
Data Caches in Multitasking Hard Real-Time Systems

Xavier Vera∗†, Björn Lisper
Institutionen för Datavetenskap

Mälardalens Högskola
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Abstract

Data caches are essential in modern processors, bridg-
ing the widening gap between main memory and proces-
sor speeds. However, they yield very complex performance
models, which makes it hard to bound execution times
tightly.

This paper contributes a new technique to obtain pre-
dictability in preemptive multitasking systems in the pres-
ence of data caches. We explore the use of cache partition-
ing, dynamic cache locking and static cache analysis to pro-
vide worst-case performance estimates in a safe and tight
way. Cache partitioning divides the cache among tasks to
eliminate inter-task cache interferences. We combine static
cache analysis and cache locking mechanisms to ensure
that all intra-task conflicts, and consequently, memory ac-
cess times, are exactly predictable. To minimize the perfor-
mance degradation due to cache partitioning and locking,
two strategies are employed. First, the cache is loaded with
data likely to be accessed so that their cache utilization is
maximized. Second, compiler optimizations such as tiling
and padding are applied in order to reduce cache replace-
ment misses.

Experimental results show that this scheme is fully pre-
dictable, without compromising the performance of the
transformed programs. Our method outperforms static
cache locking for all analyzed task sets under vari-
ous cache architectures, with a CPU utilization reduction
ranging between 3.8 and 20.0 times for a high perfor-
mance system.

1. Introduction

The speed of processors increases faster than the
speed of memories. Cache memories are used to bridge
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this widening gap, and have become the dominant con-
straint to achieve high processor utilization.

Schedulability analysis of hard real-time systems relies
on the assumption that tasks’ worst-case execution times
(WCETs) are known. Current WCET platforms are applied
to rather simple architectures (they usually do not consider
caches) and make simplifying assumptions such that the
tasks are not preempted. In order to consider the costs of
task preemption, some studies incorporate into the schedu-
lability analysis the costs of manipulating queues, process-
ing interrupts and performing task switching [5, 6, 19, 21].

In order to get an accurate WCET, a tight worst-case
memory performance (WCMP) is needed. However, caches
introduce behaviors that are hard to predict. This leads to
an unpredictable WCMP, and thus an unpredictable WCET
as well, which jeopardizes the safety of the controlled sys-
tem. For that reason, many safety-critical systems either
do not use caches or disable them. Nevertheless, a sys-
tem with disabled caches will waste a lot of resources; the
CPU will be underutilized, and also the power consump-
tion will be larger since memory accesses that fall into the
cache consume less power than accesses to main memory.
Thus, bounding memory performance tightly in hard real-
time systems with caches is important to use the system re-
sources well.

The computation of WCET in the presence of instruc-
tion caches has progressed in such a way that it is now pos-
sible to obtain an accurate estimate of the WCET for non-
preemptive systems [1, 2, 17]. These results can be general-
ized to preemptive systems [3, 7, 8, 9, 23, 25, 34, 35]. How-
ever, there has not been much progress with the presence of
data caches. Instructions such as loads and stores may ac-
cess multiple memory locations (such as those that imple-
ment array or pointer accesses), which makes the attempt to
classify memory accesses as hits/misses very hard.

We summarize below the approaches that can be used for
analyzing WCET in the presence of data caches for multi-
tasking hard real-time systems.

1. Static Cache Analyses. They attempt to classify stat-



ically the different memory accesses as hits or misses.
However, the best static cache analyses do not consider
preemptive systems and are limited to codes free of
data-dependent constructs. In addition, only results for
direct-mapped caches have been reported [22, 27, 29,
45].

2. Cache-Preemption Delays. When a task resumes its
execution, it may spend a long time reloading the cache
with previously loaded cache blocks. Some studies
have addressed the issue of incorporating cache pre-
emption costs into the schedulability analysis [3, 7,
25]. However, preemption changes the cache contents
in an unpredictable manner. Thus, a cache-sensitive
analysis of a task assumed to run in isolation might
be invalid in a context where the task is preempted:
the worst-case execution path may not be the same
anymore since hits may be turned into misses and
vice versa. Adding a penalty by assuming the cache
is cold-started might be unsafe on processors with out-
of-order instruction scheduling, where a cache hit un-
der some circumstances may be more expensive than
a miss [31]. Moreover, this method resorts to a static
cache analysis to obtain the WCET.

3. Cache Locking. The ability to lock cache contents is
available on several commercial processors (PowerPC
604e [33], 405 and 440 families [18], Intel-960, some
Intel x86, Motorola MPC7400 and others). Each pro-
cessor implements cache locking in several ways, al-
lowing in all cases static locking (the cache is loaded
and locked at system start) and dynamic locking (the
state of the cache is allowed to change during the sys-
tem execution). Provided that the cache contents are
known, the time required for a memory access is pre-
dictable. Cache locking can be applied to each task in
isolation or at system startup [35].

