
Mälardalen University Licentiate Thesis
No. 18

Use of Component-Based Software Architectures in Industrial
Control Systems

Frank Lüders

2003

Department of Computer Science and Engineering
Mälardalen University

Copyright © Frank Lüders, 2003
ISBN number: 91-88834-19-0
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

i

Table of Contents
Abstract .. iii

Acknowledgements .. v

Publications Included in this Thesis...vii

Other Related Publications...ix

1 Introduction .. 1

1.1 Research Questions... 3

1.2 Research Methods ... 6

1.3 Contributions .. 9

2 Background.. 13

2.1 Software Architecture... 13

2.1.1 Definitions of Software Architecture.. 13

2.1.2 Architectural Design.. 16

2.1.3 Evaluation of Software Architectures .. 21

2.1.4 Architectural Description and Documentation ... 24

2.2 Component-Based Software Engineering .. 31

2.2.1 Definitions of Software Components... 31

2.2.2 Software Component Models and Technologies .. 34

2.2.3 Component-Based Software Engineering Practices ... 40

2.3 Industrial Control Systems ... 44

2.3.1 Levels of Industrial Control Systems... 44

2.3.2 Programmable Controllers .. 50

3 Paper A: Specification of Software Components ... 61

3.1 Introduction .. 61

3.2 Current Component Specification Techniques ... 63

3.3 Specifying the Semantics of Components.. 68

3.4 Specifying Extra-Functional Properties of Components ... 78

3.5 Summary.. 81

3.6 Corrections to the Original Version .. 82

ii Use of Component-Based Software Architectures in Industrial Control Systems

4 Paper B: Componentization of an Industrial Control System ... 83

4.1 Introduction .. 84

4.2 The ABB control system... 85

4.3 Componentization .. 88

4.3.1 Current software architecture.. 88

4.3.2 Component-based software architecture .. 91

4.3.3 Quality attribute analysis... 99

4.4 Lessons learned... 101

4.5 Related work .. 103

4.6 Conclusions and future work .. 104

4.7 Acknowledgements .. 105

5 Paper C: Adopting a Software Component Model in Real-Time Systems Development................ 107

5.1 Introduction .. 107

5.2 Motivation... 109

5.3 Adopting Microsoft Models ... 110

5.3.1 COM Interfaces... 111

5.3.2 Instantiation and Dynamic Linking .. 113

5.3.3 Location Transparency with DCOM .. 115

5.3.4 The Next Generation: .NET .. 117

5.4 Related work .. 118

5.5 Conclusion ... 118

6 Conclusion and Future Work.. 121

6.1 Experiences from Industry.. 121

6.2 Analysis of Results... 123

6.3 Outline of Future Work ... 124

7 References... 127

iii

Abstract

Component-based software engineering (CBSE) denotes the disciplined practice of

building software from pre-existing smaller products, generally called software

components, in particular when this is done using standard or de-facto standard

component models. The popularity of such models has increased greatly in the

last decade, particularly in the development of desktop and server-side

software. The main expected benefits of CBSE are increased productivity and

timeliness of software development projects. The last decade has also seen an

unprecedented interest in the topic of software architecture in the research

community as well as among software practitioners. CBSE has notable

implications on a system’s architecture, and an architecture that supports

CBSE, e.g. by mandating the use of a component model, is called a component-

based software architecture.

This thesis investigates the benefits and problems related to the use of such

architectures in industrial control systems, which are computer-based systems

that control physical processes and equipment. The investigation is mainly

performed through an industrial cases study of a global company developing

a new generation of control systems, intended to replace several existing

systems. To leverage its global development resources and the competency of

different development centers, the company decided to adopt a component-

based software architecture that allows certain functionality to be realized by

independently developed components. The architecture incorporates a limited

version of a standard component model.

iv Use of Component-Based Software Architectures in Industrial Control Systems

The process of redesigning the software architecture is presented in this

thesis, along with the experiences made during and after the project. An

analysis of these experiences shows that the component-based architecture

effectively supports distributed development and that the effort required for

implementing certain functionality has been substantially reduced. The use of

the selected component model in real-time systems is furthermore analyzed

from a more general perspective. It is shown that adopting the model means

that real-time requirements can still be satisfied in most cases, but that this

may require certain precautions to be taken.

v

Acknowledgements

I would like to thank my supervisor Ivica Crnkovic for all his help and support

during my work with this thesis, and I am grateful to him and Erik

Gyllenswärd, formerly of ABB, for giving me this opportunity in the first

place. The research described in this thesis was made possible by grants from

ABB and the Swedish KK Foundation. I greatly appreciate the helpful

cooperation of project members at ABB in Malmö and Västerås, and I would

particularly like to thank Staffan Andersson for his valuable input. Thanks also

to Per Runeson and Björn Lisper who provided useful comments on the draft

version of the thesis. I thank all the people currently and formerly at the

Department of Computer Science and Engineering for providing a great social

and professional environment, in particular Magnus Larsson and Andreas

Sjögren who I have enjoyed working and laughing with. Finally, I wish to

thank all my family and friends, and most specially Elise, for being there for

me. I ask their forgiveness for ignoring them at times while burying myself in

work.

vii

Publications Included in this Thesis

Paper A Frank Lüders, Kung-Kiu Lau, and Shui-Ming Ho, “Specification of

Software Components”, In Ivica Crnkovic and Magnus Larsson

(Editors), Building Reliable Component-Based Software Systems, ISBN

1-58053-327-2, Artech House Books, 2000.

Paper B Frank Lüders, Ivica Crnkovic, and Andreas Sjögren, “Case Study:

Componentization of an Industrial Control System”, In Proceedings

of the 26th Annual International Computer Software and Applications

Conference – COMPSAC 2002, Oxford, England, August 2002.

Paper C Frank Lüders, “Adopting a Software Component Model in Real-

Time Systems Development”, To appear in Proceedings of the 28th

Annual IEEE/NASA Software Engineering Workshop, Greenbelt,

Maryland, December 2003.

ix

Other Related Publications

Frank Lüders, Ivica Crnkovic, and Andreas Sjögren, “A Component-Based

Software Architecture for Industrial Control”, In Proceedings of the Third

Working IEEE/IFIP Conference on Software Architecture – WICSA 3, Montreal,

Canada, August 2002.

Ivica Crnkovic, Magnus Larsson, and Frank Lüders, “Implementation of a

Software Engineering Course for Computer Science Students”, In Proceedings of

the 7th Asia-Pacific Software Engineering Conference – APSEC 2000, Singapore,

December 2000.

Ivica Crnkovic, Magnus Larsson, and Frank Lüders, “Software Process

Measurements using Software Configuration Management”, In Proceedings of

the 11th European Software Control and Metrics Conference, Munich, Germany,

May 2000.

Ivica Crnkovic, Magnus Larsson, and Frank Lüders, “The Different Aspects of

Component Based Software Engineering”, In Proceedings of the Microprocessor

Systems, Process Control and Information Systems Conference – MIPRO 2000,

Opatija, Croatia, May 2000.

Ivica Crnkovic, Magnus Larsson, and Frank Lüders, “State of the Practice:

Component-based Software Engineering Course”, In Proceedings of the Third

International Workshop on Component-Based Software Engineering, Limerick,

Ireland, January 2000.

1

1 Introduction

Component-based software engineering (CBSE) denotes the assembling of

software products from pre-existing smaller products, generally called

components. In particular when this is done using (de-facto) standard

component models and supporting technologies [1,2]. A component model

generally defines a concept of components and rules for their design-time

composition and/or run-time interaction, and is usually accompanied by one

or more component technologies, implementing support for composition

and/or interoperation.

Software architecture (SA) is concerned with the structural decomposition

of software, and the term is used both to denote a discipline (of software

architects) and the artifacts produced within this discipline (the software

architecture of a product or product family) [3,4]. Although the decomposition

of software into modules is by no means a new idea, the field has gained much

attention in recent years. There is no universally accepted definition of

software architecture, but a widely accepted terminology where the

constituent parts of a system’s architecture are, in general, called components.

This sometimes creates confusion since the SA and CBSE communities have

adopted the term component independently. A widespread view in CBSE is

that component denotes a physical part (product), while in SA a component

can be any structural entity (file/class, process/thread, module/layer, etc.)

and even purely conceptual (e.g. an abstraction invented by a designer). A

software architecture designed to support CBSE is called a component-based

architecture.

2 Use of Component-Based Software Architectures in Industrial Control Systems

Real-time control systems are systems that control physical processes and

equipment [5,6]. They are characterized (naturally) by real-time requirements.

For industrial controllers there is always a mix of hard and soft real-time

requirements. A hard real-time requirement means that some function must

always be performed within a certain time. Soft real-time requirements are less

absolute and often indicate that functions must be performed within certain

time limits “most of the time”. A long lasting trend in industrial control

systems is the inclusion of more advanced functionality, in particular functions

that allow controllers to be part of increasingly well-integrated industrial IT

systems. Typically, a controller must integrate, “upwards” to servers and

workstations, “sideways” to other (types of) controllers, and “downwards” to

different types of devices closer to the controlled process. Since these different

products have different lifecycles (longer for products closer to the process), a

new controller product must usually support at least as many protocols,

networks, device types, etc. as the products it is intended to replace.

The aim of this thesis is to study the possibilities and problems related to

adopting a component-based software architecture in such controllers. The

work is primarily based on a participatory case study in industry, where a

global organization developed a new generation of controllers to replace

several existing products that were independently developed for different

regional areas and industry sectors. The main challenge of the project was to

leverage the software development resources at different development centers

around the world and their expertise in different areas. In particular, it was

desirable to enable different development centers to implement support for

different communication protocols, networks, and I/O systems. Additional

challenges were to make the new controller platform sufficiently general,

1 Introduction 3

flexible, and extendable to replace existing controllers, as well as to be capture

new markets. The solution chosen to meet these challenges was to base the

new platform on one of the existing systems while adopting a component-

based software architecture, in which interfaces were defined for interaction

between the main part of the software and I/O and communication

components developed throughout the distributed organization.

The thesis is organized as follows: The rest of this chapter presents the

research questions addressed, the research methods employed, and the

contributions of the research. Chapter 2 provides background information by

reviewing the current state of research and practice within the fields of

software architecture, component-based software engineering, and industrial

control systems. Chapters 3–5 are reproductions of three peer-reviewed

publications. The contributions of each publication are presented in Section

1.3. Chapter 6 analyses results, draws conclusions, and outlines future work.

1.1 Research Questions

The topic of this thesis is the use of component-based software architectures in

industrial control systems. The natural question that arises is what advantages

and liabilities the use of such architectures entails for this particular type of

systems. Due to the challenges of the industrial project studied as part of this

research, the potential benefit that a component-based architecture makes it

easier to extend the functionality of the software has been singled out for

investigation. More specifically, the project allows the two following situations

to be compared:

4 Use of Component-Based Software Architectures in Industrial Control Systems

1. The system has a monolithic software architecture and all functionality

is implemented at a single development center.

2. The system has a component-based software architecture and pre-

specified functional extensions can be made by different development

centers.

By pre-specified functional extensions is meant extensions in the form of

components that obey interfaces already specified as part of the architecture.

This fact is presumed to be significant, while the fact that the functionality in

question happens to be related to I/O and communication is not.

To aid in answering this question in a structured manner, three alternative

hypotheses are defined, such that the investigation can be expected to support

exactly one of these:

H1-1. Adopting a component-based software architecture in conjunction

with distributed development does not significantly affect the effort

required to make pre-specified functional extensions to the software.

H1-2. Adopting a component-based software architecture in conjunction

with distributed development increases the effort required to make

pre-specified functional extensions to the software.

H1-3. Adopting a component-based software architecture in conjunction

with distributed development reduces the effort required to make

pre-specified functional extensions to the software.

In the fortunate case that the third hypothesis is demonstrated, the new

question arises of whether the effort invested in redesigning the software

1 Introduction 5

architecture is justified by the efforts saved. This leads to the following two

hypotheses:

H2-1. The effort required to design the component-based software

architecture exceeds the reduction in the effort required to make

pre-specified functional extensions to the software.

H2-2. The effort required to design the component-based software

architecture is justified by the reduction in the effort required to

make pre-specified functional extensions to the software.

If the latter of these is true, the question furthermore arises of after how much

time and how many functional extensions the effort saved surpasses the effort

initially invested.

Since real-time requirements are central in the development of controller

products, the effect of using a component-based software architecture on the

ability to satisfy such requirements is also investigated. In particular the effect

of adopting a chosen software component model is investigated. In addition to

the question of whether satisfying real-time requirements is possible while

adopting a component model, the question of whether the ability to satisfy

these requirements depend on any particular precautions is addressed. The

possible answers to these questions are formulated by the following

hypotheses:

H3-1. Adopting the chosen software component model does not affect the

ability to satisfy real-time requirements.

6 Use of Component-Based Software Architectures in Industrial Control Systems

H3-2. Adopting the chosen software component model makes it

impossible to satisfy real-time requirements.

H3-3. Adopting the chosen software component model makes it necessary

to take extra precautions to ensure that real-time requirements can

be satisfied.

In the cases that the latter hypothesis is strengthened, the question naturally

arises as to which extra precautions must be taken. Another interesting but less

fundamental question is what effect adopting the software component model

has on the system’s performance.

1.2 Research Methods

This thesis, like most software engineering research, belongs to the domain of

empirical research. As such, it differs from much computer science research,

which is mathematical or logical in nature and focuses on formal proofs. In

their treatment of software metrics, Fenton and Pfleeger [7] discuss empirical

investigation in software engineering. Although they focus on investigations

in software developing organizations as a tool for making scientific and

objective assessments or decisions, the applicability to research is also stated.

Formal experiments, case studies, and surveys are identified as three different

ways of conducting empirical investigations.

Formal experiments are used to investigate causal relationships in

controlled settings. An example might be the effect of two different

programming languages on productivity. An experiment would vary the

language and measure the productivity in the development of two equivalent

1 Introduction 7

pieces of software. It would furthermore be necessary to control that other

parameters, such as programmer skill, that may affect the productivity is kept

constant. In addition, formal experiments are, by definition, replicable. Due to

these requirements on tight control and replicability, experimentation is most

suitably performed with fairly limited activities. In fact, most formal

experiments reported in the software engineering literature have been

performed in academic settings with students as subjects. Thus, the validity of

their results to industrial scale software development is often questioned,

although some such experiments in literature are accompanied by arguments

for wider validity [8,9].

In settings such as industrial software development projects, where the

researcher does not have the level of control required for formal experiments,

case studies or surveys can be used. A survey is retrospective in nature and

samples the results of activities after they are completed. This is often

performed on a large set of information, for instance obtained from a set of

projects from one or more organizations. A case study is usually not

retrospective, and the researcher will decide in advance what to study and

plan how to capture the necessary data. A typical software engineering case

study follows a development project, using direct observation as an important

source of data. The projects selected for such studies are often those that are

believed to be typical for an organization or an application area. Thus, there is

a difference in scale between the different techniques where formal

experiments can be viewed as research in the small, case studies as research in the

typical, and surveys as research in the large. Based on the description by Fenton

and Pfleeger [7], Table 1-1 summarizes some of the aspects in which the three

forms of empirical investigation differ.

8 Use of Component-Based Software Architectures in Industrial Control Systems

Table 1-1 Differences between three empirical investigation techniques.

