the network model in RCM.

36 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

6.3 Extending the network configuration

The network configuration object that is required to support the modeling of re-
source reservations is partly available in RCM as indicated in Fig. 12. In order to
enable the modeling of Ethernet networks in RCM, we extend the network con-
figuration object by introducing the models of a switch and a link as shown in
Fig. 15(a). The figure shows internal architecture of a switched Ethernet network
where three switches are connected via links. The properties of the switch model
include “Name”, “Unique Identifier”, “Usage Name” and “Number of Ports” as de-
picted in Fig. 15(b). Since a switch can be shared among applications, the model of
the shared switch in each application must have the same usage name regardless of
its other properties. A switch can have any number of ports (typically, between 2
and 32 ports).

(a)

(b) (c)
Enclosed properties are locally specified in each application

Fig. 15 (a) Models of switches and links in RCM, (b) properties of the switch model and (c)
properties of the link model.

Four link models are shown in Fig. 15(a). Note that these links are entirely differ-
ent from the legacy connecters in RCM that connect any two software circuits. The
main difference between the link and a connecter is that the user-defined properties
are associated to the model of the link and not to the connector. Note that each of
the two links, denoted by Link1 and Link4 in Fig. 15(a), is located between a switch
and a node. The connections between the node and the switch via the link are es-
tablished by specifying the “Switch User Name” in the last property of the node
shown in Fig. 16. Most of the switched Ethernet protocols support full-duplex com-
munication. Hence, each link supports independent communication in the opposite
directions, denoted by the uplink and downlink. The uplink corresponds to the trans-
mission of data from the switch. The downlink corresponds to the reception of data
at the switch. A link has a name, a unique identifier and a usage name. In order to

Title Suppressed Due to Excessive Length 37

specify reservation parameters for the servers that schedule traffic in the uplink and
downlink, the link model includes the properties corresponding to the budget, pe-
riod and priority of the servers. These reservation parameters can be provided by the
system architects and integrators. In such a case, these parameters serve as require-
ments for the application. The developer of the application can also be asked by the
system integrators to provide optimized reservation parameters. The resources are
reserved on uplink and downlink in each link model separately and independently.
Intuitively, an uplink may have a different reservation than the downlink on the same
link within one application.

6.4 Augmenting the node model with resource reservations

The existing node model in RCM is augmented with new properties to support the
specification of resource reservations for each application as shown in Fig. 16. The
“Usage Name” property is already discussed in Section 6.1. In order to specify reser-
vation parameters for the server that schedules the run-time entities (corresponding
to the software circuits) on the node, three new properties are augmented with the
node model. These properties include “Resource Budget”, “Resource Period” and
“Resource Priority”. The last property in Fig. 16, denoted by “Switch Usage Name”,
corresponds to the usage name of the switch that is connected to the node in the case
when one of the switched Ethernet protocols is selected in the network model. In
the case of CAN and its higher-level protocols, this property is disabled by the de-
velopment environment because these protocols do not use switches. It is important
to note that all these properties including resource reservations are specified on each
node separately within each application that uses it.

(a)

Newly added properties

Newly added properties

Newly added properties
Fig. 16 Newly added properties to the node model in RCM.

38 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

7 Extracting Execution Model from the Software Architecture

In this section, we describe a technique to extract the execution model from the
software architecture with resource reservations. In this regard, first we model soft-
ware architecture of a vehicular distributed embedded system using the extensions
in RCM. In the second step, we extract the execution model from the software ar-
chitecture.

7.1 Modeling of a vehicle system with resource reservations

In order to focus on the model extraction and for the sake of simplicity, we model
partial architecture of the infotainment system. The system consists of four nodes
and one network that implements the HaRTES protocol. For the sake of a proof
of concept, we have selected HaRTES instead of AVB because HaRTES has higher
flexibility and better support for resource reservations [53]. In HaRTES, resources in
each link of the architecture can be reserved for a set of messages using a hierarchi-
cal scheduling framework, that is implemented for each link in the HaRTES switch.
This allows better adoption of the presented model compared to other switched
Ethernet-based technologies. However, AVB can also be used as it provides abil-
ity to reserve resources for each class of messages.

The reason for not selecting CAN is that it does not inherently support resource
reservations unless traffic shapers are explicitly used. There are two applications
that share the node and network resources in the system. The models of the sys-
tem, applications and network are shown in Fig. 17. There are four messages in the
network model; three of them belong to Application1, whereas the forth message
(Msg4) belongs to Applciation2. The network contains two HaRTES switches and
five links as shown in Fig. 18. The reservation parameters specified on the network
model are as follows: size of Elementary Cycle is 1 ms; size of Synchronous Win-
dow is 700 µs; and size of Asynchronous Window is zero (since all messages are
periodic).