4. Cache Partitioning. These techniques [8, 23, 28, 34]
give reserved portions of the cache to certain tasks to
guarantee that data will be in cache despite preemp-
tions, thus eliminating inter-task conflicts. The reduc-
tion of the cache size that each task uses may, however,
translate to a loss of performance.

1.1. An Overview

If a memory access is not classified definitely as a hit
or miss, a subsequent pipeline analysis in a WCET analysis
would have to consider both situations to detect the worst-
case path. Thus, we want to guarantee an exact prediction
of hits or misses for all memory accesses.

This paper combines cache partitioning, dynamic cache
locking and static cache analysis for preemptive multitask-
ing real-time systems with data caches. Cache partitioning

allows us to eliminate inter-task conflicts, thus we can ana-
lyze each task in isolation. There are typically parts of the
code which are statically analyzable and where each ac-
cess can correctly be categorized as a cache hit or miss. For
the other parts, with data-dependent accesses (such as in-
direction arrays) or where multiple paths can be taken, we
lock the cache by inserting lock/unlock instructions in the
code. Partitioning the cache reduces the cache size each task
now uses. Hence, we apply compiler optimizations such as
tiling [10, 24, 46] and padding [36, 37] to reduce the num-
ber of misses. Moreover, before locking the cache we also
load it with data likely to be accessed, thus minimizing the
possible loss of performance due to locking. Finally, we run
the static analysis to estimate the WCMP of each task assum-
ing it has a portion of the cache, and the schedulability test
is performed.

This work makes several significant contributions. Our
previous work describes how applying cache locking dy-
namically can enhance predictability [42], but it was only
applied to non-preemptive systems. The new framework
presented in this paper applies to preemptive multitasking
systems, thereby bounding WCMP for data caches in such
systems. We have also introduced a set of transformations
to optimize the placement of lock/unlock instructions. In ad-
dition, we have written a new algorithm that applies com-
piler optimizations in concert with cache partitioning and
cache locking. Our approach yields safe and exact WCMPs;
it avoids overestimations from assumed cold-starts of the
data cache and eliminates possible safety issues, while hav-
ing a low CPU utilization. We have implemented our system
in the SUIF2 [32] compiler. Each task is compiled indepen-
dently, and only knowledge of the allocated cache partition
is required. We do not rely on any specific hardware com-
ponent, thus its applicability is not limited to a particular ar-
chitecture.

The rest of the paper is organized as follows. Section 2
introduces the program model, cache architecture and task
model used in our approach. We review the static analy-
sis in Section 3. Section 4 discusses the transformations to
have a statically predictable data cache for multitasking sys-
tems. Section 5 presents our experimental framework, and
Section 6 discusses our results. Section 7 reviews some re-
lated works. Finally, we conclude and give a road map to
future extensions in Section 8.

2. Terminology

2.1. Program Model

We consider programs consisting of subroutines, calls,
arbitrarily nested but well-structured loops, and assign-
ments possibly guided by IF conditionals. Our method can



be extended to unstructured code, but for simplicity we stay
with this program model.

In this paper, all programs are written in C. Thus, all ar-
rays are assumed to be in row major order. The following
restrictions define the scope of programs where we can ap-
ply our static analyzer [42] without any transformation, that
is, those programs where only one path is analyzed:

• Calls are non-recursive.

• Bounds of all loops are known and affine.

• The IF conditionals are analyzable at compile time.

In order to ensure that the static analysis [15, 41, 42] can
be done in the polyhedral model [12], we add the following
constraint:

• The subscript expressions of array references are
affine.

We rely on the compiler to identify compile-time and
run-time constants. We use standard compile-time tech-
niques such as constant propagation to detect more con-
stants, which allows more expressions to be analyzed stati-
cally. To address the symbolic loop bound problem, we use
interprocedural constant propagation to eliminate as many
symbolic loop bounds as possible. This may also be help-
ful to know statically which recursive calls are made,
thus enlarging the scope where the static analysis is ap-
plied.

Otherwise, when multiple paths are possible, we apply
path merging in order to reduce the number of paths be-
ing analyzed. We assume that the maximum number of it-
erations of a loop and the maximum number of recursive
calls are known. This can be done by either manual annota-
tions [11] or automatic approaches [16].

2.2. Cache Model

We consider a uniprocessor with a two-level mem-
ory hierarchy consisting of a virtually-indexed K -way
set-associative data cache using LRU replacement pol-
icy followed by main memory. Note that this cache archi-
tecture is assumed in all the existing analytical methods
reviewed in Section 7.

In a K -way set-associative cache, each cache set contains
K cache lines. Let Cs(Ls) be the cache (line) size in bytes.
The total number of cache sets is thus Cs/(Ls×K ). A cache
is called direct-mapped when K=1, and fully-associative
when K=Cs/Ls.