Aspect Experiments Case studies Surveys

Level of control High Low Low

Replicable? Yes No No

Retrospective? No Usually not Yes

Scale Small Typical Large

Given the industrial setting, the research questions stated in the previous

section have been investigated by the use of a case study. This technique is

discussed in more detail by Robson [10], who provide the following definition:

Case study is a strategy for doing research which involves an empirical

investigation of a particular contemporary phenomenon within its real

life context using multiple sources of evidence.

Thus, rather than a single method, a case study represent a strategy that can

include several methods, such as observation and interviews. In the research

presented in this thesis, the investigated phenomenon was the use of a

component-based software architecture and the context an industrial

development project. This is a typical example in that the phenomenon is not

easily separated from the context. The sources of evidence have included

direct observation through project participation, interviews with project

members, documentation, and software artifacts. Clearly, this kind of strategy

1 Introduction 9

cannot be expected to lead to formal proofs of any of the stated hypotheses.

Instead, an overall analysis of the collected data is expected to support more or

less clearly one member of each set of alternative hypotheses.

More specifically, the employed strategy can be called a participatory case

study, since I have been an active member of the project on which the study

was conducted. This is similar to what Robson calls action research [10]. An

advantage of such a participatory study is that the researcher has

opportunities to make observations that yield information that might be hard

to obtain in other ways. There is also a risk, however, that the researcher may

loose the required distance and objectivity. A possible way to mitigate this risk

is to analyze and report the study in cooperation with other researchers that

can contribute with an outsider’s view. This approach was taken in the

preparation of this thesis. In addition to the analysis of the information

obtained from the study, technical reasoning was employed to study the

expected results of using approaches not demonstrated by the industrial

project.

1.3 Contributions

The contributions of this thesis are manifested in three reviewed publications,

which are reproduced here, mostly in their original form. The major deviation

from this is that the reference lists of the publications have been merged with

the reference list at the end of the thesis. In addition, some corrections have

been made to Paper A, while some smaller updates to Paper C may be made

before publication of that paper.

10 Use of Component-Based Software Architectures in Industrial Control Systems

Paper A: Specification of Software Components discusses the current state of

the practice and research of software component specification. As such, it

contributes to the background to the research presented in this thesis rather

than presenting original results in it self. The bulk of the paper is the

description of three levels of software component specification, which are

denoted syntactic, semantic and extra-functional specification. Most of this

work, including the UML metamodeling, is my own contribution. (Therefore,

so are the metamodelling errors in the original paper, described below). The

co-authors contributed mainly to the introduction and summary of the paper

and to the description of realization specifications at the end of Section 3.3.

This version of the paper contains some corrections to the original version,

which are described in Section 3.6.

Paper B: Componentization of an Industrial Control System reports on an

industrial case study concerning the use of a component-based software

architecture to support distributed development. The new common control

system, developed by ABB to replace several existing control systems, must

incorporate support for a large number of I/O systems, communication

interfaces, and communication protocols. An activity was therefore started to

redesign the system’s architecture, to allow I/O and communication compo-

nents to be implemented by different development centers around the world.

The paper reports on experiences from this effort, describing the system, its

current software architecture, the new component-based architecture, and the

lessons learned at the time of publication. The description of the project, the

system, and its architectural changes is my contribution. The analysis of the

experiences was initiated by me and refined in collaboration with the

coauthors who provided the desired outsider’s views.

1 Introduction 11

Paper C: Adopting a Software Component Model in Real-Time Systems

Development expands on the experiences documented in Paper B. The paper

presents a motivation for applying component-based software engineering to

real-time systems and discusses the consequences of adopting a software

component model in the development of such systems. Specifically, the

consequences of adopting Microsoft’s COM, DCOM, and .NET models are

analyzed. The most important aspects of these models are discussed in an

incremental fashion. The analysis considers both real-time systems in general,

and the control system introduced in Paper B where some aspects the COM

model have been adopted. The paper is my individual contribution.

13

2 Background

2.1 Software Architecture

The structure and organization of software systems have been discussed, to a

certain degree, since the late 1960s. A well-known example from the early

literature on this topic is an influential paper by Parnas [11]. The last decade,

however, has seen an unprecedented interest in this area, both within the

research community and among software practitioners. In one of the first

papers in the recent wave of software architecture literature [12], Perry and

Wolf claim that software design, while receiving much attention in the 1970s,

was largely overlooked during the 1980s. This paper uses the term software

architecture instead of design to evoke notions of a professional discipline and

to make analogies with other fields, such as building and computer

architecture.

2.1.1 Definitions of Software Architecture

The recent interest in the field has resulted in an abundance of definitions of

software architecture. This section presents and discusses some of the most

influential of these definitions.

The above-mentioned paper by Perry and Wolf [12] presents the following

model of software architecture:

Software Architecture = {Elements, Form, Rationale}.

14 Use of Component-Based Software Architectures in Industrial Control Systems

The elements of an architecture can be processing elements, data elements, or

connecting elements (which may themselves be processing elements or data

elements or both). The form specifies constraints on elements and their

interaction with each other. The rationale provides motivations on the choice

of elements and the form. Although nobody seems to question the value of

documenting the rationale for a software architecture, more recent definitions

tend to view rationale as not being part of the architecture itself.

In the first book on the topic [3], Shaw and Garlan define the software

architecture of system as:

a collection of computational components–or simply components–

together with a description of the interactions among these

components–the connectors.

This definition is inspired by the way practitioners tend to represent software

architectures informally in the form of box and line diagrams. For such

diagrams to be useful for others than their creators, it is important that the

meanings of both the boxes (components) and the lines (connectors) are

described.

The terminology of Shaw and Garlan’s definition has become widely

adopted within the field. It has also been somewhat criticized, however, for

instance in a book by staff members from the Software Engineering Institute

(SEI) [4]. The authors argue that the term connector is unfortunate since it

indicates a run-time mechanism, while software architecture also covers

structures that are not observable at run-time. In the second edition of the

book, the term component is also avoided since it has become so closely

2 Background 15

associated with the topic of component-based software engineering, where

components are usually viewed as run-time entities. The latest edition of the

SEI book uses the following working definition:

The software architecture of a program or computing system is the

structure or structures of the system, which comprise software

elements, the externally visible properties of those elements, and the

relationships among them.

This definition has some interesting aspects. The notion that a system may

have multiple structures is closely related to the concept of architectural views,

which is now widely accepted in the research community. Views are further

discussed in this chapter in connection with architecture description and

documentation. The definition furthermore states that an architecture includes

the externally visible properties of components, implying that other

component properties are not part of the architecture.

Finally, a recommended practice for architectural documentation from the

Institute of Electrical and Electronics Engineers (IEEE) [13] defines architecture

as:

The fundamental organization of a system embodied in its

components, their relationships to each other, and to the environment,

and the principles guiding its design and evolution.

The main novelty of this definition is its mention of the system’s environment.

This is also an example of a process-oriented definition that includes design

and evolution principles. As is the case with rationale, the majority of the

16 Use of Component-Based Software Architectures in Industrial Control Systems

literature seems to consider such principles to be important but distinct from

the architecture itself.

2.1.2 Architectural Design

It was described earlier how Perry and Wolf selected to use the term software

architecture instead of the more traditional term software design. The question

still arises, however, as to the precise relationship between architecture and

design. A common view is expressed in [14]:

Architecture is design, but not all design is architecture.

In other words, a system’s software architecture comprises some, but not all,

the decisions made in the design of the system. The definitions presented in

the previous section do, to varying degrees, specify which types of design

decisions an architecture should include. It can generally be said that software

architecture is concerned with high-level design decisions that are made at an

early stage of the design process. The term architectural design is often used to

denote this early stage. In this thesis, the term architectural decision will

furthermore be used to denote design decisions made during this stage, and a

software architecture will at times be viewed as a set of architectural decisions.

Shaw and Garlan characterizes architectural design as being concerned

with structural issues, such as:

global control structures; the protocols for communication,

synchronization, and data access; the assignment of functionality to

design elements; the composition of design elements; physical

2 Background 17

distribution; scaling and performance; dimensions of evolution; and

selection among design alternatives.

The SEI book [4] presents guidelines for making architectural decisions

that help to ensure a system’s quality properties. Decisions that target

particular properties are called architectural tactics. For example, fault-tolerance

is an availability tactic and information hiding is a modifiability tactic. A set of

related tactics is called an architectural strategy. Bosch [15] suggests a method of

architectural design where an initial architecture is designed based on the

system’s functional requirements. The architecture is then evaluated against

the extra-functional requirements for the systems and transformed if

necessary. This process of evaluation and transformation is applied iteratively

until the architecture is believed to meet all functional and extra-functional

requirements. Evaluation of software architectures is discussed later in this

chapter. An approach developed by Siemens Corporate Research [16] focuses

on identifying factors that influence architectural issues, which are classified

into technical, organizational, and product factors. Based on analyses of these

factors, strategies are determined to resolve the issues. The early design of a

system’s architecture is also a central concept in the Rational Unified Process

(RUP) [17]. In this influential process model, a stable architecture is the main

milestone of the elaboration phase, which precedes the labor-intensive

construction phase.

In all engineering disciplines, successful solutions to past problems are

often used as models when new problems are to be solved. This is also true for

software architecture, where architects have primarily drawn on their own

experiences or that of their development organization. The research

18 Use of Component-Based Software Architectures in Industrial Control Systems

community has realized the benefit of having a collection of well-documented

prototype solutions. The term architectural style was introduced by Perry and

Wolf in [12] to denote such a prototype solution.

This term is also used by Shaw and Garlan [3]. Drawing on their definition

of software architecture, they present the following definition of architectural

style:

An architectural style defines a vocabulary of component and connector

types, and a set of constraints on how they may be combined. There

may also exist one ore more semantic models that specifies how to

determine a system’s overall properties from the properties of its parts.

The use of the word vocabulary emphasizes that styles are intended for

communicating software architecture solutions. The authors go on to identify a

number of commonly occurring styles. Some of these are briefly discussed

below.

• Pipes and filters. The components in this style are called filters and each

have a set of inputs and a set of outputs. The outputs of a filter can be

attached to inputs of other filters via simple connectors called pipes.

Typically, the filters transform streams of input data to streams of

output data in an incremental fashion. An important constraint is that

filters should be independent in the sense that they do not share state

and each filter is unaware of the identities of the other filters it is

connected to.

• Object-oriented systems. In this style, the components are objects that

encapsulate abstract data types and their associated operations. An

2 Background 19

object can be “connected” to other objects by holding references to them

and invoke their operations. Typically, the sets of components and

connectors are dynamic, since objects can create and delete other objects

and object references can be passed as parameters to operations.

• Event-based systems. The components in this style have interfaces that

provide both operations and events. A component’s operations may be

invoked directly by other components as in object-oriented systems. In

addition, a component may register an interest in an event that another

component provides by associating one of its own operations with it.

When the second component subsequently announces the event, the

registered operation is invoked, along with any operations that other

components have registered. Thus, there are two distinct types of

connectors in this style.

• Layered systems. The components in this style are called layers and are

commonly thought of as being stacked on top of each other. Each layer

provides services to the layer above it and is a client of the layer below

it. The connectors are defined by the protocols used between the layers.

A variation of the style is systems where a layer may use the services

provided by all lower layers.

• Repositories. In this style there are two distinct types of components: a

central data store that represents the state of the system and a set of

independent components that operate on the data store. An interesting

sub-style is systems where computation is entirely controlled by the

state of the data store and the independent components react to changes

to this state in an opportunistic fashion.

20 Use of Component-Based Software Architectures in Industrial Control Systems

A valuable property of these and other common styles is that the

consequences of using them as the basis for a system’s software architecture

are fairly well understood. The pipes and filters style, for instance, results in

systems of highly independent components, where filters can suitably be

developed and tested separately and possibly reused in different

configurations. A possible disadvantage is that all filters have to comply with

the data format required by the pipes, which may not be optimally suited for

their computation and result in loss of performance and increased internal

complexity. An advantage of object-oriented systems is that algorithms and

data representation are encapsulated and can be maintained locally. On the

other hand, system wide modifications, such as adding new objects, can be

difficult since objects need to know the identity of other objects in order to

invoke their operations. Event-based systems represent a possible solution to

this problem, although the components are not as independent as in the pipes

and filters style.

A common occurrence in practice is systems that incorporate several

architectural styles. For instance, a system may have components and

connectors that match the types defined by several styles. An example is a

layered event-based system where each layer provides both operations and

events to the layer(s) above it. Another way to combine styles is to mix

different components and connectors in the same system, which is sometimes

called heterogeneous architectures. For instance, a part of a system could be

organized as a repository where one or more of the independent components

exchange data with another part of the system that consists of pipes and filters.

Hierarchical heterogeneity occurs when a component in a system of one style

is internally organized using another style. A common example is a layer

2 Background 21

containing an object structure, which may even be reflected in the layer’s

services.

A recent direction within the software engineering community is the

widespread interest in object-oriented design patterns [18]. Since architecture

is commonly viewed as a special case of design, it is not surprising that the

patterns paradigm has also been applied to architectural design. The most

comprehensive work in this area has been performed by staff at the German

company Siemens, who call their approach pattern-oriented software architecture

[19]. As with other design patterns, this effort focuses on cataloging known

solutions to known problems in given contexts. This approach is similar that of

identifying and documenting architectural styles, and there is now a

widespread view that patterns and styles are synonymous.

2.1.3 Evaluation of Software Architectures

As previously noted, software architecture is concerned with early design

decisions. Clearly, it is important to be able to reason about the effects these

decisions will have on the properties of the finished system. The research

community has developed a number of architecture analysis and evaluation

techniques.

One of the most popular techniques is the architecture trade-off analysis

method (ATAM) [20] developed by the Software Engineering Institute. The aim

of this method is to balance the different quality goals of a system under

development, which is very often conflicting. For instance, an architectural

decision that results in a very maintainable system may result in sub-optimal

22 Use of Component-Based Software Architectures in Industrial Control Systems

performance. ATAM is typical in that it is based on the use of scenarios to

analyze how well candidate architectures meet a system’s quality goals.

Depending on what qualities are being analyzed, scenarios may be operational

or related to the system’s development or evolution, while the evaluation of

their effect may be based on quantitative or qualitative analysis.

ATAM provides a way of determining technical measures of a system’s

quality goals resulting from a proposed architecture, and thus (viewing the

architecture as a set of architectural decisions) from proposed architectural

decisions. Software development organizations, however, usually need to

consider the costs incurred with these decisions and to balance this with the

benefits gained. This is need is addressed by an extension of ATAM called the

cost benefit analysis method (CBAM) [4]. The purpose of CBAM is to calculate

the return on investment (ROI) for each proposed architectural strategy. The

inputs to this calculation are estimated costs of architectural strategies and

measures of the corresponding benefits derived from the ATAM. For a specific

architectural strategy, the benefit Bi is defined as:

()∑ ×=
j jjii WbB ,

where bi,j is the benefit of strategy i in scenario j and Wj is a weight assigned to

scenario j, reflecting its relative importance. Each bi,j is the estimated effect of

strategy i on the quality goal analyzed in scenario j. If Uexpected is the measure

of the quality goal obtained from ATAM in scenario j when strategy i is

included in the architecture and Ucurrent is the measure when the strategy is

excluded, then bi,j = Uexpected − Ucurrent. The measures of the quality goals are

numbers between 0 and 100, corresponding to the worst-case and best-case

2 Background 23

situations respectively. For an architectural strategy with cost Ci and benefit Bi,

the ROI value is calculated as:

i

i
i C

BR =

Techniques for cost estimation have been widely studied and reported, for

instance by Boehm and others [21].