Fig. 17 Models of the system with two applications.

Title Suppressed Due to Excessive Length 39

The software architectures of the two applications are shown in Fig. 19 and
Fig. 20. Each application gets the copy of the network model. However, the appli-
cation can access only its own messages. Hence, Msg1, Msg2 and Msg3 are shown
in Fig. 19. Whereas, only Msg4 is shown in Fig. 20. Application1 is modeled with
three nodes; whereas, application2 is modeled with two nodes. The resource reser-
vation information is assumed to be provided by the system integrator. The two ap-
plications share Sensor ECU node, Link1 and Switch1. Therefore, the usage name
for the Sensor ECU node is the same in both applications. This means, the software
architecture of the two node models in these applications will be deployed on one
ECU. As a result, the two node models can be developed independently due to re-
source reservations in the applications. The resources used by the two applications
and the reservation parameters for each resource are tabulated in Fig. 21. Note that
only Link3 uses full duplex communication in Application1 as depicted in Fig. 18.
Hence, reservation parameters for uplink and downlink for Link3 are reserved sep-
arately. The software architectures of all nodes in the two applications are shown in
Fig. 22 and Fig. 23.

Fig. 18 Models of switches and links in the network.

Fig. 19 Software architecture of Application1.

Fig. 20 Software architecture of Application2.

40 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

Application1+Reources Budget+(ms) Period+(ms) Priority
Sensor_ECU 4 10 High
Computation_ECU 5 10 High
Control_ECU1 5 10 High
Link1;(Downlink) 2 5 High
Link2;(Uplink) 3 5 High
Link3;(Uplink) 2 4 High
Link3;(Downlink) 2 4 High
Link4;(Uplink) 3 5 High
Application2+Resources Budget+(ms) Period+(ms) Priority
Sensor_ECU 6 20 Low
Control_ECU2 4 10 High
Link1;(Downlink) 2 6 Low
Link5;(Uplink) 2 5 High

Fig. 21 Resource reservation parameters for Application1 and Aplication2.

7.2 Extraction of execution model

The execution model extracted from the software architecture of the infotainment
system is shown in Fig. 7. The applications in the execution model, presented in
previous subsection, are centered around the concept of transactions. The transac-
tions are extracted from the component chains in the software architectures shown
in Fig. 22 and Fig. 23. Two transactions, denoted by Γ

(1)
1 and Γ

(1)
2 in Fig. 7, are

extracted from Application1. Whereas, one transaction, denoted by Γ
(2)
1 in Fig. 7,

is extracted from Apllication2. The translation considers a one-to-one mapping be-
tween a software circuit and a task, e.g., τ1,1,1 in Fig. 7 maps to SWC1 in the soft-
ware architecture of Sensor ECU in Fig. 22. The translation assigns identifier 1 to
Sensor ECU; identifier 2 to Control ECU2; identifier 3 to Control ECU1; and iden-
tifier 4 to Computation ECU. The extracted transactions are as follows.

Γ
(1)
1 = {τ1,1,1,τ1,1,2,m1,1,τ4,1,1,τ4,1,2,τ4,1,3,m1,2,τ3,1,1}

Γ
(1)
2 = {τ1,2,3,τ1,2,4,m2,3,τ3,2,2,τ3,2,3}

Γ
(2)
1 = {τ1,1,5,m1,4,τ2,1,1,τ2,1,2}

In Fig. 7, the node resources are identified by r1, r2, r3, r4 which represent Sen-
sor ECU, Control ECU2, Control ECU1 and Computation ECU respectively. The
communication resources are identified by r5, r6, r7, r8, r9 and r10 which represent
Link1 (downlink), Link2 (uplink), Link3 (uplink), Link3 (downlink), Link4 (up-
link) and Link5 (uplink) respectively. A(1) and A(2) share the resources r1 and r5.
The resources used by the two applications are represented as follows.

R(1) = {r1,r3,r4,r5,r6,r7,r8,r9}
R(2) = {r1,r2,r5,r10}

Title Suppressed Due to Excessive Length 41

Software Architecture of Sensor_ECU

Clock

Data Port

Software Circuit (SWC)

Trigger Port
Network Port
(Node Level)

Network Port
(SWC Level)

Software Architecture of Control_ECU

Software Architecture of Computation_ECU

Software Architecture of Sensor_ECU

Software Architecture of Control_ECU

Fig. 22 Software architectures of all nodes in Application1.

Software Architecture of Sensor_ECU

Clock

Data Port

Software Circuit (SWC)

Trigger Port
Network Port
(Node Level)

Network Port
(SWC Level)

Software Architecture of Control_ECU

Software Architecture of Computation_ECU

Software Architecture of Sensor_ECU

Software Architecture of Control_ECU

Fig. 23 Software architectures of all nodes in Application2.