In order to use cache locking, we assume that there exists
a locking mechanism that allows a cache line to be locked.
Such mechanism is available in several modern processors
such as PowerPC 604e [33], 405 and 440 families [18],
Intel-960, some Intel x86 and Motorola MPC7400. Besides,
we assume that the processors offer the ability to load and

invalidate cache lines selectively. Otherwise, both of them
can be “simulated” on software at a cost of some perfor-
mance loss. Our approach assumes that cache partitioning is
implemented either by a hardware or software means. The
partition unit is a cache set.

2.3. Task Model and Schedulability Analysis

We consider a set of N periodic tasks Ti, 1 ≤ i ≤ N .
We denote the period and worst-case execution time of task
Ti by Pi and Ci, respectively.

We consider two schedulability analyses for periodic
tasks, UA (utilization-based analysis) and RTA (response
time analysis). For dynamic priority preemptively sched-
uled systems (e.g., earliest deadline first), the utilization
condition U ≤ 1 is necessary and sufficient, where U is de-
fined as follows:

U =
N
∑

i=1

Ci

Pi

(1)

For static priority preemptively scheduled systems such
as rate monotonic, we use response time analyses [20, 38]
to obtain a necessary and sufficient condition. For a task Ti,
the idea is to consider all preemptions produced by higher
priority tasks on an increasing window time. The fixed point
of the following recurrence gives the response time Ri of
task Ti:

R0
i = Ci

... (2)

Rn+1
i = Ci +

∑

Tj∈HP (Ti)

⌈

Rn
i

Pj

⌉

× Cj

where HP (Ti) is the set of tasks with higher priority than
Ti. In order to check the schedulability of task Ti, one only
has to compare the response time Ri with its period Pi. Task
Ti is schedulable if and only if Ri ≤ Pi.

Our approach eliminates cache penalties due to cold-
starting the cache after a context switch. Thus, classical
non-cache sensitive schedulability analyses should be used
rather than their cache-sensitive versions, CUA [3] and
CRTA [7].

3. CMEs Overview

CMEs [15] are mathematical formulas that provide a
precise characterization of the cache behavior for perfectly
nested loops consisting of straight-line assignments. In or-
der to describe data reuse, we use an extension [44, 48] of
the well-known concept of reuse vectors [46], which de-
scribes the most recent previous access (MRPA) among ar-
bitrary loop nests.



Based on the description of reuse given by reuse vec-
tors, some equations are set up that describe those iteration
points where the reuse is not realized. Solving them gives
information about the number of misses and where they oc-
cur. In a previous work [44], we further extended them in or-
der to make whole program analysis feasible, by handling
call statements, IF statements and arbitrarily nested loops.

Write Policy. Given a memory reference, the equations
are to investigate whether the reuse described by its reuse
vectors is realized or not. We now briefly discuss how we
extend our analysis to caches with write-no-allocate fea-
tures.

The idea consists of treating in a different manner the
reuse vectors corresponding to the reuses of data previously
accessed by write references [14]. For a direct-mapped
cache, the solution is as simple as ignoring all these reuses.
For set-associative caches, we modify the solver so a write
access that misses does not modify the LRU algorithm.

D-TLB. TLB is a hardware table of frequently used page
translations. It is usually implemented as a set-associative
cache, which is indexed with a subset of the bits that form
the virtual address. Thus, in order to simulate its behavior
we only have to compute the MRPAs [48] for each memory
access in terms of pages instead of memory lines.

Multilevel Caches. For these architectures, we have to
analyze differently memory references depending on the
cache level they are accessing [40]. For that purpose, a set
of equations is set up for each of the cache levels. When
analyzing potential cache set contentions, only memory ac-
cesses that miss in lower cache levels are considered. Thus,
we can see the equations for each level as filters, where only
those memory accesses that miss are analyzed in higher lev-
els.

While the results are accurate, safety is not guaranteed
for systems with unified caches or where the upper levels
of cache are physically indexed. An extension where the ef-
fects of instructions on unified caches and the use of physi-
cal addresses are considered is left as future work.

4. Obtaining a Predictable System

When considering cache memories, schedulability anal-
yses should consider the cost of reloading the cache lines
that may have been evicted from cache. When a preempted
task resumes its execution, it may spend a lot of time reload-
ing those cache lines that have been displaced from cache.
Recent studies incorporate some cache-related preemption
costs into the schedulability analysis [3, 7, 25]. They basi-
cally consider that the preempted task will incur a miss for
each cache line when resuming execution. However, this
approach cannot be used when dynamic cache locking is
used, since the cost of preempting a task that is accessing a
locked region may be much larger than a cache miss for ev-

ery cache line. A preempting task may unlock the cache and
load it with its own data; when the preempted task resumes
its execution, it will not reload the cache since the cache is
locked. Thus, there may be more extra misses than one per
cache line throughout the locked region.

Our goal is to have a method that allows obtaining an ex-
act (we want to guarantee an exact classification of mem-
ory accesses as cache hits or misses) and safe WCMPs of
tasks for multitasking systems with data caches, so that cur-
rent schedulability analyses can be applied without modifi-
cations.