A recently reported analysis method is the architecture-level modifiability

analysis method (ALMA) [22] by Bengtsson and others. As the name indicates,

this method focuses particularly on analyzing the modifiability of a system

based on a proposed architecture for the system. Like ATAM, ALMA is

scenario-based. The only scenarios considered are change scenarios, and the

output of running a scenario consists of measures of the impact of the change

on the system and the effort required to implement the change. Depending on

the purpose of the analysis this can be described qualitatively or

quantitatively. Another recent development is reported by Svahnberg [23].

This work extends the state of the art in architecture evaluation with a

quantitative method for selecting between candidate architectures. The first

step of the method is to define a set of quality goals as the base for the

selection and assign numerical values to these goals that determine their

relative importance. The next step is to evaluate each of the candidate

architectures with respect to each quality goal, which results in a matrix of

numerical scores. These scores need not be meaningful absolute measures of

each architecture’s ability to meet the quality goals, as long as they serve to

relate the abilities of the architectures to each other. By weighing the scores

24 Use of Component-Based Software Architectures in Industrial Control Systems

with the importance of each quality goals, the best architecture can finally be

determined.

2.1.4 Architectural Description and Documentation

In practice, software architectures are usually described using informal box

and line diagrams accompanied by descriptive prose. The research community

has pointed out that such descriptions are often ambiguous and there is

extensive work on architectural description and documentation in the

literature.

One research direction is the development of architecture-description

languages (ADLs). A bafflingly high number of such languages have been

published, differing in such aspects as use of graphics or text, formality of

semantics, emphasis on certain domains or styles, available analyses and tool

support etc. In [3], Shaw and Garlan discusses the requirements for ADLs and

reviews three early languages and their associated tools. A recent and

extensive survey is that of Medvidovic and Taylor [24]. Despite the great

volume of work on ADLs there are few testimonies of industrial adoption in

the literature. The use of the Koala language at Philips [25] is perhaps the only

reported example. This language is fairly implementation-oriented and can be

seen as something on the borderline between an ADL and a graphical

programming language. Koala is furthermore the name of a related software

component model, which is discussed in Section 2.2.2 of this thesis.

A language that has been widely adopted is the Unified Modeling Language

(UML) [26]. Although UML has become the standard notation for

2 Background 25

documenting software design, its suitability for describing software

architecture has been questioned. The problem is that UML has its roots in

object-oriented methods and is mainly intended for modeling a system as a set

of interrelated classes, a concept usually considered to be at a lower level of

granularity than software architecture. Still, it has been demonstrated how the

language can be used for architectural documentation. One example is the

aforementioned approach of Siemens Corporate Research [16]. Their

architecture descriptions are written using special architecture-level modeling

elements, which have been defined using UML’s extensibility mechanisms.

Although it would be possible for other organization to re-use these

architecture-level modeling elements, it is not likely to occur on a large scale

until such elements are standardized and supported by major tool vendors.

Fortunately, such standardization has now taken place in UML 2.0 [27].

This new standard defines the following architectural concepts, which are also

central in most ADLs:

• Component. A component is a modular unit with well-defined interfaces

that is replaceable within its environment. The external view of a

component is a set of provided and required interfaces, which may be

exposed via ports (see below). A component may also have an internal

view in the form of a realization, which is a set of instances of classes or

smaller components that collaborate to implement the services exposed

by the component’s provided interfaces while relying on the services of

its required interfaces. The concept can be used to specify both logical

and physical components.

26 Use of Component-Based Software Architectures in Industrial Control Systems

• Port. A port is a named and typed interaction point of a component. A

provided port is typed by a provided interface, a required port by a

required interface, and a complex port by an arbitrary set of provided

and required interfaces. Complex ports enable the localization of

complex interaction patterns where calls may occur in both directions.

Unlike interfaces, a port may be associated with a behavior, specifying

the externally observable behavior of the component when interacting

through the port. This allows the specification of semantic contracts,

similar to those described in Paper A. A component may have multiple

ports typed by the same interface, and is able to distinguish between

calls received through different ports.

• Connector. A connector is a link that may be of kind delegation or

assembly. A delegation connector either links a provided port of a

component to a part of the component’s realization, signifying that

requests received through the port is forwarded to the part, or it links a

realization part to a required port, signifying that request sent through

the port originates in the part. Several connections may exist between a

single port and different realization parts. An assembly connector links a

required interface or port of a component to a matching provided

interface or port of another component.

Figure 2-1 is a UML 2.0 diagram that illustrates these modeling elements. The

diagram shows a component with one port, typed by one required and one

provided interface. The component also has a realization, consisting of two

component instances. Delegation connectors link the outer component’s port

to a provided port of one of these instances and a required port of the other

2 Background 27

instance to the outer port. The two instances furthermore have ports linked by

an assembly connector. The diagram does not show port names.

Component1

: Component2

: Component3: Component3

Interface4

Interface1

Interface2

<<delegate>>

<<delegate>>

Interface3

Interface1

Interface2

Figure 2-1 Architectural modeling elements in UML 2.0.

The production of professional software architecture documentation has

been studied at the Software Engineering Institute [14]. This work focuses

more on the organization of architecture documents than on particular

notations. The central organizing unit for such documents is that of a view,

which is defined as follows:

A view is a representation of a set of system elements and the

relationships associated with them.

Thus, a view represents a subset of the information contained in an

architecture. The use of views is motivated by the fact that software

28 Use of Component-Based Software Architectures in Industrial Control Systems

architectures are complex entities that cannot be adequately described in a

simple one-dimensional fashion.

One of the most influential publications on architectural views is

Kruchten’s paper on the 4+1 view model [28]. His approach, which has been

adopted as a central part of the Rational Unified Process, defines the following

views:

• The logical view primarily supports behavioral requirements: the services

the system should provide to its end users.

• The process view addresses concurrency and distribution, system

integrity, and fault tolerance.

• The development view focuses on the organization of the software

modules in the software development environment.

• The physical view maps the various elements identified in the logical,

process, and development views onto the processing nodes.

• The use case view contains a small subset of important use cases,

intended to show that the elements of the other four vies work together

seamlessly.

 The last view is called the +1 view since it is redundant with, and serves to

validate, the other views. Another model that has received considerable

attention is sometimes called the Siemens 4 view architecture model and is a

central part of Siemens Corporate Research’s approach, mentioned above. It

defines the following views:

2 Background 29

• The conceptual view describes the system in terms of its major design

elements and the relationships among them.

• The module interconnection view describes functional decomposition and

layering.

• The execution view describes the dynamic structure of a system.

• The code view describes how the source code, binaries, and libraries are

organized in the development environment.

The conceptual view has no direct counterpart in the 4+1 view model, while

the module interconnection view corresponds roughly to the logical view, the

execution view to the process and physical views, and the code view to the

development view.

The IEEE recommended practice for architectural description of software-

intensive systems (IEEE Standard 1471-2000) [13] focuses on the contents and

intended use of architectural description documents. To this end, it defines a

conceptual framework, which is illustrated in the UML class diagram in Figure

2-2. Thus, according to the standard, a system has an architecture, which is

described by an architectural description. Furthermore, the system has a

number of stakeholders, which each has a number of concerns, and the

architectural description shall explicitly identify these stakeholders and their

concerns. The architectural description must furthermore provide a rationale

for the architecture and shall be organized into views.

30 Use of Component-Based Software Architectures in Industrial Control Systems

Figure 2-2 The conceptual framework for architectural description of IEEE Standard 1471-2000.

Each view must conform to what is called a viewpoint. A viewpoint is a

general (i.e. system independent) template of a view, and is intended to

address a certain subset of stakeholders and concerns. A view is a system

specific instance of a viewpoint. The viewpoint specifies the format for

describing the view, including languages and notations used as well as any

analysis technique that may be applied. The architectural description shall

state which viewpoints are used and present the specification of these or refer

to other documents where specifications may be found. The standard

emphasizes the potential for reuse of viewpoints, and therefore states that a

viewpoint may be a library viewpoint. The architectural description is

2 Background 31

required to include at least one viewpoint and corresponding view, but there

are no predefined compulsory views. It follows from this that the standard

does not prescribe any particular language or notation.

2.2 Component-Based Software Engineering

Component-based software engineering (CBSE) denotes the assembling of

software products from pre-existing smaller products, generally called

components. In particular when this is done using (de-facto) standard

component models and supporting technologies. A component model

generally defines a concept of components and rules for their design-time

composition and/or run-time interaction, and is usually accompanied by one

or more component technologies, implementing support for composition

and/or interoperation.

2.2.1 Definitions of Software Components

Within the field of software architecture there is a widely accepted

terminology where the constituent parts of a system’s architecture are, in

general, called components. This sometimes creates confusion since the

architecture and CBSE communities have adopted the term component

independently. A widespread view in CBSE is that component denotes a

physical part (product), while in architecture a component can be any

structural entity (file/class, process/thread, module/layer, etc.) and even

purely conceptual (e.g. an abstraction invented by a designer). At the risk of

32 Use of Component-Based Software Architectures in Industrial Control Systems

adding to the confusion, this thesis uses the term component-based software

architecture to mean a software architecture designed to support CBSE.

One of the most influential definitions of software components (in the

CBSE sense of the word) is that of Szypersky [1]:

A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A software

component can be deployed independently and is subject to

composition by third parties.

The first part of the definition is technical, and states that software components

should be “blackboxes” to be composed without modification (obviously, the

definition means that interfaces and context dependencies are the only visible

parts of the component). Szypersky asserts that source code modules do not

qualify as software components since they make it possible for the composer

to rely on implementation details, thus violating the principle of blackbox

composition. The second part of the definition is more market-oriented,

effectively stating that it should be possible to market software components as

independent products and that buyers should be able to use them as parts in

their own products. Naturally, independent deployment also has technical

implications, namely that it must be possible to deploy (e.g. upgrade) a single

component without any modification, recompilation, or similar of the rest of

the systems of which the component is a part.

In what is sometimes called The CBSE Handbook [2] Heineman and

Councill present the following definition:

2 Background 33

A software component is a software element that conforms to a

component model and can be independently deployed and composed

without modification according to a composition standard.

According to this definition, all components must conform to a component

model, which the authors define as specifying interaction and composition

standards. This requirement is quite reasonable, since it is hard to see how

CBSE could work without some standards for interaction and composition. It

is worth noting that the definition does not require that the component model

is defined by a standards body or platform supplier, or that a commercial

platform implementation is used. It is furthermore concluded that the two

definitions principally agree, since the requirement that components can be

modified without modification can only be satisfied if interfaces and context

dependencies are well defined and that compliance with a standard naturally

supports composition by third parties.

Finally, a definition of software components that must be expected also to

receive widespread attention is that of UML 2.0 [27], which has already been

mentioned in this thesis. From the discussion of the previous section, the

following definition can be extracted:

A component is a modular unit with well-defined required and

provided interfaces that is replaceable within its environment. The

concept can be used to model both logical and physical components.

In the context of CBSE, a software component corresponds to what UML 2.0

calls physical components. Although some will object to the use of the word

physical to describe software components, this is the term used by the UML

34 Use of Component-Based Software Architectures in Industrial Control Systems

2.0 specification to denote deliverables such as COM+, EJB, or CCM

components. The definition is somewhat broader than the previous two, as

“replaceable within its environment” is a weaker requirement than “subject to

independent deployment and composition by third parties”. The definition is

interesting primarily as it helps to establish required and provided interfaces

as part of the standard terminology of software component.

2.2.2 Software Component Models and Technologies

As already mentioned, a software component model specifies standards for

composition of and interaction between software components. To facilitate the

use of such models, dedicated software tools and infrastructures are often

implemented. These may include run-time environments for component

execution and interaction as well as tools for component development,

composition, and deployment. A software component technology is a set of

dedicated software products supporting the use of a specific software

component model. Heineman and Councill use the term component model

implementation to denote the run-time parts of a software component

technology.

One of the most widely used component models is Microsoft’s Component

Object Model (COM) [29]. Microsoft first used this model internally, in its

Windows operating systems as well as in applications available on that

platform, before releasing the COM specification. Thus, in this case, a

component technology already existed when the component model was

published. Today, there are numerous vendors of COM components and

COM-based applications for the Windows platform. Technologies are also

2 Background 35

available on several other platforms, but COM has never gained widespread

popularity outside the world of Windows.

On the Windows platform, a COM component is an executable or dynamic

link library (DLL) that implements a set of COM classes that each implements a

set of COM interfaces. Classes may also have optional or required outgoing

interfaces, i.e. interfaces to be used by the classes and implemented by other

components. Both classes and interfaces are identified by globally unique

identifiers (GUIDs), which are 128-bit numbers that can be generated by an

algorithm that virtually ensures their uniqueness. The GUIDs of any classes

implemented by the components installed on a system are stored in the

Windows registry along with references to the implementing components. The

COM library provides an API that an application or components, called a COM

client, can use to create COM objects by supplying the GUIDs of the desired

class and interface. COM does not specify how classes should be implemented.

Instead, components are required to provide a factory interface that the COM

library uses to instruct components to instantiate their own classes.

What COM does specify is the binary format of interfaces. A client interacts

with a COM object through a pointer to an interface node, which includes a

pointer to a table of function pointers. Since the interface standard is binary,

COM is oblivious to the programming languages use to implement

components and clients. Once the COM library has created an object, it returns

a pointer to one of the object’s interfaces to the client. The client can use an

operation of this interface to request pointers to any other interfaces the object

supports. This technique is called interface navigation. In addition, the COM

specification includes a set of predefined interfaces for such purposes as

36 Use of Component-Based Software Architectures in Industrial Control Systems

scripting, error handling, and connection-oriented composition. Distributed

COM (DCOM) [30] is an extension of COM that supports distributing

applications across physical machines. The basic interoperability mechanisms

of COM and DCOM are discussed more deeply in Paper C in this thesis.

A special type of COM components is ActiveX controls [31]. These

components implement and use predefined interfaces, which are designed to

allow interaction with both (visual) composition tools and run-time

environments, called containers. A typical application is in graphical user

interface (GUI) controls, including controls automatically downloaded from

web servers and executed in a web browser. Typically, such controls make use

of outgoing interfaces to notify their containing application or web browser of

events. A similar component model is Sun’s JavaBeans [32]. These components

are built from Java classes that implement predefined interfaces and use

special event objects for notification. JavaBeans share many of the

characteristics of ActiveX controls, the main difference being that they must be

written in the Java programming language [33] and executed on a Java virtual

machine (JVM) [34]. Sun provides a solution that makes it possible to use

JavaBeans in ActiveX containers. Component technologies related to ActiveX

controls and JavaBeans include tools for packaging and deployment of

components with associated resources and type information.

COM+ [35] is an extension of COM incorporating support for services,

such as transactional processing and message queuing, that are commonly

used in distributed information systems. These services are not invoked

programmatically from inside the components. Instead, declarative attributes

can be associated with components and applications, specifying which services

2 Background 37

can or must be provided and at which level. The COM+ run-time system uses

this information to intercept component interactions and insert system calls as

required. This allows existing COM components to be transparently

augmented with, for instance, transactional processing and used as part of

COM+ applications.

Another model providing similar services is Sun’s Enterprise JavaBeans

(EJB) [36], which is based on Java but not on the aforementioned JavaBeans

model. The required service levels for a set of EJB components are expressed

declaratively in a file called a deployment descriptor. After deployment, each of

the objects implemented by the components, generally called beans, live inside

an EJB container, which also contains objects generated from the deployment

descriptor. Clients invoke a bean’s operations via these generated objects,

which ensure the correct service levels. Unlike JavaBeans, beans in EJB do not

communicate through events. There are two principal types beans. Entity beans

are used to encapsulate access to database records. An entity bean may

implement its own persistence management or let the container manage

persistence as specified by the deployment descriptor. Session beans, which

may be stateful or stateless, represent interaction sessions with clients.