Using the above-mentioned mapping and the table in Fig. 21, a deferable server
is assigned to schedule an application in each resource. For instance, the reservation
for resource r4, represented by {Π(1)

4 ,Θ
(1)
4 ,Ψ

(1)
4 }, is equal to {10,5,High}. This

means that a deferrable server should be implemented in the Computation ECU with
a period of 10 ms, a budget of 5 ms and high priority. This server schedules three
tasks, namely τ4,1,1, τ4,1,2 and τ4,1,3 as shown in Fig. 7. Since r1 is shared between
the two applications, two servers should be implemented in the Sensor ECU. The
first server, with parameters {Π(1)

1 ,Θ
(1)
1 ,Ψ

(1)
1 } equal to {10,4,High}, is responsible

for scheduling the four tasks in A(1), namely τ1,1,1, τ1,1,2, τ1,1,3 and τ1,1,4, that belong
to the Sensor ECU. Whereas, the second server, with parameters {Π(2)

1 ,Θ
(2)
1 ,Ψ

(2)
1 }

equal to {20,6,Low}, schedules the only task, namely τ1,1,5, in A(2) that belongs to
the Sensor ECU.

42 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

8 Case Study and Evaluation

In order to show the applicability of the proposed model, resource reservation de-
sign method and end-to-end timing analysis we present a case study from the vehic-
ular systems domain. We consider an Autonomous Steering Control (ASC) system,
that provides electronic steer control to a vehicle using mechanical and electronic
components. The ASC system uses an Ethernet network for communication as the
backbone network in the vehicle. The architecture of the ASC system is depicted in
Fig. 24. The ASC system is distributed over six Electronic Control Units (ECUs)
and two HaRTES switches. There are four Wheel Control (WC) ECUs; one Steer
Control (SC) ECU; and one Collision Avoidance Control (CAC) ECU. Moreover,
there is a camera (CAM) that is mounted in front of the vehicle to gather the video
frames for collision avoidance purpose.

HaRTES 2

CAM

HaRTES 1
RL_WC

RR_WC

FL_WC

FR_WCSCCAC

Fr
o

n
t

o
f

ve
h

ic
le

R
ea

r
o

f
ve

h
ic

le

Fig. 24 The network architecture for the ASC system.

The ASC system is divided into two applications: (i) the Collision Avoidance
(CA) application, and (ii) a conventional steering control, known as Steer-By-Wire
(SBW) application. Each application together with its transactions is described in
the next subsection. It should be noted that the parameters for both applications
are inspired by an industrial use case from our industrial partners. All experiments
related to the reservation designs are performed on an Intel Core i7-5500U CPU
clocked at 2.4GHz with two cores and 8GB memory.

8.1 Collision avoidance application

The main function of this application is to detect obstacles by means of information
from a radar and video frames from a camera to calculate a new steering angle
accordingly. This information is collected in the CAC ECU. The CAC ECU sends
this information in an Ethernet message to the SC ECU which is responsible for
computing the steer actuator signals accordingly. The transactions belonging to this
application are illustrated in Fig. 25. In the above transactions, the WCETs of the
tasks are selected among 100µs, 200µs and 400µs depending on the task function.
The notation below each task and message shows its activation pattern, which is
independent (denoted by I) and periodic (denoted by P) with period of 40ms in all
tasks and messages. The execution time of the tasks and the size of messages are

Title Suppressed Due to Excessive Length 43

also denoted below each task. The message payload size for the control and radar
signals is 64 bytes, whereas the message payload size for the video frame is 1500
bytes. For these transactions, the end-to-end deadline is 100 ms, while the age and
reaction constraints are 110 ms and 150 ms, respectively.

Radar:

Ethernet

CAC ECU

CAM_TaskCamera:

Radar_Task

Camera_Message

CAC_Control_Task CAC_Message SC_Obstacle_Task

SC_Torque_Angle_Task
(100µs,I,P,40ms)

(100µs,I,P,40ms)

(1500B,I,P,40ms)

(400µs,I,P,40ms) (64B,I,P,40ms) (200µs,I,P,40ms)

(200µs,I,P,40ms)

Ethernet

CAM

SC ECU

CAC_Frame_Task
(200µs,I,P,40ms)

CAC ECU

Fig. 25 Transactions in the CA application.

8.1.1 Designing reservations

In the following we design different end-to-end reservations for the collision avoid-
ance application corresponding to different optimization cases presented in Sec-
tion 5.
Minimum Footprint. The search for the minimum footprint design for the collision
avoidance application completes in 1.5 s. This design is presented in Table 1. This
design uses 7% of the system resources since each resource uses 1%. The tool sets
the minimum allowed periods (1 ms) to all reservation periods. The performance
of this design is presented in Table 2 which shows that all the timing constraints,
specified on the transactions, are satisfied.