PredictMultiTask given in Figure 1 takes as input a set of
tasks and a cache architecture, and generates a set of cache
partitions and a set of analyzable tasks that have the same
semantics as the original tasks. Then, we run our static an-
alyzer [42] which calculates an exact WCMP for each trans-
formed task. In this section, we explain in detail the dif-
ferent parts of the algorithm. We first discuss the implica-
tions of using the cache partitioning technique. Then, we
review our solution to the problem of predictability for data
caches. Finally, we discuss the application of different tech-
niques to optimize the cache behavior of tasks, so that the
performance is not jeopardized.

4.1. Cache Partitioning

Inter-task interference occurs when cache lines from dif-
ferent tasks conflict in cache, which causes unpredictabil-
ity. Cache partitioning [23] divides the cache into disjoint
partitions, which are assigned to tasks in such a way that
inter-conflicts are removed.

Let {T1, . . . , Tn} be a set of tasks. Usually, cache par-
titioning creates n + 1 partitions, one for each real-time
task and another one which is shared among non-real-time
tasks. Each task is only allowed to access its own partition,
thus removing inter-task conflicts. Note that tasks that have
the same priority (thus, they are non-preemptively related
to each other) can share the same partition, since they are
only preempted by tasks that have higher priority, and thus
the predictability of cache behavior is not affected. There-
fore, it is enough to divide the cache in p partitions, where
p is the number of different priorities.

Cache partitioning can be implemented either in soft-
ware [34, 47] or hardware [23]. Both techniques impose
the partition size to be a power of two, so that the pointer
transformation to access data structures can be performed
in a fast way.1 The software approach requires compiler
and linker support [34], which are responsible for relocating
data to provide exclusive mappings on the cache for each
task.

1 This restriction does not apply to instruction caches.



INPUT

S = a set of tasks
C = a cache architecture

OUTPUT

PredictMultiTask(S, C) = <set of tasks, set of partitions>

ALGORITHM

CP := CreatePartitions(S, C); // set of partitions
S aux := ∅; // set of modified tasks
for each task Ti ∈ S

CPi is Ti’s cache partition
P aux:= LockUnpredictableRegions(Ti); // modified task after locking
P aux:= OptimizeLock(P aux);
P aux:= LoadData(P aux);
P aux:= CacheOptimize(P aux, CPi);
S aux.insert(P aux);

PredictMultiTask(S, C) := < S aux, CP >

Figure 1. An algorithm for obtaining a predictable set of tasks on a multitasking system.

When a cache is partitioned, each task will access a
smaller fraction of the cache, which may cause capacity
misses to increase. Thus, the size of the partitions has an im-
pact on the overall performance. In order to obtain the best
data cache partitioning, the decision should be taken based
on the priorities and the reuse patterns of tasks. For instance,
a task that has a workload of 8KB but only accesses each
cache line once only needs one cache line, whereas a task
with a workload of 1KB that reuses each cache line one mil-
lion times would suffer a performance loss with a partition
smaller than 1KB.

Our approach works with both hardware and software
mechanisms, and it does not depend on the size of the par-
titions created. From now on we assume that the cache
is divided in n equally-sized partitions, one for each task.
Yet simple, we show how it is good enough for schedul-
ing real sets of tasks and better utilizing the CPU than
other approaches. An algorithm to obtain even better perfor-
mance, by choosing different cache partition sizes for differ-
ent tasks, is left as future work.

4.2. Obtaining a Predictable Program

A practical limitation for WCET estimation is that the
number of paths to be analyzed can easily be prohibitive, es-
pecially when studying loop constructs with multiple paths
inside. Thus, we use path merging to reduce the path explo-
sion by merging paths in those cases where a path enumera-
tion is needed [13, 17, 30]. This includes data-dependent
conditionals, loops with multiple paths inside and loops
with unknown loop bounds.

On the other hand, there are data-dependent memory ac-
cesses. This includes indirection arrays (e.g., a[b[i]], where

b[i] is not statically known), variables allocated dynami-
cally (e.g., mallocs) and pointer accesses that cannot be de-
termined statically. We also include nonlinear array refer-
ences that are not handled by our static analyzer (e.g., a[i*j])
and library and operating system calls.

Both situations lead to unpredictability. Merging paths
causes an unknown state of the cache, since a new state of
the cache is created based on the state of the cache at the end
of each path [1, 30]. Data-dependent memory accesses can-
not be classified definitely as hits/misses and also cause an
unknown state of the cache.

We avoid this source of unpredictability by locking those
parts of the code where paths are merged or have data-
dependent memory accesses [42]. LockUnpredictableRe-
gions makes use of the control-flow graph (CFG) of the
program, and inserts lock/unlock instructions (lock/unlock
nodes in the control-flow graph) when necessary. In our
approach, we always apply lock/unlock instructions to the
whole cache. We use the code in Figure 2(a) to illus-
trate how LockUnpredictableRegions works. It traverses the
control-flow graph of the program and detects the two con-
structs, in a well-structured CFG, that might give rise to
multiple paths and thus needs path merging (data-dependent
conditionals, and loop nests with unknown number of itera-
tions). Besides, it detects data-dependent memory accesses
which are non-analyzable. Figure 2(b) shows the code af-
ter the lock/unlock instructions have been inserted. Region
1 is created due to the non-analyzable memory access. Re-
gions 2 and 2.1 are created because of the path merging
needed there.