Message-driven beans can be seen as a special kind of stateless session beans that

represent asynchronous interaction session. A session bean may control

transactions or leave that to the container. EJB requires the Java 2 Enterprise

Edition (J2EE) platform [37].

A third model that is similar to COM+ and EJB is the CORBA Component

Model (CCM) [38]. CCM is standardized by the Object Management Group

(OMG) and require that clients and components communicate using an object

38 Use of Component-Based Software Architectures in Industrial Control Systems

request broker (ORB) as defined by version 3.0 of the OMG’s Common ORB

Architecture (CORBA) [39]. A CCM component is delivered in a package,

which contains a description in XML and possibly binaries for multiple

platforms. A CCM application is an assembly of CCM and possibly EJB

components, whose configuration is described in XML. A CCM component

belongs to one of four possible categories. Service components correspond to

stateless session beans in EJB, and maintain no state. Session components

correspond to stateful beans and maintain state for the duration of a

transaction. Entity components, as entity beans, encapsulate database access.

Process components maintain persistent state throughout the lifetime of a

process. Similarly to in EJB, the instances of a CCM component resides within

a CCM container, and transaction control as well as persistence may be

container managed or self managed. CCM components interact with clients

and each other through attributes and port. A port is a facet, a receptacle, an

event sources, or an event sink. Facets and receptacles are provided and required

interfaces respectively. A facet of one component can be connected to a

receptacle of another components. Event sources and sinks are connected via

event channels. CCM also specify two predefined interfaces that are clearly

inspired by COM. All component instances provide the equivalence interface for

interface navigation and all components implement the home interface for

instance creation.

Koala [25] is a software component model specially intended for

embedded software in consumer products. In particular, it is being used by

Philips in products such as televisions and VCRs. A Koala component has a set

of provided and required interfaces, and interacts with its environment

through these interfaces only. A Koala configuration specifies a collection of

2 Background 39

component instances, the parts list, and a set of connections between these

instances, the net list. In the simplest case, a connection links a required

interface of one component instance to a matching provided interface of

another component instance. Glue code may be associated with connections to

provide more complex interactions. Configurations may themselves be used as

components in a hierarchical fashion. Koala provides notations for specifying

interfaces and components and a graphical language for defining

configurations. Basic Koala components, i.e. those that are not configurations,

are sets of C source code files. As such they do not satisfy the definitions of

software components discussed above. However, the motivation for using

source code is efficiency and not exposition of implementation details, and the

Koala configuration language encourages blackbox composition. The Koala

compiler optimizes configurations by inserting into the code of the

components static references to connected components wherever possible.

Still, puritans may prefer to view Koala as a technology for modular, graphical

programming rather than a component model. For instance, it does not

support independent component deployment as discussed in the previous.

As noted by e.g. Wallnau and others [40], software component models are

closely related to the concept of architectural styles. Thus, as discussed in the

previous section, one may expect the choice of a component model to affect a

system’s properties in a predictable way. The component models discussed

above each defines one or more types of components as well as different ways

in which such components may be connected. Not surprisingly, the object-

oriented systems style is evident in most of these models. This style

corresponds directly to the way that EJB systems and most COM-based

systems are organized. ActiveX, JavaBeans, and CCM correspond to an object-

40 Use of Component-Based Software Architectures in Industrial Control Systems

oriented, event-based systems style, which may also be used with

COM/COM+. Recall that the primary assumed benefit of the object-oriented

systems style is encapsulation of implementation details, while the event-

based systems style is assumed to result in increased extensibility. Koala

differs from the other discussed models in that components are explicitly

disallowed to contain references to other components. In a way, this resembles

the pipe and filters style, and might be expected to promote reusability. A

notable difference, which should not affect reusability however, is that the

function calls flowing across Koala connections can result in bi-directional data

flows.

The definition of architectural style presented in the previous section states

that a style might include one or more semantic models that allow a system’s

properties to be inferred from the properties of its parts. No such models are

included in any of the component models discussed above, and this seems also

to be the case for other models. This is being addressed by the work on

prediction enabled component technology (PECT), conducted at the Software

Engineering Institute [41]. A PECT is defined as consisting of a constructive

model, which, like the component models discussed so far, supports the

implementation of systems as assemblies of components, and an analytical

model, which defines techniques for predicting different properties of such

assemblies from the properties of components.

2.2.3 Component-Based Software Engineering Practices

As already mentioned, CBSE denotes the practice of assembling software from

existing components. Thus, in comparison to traditional software engineering,

2 Background 41

the activity of assembling replaces that of programming. In practice, however,

some programming is usually needed to make a set of independently

developed component work together. Furthermore, traditional development

models, where design and implementation follows strictly from a preceding

stage of requirements identification, is less suited for CBSE, where it is usually

necessary also to adjust requirements to match what available components can

offer. For reference, Figure 2-3 is a simple UML activity diagram illustrating

the traditional waterfall model of software development [42]. In more modern

models, such as the Rational Unified Process [17], these activities are repeated

iteratively.

Requirements
identification Design Implementation Verification

& Validation

Figure 2-3 Waterfall model of software development

Among the first to address the particular practices required for

component-based software in a systematic fashion were Brown and Wallnau

[43], who define a reference model for such systems. As illustrated in Figure

2-1, the model focuses on the system as a set of components that progresses

through various states during development and evolution. Off-the-shelf

components are pre-existing components that may have been acquired

externally or reused from previous projects within the development

organization. They are characterized by having hidden interfaces, where

interface is interpreted to include not only a functional description but also all

other information that is needed to use a component. Qualification is the

process of discovering the hidden parts of the interfaces. The qualified

components are subsequently adapted to remove architectural mismatch. This

42 Use of Component-Based Software Architectures in Industrial Control Systems

concept was first described by Garlan and others [44], and refers to

mismatches between components originating from incompatible assumptions

by the component designers about the system’s architecture. Adaptation is

usually accomplished by writing wrappers. The adapted components are

composed according to a selected architectural style. As discussed in the

previous section, selecting a component model in part determines this

architectural style. Composition may include writing some additional code,

which is often call glue code. The system finally enters a stage of evolution

where component may be updated.

off-the-shelf
components

qualified
components

adapted
components

assembled
components

updated
components

qualification to
discover interface

adaptation to
remove architec-
tural mismatch

composition into
selected architec-
tural style

evolution to
update
components

Figure 2-4 Reference model for architectural composition of components.

A central aspect of this model is the assumption that components initially

have hidden interfaces, which is particularly important when using

commercial components. This work has more recently been extended by

Wallnau and others [45], with an even more pronounced focus on commercial

2 Background 43

components. A central concept of the work is that of an assembly, which is a

set of interoperating components that may form part of a system. It is for

instance argued that assemblies are more useful as units of evaluation and

selection than individual components.

In other component-based systems, as in that of the case study presented in

this thesis, components are implemented to comply with pre-specified

interfaces. In these cases, the activities of requirements identification and

design will be less different from traditional software engineering, since there

is no evaluation, selection, qualification, or adaptation of existing components.

However, an essential goal of the design activity is to identify the components

to be developed and allocate functionality to them. This can be seen as input

for identifying requirements for each component, which can subsequently be

independently developed and tested. This leads to a form of nested

development process where similar activities are performed on both system

and component levels. Based on the waterfall model in Figure 2-3, this can be

depicted as in Figure 2-5.

Requirements
identification Design Implementation

(assembly)
Verification &

Validation

Requirements
identification #1 Design #1 Implementation #1 Verification &

Validation #1

Requirements
identification #n Design #n Implementation #n Verification &

Validation #n

…

Figure 2-5 Waterfall model adopted for component-based software development.

44 Use of Component-Based Software Architectures in Industrial Control Systems

In addition to the practices of developing component-based system, the

literature also discusses non-technical aspects of CBSE. For instance, Szyperski

[1] points out that a component market of critical size is needed for the

development of commercial components to represent a viable business

opportunity. Another example is Heineman and Councill’s book [2], which

covers regulatory and legal issues, such as the applicability of commercial law

to software components.

2.3 Industrial Control Systems

Simply put, industrial control systems are computer systems that control

physical processes and equipment. More specifically, this thesis is concerned

with the types of system used in the control of industrial plants. In practically

all cases, these are distributed systems in which control functions are

performed by several nodes that communicate via different types of networks.

Typically, these nodes also communicate with other computer systems, such as

different types of servers and workstations.

2.3.1 Levels of Industrial Control Systems

Figure 2-6 illustrates a typical configuration of interconnected information

processing and control nodes in an industrial system. The controllers and field

devices are furthermore connected to physical processes and equipment to be

controlled.

2 Background 45

Client/server
Network

Control Network

Fieldbus

Intranet

Controllers

Servers

Workplaces
(Rich clients)Router

Workplaces
(Thin or rich
clients)

Field devices

Firewall

Internet
Workplaces (Thin clients)

Server

Figure 2-6 Typical configuration of industrial information and control systems.

This system comprises different types of computers and other devices that

communicate over different networks. The client/server network is used for

communication between servers and between servers and workplaces. In some

cases, a computer may be used as both a server and a workplace. The network

may be connected to an intranet via a router and further to the Internet via a

firewall. The control network connects servers and controllers. In small

systems, the control and client/server networks may be combined in one

physical network. Different types of fieldbuses are used to interconnect field

46 Use of Component-Based Software Architectures in Industrial Control Systems

devices and to connect them to the rest of the system, either via controllers as

the figure shows or directly to servers. In some cased, fieldbuses and the

control network may share the same physical medium.

It is customary to divide the functionality of this kind of systems into

levels, where the functions of each level depend on those of the lower levels.

• The workplace level comprises different types of user interaction. A

typical example is the software used by operators in control rooms to

view and possibly alter the state of the controlled processes. This level

also includes applications for such task as analysis of process data and

configuration of process equipment. Applications usually run on PCs or

other types of workstations, which may be attached to the client/server

network, an intranet, or the Internet.

• A central function of the server level is to collect and store process data,

which is used by different types of applications. These are typically

client-server applications where data presentation is implemented on

the workplace level and the majority of computation and storage on the

server level. In addition, data and commands, possibly originating in the

Workplace level, may be sent to process equipment. The server level

may also include functions, such as optimization, that determine long-

term control strategies. The server machines that provide this

functionality is connected to the client/server network and, at least

some of them, to the control network.

• The main function of the control level is the execution of control software

by dedicated controllers. Typically, these repeatedly read values from

2 Background 47

sensors and computes values to be written to actuators. Control

applications may be much more complex, however, for instance

including sophisticated communication with other devices. Controllers

are attached to the control network and possibly to fieldbuses.

• The field level comprises functions performed by different types of field

devices. The simplest of these are I/O modules, which perform

translations between physical signals and controller data. There may

also be more advanced devices, such as smart sensors and actuators,

which may be connected to a controller or directly to a server. Field

devices communicate over fieldbuses.

These levels are defined from the premise that the functions within each

may require the presence of functions at lower levels but should be able to

operate independently of higher-level functions. In addition, the functions

within each level share characteristics that affect (among other things) the

design of the software that implements them. One example is the different

real-time and performance requirements. As discussed further in the following

section, the control and field levels are dominated by hard and soft real-time

deadlines. This often mandates the use of real-time operating systems. To

ensure availability, redundant hardware architectures may be used, in which

the actual control of the process is performed by a primary processor, with

additional processors working in stand-by mode and able to take over in case

the primary processor fails. Although the functions in the server layer may

also be subject to response-time requirements, they tend to be dominated by a

desire to maximize average throughput. Thus, they are usually implemented

on top of general-purpose operating systems, such as Windows or Unix, and

48 Use of Component-Based Software Architectures in Industrial Control Systems

other platform products, such as database management systems. This

furthermore makes the use of component technologies, such as COM+ and

EJB, a realistic possibility. Redundancy may also be employed at this level,

typically in the form of server groups. Unlike in the redundant architectures

used at the lower levels, the servers in a group usually perform load balancing.

Thus, if one server fails, the system will continue to operate with reduced

performance. The user interface functions of the workplace level are usually

not subject to real-time requirements. They are often implemented using

graphical design tools and possibly such technologies as ActiveX controls and

JavaBeans.

Another characterizing feature of the levels is the difference in product life

cycles. As a general rule, hardware and software components at lower levels

are updated less often than at higher levels. According to experiences from

ABB, applications have a life span of 3–5 years at the workplace level, 5–8

years at the server level, 8–15 years at the controller level, and 10–20 years at

the field level. One result of this is that applications at one level are often

required to work with legacy applications at lower levels, but less often at

higher levels. For instance, new releases of client applications at the workplace

level typically need to work with existing server software, while it is more

common for new releases of server software also to require updated client

applications. On the other hand, new server releases are usually required to

support legacy hardware and software at the control and field levels. This

difference in life cycles is in part motivated by the unidirectional dependence

between the levels, which means that updates at one level is likely to disturb

functions at all higher levels. Thus, in general, upgrades at lower levels entail

more widespread disturbances and associated costs. Another factor that tend

2 Background 49

to make product updates more costly at, in particular, the control and field

levels, is the possible need of disrupting the controlled process.

As already mentioned, applications at the workplace and server levels are

often organized as client-server applications, where the server level is

responsible for any communication with controllers and field devices. To

simplify the implementation of client applications that can work with

equipment from different vendors, a COM-based standard called OLE for

process control (OPC) [46] has been created. OPC defines a set of COM

interfaces for supporting basic data access as well as such functionality as

alarm and event handling, historic data access, batch processing, etc. Many

vendors of process equipment now provide OPC servers that implement (a

subset of) these interfaces, which client applications can access using DCOM.

The OPC standard is managed by an industry association called the OPC

Foundation, which has over 300 member organizations and lists more than 250

manufacturers of OPC-compliant products. A standard that can be used for

communication between servers and controllers is the manufacturing message

specification (MMS) [47], which specifies services suitable for such applications

as data exchange and download of control software. As for the field level, a

number of fieldbuses have been standardized [48], some of which are

particularly popular within certain industry sectors or geographical areas. A

strong current trend is the increased popularity of fieldbuses based on

standard network technology, such as TCP/IP and Ethernet.

50 Use of Component-Based Software Architectures in Industrial Control Systems

2.3.2 Programmable Controllers

As stated in the previous section, control software is usually executed on

controllers, equipped with physical interfaces for reading from sensors and

writing to actuators. Control applications can be categorized into continuous,

discrete, and hybrid control. In the first category, a controller samples

continuous signals at regular intervals and computes streams of data to

produce approximations of continuous output signals. An example application

is the control of a valve to keep the flow of a fluid constant in the presence of

varying supply pressure. In the second category, the controller reacts to

discrete events and affect discrete actions. For instance, a controller could

detect the level of fluid in a tank reaching minimum or maximum levels, and

turn the supply on or off accordingly. Hybrid control applications combine

both the other two types of control.

Continuous control applications can further be divided into closed-loop

control and open-loop control. In the case where a single output of a physical

process is being controlled using closed-loop control, the controller measures

this output, called the controlled variable, and compares it with the desired

value, the reference. Based on the difference, an input signal to the process,

called the manipulated variable, is produced to drive the output in the desired

direction. In this way, the controller can make the process output track a

variable reference, or keep it constant in the presence of external disturbances.