CAC ECU SC ECU CAM CAC ECU l j

α j 1% 1% 1% 1% 1%
Θ j 10 µs 10 µs 10 µs 10 µs 10 µs
Π j 1 ms 1 ms 1 ms 1 ms 1 ms

Table 1 Minimum footprint design for the collision avoidance application.

RT Age Delay Reaction Delay
Radar 53940 µs 90990 µs 130990 µs
Camera 47960 µs 50990 µs 90990 µs

Table 2 Performance in minimum footprint design for the collision avoidance application.

Best Performance. We limit the overall footprint of the application to different
values from 10% to 60% and run the tool six times to obtain the designs with the
best response times. Note that the optimization criterion in this case is to minimize
the sum of the response times of the two transactions within the application. Fig. 26
shows the sum of the response times against the maximum allowed footprint. The

44 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

figure shows that the reduction in response times is more significant when increasing
γ from 10% to 20% than increasing it to the values that are above 20%. Also, we
have observed that by providing 8.5 times more resources (from 7% to 60%) we
can achieve around 74% better performance in terms of response times. The age
delays and reaction delays also follow a similar trend. In another experiment, we
have modified the minimum allowed period for the reservations (Πmin), which sets
the time resolution of the reservation periods, and searches for the best performance
design. The maximum allowed footprint is set to 20% in these cases. The results are
depicted in Fig. 26. The figure shows that larger Πmin results in worse performance.
In all of the above experiments we have limited the search time to 30 minutes. Note
that in all of the cases, the tool finds the first design in less than two seconds. A
better design is found a few seconds after the first design in some cases, while the
attempt to improve the first two designs in the rest of the exploration time fails in
most cases.

10 20 30 40 50 60
0

2

4

6

8
·104

γ

R
es
p
on

se
T
im

e
(µ
s)

Radar Camera

10 20 30 40 50 60
0

2

4

6

8
·104

γ

R
es
p
on

se
T
im

e
(µ
s)

Radar lim Camera lim

100 500 1,000 1,500
0

2

4

6

8
·104

Minimum reservation period (Πmin)

R
es

p
on

se
T

im
e

(µ
s)

Radar Camera

Fig. 26 Sum of the transaction response times against (i) the overall footprint where Πmin = 1 ms
(left figure) and (ii) the minimum reservation periods where γ = 20% (right figure).

So far we have only imposed a limit on the total application footprint. In the case
where an application is being integrated to a system which already hosts other appli-
cations, we may have limited availability of particular resources. We perform a new
experiment to evaluate the reservation design tool. In this experiment we assume
that there are only 2% of the resources that are available to CAC ECU and SC ECU.
We repeat the search for best response times assuming different total footprints and
considering the above constraints on CAC ECU and SC ECU. The results are de-
picted in Fig. 26 using the captions Radar lim and Camera lim. Increasing the total
allowed footprint from 30% to 60% does not have significant effect on the response
times as availability of the two resources is limited.
Minimum Overhead. The search for the minimum overhead design with γ = 7 and
30 minutes timeout results in the following reservation periods: ΠCAC ECU = 10ms,
ΠSC ECU = 15ms and ΠCAM = 20ms. This set of end-to-end reservations imposes 15

Title Suppressed Due to Excessive Length 45

times less overhead on the processor resources than the above designs. On the other
hand, the performance of this design is around 44% worse than the performance of
the minimum footprint design that is reported in Table 1.
Combined Footprint and Response Times. In another experiment, we search for
the optimal design with respect to the combined footprint and response times. In this
experiment, we assume wγ = 1000 and wi = 1. This weight assignment indicates that
we consider 1% footprint improvement to be equivalent to 1 second improvement
in response time. Similar to the previous cases we use 30 minutes timeout. Fig. 27
shows the quality of obtained design against the amount of time spent on searching.
The figure shows that the improvements in the first few seconds are more significant
than the rest of the search duration. Note that the x-axis is in the logarithmic scale.
The final design is found after around 9 minutes and it uses 20% of the system
resources, i.e. γ = 20%.

101 102 103 104 105 106

0.2

0.4

0.6

0.8

1

·105

Time (ms) log scale

C
om

b
in
ed

ob
je
ct
iv
e

Fig. 27 Evolution of the design’s objective value against search time.