4.2.1. Optimizing Placement of Lock/Unlock Instruc-
tions Placement of lock/unlock instructions may affect per-
formance; (i) the execution of lock/unlock instructions in-



int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)

a[i]=random(i);
for (i=0;i<100;i++)

c[i]=b[a[i]]+c[i];
N=random(i)*100;
for (i=0;i<N;i++){

if (c[i]>15)
k++;

c[i]=0;
}
Data-dependent accesses:
b[a[i]]
Merging constructs:
for (i=0;i<N;i++)
if (c[i]>15)

int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)

a[i]=random(i);
for (i=0;i<100;i++) {
lock(); /*Region 1*/

c[i]=b[a[i]]+c[i];
unlock();}
N=random(i)*100;
lock(); /*Region 2*/
for (i=0;i<N;i++){

register int temp=(c[i]>15);
lock();/*Region 2.1*/
if (temp)

k++;
unlock();
c[i]=0;

}
unlock();

int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)

a[i]=random(i);
IssueLoads(c);
IssueLoads(b);
lock(); /*Region 1*/
for (i=0;i<100;i++)

c[i]=b[a[i]]+c[i];
unlock();
N=random(i)*100;
lock(); /*Region 2*/
for (i=0;i<N;i++){

register int temp=(c[i]>15);
if (temp)

k++;
c[i]=0;

}
unlock();

(a) Original Code (b) Lock/unlock placement (c) Final version

Figure 2. Detailed steps of our algorithm to obtain a predictable program.

curs a run-time overhead which may be significant for the
instructions placed within loops, and (ii) locking the cache
when not necessary usually degrades performance.

OptimizeLock goes through the CFG looking for re-
dundant lock/unlock instructions. It is an algorithm that
keeps iterating while some progress is done. We have cur-
rently implemented the following optimizations, expressed
in a simple, self-explanatory language for well-structured
CFGs.

Rule 1. Lock/unlock instructions that lock the whole
loop body (including the test) are placed outside the
loop.

loop;lock;S;unlock;endloop V

lock;loop;S;endloop;unlock

Rule 2. Remove nested lock regions.

lock;lock;S;unlock;unlock V

lock;S;unlock

Rule 3. Fuse two consecutive locked regions.

lock;S1;unlock;lock;S2;unlock V

lock;S1;S2;unlock

We define two extra rules to optimize the placement of
lock/unlock instructions:

Rule 4. Move a statement past a lock instruction.

S1;lock;S2;unlock V

lock;S1;S2;unlock

Rule 5. Move an unlock instruction past a statement.

lock;S1;unlock;S2 V

lock;S1;S2;unlock

Whereas Rules 1–3 do not modify cache behavior, the
last two rules may not always be beneficial. If data accessed
in the newly locked statements are already in cache then
these transformations do not hurt performance. However,
they may create opportunities for other optimizations. Fig-
ure 2(c) shows the resulting code with the lock/unlock in-
structions for code in Figure 2(b) after running Optimize-
Lock. We can observe how Region 2.1 has been eliminated,
and that Region 1 now is the whole loop nest. Figure 2(c)
shows the final code after LoadData has been applied. For
a detailed description of the algorithm, we refer the inter-
ested reader to our previous work [42].

4.3. Optimizing Cache Behavior

The combination of cache partitioning and cache locking
may cause a poor cache behavior, due to increased number
of capacity and conflict misses. In order to enhance local-
ity, we consider two different transformations: loop tiling
and padding.

Loop tiling is used to reduce capacity misses by reorder-
ing accesses in such a way that reuse distance is shortened.
It combines strip-mining with loop interchange for increas-
ing the effectiveness of memory hierarchy. Loop tiling basi-
cally consists of two steps [46]. The first one consists of re-
structuring the code to enable tiling those loops that carry
reuse. The second one is to select the tile sizes that maxi-
mize locality. It is the latter step that is sensitive to the char-
acteristics of the cache memory considered. Due to hard-
ware constraints, caches have limited associativity, which
may cause cache lines to be flushed out of the cache be-
fore they are reused despite sufficient capacity in the over-
all cache.
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Figure 3. A framework for worst-case performance computation.

Workload WCMP Period Period
Name Description (bytes) (no cache) (Normal) (HP)

Large Task Set
MM Multiplication of two 100x100 Int matrices 120000 153140000 117800000 102093333
SRT Bubblesort of 1000 double array 8000 113925998 159496397 227851996
FIB Computation of the 30 first Fibonacci numbers 16 7790 155800000 3895
FFT Fast Fourier transformation of 512 complex numbers 8192 1655808 152334336 3311616

Medium Task Set
CNT Counting and sum of values in a 100x100 Int matrix 40000 1140000 570000 285000
SQRT Computation of the square root of 1384 16 5360 241200 2680

ST Computation of Sum, Mean, Var (1000 doubles) 16000 532000 266000 266000
NDES Encryption and decryption of 64 bits 960 220938 331407 110469

Table 1. Benchmarks used.