Figure 2-7 illustrates the principle, which is also known as feedback control. For

simplicity, sensors and actuators are not shown, but taken to be part of the

controller.

2 Background 51

Controller Process
Reference

Controlled
variable

Manipulated
variable

Disturbance

Figure 2-7 Closed-loop control system.

In some cases, it may be advantageous to use the principle of open-loop

control. As illustrated in Figure 2-8, the controller measures the disturbance

and sets the manipulated variable so as to keep the process output equal to the

reference. Clearly, this requires that the process is well understood so that the

combined effect of the measured disturbance and the computed input can be

accurately predicted. This principle is also known as feed-forward control. In

addition to such pure closed-loop and open-loop applications as presented

here, there are applications where both the disturbance and the process output

are measured. Also, there are multi-variable control applications in which

multiple process variables are measured and controlled.

Controller Process
Reference

Controlled
variable

Manipulated
variable

Disturbance

Figure 2-8 Open-loop control system.

In the purest form of discrete control, the controller is only equipped with

digital (i.e. binary) inputs and outputs, and the control software can be viewed

52 Use of Component-Based Software Architectures in Industrial Control Systems

as emulating digital electronic circuits. This has been utilized in graphical

programming tools. Figure 2-9 shows a simple example of such a program in

which the output Run becomes true when the input Start becomes true, and

then stays true until the input Stop becomes true. The block marked “≥1” is a

logical or-gate and the block marked “&” is a logical and-gate with its lower

input inverted.

&Start

Stop

Run
≥1

Figure 2-9 Example logic for discrete control system.

In continuous control loops, the process is usually modeled as a system of

differential equations, with the inputs and outputs being functions of time.

Often, the controls software is also implemented so as to approximate a system

of differential equations. The modeling of physical processes and design of

control equations is the topic of control theory [5]. For the techniques of control

theory to be useful, it is essential that the frequency with which the controller

reads input signals and updates output signals, the sampling frequency, is

sufficiently high to ensure faithful approximation of the control equations.

Obviously, this translates into a real-time deadline on the computations the

controller performs at each sample. In a programmable controller product, the

application programmer should be able to set the sampling frequency (within

a certain supported interval), and this frequency should be guarantied with

some accuracy. This leads to hard real-time deadlines in the design of the

2 Background 53

controller product. In discrete and hybrid control, real-time requirements are

also common to ensure the timing of actions in relation to events.

Traditionally, controller products have been designed for either continuous

or discrete control. Two important categories of programmable controller

products have been distributed control systems (DCSs) for continuous control

and programmable logic controllers (PLCs) for discrete control. In the past, PLCs

usually only supported simple computations on digital data, and the costs for

these were considerably lower than for DCSs, which were required to perform

at least numerical computations. However, the dramatic reduction in the price

of computing hardware has resulted in both more sophisticated PLCs and less

expensive DCSs. These trends have lead to a convergence of these product

categories into a single category of products often called programmable

controllers. Such products still vary noticeably in price, functionality, and other

attributes, though.

Some concepts of programmable controllers have been standardized in the

industry standard IEC 61131 [49]. In particular, the part of the standard called

IEC 61131-3 [50] standardizes a programming model and a set of

programming languages. This set comprises the graphical languages Ladder

Diagram (LD), Function Block Diagram (FBD), and Sequential Function Chart

(SFC), and the textual languages Instruction List (IL) and Structured Text (ST).

All languages share a set of standard data types for representing Booleans,

character strings, date and time values, numbers, enumerations, arrays, and

structures. In addition, the programming model supports three kinds of

program organizing units (POUs), called programs, function blocks, and functions.

54 Use of Component-Based Software Architectures in Industrial Control Systems

Functions take input parameters and provide a return value in the normal

way. They can be written in any of the above languages except SFC.

Function blocks are instances of function block types. A function block

type consists of a declaration part and an implementation part. The declaration

part defines variables, which may be of type input, output, input/output,

internal, external, or temporal, and possibly a set of instances of other function

blocks. External variables are references to variables defined outside the

function block. Temporal variables are allocated and initialized at every

invocation of an instance. An example declaration part of a function block is

shown below.

FUNCTION_BLOCK PID
 VAR_INPUT
 Kp : REAL; (* Proportional gain *)
 Ki : REAL; (* Integral gain *)
 Kd : REAL; (* Differential gain *)
 T : REAL; (* Sampling interval *)
 Input : REAL; (* Actual process value *)
 Reference : REAL; (* Desired process value *)
 END_VAR;
 VAR_OUTPUT
 Output : REAL; (* Controller output *)
 END_VAR;
 VAR
 Error : REAL; (* Difference between actual and desired *)
 Error_old : REAL := 0; (* Error of previous sample *)
 Sum : REAL := 0; (* Accumulated error *)

2 Background 55

 END_VAR;
END_FUNCTION_BLOCK;

This function block type defines a number of input, output, and internal

variables, necessary to implement a proportional-integral-differential (PID)

controller, which is a very common type of controller used in closed-loop

control applications. Viewing the difference between the process output and

the reference (the error signal) as a continuous function e(t) of time, a PID

controller computes an approximation of a process input m(t) defined by:

dt
tdeKdeKteKtm D

t

IP
)()()()(

0

++= ∫ ττ

A function block implementation can be written in any of the available

languages. The implementation is executed once every time a function block is

invoked. A simple implementation of the PID controller in Structured Text is

shown below.

Error := Reference – Input;
Sum := Sum + Error;
Output = Kp*Error + Ki*Sum*T + Kd*(Error – Error_old)/T;
Error_old := Error;

As one would expect, input variables are read-only within the

implementation. In addition to primitive statements, function block

implementations may contain function and function block invocations. The

56 Use of Component-Based Software Architectures in Industrial Control Systems

rules that govern the execution of function blocks are the same as those for

programs, which are discussed in the following.

Programs are instances of program types, which, like function block types,

have declaration and implementation parts. A program’s declaration part

declares variables and function block instances as illustrated in the example

below. A variable can either be of one of the kinds used in a function block

declaration or it can be a global variable or an access variables. These

additional kinds of variables are explained later.

PROGRAM PIDLoop
 VAR
 Kp : REAL; (* Proportional gain *)
 Ki : REAL; (* Integral gain *)
 Kd : REAL; (* Differential gain *)
 T : REAL; (* Sampling interval *)
 Input : REAL AT %IW01; (* Actual process value *)
 Ref : REAL; (* Desired process value *)
 Output : REAL AT %QW01; (* Controller output *)
 (* Function blocks *)
 PID1 : PID; (* PID controller *)
 Scale1 : ScaleIn; (* Scaling and conversion of input *)
 Scale2 : ScaleOut; (* Scaling and conversion of output *)
 END_VAR;
END_PROGRAM;

2 Background 57

This program can be used to implement a PID control loop on a controller

equipped with an input unit that produces integer data and a corresponding

output unit. To achieve this it uses the PID function block from above and two

other function blocks for conversion and scaling of data between the formats

used by I/O units and the PID function block. Notice how the variables Input

and Output are connected to the addresses of the I/O units using a special

syntax. This makes the Input variable read-only. An implementation of the

program in the Function Block Diagram language is show in Figure 2-10. Each

function block instance appears on the diagram as a rectangle with inputs on

the left and outputs on the right. Similar symbols are used for operations and

function calls, which are not named. Lines are used to connect these entities to

each other and to variables and constants. Outputs of all entities are read-only.

In the typical case, all entities are invoked from left to right once every time the

program executes, although function block execution may be configured

otherwise, as described later. Program and function block implementations

may include multiple instances of the same function block type, in which case

each instance maintains its own copies of all variables except those that are

declared as external.

Kp
Ki
Ki
T
Input
Reference

Output

PID1 : PID
Kp
Ki
Ki
T

Ref

In

Scale2 : ScaleOut

Out

In

Scale1 : ScaleIn

Out

Output

Input

Figure 2-10 Function Block Diagram.

58 Use of Component-Based Software Architectures in Industrial Control Systems

To control how programs and function blocks are executed on a controller,

IEC 61131 defines the concepts of configurations, resources, and tasks. A

configuration contains all the run-time entities of a single physical controller,

which, at the top level, consists of one or more resources and zero or more

variables. Each resource is a virtual run-time environment that controls some

percentage of the processor time. A resource contains one or more program

instances, zero or more tasks, and zero or more variables. The variables

declared by configurations and resources are either global variables or access

variables. Recall that programs can also declare such variables. Global

variables are accessible to all elements in the declaring context through the use

of external variable declarations. Access variables are accessible from other

controller via communication services. Such services are specified in IEC

61131-5 [51]. Similarly to external variable declarations, access variable

declarations are references to variables declared elsewhere. Configurations

and resources may also define resource specific initializations, which specifies

initial values for variables of contained program and function block instances

and overrides any initializations specified by their types. The UML class

diagram in Figure 2-11 illustrates the run-time elements of a controller and

their relationships.

Tasks represent concurrent threads of execution within a resource and can

be periodic or event-driven or both. Each task has an associated priority, each

periodic task an associated period time, and each event-driven task an

associated Boolean variable. A program or function block instance may be

assigned to a task, and each task attempts to execute the instances assigned to

it once every period and/or at each event occurrence. For instance, the PIDLoop

program above must be assigned to a periodic task with a period equal to the

2 Background 59

specified sampling interval in order to work as intended. Scheduling of tasks is

priority based and may be preemptive or non-preemptive. Preemptive

scheduling always gives access to the available processor resources to the task

with the highest priority among those that are ready to execute their instances.

This may involve suspending (i.e. preempting) an already executing task with

lower priority. Non-preemptive scheduling lets an already executing task

finish, even if tasks with higher priority become ready. Programs that are not

explicitly assigned to a task can be though of as being implicitly assigned to a

task that has lower priority than any other tasks and is always ready to

execute. Thus, the presence of such programs results in 100% utilization of the

resource’s processor time. A function block that is not explicitly assigned to a

task is executed once every time its containing program or function block is

executed.

Figure 2-11 Run-time entities of the IEC 61131 programming model

61

3 Paper A: Specification of Software Components

Frank Lüders

Mälardalen University, Department of Computer Engineering, Sweden

frank.luders@mdh.se

Kung-Kiu Lau and Shui-Ming Ho

University of Manchester, Department of Computer Science, UK

{kung-kiu, sho}@cs.man.ac.uk

3.1 Introduction

In its simplest form a software component contains some code (that can be

executed on certain platforms) and an interface that provides (the only) access

to the component. The code represents the operations that the component will

perform when invoked. The interface tells the component-user everything he

needs to know in order to deploy the component. Components can of course

be deployed in many different contexts.

Ideally, components should be black boxes, to enable users to (re)use them

without needing to know the details of their inner structure. In other words,

the interface of a component should provide all the information needed by its

users. Moreover, this information should be the only information they need.

Consequently, the interface of a component should be the only point of access

to the component. It should therefore contain all the information that users

62 Use of Component-Based Software Architectures in Industrial Control Systems

need to know about the component's operations (that is, what its code enables it

to do) and its context dependencies (that is, how and where the component can

be deployed). The code, on the other hand, should be completely inaccessible

(and invisible), if a component is to be used as a black box.

The specification of a component is therefore the specification of its

interface. This must consist of a precise definition of the component's

operations and context dependencies and nothing else. Typically, the

operations and context dependencies will contain the parameters of the

component.

The specification of a component is useful to both component users and

component developers. For users, the specification provides a definition of its

interface, viz. its operations and context dependencies. Since it is only the

interface that is visible to users, its specification must be precise and complete.

For developers, the specification of a component also provides an abstract

definition of its internal structure. Whilst this should be invisible to users, it is

useful to developers (and maintainers), not least as documentation of the

component.

In this chapter, we discuss the specification of software components. We

will identify all the features that should be present in an idealized component,

indicate how they should be specified, and show how they are specified using

current component specification techniques.

3 Paper A: Specification of Software Components 63

3.2 Current Component Specification Techniques

The specifications of components used in practical software development

today are mostly limited to what we will call syntactic specifications. This

form of specification includes the specifications used with technologies such as

Microsoft’s Component Object Model (COM) [29], the Object Management

Group’s Common Object Request Broker Architecture (CORBA) [52], and

Sun’s JavaBeans [32]. The first two of these use different dialects of the

Interface Definition Language (IDL) while the third uses the Java

programming language to specify component interfaces. In this section, COM

is mainly used to illustrate the concepts of syntactic specification of software

components.

First, we take a closer look at the relationships between components and

interfaces. A component provides the implementation of a set of named

interfaces, or types, each interface being a set of named operations. Each

operation has zero or more input and output parameters and a syntactic

specification associates a type with each of these. Many notations also permit a

return value to be associated with each operation, but for simplicity we do not

distinguish between return values and output parameters. In some

specification techniques it is also possible to specify that a component requires

some interfaces, which must be implemented by other components. The

interfaces provided and required by a component are often called the

incoming and outgoing interfaces of the component, respectively.

64 Use of Component-Based Software Architectures in Industrial Control Systems

Component

Interface

Operation

*

in-interfaces*

*

*

Name

1

0..1

1 0..1
1

*

Parameter

1

*

Type

1 *

OutParameterInParameter

InOutParameter

*

out-interfaces

*

Figure 3-1 UML metamodel of the concepts used in syntactic specification of software
components.

Figure 3-1 is a UML class diagram [26] showing the concepts discussed

above and the relationships between them. Note that instances of the classes

shown on the diagram will be entities such as components and interfaces,

which can themselves be instantiated. The model is therefore a UML

metamodel, which can be instantiated to produce other models. It is worth

3 Paper A: Specification of Software Components 65

noting that this model allows an interface to be implemented by several

different components, and an operation to be part of several different

interfaces. This independence between interfaces and the components that

implement them is an essential feature of most component specification

techniques. The possibility of an operation being part of several interfaces is

necessary to allow inheritance, or subtyping, between interfaces. The model

also allows parameters to be simultaneously input and output parameters.

The model presented above is intended to be a generic representation of

the relationships between components, interfaces, and operations. In practice,

these relationships vary between specification techniques. For example, one

can distinguish between object-oriented specifications and what might be

called procedural specifications. In this chapter we will only consider object-

oriented specifications that are used by current technologies. This leads to no

loss of generality, as procedural specification can be seen as a special case of

object-oriented specification. There are subtle differences in the precise nature

of the relationship between a component and its interfaces in different object-

oriented specification techniques. In COM, for example, a component

implements a set of classes, each of which implements a set of interfaces. The

statement that a component implements a set of interfaces thus holds by

association. In more traditional object-oriented specification techniques, a

component is itself a class that has exactly one interface. The statement that a

component implements a set of interfaces still holds, because this interface can

include, or be a subtype of, several other interfaces.

As an example of a syntactic specification, we now consider the

specification of a COM component. Below is a slight simplification of what

66 Use of Component-Based Software Architectures in Industrial Control Systems

might be the contents of an IDL file. First, two interfaces are specified,

including a total of three operations which provide the functionality of a

simple spell checker. Both interfaces inherit from the standard COM interface

IUnknown. (All COM interfaces except IUnknown must inherit directly or

indirectly from IUnknown. See [29] for more information about the particulars of

COM.) All operations return a value of type HRESULT, which is commonly

used in COM to indicate success or failure. A component is then specified

(called a library in COM specifications), this implementing one COM class,

which in turn implements the two interfaces previously specified. This

component has no outgoing interfaces.

interface ISpellCheck : IUnknown
{
 HRESULT check([in] BSTR *word, [out] bool *correct);
};

interface ICustomSpellCheck : IUnknown
{
 HRESULT add([in] BSTR *word);
 HRESULT remove([in] BSTR *word);
};

library SpellCheckerLib
{
 coclass SpellChecker
 {
 [default] interface ISpellCheck;
 interface ICustomSpellCheck;

3 Paper A: Specification of Software Components 67

 };
};

Relating this specification to the model above, there is one instance of

Component, which is associated with two instances of Interface. Taking a closer

look at the first interface, it is associated with a single instance of Operation,

which is itself associated with one instance of InParameter and two instances of

OutParameter, representing the two named parameters and the return value.