8.2 Steer-by-Wire application

Each WC ECU gathers the wheel information including the angle and torque of the
wheel. This information is sent to the SC ECU via an Ethernet message. Apart from
this message, the SC ECU receives several sensor values including steering angle,
steering torque and vehicle speed. Based on this information, the SC ECU provides
feedback on steering torque to the feedback torque actuator. This actuator provides
the feeling of turning effect for the driver. Moreover, the SC ECU sends an Ethernet

46 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

message to each WC ECU. This message includes the steer angle and torque signals
which are used by the WC ECUs to control the wheels actuators. For the sake of
clarity and better readability, we only show the transactions for one wheel, i.e.,
rear-left (RL) wheel. Two transactions from the RL WC ECU to the SC ECU are
depicted in Fig. 28. Note that the transactions share the RL WC Controller Task (in
the RL WC ECU), RL WC Message (in the network) and SC Steer Control Task
(in the SC ECU). Similarly to the previous application, the notation below each
task and message shows its activation pattern, execution time of tasks and size of
messages, e.g., (100µs, I, P, 40ms) shows that the task is periodically activated by
an independent source with a period of 40ms and execution time of 100µs.

RL_WC_Angle_Task RL_WC_Controller_Task RL_WC_Message

SC_Steer_Control_Task
RL_WC_Torque_Task

Trans_RL_1:

Trans_RL_2:

RL_WC ECU Ethernet

SC ECU

(100µs,I,P,40ms)

(100µs,I,P,40ms)

(100µs,I,P,40ms) (64B,I,P,40ms)

(200µs,I,P,40ms)

Fig. 28 Transactions from the rear-left WC ECU to the SC ECU.

SC_Steer_Angle_Task

SC_Steer_Torque_Task

Trans_SC_RL_1:

Trans_SC_RL_2: RL_WC ECU

EthernetSC ECU

SC_Steer_Torque_TaskTrans_SC_RL_3:

SC_Control_Task SC_Message

RL_WC_Recive_Task

RL_WC_Actuator_Task

(100µs,I,P,40ms)

(100µs,I,P,40ms)

(100µs,I,P,40ms)

(400µs,I,P,40ms) (64B,I,P,40ms)

(200µs,I,P,40ms)

(100µs,I,P,40ms)

Fig. 29 Transactions from the SC ECU to the rear-left WC ECU.

In addition, there are three transactions to send information from the SC ECU
to WC ECU. These transactions also share tasks and messages which are illustrated
in Fig. 29. Since there are five transactions for each wheel, the total number of
transactions in the SBW application is equal to 20. The constraints specified on the
transactions include the deadline (100 ms), age constraint (100 ms) and reaction
constraint (140 ms).

8.2.1 Designing reservations

The search for minimum footprint reservations for the steer-by-wire application
ends after 126 s. The search time for the steer-by-wire application is significantly
larger as compared to the collision avoidance application because of large size of the

Title Suppressed Due to Excessive Length 47

former application (20 transactions). The result of the minimum footprint design is
presented in Table 3, while Table 4 presents the performance figures for this design.
We also run the tool for best performance design with different imposed maximum
footprints. We run the search for 30 minutes for each given γ. The result is presented
in Fig. 30. Note that the y-axis, i.e. response time, starts from 9ms in this figure. In
these cases, the first design is usually found under 300 seconds. The difference be-
tween the performance of design with γ = 100% and design with γ = 49% is larger
than the other cases. Finally, we run the tool for combined footprint and response
times objective with the same weight values as for the collision avoidance applica-
tion and 30 minutes timeout. The results are shown in Fig. 31. In comparison to the
collision avoidance application, the quality of the designs evolve slower in this case
as the application consists of more transactions.

WC ECUs SC ECU l4 Other Links
αi 4% 20% 2% 1%
Θi 40 µs 200 µs 20 µs 10 µs
Πi 1 ms 1 ms 1 ms 1 ms

Table 3 Minimum footprint design for the collision avoidance application.

RT Age Delay Reaction Delay
Trans RL 1 20570 µs 81800 µs 121800 µs
Trans RL 2 20570 µs 81800 µs 121800 µs
Trans SC RL 1 23250 µs 83940 µs 121800 µs
Trans SC RL 2 23250 µs 83940 µs 121800 µs
Trans SC RL 3 23250 µs 83940 µs 121800 µs

Table 4 Performance in minimum footprint design for the collision avoidance application.

8.3 Discussion

In this case study we have demonstrated the usability of the proposed end-to-end re-
source reservation model. The case study, inspired from a real industrial application,
is of reasonable size as it consists of two applications each with several transactions.
The resource reservation parameters computed by the proposed reservation design
method render the system schedulable. We have also demonstrated an important
feature that is offered by the proposed model, method and analysis which allows
the applications to be designed and analyzed in isolation without being affected
by each other. This feature can assist the developers and integrators at the design
phase by supporting the design and implementation of each application by a sepa-
rate team. Moreover, to improve the model and to guide the designers for assigning
the best reservation parameters, a reservation design method is presented. We have
also shown that this method can find the reservation design for heavier applications,
consisting of more than 20 transactions, in reasonable amount of time. We showed

48 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

49 100 150 200

1

1.5

2

·104

γ

R
es
p
o
n
se

T
im

e
(µ
s)

Trans RL 1 Trans RL 2 Trans SC 1 Trans SC 2 Trans SC 3

Fig. 30 Response times against footprint γ for the steer-by-wire application.