Unlike loop tiling, padding [36] modifies the data lay-
out to eliminate conflict misses. Some arrays may interfere
severely for pathological alignments, which translates to a
severe performance degradation. Padding changes the data
layout in two different ways. Inter-padding modifies the
base addresses of the arrays, whereas intra-padding changes
the size of array dimensions. We use Vera et al’s [40] algo-
rithm to select tile and pad sizes in concert.

5. Experimental Framework

We have conducted experiments for data caches com-
monly used in real-time systems. We have chosen 16KB
and 32KB caches with 32B lines. For each cache, we have
considered a direct-mapped cache, 2-way and 4-way set
associative caches.2 The timing model considered is very
simple: we only consider memory and lock/unlock instruc-
tions. We chose the hit and miss access times after the Pow-
erPC 604e [33], where each hit takes 1 cycle and each miss
38 cycles. Lock and unlock instructions take 1 cycle each.

2 Caches with larger associativity usually use random or FIFO replace-
ment policies.

Each instruction to load the cache is treated as a normal
memory access. Writes and reads are modeled identically.
Thus, we present results in terms of WCMP.

Figure 3 depicts the framework used to compute the
worst-case performance and study the schedulability of a
task set. The compiler passes (issuing lock/unlock instruc-
tions, inserting loads and applying tiling and padding) are
written using the SUIF2 internal representation, which can
be generated from different front-ends. We use SUIF2 to
collect all information about memory accesses and control
flow (it basically applies abstract inlining [44] and detects
loops and IF statements). The paths that are used to obtain
the path corresponding to the worst-case scenario are cur-
rently manually fed to our system.

The central component is the static analyzer. We have
implemented the CMEs [15] following the techniques out-
lined in the literature [4, 41, 43, 44], and extended them to
deal with locked regions [42].

We present the performance of our approach for two real
task sets. We set up a large task set in order to evaluate the
efficiency of cache partitioning and compiler optimizations.
The medium task set is used to show that even for smaller
workloads, our approach performs better than static cache
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Figure 4. Cache partitioning impact: comparison of performance degradation for a system with a par-
titioned cache and a system without a cache.

locking. An overview of the eight benchmark programs can
be seen in Table 1. They are all written in C, drawn from dif-
ferent papers that analyze data cache behavior [1, 22, 45].
For each task, we present its name, its description, and the
WCMP when the data cache is disabled. We give two possi-
ble periods. The normal periods of tasks have been selected
so that the relation between CPU utilization3 and amount of
data is the same for each task set. We chose a CPU utiliza-
tion of 2.03 for the large task set, and 4.69 for the medium.
For the HP (high performance) periods, we chose them so
that tasks have higher throughput. The resulting CPU uti-
lization is 4.5 and 10.0 for the large and medium task set
respectively. Thus, the task sets are not feasible if a data
cache is not used for any of the period configurations.

Simulation results are obtained with a locally written
memory hierarchy simulator [39]. We have modified it to
handle locking caches and traces from different tasks. We
have validated the new features with micro-benchmark sim-
ulation, running small kernels and comparing the results
with the expected ones. Traces only contain load/store of
data and lock/unlock instructions, and are tagged with a task
ID. All results are in terms of memory cost.

3 In terms of our simple timing model.

6. Experimental Results

We now present results from our studies. We first dis-
cuss the impact of partitioning the cache on the system’s
throughput. Then, we show the worst-case performance
when our method is applied, and compare it with static data
cache locking [35].

6.1. Performance of Cache Partitioning

The goal of using cache partitioning is to eliminate un-
predictability due to inter-task conflicts for multitasking
systems that have data caches. However, they trade pre-
dictability for performance, which may cause some perfor-
mance degradation. In order to evaluate the effectiveness of
applying cache partitioning, we have compared the follow-
ing three situations, where cache locking is not used:

• Fully dynamic execution. Each task uses the whole
cache.

• Partitioned dynamic execution. We create equally-
sized partitions. Each task runs on its own partition.

• Cache disabled. We consider the system with-
out cache.

Figure 4 shows the results of this experiment. We present re-
sults in terms of slowdowns when compared to the memory
cost of each task when fully dynamic execution is allowed.



Large Task Set Medium Task Set
32KB 16KB 32KB 16KB

Ways 1 2 4 1 2 4 1 2 4 1 2 4
Lock 0.93 0.93 0.93 1.19 1.19 1.19 1.51 1.75 1.74 2.16 2.19 2.18
Ours 0.29 0.13 0.10 0.81 0.68 0.65 0.43 0.43 0.43 0.57 0.57 0.57

Table 2. Performance of static cache locking and our cache analysis.