The information that can be obtained from a component specification such

as the above is limited to what operations the component provides, and the

number and types of their parameters. In particular, there is no information

about the effect of invoking the operations, except for what might be guessed

from names of operations and parameters. Thus, the primary uses of such

specifications are type checking of client code and as a base for interoperability

between independently developed components and applications. Different

component technologies have different ways of ensuring such interoperability.

For example, COM specifies the binary format of interfaces while CORBA

defines a mapping from IDL to a number of programming languages.

An important aspect of interface specifications is how they relate to

substitution and evolution of components. Evolution can be seen as a special

case of substitution where a newer version of a component is substituted for

an older version. Substituting a component Y for a component X is said to be

safe if all systems that work with X will also work with Y. From a syntactic

viewpoint, a component can safely be replaced if the new component imple-

ments at least the same interfaces as the older components, or, in traditional

object-oriented terminology, if the interface of the new component is a subtype

68 Use of Component-Based Software Architectures in Industrial Control Systems

of the interface of the old component. For substitution to be safe however,

there are also constraints on the way that the semantics of operations can be

changed, as we shall see in the next section.

3.3 Specifying the Semantics of Components

While syntactic specifications of components are the only form of

specifications in widespread use, it is widely acknowledged that semantic

information about a component’s operations is necessary to use the component

effectively. Examples of such information are the combinations of parameter

values an operation accepts, an operation’s possible error codes, and

constraints on the order in which operations are invoked. In fact, current

component technologies assume that the user of a component is able to make

use of such semantic information. For instance, COM dictates that the error

codes produced by an operation are immutable, i.e. changing these is

equivalent to changing the interface. These technologies do not, however,

support the specification of such information. In the example with COM, there

is no way to include information about an operation’s possible error codes in

the specification.

Several techniques for designing component-based systems that include

semantic specifications are provided in the literature. In this section, we shall

examine the specification technique presented in [53], which uses UML and

the Object Constraint Language (OCL) [54] to write component specifications.

OCL is included in the UML specification. Another well-known method that

uses the same notations is Catalysis [55]. The concepts used for specification of

components in these techniques can be seen as an extension of the generic

3 Paper A: Specification of Software Components 69

model of syntactic specification presented in the previous section. Thus, a

component implements a set of interfaces that each consists of a set of

operations. In addition, a set of pre-conditions and post-conditions is

associated with each operation. Pre-conditions are assertion that the

component assumes to be fulfilled before an operation is invoked. Post-condi-

tions are assertions that the component guarantees will hold just after an

operation has been invoked, provided the operation’s pre-conditions were true

when it was invoked. In this form of specification, nothing is said about what

happens if an operation is invoked while any of its pre-conditions are not

fulfilled. Note that pre- and post-conditions is not a novel feature of

component-based software development, and is used in a variety of software

development techniques, such as the Vienna Development Method [56] and

Design by Contract [57].

Naturally, an operation’s pre- and post-conditions will often depend on

state maintained by the component. Therefore, the notion of an interface is

extended to include a model of that part of a component’s state that may affect

or be affected by the operations in the interface. Now, a pre-condition will in

general be a predicate over the operation’s input parameters and this state,

while a post-condition is a predicate over both input and output parameters as

well as the state just before the invocation and just after. Furthermore, a set of

invariants may be associated with an interface. An invariant is a predicate over

the interface’s state model that will always hold. Finally, the component

specification may include a set of inter-interface conditions, which are predi-

cates over the state models of all the component’s interfaces.

70 Use of Component-Based Software Architectures in Industrial Control Systems

Interface

Component

*

in-interfaces*

*

out-interfaces

*

State

1 *

Constraint

*

*

* 1

Invariant

1

*

1

*

Operation

*

*

Parameter

1

*

PreCondition

* 1

PostCondition

1 *

1

*

InParameter OutParameter

*

*

*

*

*

*

*

1

Figure 3-2 UML metamodel of the concepts used in semantic specification of software
components.

The concepts introduced here and the relationships among them are

shown on the UML class diagram in Figure 3-2. For the sake of readability, the

classes Name, Type, and InOutParameter are not shown, since they have no direct

relationships with the newly introduced classes. Note that this model allows

the same state to be associated with several interfaces. Often, the state models

of different interfaces of a component will overlap rather than be exactly the

3 Paper A: Specification of Software Components 71

same. This relationship cannot be expressed in the model since we cannot

make any assumptions about the structure of state models. Note also how each

post-condition is associated with both input and output parameters and only

one instance of State. The states before and after an invocation are represented

by two separate instances of this single instance of (the metaclass) State.

In the model presented above, a partial model of the state of a component

is associated with each interface, to allow the semantics of an interface’s

operations to be specified. It is important to note that this is not intended to

specify how state should be represented within the component. While state

models in component specifications should above all be kept simple, the actual

representation used in the component’s implementation will usually be subject

to efficiency considerations, depend on the programming language, and so on.

It is also worth mentioning that the above model is valid for procedural as well

as object-oriented specification techniques.

check(in word : String, out correct : Boolean) : HRESULT

«interface type»
ISpellCheck String

1

words

*

add(in word : String) : HRESULT
remove(in word : String) : HRESULT

«interface type»
ICustomSpellCheck

1

words

*

String

Figure 3-3 Example interface specification diagram.

Before discussing the ramifications of this model any further, we now look

at an example specification using the technique of [53]. Figure 3-3 is an

example of an interface specification diagram. It shows the two interfaces

72 Use of Component-Based Software Architectures in Industrial Control Systems

introduced in the previous section as classes with the <<interface type>>

stereotype. Thus, all the information in the syntactic interface specifications is

included here. The state models of the interfaces are also shown. A state model

generally takes the form of one or more classes having at least one composition

relationship with the interface the state belongs to. The special stereotype

<<interface type>> is used instead of the standard <<interface>> since this would

not allow the state models to be associated with the interfaces in this way.

The interface specification diagram is only a part of the complete interface

specifications. The pre- and post-conditions that specify the semantics of the

operations as well as any invariants on the state model is specified separately

in OCL. Below is a specification of the three operations of the two interfaces

above. There are no invariants on the state models in this example.

context ISpellCheck::check(in word : String, out correct : Boolean) : HRESULT
pre:

 word <> " "

post:
 SUCCEEDED(result) implies correct = words->includes(word)

context ICustomSpellCheck::add(in word : String) : HRESULT
pre:

 word <> " "

post:
 SUCCEEDED(result) implies words = words@pre->including (word)

context ICustomSpellCheck::remove(in word : String) : HRESULT
pre:

3 Paper A: Specification of Software Components 73

 word <> " "

post:
 SUCCEEDED(result) implies words = words@pre->exluding(word)

The pre-condition of the first operation states that if it is invoked with an input

parameter that is not the empty string, the post-condition will hold when the

operation returns. The post-condition states that if the return value indicates

that the invocation was successful then the value of the output parameter is

true if word was a member of the set of words and false otherwise. The speci-

fications of the two last operations illustrate how post-conditions can refer to

the state before the invocation using the @pre suffix. This specification

technique uses the convention that if a part of an interface’s state is not

mentioned in a post-condition, then that part of the state is unchanged by the

operation. Thus, words = words@pre is an implicit post-condition of the first

operation. All the specifications refer to an output parameter called result,

which represents the return value of the operations. The function SUCCEEDED

is used in COM to check whether a return value of type HRESULT indicates

success or failure.

Similarly to interface specification diagrams, component specification

diagrams are used to specify which interfaces components provide and

require. Figure 3-4 is an example of such a diagram, specifying a component

that provides the two interfaces specified above. The component is

represented by a class with stereotype <<comp spec>> to emphasize that it

represents a component specification. UML also has a standard component

concept, which is commonly used to represent a file that contains the

implementation of a set of concrete classes.

74 Use of Component-Based Software Architectures in Industrial Control Systems

«comp spec»
SpellChecker

ISpellCheck
ICustomSpellCheck

Figure 3-4 Example component specification diagram.

The component specification is completed by the specification of its inter-

interface constraints. The component in this example has one such constraint,

specifying that the sets of words in the state models of the two interfaces must

be the same. This constraint relates the operations of the separate interfaces to

each other, such that invocations of add or remove affect subsequent

invocations of check. The constraint is formulated in OCL below.

context SpellChecker
ISpellCheck::words = ICustomSpellCheck::words

An important property of the model presented above is that state models

and operation semantics are associated with interfaces rather than with a

component. This means that the semantics is part of the interface specification.

Consequently, a component cannot be said to implement an interface if it

implements operations with the same signatures as the interface’s operations

but with different semantics. It should be noted that the terminology varies in

the literature on this point, as interfaces are sometimes seen as purely syntactic

entities. In such cases, specifications that also include semantics are often

called contracts. UML, for instance, defines an interface to be a class with only

abstract operations, which can have no state associated with it.

While the main uses of syntactic specifications are type checking and

ensuring interoperability, the utility of semantic specifications is potentially

3 Paper A: Specification of Software Components 75

much larger. The most obvious use is perhaps tool support for component

developers as well as developers of component-based application. For the

benefit of component developers, one can imagine an automatic testing tool

that verifies that all operations produce the correct post-conditions when their

pre-conditions are satisfied. For this to work, the tool must be able to obtain

information about a component’s current state. A component could easily be

equipped with special operations for this purpose, which would not need to be

included in the final release. Similarly, for application developers, one can

imagine a tool that generates assertions for checking that an operation’s pre-

conditions are satisfied before the operation is invoked. These assertions could

either query a component about its current state, if this is possible, or maintain

a state model of their own. The last technique requires that other clients do not

affect the state maintained by a component, however, since the state model

must be kept synchronized with the actual state. Such assertions would

typically not be included in a final release, either.

With a notion of interface specification that include semantics, the concept

of substitution introduced in the previous section can now be extended to

cover semantics. Clearly, if a component Y implements all the (semantically

specified) interfaces implemented by another component X, then Y can be

safely substituted for X. This condition is not necessary, however, for

substitution to be safe. What is necessary is that a client that satisfies the pre-

conditions specified for X will always satisfy the pre-conditions specified for

Y, and that the client can rely on the post-conditions ensured by X also to be

ensured by Y. This means that Y must implement operations with the same

signatures as the operations of X, and with pre- and post-conditions that

ensures the condition above. More specifically, if X implements an operation

76 Use of Component-Based Software Architectures in Industrial Control Systems

O, where pre(O) is the conjunction of its pre-conditions and post(O) the

conjunction of its post-conditions, Y must implement an operation O’ with the

same signature such that pre(O’) implies pre(O) and post(O) implies post(O’).

In other words, the interfaces implemented by Y can have weaker pre-

conditions and stronger post-conditions than the interfaces implemented by X.

It follows from this that the state models used for specifying the interfaces of X

and Y need not be identical. This condition for semantically safe substitution of

components is an application of Liskov’s principle of substitution [58].

Note that the above discussion is only valid for sequential systems. For

multi-threaded components or components that are invoked by concurrently

active clients, the concept of safe substitution must be extended as discussed in

[59]. Finally, it must be noted that a client may still malfunction after a

component substitution, even if the components fulfill semantic specifications

that satisfy the above condition. This can happen, for instance, if the designers

of the client and the new component have made conflicting assumptions about

the overall architecture of the system. The term “architectural mismatch” has

been coined to describe such situations [44].

The component specification diagram in Figure 2.4 shows how we can

indicate which interfaces are offered by a component. In this example, we

indicated that the spell checker offered the interfaces ISpellCheck and

ICustomSpellCheck and used the constraint

ISpellCheck::words = ICustomSpellCheck::words

3 Paper A: Specification of Software Components 77

to specify that the interfaces act upon the same information model. We could,

however, extend such diagrams to indicate the interfaces on which a

component depends. This is illustrated in Figure 3-5.

<<comp spec>>
SomeComponent

ISomeInterface

IAnotherInterface

IUsedInterface

<<comp spec>>
SomeComponent

ISomeInterface

IAnotherInterface

IUsedInterface

Figure 3-5 Component specification showing an interface dependency.

We can also specify realization contracts using collaboration interaction

diagrams. For example, in Figure 3-6 we state that whenever the operation op1

is called, a component supporting this operation must in invoke the operation

op2 in some other component. Component specification diagrams and

collaboration interaction diagrams may therefore be used to define behavioral

dependencies.

1: op1

/IUsedInterface

1.1: op2

/ISomeInterface

1: op1

/IUsedInterface

1.1: op2

/ISomeInterface

Figure 3-6 Collaboration interaction diagrams.

78 Use of Component-Based Software Architectures in Industrial Control Systems

3.4 Specifying Extra-Functional Properties of Components

The specification of extra-functional properties of software components has

recently become a subject of interest, mainly within the software architecture

community. In [60], it is argued that the specification of architectural

components is not properly addressed by conventional software doctrine.

Architectural components are components of greater complexity than

algorithms and data structures. Software components, as defined above,

generally belong to this class. Conventional software doctrine is the view that

software specifications must be sufficient and complete (say everything a user

needs to know and is permitted to rely on about how to use the software),

static (written once and frozen), and homogeneous (written in a single notation).

To use an architectural component successfully, information about more

things than its functionality is required. This includes structural properties,

governing how a component can be composed with other components; extra-

functional properties, such as performance, capacity, and environmental

assumptions; and family properties, specifying relations among similar or

related components. It is not realistic to expect specifications to be complete

with respect to all such properties, due to the great effort that would require,

even if the developer of a component were able to anticipate all aspects of the

component its users might care about. Often, this is even unrealistic in itself.

Since we cannot expect software components to be delivered with

specifications that are sufficient and complete, and since developers are likely

to discover new kinds of dependencies as they attempt to use independently

developed components together, specifications should be extensible.

Specifications should also be heterogeneous, since the diversity of properties

3 Paper A: Specification of Software Components 79

that might be of interest is unlikely to be suitably captured by a single

notation.

The concept of credentials is proposed in [60] as a basis for specifications

that satisfy the requirements outlined above. A credential is a triple

<Attribute, Value, Credibility>, where Attribute is a description of a property

of a component, Value a measure of that property, and Credibility a

description of how the measure has been obtained. A specification technique

based on credentials must include a set of registered attributes, along with

notations for specifying their value and credibility, and provisions for adding

new attributes. A technique could specify some attributes as required and

others as optional. The concept has been partially implemented in the

architecture description language UniCon [61], which allows an extendable list

of <Attribute, Value> pairs to be associated with a component. The self-

describing components of Microsoft’s new .NET platform [62] includes a

concept of attributes in which a component developer can associate attribute

values with a component and define new attributes by sub-classing an existing

attribute class. Attributes are part of a component’s metadata, which can be

programmatically inspected, and is therefore suitable for use with automated

development tools.