0 5 10 15
4

4.2

4.4

4.6

4.8
·105

Time (minutes)

C
om

b
in
ed

ob
je
ct
iv
e

Fig. 31 Evolution of the design’s objective value against search time.

that our reservation design method always finds a feasible solution after a few sec-
onds. Finding the optimal solution, however, depends on the selected optimization
criterion. Minimum footprint designs are also found quickly, while the best perfor-
mance designs usually require search over large portions of the search space, hence
take longer time. However, since we guide the solver in such a way that it searches
promising parts of the search space first, we quickly achieve good designs.

Title Suppressed Due to Excessive Length 49

9 Conclusion and Future Work

This chapter presented a new model for end-to-end resource reservation in dis-
tributed embedded systems. The model supports reservation on both computational
nodes and communication among nodes. The proposed model considers a general
transactional model such that the transactions can have several tasks in each node
and several messages in the network. In addition, the tasks and messages in the trans-
action can have various activation patterns including trigger, data and mixed chains.
Such activations patterns are common in several industrial domains. Therefore, the
presented model responds to a vast number of industrial domains with different re-
quirements with respect to design choices. Furthermore, the chapter presented end-
to-end timing analysis for the reservation model in order to compute the end-to-end
response times as well as end-to-end delays. The design method exploits several op-
timization criteria in computing the reservation parameters. The design method can
play a key role in helping the system integrator making efficient design decisions
and improving the schedulability of the system. From the development perspective
of such systems, the chapter identified requirements for software development com-
ponent models to support the proposed resource reservation model. Then, in order to
provide a proof of concept, the chapter presented implementation extensions to the
Rubus Component Model (RCM), which is an existing industrial component model
for vehicular embedded systems. A technique to extract end-to-end models from the
software architectures of the systems with resource reservation is also presented. Fi-
nally, the chapter presented the usability of the model, the reservation method and
timing analysis with the help of a vehicular application case study.

References

1. Timing Augmented Description Language (TADL2) syntax, semantics, metamodel Ver. 2,
Deliverable 11, Aug. 2012.

2. AUTOSAR Techincal Overview, Release 4.1, Rev. 2, Ver. 1.1.0., The AUTOSAR Consortium,
Oct., 2013. http://autosar.org.

3. Catalog of Specialized CORBA Specifications. OMG Group.
http://www.omg.org/technology/documents/.

4. EAST-ADL Domain Model Specification, V2.1.12,. http://www.east-adl.-
info/Specification/V2.1.12/EAST-ADL-Specification V2.1.12.pdf.

5. Luis Almeida and Paulo Pedreiras. Scheduling within temporal partitions: Response-time
analysis and server design. In Proceedings of the 4th ACM International Conference on Em-
bedded Software, October 2004.

6. A. Aminifar, E. Bini, P. Eles, and Z. Peng. Analysis and design of real-time servers for control
applications. IEEE Transactions on Computers, March 2016.

7. Mohammad Ashjaei, Moris Behnam, Paulo Pedreiras, Reinder J. Bril, Luis Almeida, and
Thomas Nolte. Reduced buffering solution for multi-hop HaRTES switched Ethernet net-
works. In The 20th IEEE Int. Conference on embedded and Real-Time Computing Systems
and Applications, August 2014.

8. Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen, Moris Behnam, Ingo Sander, Luis
Almeida, and Thomas Nolte. Designing end-to-end resource reservations in predictable dis-
tributed embedded systems. Real-Time Systems, June 2017.

50 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

9. N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. Applying new scheduling
theory to static priority pre-emptive scheduling. Software Engineering Journal, 8(5):284–292,
September 1993.

10. N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings. Fixed priority pre-
emptive scheduling: An historical perspective. Real-Time Systems, 8(2):173–198, March/May
1995.

11. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. ACM symposium on
operating systems principles, October 2003.

12. Unmesh D. Bordoloi, Amir Aminifar, Petru Eles, and Zebo Peng. Schedulability analysis of
ethernet AVB switches. In The 20th IEEE International Conference on embedded and Real-
Time Computing Systems and Applications, August 2014.

13. M. Broy, I.H. Kruger, A. Pretschner, and C. Salzmann. Engineering automotive software.
Proceedings of the IEEE, 95(2):356 –373, feb. 2007.

14. S. Chatterjee and J. Strosnider. Distributed pipeline scheduling: end-to-end analysis of hetero-
geneous, multi-resource real-time systems. In The 15th Int. Conf. on Distributed Computing
Systems, May 1995.