Large Task Set Medium Task Set
32KB 16KB 32KB 16KB

Ways 1 2 4 1 2 4 1 2 4 1 2 4
Lock 3.55 3.55 3.55 3.85 3.85 3.85 2.97 3.44 3.44 5.11 4.37 4.37
Ours 0.40 0.21 0.17 0.99 0.85 0.81 0.79 0.79 0.79 0.92 0.93 0.93

Table 3. Performance of static cache locking and our cache analysis for a high-performance system.

We can observe that the average memory cost increases by
(79%, 2470%)4 for partitioned dynamic execution and a
system without cache. This demonstrates that cache parti-
tioning degrades performance compared to a system where
each task uses the whole cache, but it is much better than
not having a cache at all. Thus, we are trading performance
for predictability.

6.2. Worst-Case Performance

In order to see the effectiveness of our approach, we have
compared our method (all optimizations are on) to have
a predictable multitasking system with data caches when
static cache locking [9, 35] is applied.5 For that purpose,
we have loaded the cache with the most frequently accessed
memory lines6 for each task set, and locked it for the whole
execution (it is the same as Lock-MU in [35]). This is the
best worst-case performance that can be obtained with a
shared cache using static cache locking; it gives better re-
sults than applying static locking for each task indepen-
dently once the cache is partitioned since tasks that use the
cache intensively use more cache lines.

The worst-case system performance of both task sets is
given in Table 2. Each cell contains the CPU utilization (if it
is smaller than 1, it is schedulable for dynamic priority pre-
emptive schedules by (1)). A bold number indicates that the
task set is not schedulable according to fixed priority sched-
ules by (2). We can see that our dynamic cache locking per-
forms better than static cache locking for all cases. Even
though our approach only uses a fourth of the whole cache
for each task, the combination of dynamic locking and static

4 Since a cache hit is 1 cycle and a cache miss 38 cycles, the worst pos-
sible slowdown is 38−1

1
× 100% = 3700%.

5 For a comparison of performance between dynamic and static locking,
see our previous work [42].

6 We assume the worst-case path for each task is known.

analysis makes better use of the cache, thus reducing the
WCMP. Static cache locking is only able to schedule (both
dynamic and fixed priority systems) the large task set for all
32KB cache configurations. However, our approach sched-
ules all task sets for all cache architectures. Furthermore,
the CPU utilization is between 3.2 and 9.8 times smaller
for the 32KB architecture, and between 1.5 and 3.8 times
smaller for the 16KB cache.

Optimizing Performance. The use of cache partitioning
increases predictability by removing inter-task cache con-
flicts. However, it may increase intra-task cache conflicts
since each task uses a smaller cache. This can be critical for
direct-mapped caches, whereas set-associative caches can
handle conflicts in a better way. In order to reduce intra-task
conflicts, we apply well-known compiler cache optimiza-
tions in concert with dynamic cache locking. For the large
task set, the application of tiling has translated to a 5.6%
(1%) WCMP reduction for MM on the 16KB direct-mapped
(2-way) partitioned cache, and padding has reduced the
WCMP for FFT by 99.9% on the 32KB direct-mapped par-
titioned cache. The average memory cost compared to the
partitioned dynamic execution scheme drops to (189.12%,
7.23%) for the 16KB cache and 32KB cache respectively. If
the optimizations had not been applied, we would not have
been able to schedule successfully the large data set on the
16KB direct-mapped cache. In addition, it has allowed re-
ducing the CPU utilization on the other cases.

6.3. High-Performance Systems

Finally, we show results for a high-performance multi-
tasking system in Table 3, where throughput is higher and
thus the CPU utilization increases. For that purpose, we
have chosen the HP periods in the last column of Table 1.
Since the magnitude of the periods is very different among
tasks, fixed priority systems do not perform well, and thus



we only compute the CPU utilization. We can observe that
our approach works better under tight deadlines, and it is
able to schedule all task sets. However, static cache lock-
ing fails to schedule any of the task sets. In this case, the
CPU utilization of our method is between 3.8 and 20.0 times
smaller for a 32KB cache and between 3.8 and 5.5 for the
16KB architecture. This indicates that our method scales
better than static cache locking for systems that need high
throughput.

6.4. Summary

Overall, we have demonstrated the effectiveness of our
approach. First, we have evaluated the impact of applying
cache partitioning on a multitasking system. We have seen
that even though the performance degrades, partitioning the
cache is much better than not having a cache at all. We have
also pointed out how the application of compiler cache op-
timizations can be useful to reduce the performance degra-
dation caused by the use of a small fraction of the cache.
Finally, we have compared our approach with static cache
locking in which all the tasks share the whole cache. We
have shown that our method performs much better, and is
capable of scheduling tasks that need a high throughput.

7. Related Work

In the past few years several strategies have been pre-
sented for analyzing cache memory behavior analytically.
Ghosh et al [15] presented the CMEs framework targeted at
isolated perfect loop nests consisting of straight-line assign-
ments. Vera and Xue [44] examine the problem of analyz-
ing whole programs. This model is able to predict misses for
large codes consisting of data-independent constructs (in-
cluding calls and IF statements).