The concept of credentials has been incorporated in an approach to

building systems from pre-existing components called Ensemble [63]. This

approach focuses on the decisions that designers have to make, in particular

when faced with a choice between competing technologies, competing

products within a technology, or competing components within a product. In

Ensemble, a set of credentials may be associated with a single technology,

80 Use of Component-Based Software Architectures in Industrial Control Systems

product, or component, or with a group of such elements. In addition, a

variation of credentials is introduced to handle measures of properties that are

needed but have not yet been obtained. These are called postulates and can be

describes as credentials where the credibility is replaced by a plan for

obtaining the measure. The credential triple is thus extended with a flag

isPostulate.

Component

Interface

Operation

*

in-interfaces*

*

*

Attribute
Value
Credibility
IsPostulate : Boolean

Credential

*
0..1

* 0..1

*

0..1

Parameter

1

*

Type

1 *

*

out-interfaces

*

Figure 3-7 UML metamodel of concepts used to specify extra-functional properties of software
components.

Returning our focus to the specification of single components, we now

extend the ideas of Ensemble to allow a set of credentials to be associated with

a component, an interface, or an operation. A UML metamodel with the

concepts of syntactic specification augmented with credentials is shown in

3 Paper A: Specification of Software Components 81

Figure 3-7. The class Name and the subclasses of Parameter have been omitted

for brevity. Note that the concept of credentials is complementary to the

specification of a component’s functionality and completely orthogonal to the

concepts introduced for semantic specifications. Since the specification of

extra-functional properties of software components is still an open area of

research, it would probably be premature to proclaim this as a generic model.

Since the extra-functional properties that may be included in a component

specification can be of very different natures, it is not possible to formulate a

general concept of safe substitution for components that includes changes of

such properties. A set of extra-functional properties, which can all be

expressed as cost specifications, is studied in [64] were it is shown that,

depending on the chosen property, weakening, strengthening, or equivalence

is required for substitution to be safe

3.5 Summary

A component has two parts: an interface and some code. The interface is the

only point of access to the component, and should ideally contain all the

information that users need to know about the component's operations, i.e.

what it does, and how and where the component can be deployed, i.e. its

context dependencies. The code, on the other hand, should be completely

inaccessible (and invisible). The specification of a component therefore must

consist of a precise definition of the component's operations and context

dependencies. In current practice, component specification techniques specify

components only syntactically. The use of UML and OCL to specify

components represents a step towards semantic specifications. Specification of

82 Use of Component-Based Software Architectures in Industrial Control Systems

extra-functional properties of components is still an open area of research, and

it is uncertain what impact it will have on the future of software component

specification.

3.6 Corrections to the Original Version

This chapter contains some corrections to the originally published version of

the paper. These are all related to the UML metamodels of component

specifications. In Figure 3-1, the multiplicities of Component and Interface in their

association with Name have been changed from “1” to “1..0”. In Figure 3-2, the

multiplicity of State in its association with OutParameter has been changed from

“2” to “1” and the description of the figure in the text has been updated

accordingly. Specifically, the text

Note also how each post-condition is associated with both input and

output parameters and only one instance of State. The states before and

after an invocation are represented by two separate instances of this

single instance of (the metaclass) State.

on page 71 in this thesis replaces

Note also how each post-condition is associated with both input and

output parameters and two instances of the state model, representing

the state before and after an invocation.

of the original version. Finally, in Figure 3-7, the multiplicity of the three

classes associated with Credential have been changed from “1” to “0..1”.

83

4 Paper B: Componentization of an Industrial Control System

Frank Lüders

ABB Automation Technology Products AB, Department ATCF/PP/A

Lugna Gatan, Bld. 357, SE-721 59 Västerås, Sweden

frank.luders@mdh.se

Ivica Crnkovic and Andreas Sjögren

Mälardalen University, Department of Computer Engineering

PO Box 883, SE-721 23 Västerås, Sweden

{ivica.crnkovic, andreas.sjogren}@mdh.se

Abstract: When different business units of an international company are responsible

for the development of different parts of a large system, a component-based software

architecture may be a good alternative to more traditional, monolithic architectures.

The new common control system, developed by ABB to replace several existing control

systems, must incorporate support for a large number of I/O systems, communication

interfaces, and communication protocols. An activity has therefore been started to

redesign the system’s architecture, so that I/O and communication components can be

implemented by different development centers around the world. This paper reports on

experiences from this effort, describing the system, its current software architecture,

the new component-based architecture, and the lessons learned so far.

84 Use of Component-Based Software Architectures in Industrial Control Systems

4.1 Introduction

Increased globalization and the more competitive climate make it necessary

for international companies to work in new ways that maximize the synergies

between different business units around the world. Interestingly, this may

also require the software architecture of the developed systems to be

rethought. In a case where different development centers are responsible for

different parts of the functionality of a large system, a component-based

architecture may be a good alternative to the more traditional, monolithic

architectures, usually comprising a large set of modules with many visible

and invisible interdependencies. Additional, expected benefits of a

component-based architecture are increased flexibility and ease of

maintenance [65,66].

This paper reports on experiences from an ongoing project at ABB to

redesign the software architecture of a control system to make it possible for

different development centers to incorporate support for different I/O and

communication systems. The main challenge has been to achieve a good

design of the architecture where the interfaces between components are clear

and sufficiently general, while minimizing the additional costs in the starting

phase of the project. Another challenge is to keep the performance of the

existing system, since the componentization and introduction of generic

interfaces between components may cause overhead in the code execution. In

addition, parts of the system have inflexible real-time requirements, which the

new architecture must support.

The remainder of the paper is organized as follows. In Section two, the

ABB control system is described with particular focus on I/O and

4 Paper B: Componentization of an Industrial Control System 85

communication. The software architecture and its transformation are

described in more detail in Section three. A brief analysis of the effects on

different quality attributes is also presented. In Section four, we analyze the

experiences from the project and try to extract some lessons of general value.

Section five reviews some related work in this area, and Section six present our

conclusions and outlines future work.

4.2 The ABB control system

Following a series of mergers and acquisitions, ABB now has several

independently developed control systems for the process and manufacturing

industries. To leverage its worldwide development resources, the company

has decided to continue development of only a single, common control system

for these and related industries. One of the existing control systems was

selected to be the starting point of the common system. This system is based

on the IEC 61131-3 industry standard for programmable controllers [67]. The

software has two main parts, the ABB Control Builder, which is a Windows

application running on a standard PC, and the system software of the ABB

controller family, running on top of a real-time operating system (RTOS) on

special-purpose hardware. The latter is also available as a Windows

application, and is then called the ABB Soft Controller.

The Control Builder is used to specify the hardware configuration of a

control system, comprising one or more controllers, and to write the programs

that will execute on the controllers. The configuration and the control

programs together constitute a control project. When the control project is

downloaded to the control system via the control network, the system

86 Use of Component-Based Software Architectures in Industrial Control Systems

software of the controllers is responsible for interpreting the configuration

information and for scheduling and executing the control programs. Only

periodic execution is supported. Figure 4-1 shows the Control Builder with a

control project opened. It consists of three structures, showing the libraries

used by the control programs, the control programs themselves, and the

hardware configuration, respectively. The latter structure is expanded to show

a configuration of a single AC800M controller, equipped with an analogue

input module (AI810), a digital output module (DO810), and a communication

interface (CI851) for the PROFIBUS-DP protocol.

Figure 4-1 The ABB Control Builder.

To be attractive in all parts of the world and a wide range of industry

sectors, the common control system must incorporate support for a large

4 Paper B: Componentization of an Industrial Control System 87

number of I/O systems, communication interfaces, and communication

protocols. In the current system, there are two principal ways for a controller

to communicate with its environment, I/O and variable communication. When

using I/O, variables of the control programs are connected to channels of

input and output modules using the Control Builder. For instance, a Boolean

variable may be connected to a channel on a digital output module. When the

program executes, the value of the variable is transferred to the output channel

at the end of every execution cycle. Variables connected to input channels are

set at the beginning of every execution cycle. Real-valued variables may be

attached to analogue I/O modules.

To configure the I/O modules of a controller, variables declared in the

programs running on that controller is associated with I/O channels using the

program editor of the Control Builder. Figure 4-2 shows the program editor

with a small program, declaring one input variable and one output variable.

Notice that the I/O addresses specified for the two variables correspond to the

position of the two I/O modules in Figure 4-1.

Variable communication is a form of client/server communication and is

not synchronized with the cyclic program execution. A server supports one of

several possible protocols and has a set of named variables that may be read or

written by clients that implement the same protocol. An ABB Controller can be

made a server by connecting program variables to so-called access variables in

a special section of the Control Builder. Servers may also be other devices,

such as field-bus devices. Any controller, equipped with a suitable

communication interface, can act as a client by using special routines for

connecting to a server and reading and writing variables via the connection.

88 Use of Component-Based Software Architectures in Industrial Control Systems

Such routines for a collection of protocols are available in the Communication

Library, which is delivered with the Control Builder.

Figure 4-2 The program editor of the Control Builder.

4.3 Componentization

4.3.1 Current software architecture

The software of the ABB Control System consists of a large number of source

code modules, each of which are used to build the Control Builder or the

controller system software or both. Figure 4-3 depicts this architecture, with

emphasis on I/O and communication. Many modules are also used as part of

other products, which are not discussed further here. This architecture is thus

a product line architecture [15], although the company has not yet adopted a

systematic product line approach. The boxes in the figure represent logical

4 Paper B: Componentization of an Industrial Control System 89

components of related functionality. Each logical component is implemented

by a number of modules, and is not readily visible in the source code.

Control
Builder

Controller
System
Software

User Interface

I/O
Access

I/O
Status

Com.-
muni-
cation
Server

OS & HW Abstraction, Device Drivers

Com-
muni-
cation
Client

HW
Con-
figur-
ation

Figure 4-3 The current software architecture.

To see the reason for the overlap in the source code of the Control Builder

and that of the controller system software, we look at the handling of

hardware configurations. The configuration is specified using the control

builder. For each controller in the system, it is specified what additional

hardware, such as I/O modules and communication interfaces, it is equipped

with. Further configuration information can be supplied for each piece of

hardware, leading to a hierarchic organization of information, called the

hardware configuration tree. The code that builds this tree in the Control

Builder is also used in the controller system software to build the same tree

there when the project is downloaded. If the configuration is modified in the

Control Builder and downloaded again, only a description of what has

changed in the tree is sent to the controller.

90 Use of Component-Based Software Architectures in Industrial Control Systems

The main problem with the current software architecture is related to the

work required to add support for new I/O modules, communication

interfaces, and protocols. For instance, adding support for a new I/O system

may require source code updates in all the components except the User

Interface and the Communication Server, while a new communication

interface and protocol may require all components except I/O Access to be

updated.

As an example of what type of modifications may be needed to the

software, we consider the incorporation of a new type of I/O module. To be

able to include a device, such as an I/O module, in a configuration, a

hardware definition file for that type of device must be present on the

computer running the Control Builder. For an I/O module, this file defines the

number and types of input and output channels. The Control Builder uses this

information to allow the module and its channels to be configured using a

generic configuration editor. This explains why the user interface does not

need to be updated to support a new I/O module. The hardware definition file

also defines the memory layout of the module, so that the transmission of data

between program variables and I/O channels can be implemented in a generic

way.

For most I/O modules, however, the system is required to perform certain

tasks, for instance when the configuration is compiled in the Control Builder

or during start-up and shutdown in the controller. In today’s system, routines

to handle such tasks must be hard-coded for every type of I/O module

supported. This requires software developers with a thorough knowledge of

the source code. The situation is similar when adding support for

4 Paper B: Componentization of an Industrial Control System 91

communication interfaces and protocols. The limited number of such

developers therefore constitutes a bottleneck in the effort to keep the system

open to the many I/O and communication systems found in industry.

4.3.2 Component-based software architecture

To make it much easier to add support for new types of I/O and

communication, it was decided to split the components mentioned above into

their generic and non-generic parts. The generic parts, commonly called the

generic I/O and communication framework, contains code that is shared by all

hardware and protocols implementing certain functionality. Routines that are

special to a particular hardware or protocol are implemented in separate

components, called protocol handlers, installed on the PC running the Control

Builder or on the controllers. This component-based architecture is illustrated

in Figure 4-4. To add support for a new I/O module, communication interface,

or protocol to this system, it is only necessary to add protocol handlers for the

PC and the controller along with a hardware definition file and possibly a

device driver. The format of hardware definition files is extended to include

the identities of the protocol handlers

Essential to the success of the approach, is that the dependencies between

the framework and the protocol handlers are fairly limited and, even more

importantly, well specified. One common way of dealing with such

dependencies is to specify the interfaces provided and required by each

component. The new control system uses the Component Object Model (COM)

[29] to specify these interfaces, since COM provides suitable formats both for

writing interface specification, using the COM Interface Description Language

92 Use of Component-Based Software Architectures in Industrial Control Systems

(IDL), and for run-time interoperability between components. For each of the

generic components, two interfaces are specified: one that is provided by the

framework and one that may be provided by protocol handlers. Interfaces are

also defined for interaction between protocol handlers and device drivers. The

identities of protocol handlers are provided in the hardware definition files as

the Globally Unique Identifiers (GUIDs) of the COM classes that implement

them.

Control
Builder

Controller
System
Software

User Interface

Gen.
I/O

Access

Gen.
I/O

Status

Gen.
Com.-
muni-
cation
Server

Gen.
Com-
muni-
cation
Client

Gen.
Con-
figur-
ation

OS & HW Abstraction, Device Drivers

Protocol Handlers

 Protocol Handlers

Figure 4-4 Component-based software architecture.

COM allows several instances of the same protocol handler to be created.

This is useful, for instance, when a controller is connected to two separate

networks of the same type. Also, it is useful to have one object, implementing

an interface provided by the framework, for each protocol handler that

4 Paper B: Componentization of an Industrial Control System 93

requires the interface. An additional reason that COM has been chosen is that

commercial COM implementations are expected to be available on all

operating systems that the software will be released on in the future. The

Control Builder is only released on Windows, and an effort has been started to

port the controller system software from pSOS to VxWorks. In the first release

of the system the protocol handlers will be implemented as C++ classes, which

will be linked statically with the framework. This works well because of the

close correspondence between COM and C++, where every COM interface has

an equivalent abstract C++ class.

An important constraint on the design of the architecture is that hard real-

time requirements, related to scheduling and execution of control programs,

must not be affected by interaction with protocol handlers. Thus, all code in

the framework responsible for instantiation and execution of protocol

handlers, always executes at a lower priority than code with hard deadlines.

When a control system is configured to use a particular device or protocol,

the Control Builder uses the information in the hardware definition file to load

the protocol handler on the PC and execute the protocol specific routines it

implements. During download, the identity of the protocol handler on the

controller is sent along with the other configuration information. The

controller system software then tries to load this protocol handler. If this fails,

the download is aborted and an error message displayed by the Control

Builder. This is very similar to what happens if one tries to download a

configuration, which includes a device that is not physically present. If the

protocol handler is available, an object is created and the required interface

pointers obtained. Objects are then created in the framework and interface

94 Use of Component-Based Software Architectures in Industrial Control Systems

pointers to these passed to the protocol handler. After the connections between

the framework and the protocol handler has been set up through the exchange

of interface pointers, a method will usually be called on the protocol handler

object that causes it to continue executing in a thread of its own. Since the

interface pointers held by the protocol handler references objects in the

framework, which are not used by anyone else, all synchronization between

concurrently active protocol handlers can be done inside the framework.