15. Ivica Crnkovic and Magnus Larsson. Building Reliable Component-Based Software Systems.
Artech House, Inc., Norwood, MA, USA, 2002.

16. T. Cucinotta and L. Palopoli. QoS control for pipelines of tasks using multiple resources.
IEEE Transactions on Computers, March 2010.

17. R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Controller area network (CAN) schedula-
bility analysis: Refuted, revisited and revised. Real-Time Systems, 35:239–272, 2007.

18. Rob Davis and Alan Burns. An investigation into server parameter selection for hierarchi-
cal fixed priority pre-emptive systems. In 16th International Conference on Real-Time and
Network Systems, October 2008.

19. Z. Deng and J. W. S. Liu. Scheduling real-time applications in an open environment. In The
18th IEEE Real-Time Systems Symposium, December 1997.

20. G. Dermler, W. Fiederer, I. Barth, and K. Rothermel. A negotiation and resource reservation
protocol (NRP) for configurable multimedia applications. In The Third IEEE International
Conference on Multimedia Computing and Systems, June 1996.

21. A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework using EDP resource
models. In 28th IEEE International Real-Time Systems Symposium, December 2007.

22. N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A compositional framework for end-to-
end path delay calculation of automotive systems under different path semantics. In Workshop
on Compositional Theory and Technology for Real-Time Embedded Systems, December 2008.

23. Xiang (Alex) Feng. Towards real-time enabled microsoft windows. In The 5th ACM Interna-
tional Conference on Embedded Software, 2005.

24. N. Fisher and F. Dewan. Approximate bandwidth allocation for compositional real-time sys-
tems. In 21st Euromicro Conference on Real-Time Systems, July 2009.

25. Sourav Ghosh, Jeffery Hansen, Ragunathan (Raj) Rajkumar, and John Lehoczky. Integrated
resource management and scheduling with multi-resource constraints. In The 25th IEEE In-
ternational Real-Time Systems Symposium, 2004.

26. K. Hänninen et.al. The Rubus Component Model for Resource Constrained Real-Time Sys-
tems. In 3rd IEEE International Symposium on Industrial Embedded Systems, June 2008.

27. M. Gonzalez Harbour and J.C. Palencia. Response time analysis for tasks scheduled under
EDF within fixed priorities. In 24th IEEE Real-Time Systems Symposium, pages 200–209,
December 2003.

28. R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level performance
analysis - the symta/s approach. Computers and Digital Techniques, 152(2):148–166, March
2005.

29. Thomas A. Henzinger and Joseph Sifakis. The Embedded Systems Design Challenge. In
14th International Symposium on Formal Methods (FM), Lecture Notes in Computer Science,
pages 1–15. Springer, 2006.

Title Suppressed Due to Excessive Length 51

30. IEEE. IEEE Std. 802.1Q, IEEE standard for local and metropolitan area networks, bridges
and bridged networks. 2014.

31. Z. Iqbal, L. Almeida, R. Marau, M. Behnam, and T. Nolte. Implementing hierarchical schedul-
ing on COTS Ethernet switches using a master/slave approach. In 7th IEEE International
Symposium on Industrial Embedded Systems, June 2012.

32. Zahid Iqbal, Luis Almeida, and Moris Behnam. Designing network servers within a hierar-
chical scheduling framework. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, 2015.

33. ISO 11898-1. Road Vehicles interchange of digital information controller area network
(CAN) for high-speed communication, ISO Standard-11898, Nov. 1993.

34. M. Joseph and P. Pandya. Finding response times in a real-time system. The Computer
Journal, 29(5):390–395, March 1986.

35. Xu Ke, K. Sierszecki, and C. Angelov. COMDES-II: A Component-Based Framework for
Generative Development of Distributed Real-Time Control Systems. In 13th International
Conference on Embedded and Real-Time Computing Systems and Applications, Aug. 2007.

36. N. Khalilzad, M. Ashjaei, L. Almeida, M. Behnam, and T. Nolte. Adaptive multi-resource
end-to-end reservations for component-based distributed real-time systems. In 13th IEEE
Symposium on Embedded Systems For Real-time Multimedia, October 2015.

37. R. Apt Krzysztof. Principles of Constraint Programming. Cambridge University Press, 2003.
38. K. Lakshmanan and R. Rajkumar. Distributed resource kernels: OS support for end-to-end re-

source isolation. In IEEE Real-Time and Embedded Technology and Applications Symposium,
April 2008.

39. G. Lipari and E. Bini. Resource partitioning among real-time applications. In Proceedings of
15th Euromicro Conference on Real-Time Systems, July 2003.

40. Giuseppe Lipari and Enrico Bini. A methodology for designing hierarchical scheduling sys-
tems. Journal of Embedded Computing - Real-Time Systems, April 2005.