Meanwhile, the real-time community has intensified the
research in the area of predicting WCET of programs in
presence of caches. Calculation of a tight WCET bound
of a program involves difficulties that come from the very
characteristics of data caching. Even though some progress
has been done when studying processors with instruction
caches [2, 17, 26], few steps have been done towards ana-
lyzing data caches.

Alt et al [1, 13] provide an estimation of WCET by
means of abstract interpretation. As well as the usual draw-
backs from abstract analysis (i.e., time consuming and lack
of accuracy), they only analyze memory references which
are scalar variables. When providing experimental results,
they only deal with instruction caches. Lim et al [29]
present a method that computes the WCET taking into ac-
count data caching. However, they only analyze static mem-
ory references (i.e., scalars), failing to study real codes with
dynamic references (i.e., arrays and pointers). Kim et al [22]

propose a method that improves the previous method ex-
tending the analysis that classifies references as either static
or dynamic. However, they deal with neither arrays nor
pointers (i.e., only detecting temporal locality). Further, it
is limited to basic blocks, without taking into account pos-
sible reuse among different subroutines or loop nests. Li et
al. [27] describes a method which does not merge the cache
state but tries to calculate possible cache contents along
with the timing of the program. The whole CPU is mod-
eled by a linear integer programming problem, and a new
constraint is added for each element of a calculated refer-
ence. This requires a very large computation time, and has
problems of scalability with large arrays. Besides, they do
not report results for WCET in the presence of data caches.

White et al [45] propose a method for direct-mapped
caches based on static simulation. They categorize static
memory accesses into (i) first miss, (ii) first hit, (iii) al-
ways miss and (iv) always hit. Array accesses whose ad-
dresses can be computed at compile-time are analyzed, but
they fail to describe conflicts which are always classified as
misses. For instance, they overestimate the memory cost by
10% and 17% for MM and ST respectively (we estimate the
WCMP exactly without issuing lock instructions).

Lundqvist and Stenström [30] propose an approach
where variables that have non-analyzable references
are mapped onto a non-cacheable memory space. They
show that the majority of data structures in their bench-
marks are predictable, but they have not presented the
overhead of the transformed program. Neither have they re-
ported results for WCET or WCMP using their approach.

Campoy et al [9] introduce the use of locking instruc-
tion caches for multitasking systems. They use static lock-
ing, and present a genetic algorithm in an attempt to reduce
the solution space when selecting the best contents for the
cache. They represent each memory block by means of one
bit, which flips between 0/1 (in-cache/out-cache). On one
hand, we have shown that static locking is not a good solu-
tion for data caches. On the other hand, while this approach
may work for small programs, it is not easy to see how it can
be extended to data caches:(i) each possible solution would
occupy a lot of memory (data is typically much larger than
programs), and (ii) we would need a static analysis to eval-
uate each potential solution. Puaut and Decotigny [35] ex-
tend it by introducing two polynomial algorithms to select
the instructions to lock in cache.

8. Conclusions

This paper combines cache partitioning and dynamic
data cache locking with static cache analysis to estimate the
worst-case memory performance of a multitasking system
in a safe, exact and fast way. The static analysis uses a pre-



cise characterization of reuse, and results in a set of equa-
tions that describes whether the reuse translates to locality.

Our method partitions the cache in equally-sized parti-
tions, which are assigned to tasks. Cache partitioning allows
us to eliminate unpredictability due to inter-task conflicts.
In order to overcome the problem of data-dependent con-
structs, we combine it with dynamic cache locking. Finally,
we run a static analysis. This results in a tool that predicts
the worst-case memory performance in an exact and safe
way, with an acceptable loss of tasks’ performance. Com-
bined with a timing analysis platform, we may estimate a
tight worst-case performance.

Overall, this paper contributes a new technique that pro-
vides a considerable step toward a useful worst-case exe-
cution time prediction of actual architectures. To the best
of our knowledge, this is the first approach that presents a
method to estimate worst-case performance for multitask-
ing systems in the presence of set-associative data caches. It
is written as a compiler pass, which partitions the cache, is-
sues lock/unlock instructions and computes the worst-case
memory performance in the presence of set-associative data
caches. Moreover, our framework guides the compiler in or-
der to generate code that exploits the cache memory by in-
serting load instructions and restructuring the data layout
(padding) and the loops (tiling). A better use of the cache is
very useful in order to reduce power consumption and bet-
ter utilize the CPU, which allows running more real-time
tasks simultaneously.

There are still some issues that can be investigated fur-
ther. A better pointer analysis could be beneficial to lock
fewer regions, and would help us to classify their accesses
as hits or misses. It may also be interesting to take into ac-
count the overall performance when selecting the size of the
cache partitions. We plan to investigate these research direc-
tions in order to have increased predictability and better per-
formance.
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