41. C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of ACM, 20(1):46–61, 1973.

42. J. Loeser and H. Haertig. Low-latency hard real-time communication over switched ethernet.
In 16th Euromicro Conference on Real-Time Systems, June 2004.

43. R. Marau, M. Behnam, Z. Iqbal, P. Silva, L. Almeida, and P. Portugal. Controlling multi-
switch networks for prompt reconfiguration. In 9th International Workshop on Factory Com-
munication Systems, May 2012.

44. S. Mubeen, M. Ashjaei, T. Nolte, J. Lundbck, M. Glnander, and K. L. Lundbck. Model-
ing of end-to-end resource reservations in component-based vehicular embedded systems. In
2016 42th Euromicro Conference on Software Engineering and Advanced Applications, Au-
gust 2016.

45. S. Mubeen, H. Lawson, J. Lundbäck, M. Gålnander, and K. L. Lundbäck. Provisioning of pre-
dictable embedded software in the vehicle industry: The rubus approach. In 2017 IEEE/ACM
4th International Workshop on Software Engineering Research and Industrial Practice (SER
IP), pages 3–9, May 2017.

46. S. Mubeen, J. Mäki-Turja, and M. Sjödin. Support for end-to-end response-time and delay
analysis in the industrial tool suite: Issues, experiences and a case study. Computer Science
and Information Systems, 10(1), 2013.

47. Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Communications-Oriented Develop-
ment of Component- Based Vehicular Distributed Real-Time Embedded Systems. Journal of
Systems Architecture, 60(2):207–220, 2014.

48. T. Nolte, M. Nolin, and H. A. Hansson. Real-time server-based communication with can.
IEEE Transactions on Industrial Informatics, August 2005.

49. A. B. Oliveira, A. Azim, S. Fischmeister, R. Marau, and L. Almeida. D-RES: Correct tran-
sitive distributed service sharing. In IEEE Emerging Technology and Factory Automation,
September 2014.

50. R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource allocation model for QoS
management. In The 18th IEEE Real-Time Systems Symposium, December 1997.

52 Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen

51. Saowanee Saewong, Ragunathan Rajkumar, John P. Lehoczky, and Mark H. Klein. Analysis
of hierarchical fixed-priority scheduling. In Proceedings of the 14th Euromicro Conference
on Real-Time Systems, July 2002.

52. Rui Santos, Moris Behnam, Thomas Nolte, Paulo Pedreiras, and Luis Almeida. Multi-level
hierarchical scheduling in Ethernet switches. In Proc. of the Int. Conference on Embedded
Software, October 2011.

53. Rui Santos, Moris Behnam, Thomas Nolte, Paulo Pedreiras, and Luı́s Almeida. Multi-level
hierarchical scheduling in ethernet switches. In 9th International Conference on Embedded
Software, 2011.

54. Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and programming with
Gecode. Technical report, March 2015.

55. Sverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carlson, and Ivica Crnkovic. A Com-
ponent Model for Control-Intensive Distributed Embedded Systems. In CBSE 2008), pages
310–317.

56. L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo,
J. Lehoczky, and A. K. Mok. Real time scheduling theory: A historical perspective. Real-Time
Systems, 28(2):101–155, February 2004.

57. Insik Shin and Insup Lee. Periodic resource model for compositional real-time guarantees. In
24th IEEE Real-Time Systems Symp., December 2003.

58. Michal Sojka, Pavel Pı́ša, Dario Faggioli, Tommaso Cucinotta, Fabio Checconi, Zdenk
Hanzálek, and Giuseppe Lipari. Modular software architecture for flexible reservation mech-
anisms on heterogeneous resources. Journal of System Architecture, April 2011.

59. Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic task scheduling for hard-real-time
systems. Real-Time Systems Journal, 1(1):27–60, June 1989.

60. J. K. Strosnider, J. P. Lehoczky, and Lui Sha. The deferrable server algorithm for enhanced
aperiodic responsiveness in hard real-time environments. IEEE Transactions on Computers,
44(1):73–91, January 1995.

61. T. Scott, Chief Technology Officer, Information Systems and Services Division, General Mo-
tors Coorporation. Keynote Talk. In CeBIT America Conference, May 2004.

62. Ernesto Wandeler and Lothar Thiele. Real-time interfaces for interface-based design of real-
time systems with fixed priority scheduling. In the 5th ACM International Conference on
Embedded Software, EMSOFT ’05, 2005.

Acknowledgements The research leading to this chapter has been supported by the Swedish
Foundation for Strategic Research (SSF) within the project FIC and the Swedish Knowledge Foun-
dation (KKS) within the project PreView. We would like to thank all our industrial partners, spe-
cially Arcticus Systems, Volvo Construction Equipment and BAE Systems Hägglunds, Sweden.