To make this more concrete, we now consider the interface pair IGenServer,

which is provided by the framework, and IPhServer, which is provided by

protocol handlers implementing the server side of a communication protocol

on the controllers. Figure 4-5 is a UML structure diagram showing the

relationships between interfaces and classes involved in the interaction

between the framework and such a protocol handler. The class CMyProtocol

represents the protocol handler. The interface IGenDriver gives the protocol

handler access to the device driver for a communication interface.

CGenServer

«interface»
IGenServer

«interface»
IPhServer

«interface»
IGenDriver

CGenDriver

CMyProtocol

Figure 4-5 Interfaces for communication servers.

4 Paper B: Componentization of an Industrial Control System 95

The definition of IPhServer is shown below. Three operations are defined by

this interface. The first two are used to pass interface pointers to objects

implemented by the framework to the protocol handler. The other two

operations are used to start and stop the execution of the protocol handler in a

separate thread.

interface IPhServer : IUnknown
{
 HRESULT SetServerCallback([in] IGenServer *pGenServer);
 HRESULT SetServerDriver ([in] IGenDriver *pGenDriver);
 HRESULT ExecuteServer();
 HRESULT StopServer();
};

The UML sequence diagram in Figure 4-6 shows an example of what might

happen when a configuration is downloaded to a controller, specifying that

the controller should provide server-side functionality. The system software

first invokes the COM operation CoCreateInstance to create a protocol handler

object and obtain an IPhServer interface pointer. Next, an instance of CGenServer

is created and a pointer to it passed to the protocol handler using

SetServerCallback. Similarly, a pointer to a CGenDriver object is passed using

SetDriverCallback. Finally, ExecuteServer is invoked, causing the protocol handler

to start running in a new thread.

96 Use of Component-Based Software Architectures in Industrial Control Systems

COM

CoCreateInstance()

 : CMyProtocolnew()

 : CGenServernew()

SetServerCallback()

 : CGenDrivernew()

SetServerDriver()

ExecuteServer()

Figure 4-6 Call sequence to set up connections.

To see how the execution of the protocol handler proceeds, we first look at

the definition of IGenServer. This interface defines four operations. The two first

are used to inform the framework about incoming requests from clients to

establish a connection and to take down an existing connection. The two last

operations are used to handle requests to read and write named variables,

respectively. The index parameter is used with variables that hold structured

data, such as records or arrays. All the methods have an out parameter that is

used to return a status word.

4 Paper B: Componentization of an Industrial Control System 97

interface IGenServer : IUnknown
{
 HRESULT Connect([out] short *status);
 HRESULT Disconnect([out] short *status);
 HRESULT ReadVariable(
 [in] BSTR *name, [in] short index, [out] tVal *pVal, [out] short *status);
 HRESULT WriteVariable(
 [in] BSTR *name, [in] short index, [in] tVal *pVal, [out] short *status);
};

Running in a thread of its own, the protocol handler uses the IGenDriver

interface pointer to poll the driver for incoming requests from clients. When a

request is encountered the appropriate operation is invoked via the IGenServer

interface pointer, and the result of the operation, specified by the status

parameter, reported back to the driver and ultimately to the communication

client via the network. As an example, Figure 4-7 shows how a read request is

handled by calling ReadVariable. The definition of the IGenDriver interface is not

included in this discussion for simplicity, so the names of the methods invoked

on this interface are left unspecified in the diagram. Write and connection

oriented requests are handled in a very similar manner to read requests.

98 Use of Component-Based Software Architectures in Industrial Control Systems

 : CGenServer : CGenDriver : CMyProtocol

ReadVariable()

Figure 4-7 Call sequence to handle variable read.

The last scenario to be considered here, is the one where configuration

information is downloaded, specifying that a protocol handler that was used

in the previous configuration should no longer be used. In this case, the

connections between the objects in framework and the protocol handler must

be taken down and the resources allocated to them released. Figure 4-8 shows

how this is accomplished by the framework first invoking StopServer and then

Release on the IPhServer interface pointer. This causes the protocol handler to

decrement its reference count, and to invoke Release on the interface pointers

that have previously been passed to it. This in turn, causes the objects behind

these interface pointers in the framework to release themselves, since their

reference count reaches zero. Assuming that its reference count is also zero,

the protocol handler object also releases itself. If the same communication

interface, and thus the protocol handler object, had also been used for different

4 Paper B: Componentization of an Industrial Control System 99

purposes, the reference count would have remained greater than zero and the

object not released.

 : CGenServer : CGenDriver : CMyProtocol

Release()

Release()

Release()

StopServer

Figure 4-8 Call sequence to take down connections.

4.3.3 Quality attribute analysis

The software architecture of a system is considered a primary means of

achieving the correct quality attributes for the system [68]. In this section, the

possible effects of componentization on the quality attributes of the ABB

control system is analyzed. This analysis is based on preliminary experiences

with the system as well as our reflections on the general effects of adopting a

component-based architecture. The quality attributes discussed include

attributes observable at run time, such as performance and reliability, and

100 Use of Component-Based Software Architectures in Industrial Control Systems

attributes such as maintainability and scalability, which are only observable

during development.

Performance. As for all embedded, real-time systems, performance in

terms of both time and memory usage is a primary concern for the controller.

It is not expected that the componentization will affect the system’s ability to

meet its real-time deadlines, since code related to I/O and communication in

the framework as well as the protocol handlers will execute in threads of lower

priority than the time-critical control tasks. A component technology such as

COM is expected to introduce some memory overhead. By taking care only to

use expensive features when absolutely necessary, however, general

experience with COM indicates that this overhead will be acceptable.

Reliability. The integration of independently developed components into

an industrial system raises the question of reliability. Special functions for

supervision of components and possibly automatic reset of components

exhibiting faulty behavior might be necessary to detect and contain the effects

of faulty components. Although no such functions have been implemented, it

is expected that supervision of software components can be added without to

much effort by reusing existing functions for supervision of hardware

components.

Maintainability. The maintainability of the system, defined as the ease of

making corrections, adaptations, and extensions to the system, should be

positively affected by the adoption of a component-based architecture.

Changes made to a component that only interacts with the rest of the system

through well-defined interfaces, is less likely to have unforeseen consequences

4 Paper B: Componentization of an Industrial Control System 101

for other parts of the system than changes made to a module with many

visible and invisible interdependencies with other modules.

Scalability. One aspect of scalability, the possibility to deploy the software

on platforms of varying size and performance, is an important concern for the

controller system software. The component-based architecture is expected to

have a positive affect on this attribute, since protocol handlers can easily be left

out on platform where they will not be used. The possibility of using the

generic interfaces without relying on COM and dynamic linking makes it easy

to deploy the software on platforms where the overhead of a component

technology cannot be afforded or where COM support is not available.

4.4 Lessons learned

The definitive measure of the success of the project described in this paper will

be how large the effort required to redesign the software architecture has been

compared to the effort saved by the new way of adding I/O and

communication support. It is important to remember, however, that in

addition to this cost balance, the business benefits gained by shortening the

time to market must be taken into account. Also important, although harder to

assess, are the long time advantages of the increased flexibility that the

component-based software architecture is hoped to provide.

At the time of writing, the design of the framework, including the

specification of interfaces, is largely completed and implementation has

started. It is thus too early to say exactly how much work has been needed, but

it seems safe to conclude that the efforts are of the same order of magnitude as

102 Use of Component-Based Software Architectures in Industrial Control Systems

the work required to add support for an advanced I/O or communication

system the old way, that is by adding code to the affected modules. From this

we can infer, that if the new software architecture makes it substantially easier

to add support for such systems, the effort has been worthwhile. We therefore

find that the experiences with the ABB control system supports our hypothesis

that a component-based software architecture is an efficient means for

supporting distributed development of complex systems.

Another lesson of general value is that it seems that a component

technology, such as COM, can very well be used on embedded platforms and

even platforms where run-time support for the technology is not available.

Firstly, we have seen that the overhead that follows from using COM is not

larger than what can be afforded in many embedded systems. In fact, used

with some care, COM does not introduce much more overhead than do virtual

methods in C++. Secondly, in systems where no such overhead can be

allowed, or systems that run on platforms without support for COM, IDL can

still be used to define interfaces between components, thus making a future

transition to COM straightforward. This takes advantage of the fact that the

Microsoft IDL compiler generates C and C++ code corresponding to the

interfaces defined in an IDL file as well as COM type libraries. Thus, the same

interface definitions can be used with systems of separately linked COM

components and statically linked systems where each component is realized as

a C++ class or C module.

An interesting experience from the project is that techniques that were

originally developed to deal with dynamic hardware configurations have been

successfully extended to cover dynamic configuration of software components.

4 Paper B: Componentization of an Industrial Control System 103

In the ABB control system, hardware definition files are used to specify what

hardware components a controller may be equipped with and how the system

software should interact with different types of components. In the redesigned

system, the format of these files has been extended to specify which software

components may be used in the system. The true power of this commonality is

that existing mechanisms for handling hardware configurations, such as

manipulating configuration trees in the Control Builder, downloading

configuration information to a control system, and dealing with invalid

configurations, can be reused largely as is. The idea that component-based

software systems can benefit by learning from hardware design is also aired in

[65].

4.5 Related work

The use of component-based software architecture in real-time, industrial

control has not been extensively studied, as far as we know. One example is

documented in [69]. This work is not based on experiences from industrial

development, however, but rather from the construction of a prototype,

developed in academia for non-real-time platforms with input from industry.

It also differs from our work in that it focuses on the possibility of replacing

the multiple controllers usually found in a production cell with a single

controller, rather than on supporting distributed development.

The use of software components in embedded systems is also discussed in .

This work is more ambitious than ours in one sense, as it focuses on techniques

and tools to ensure correct composition of components. It is more limited in

104 Use of Component-Based Software Architectures in Industrial Control Systems

another way, however, since dynamic configuration is not handled by the

suggested techniques.

An example of a commercial system that supports component-based

development of control systems is ControlShell [70]. This system is, however,

substantially different from the system described in this paper, since

ControlShell focuses on constructing control systems from re-usable

components, using a graphical editor and automatic code generation, and is

not concerned with independently deployable components and dynamic

system configuration.

4.6 Conclusions and future work

The initial experiences from the effort to redesign the software architecture of

ABB’s control system to support component-based development are

promising, in that the developers have managed to define interfaces between

the framework and the protocol handlers. Since the effort to redesign the

system has not been too extensive, we conclude that the project has met its first

challenge successfully. Preliminary results using emulated COM suggest that

the performance of the systems will be acceptable. A solution based on COM

has yet to be implemented.

An issue that may be addressed in the future development at ABB is richer

specifications of interfaces. COM IDL only specifies the syntax of interfaces,

but it is also useful to specify loose semantics, such as the allowed parameters

and possible return values of methods, and timing constraints. Since UML has

already been adopted as a design notation, one possibility is to use the

4 Paper B: Componentization of an Industrial Control System 105

specification style suggested in [53]. One concern, however, is the lack of

support for specifying timing constraints in UML [71]. Another continuation of

the work presented here, would be to extend the component approach beyond

I/O and communication. An architecture were general functionality can be

easily integrated by adding independently developed components, would be a

great benefit to this type of system, which is intended for a large range of

control applications.

In our continued research concerning this effort we plan to study in more

detail how different quality attributes are addressed by the software

architecture. We will, for instance, look at reliability, which is an obvious

concern when externally developed software components are integrated into

an industrial system. We have already claimed that the experiences recorded

in this paper support our hypothesis that component-based software

architectures is a good alternative to monolithic architectures for complex

systems developed in distributed organizations. It will be a primary goal of

our future work to strengthen this claim by presenting data that verifies that

the development of I/O and communication support is made substantially

easier by the new architecture.

4.7 Acknowledgements

The project described in this paper is carried out at ABB Automation

Technology Products in Malmö, Sweden. We gratefully acknowledge the

financial support of ABB and the Swedish KK Foundation.

107

5 Paper C: Adopting a Software Component Model in Real-Time
Systems Development

Frank Lüders

ABB Automation Technologies

Lugna Gatan, Building 357, SE-721 59 Västerås, Sweden

frank.a.luders@se.abb.com

Abstract: Component-based software engineering (CBSE) and the use of (de-facto)

standard component models have gained popularity in recent years, particularly in the

development of desktop and server-side software. This paper presents a motivation for

applying CBSE to real-time systems and discusses the consequences of adopting a

software component model in the development of such systems. Specifically, the

consequences of adopting Microsoft’s COM, DCOM, and .NET models are analyzed.

The most important aspects of these models are discussed in an incremental fashion.

This analysis will consider both real-time systems in general, and a real-life industrial

control system where some aspects the COM model have been adopted.

5.1 Introduction

Component-based software engineering (CBSE) denotes the assembling of

software products from pre-existing smaller products, generally called

components. In particular when this is done using (de-facto) standard

108 Use of Component-Based Software Architectures in Industrial Control Systems

component models and supporting technologies [1]. A component model

generally defines a concept of components and rules for their design-time

composition and/or run-time interaction, and is usually accompanied by one

or more component technologies, implementing support for composition

and/or interoperation.

In recent years, the use of component models has gained popularity in the

development of desktop and server-side software. Two popular models in

desktop applications are Sun’s JavaBeans [32] and Microsoft’s ActiveX controls

[31], where the latter is built on top of the more basic Component Object Model

(COM) [29]. Both of these are particularly suited for components to be used

with visual composition tools. The best-known models in the server domain

are Sun’s Enterprise JavaBeans (EJB) [36], Microsoft’s COM extension COM+

[35], and the Object Managements Group’s new CORBA Component Model

(CCM) [38]. These models offer similar support for transactional processing

and persistent data management.

This paper discusses the possibilities of using such component models in

real-time systems. In particular, the feasibility of using COM, the most basic of

these models, is analyzed and illustrated through a case study. Microsoft’s

latest model .NET [72] is also briefly discussed. Section two presents

motivations for adopting a component model, both in real-time systems

generally and in a real-world industrial control system. Section three discusses

the implications of adopting different aspects of a particular component

model. An overview of related work is given in Section four. Finally, Section

five concludes the paper.

5 Paper C: Adopting a Software Component Model in Real-Time Systems Development 109

5.2 Motivation

The general motivation for component-based software engineering is the

prospect of increased productivity and timeliness of software development

projects. Indeed, this is as desirable for real-time and embedded software as

for any other application. It could also be argued that some characteristics of

CBSE make it particularly attractive for real-time systems. For instance, real-

time software often requires more extensive testing, so the use of pre-tested

components may be particularly time saving in the development of such

system. Another example is that many embedded systems, such as mobile

telephones, could benefit from reuse of components across products and

models. Conversely, there are also barriers to CBSE particular to real-time and

embedded systems. Most obviously, there may be a risk that component

models and technologies may introduce unacceptable overhead or loss of

predictability.

An example of a real-time system where the use of a component model has

been useful is the industrial control system by ABB called ControlIT

(http://www.abb.com). This product is a modular controller consisting of a

central processing unit with two expansion buses. One bus is for I/O modules

of different types and is used to connect the controller to physical signals. The

other bus is for communication interfaces and allows the controller to

communicate with other devices using different media and protocols. The

controller also has two built-in serial ports and redundant Ethernet ports.

ABB’s development organization is globally distributed, and the interest in

component models first arose from a wish to make it easier for different

development centers to add I/O and communication support to the system. It

110 Use of Component-Based Software Architectures in Industrial Control Systems

was decided to redesign the system’s architecture so that all code particular to

a certain I/O module, communication interface, or protocol resides in a

separate component called a protocol handler. To achieve this, rules and

formats for interaction between these protocol handlers and the rest of the

system had to be decided on. In other words, a component model was needed.

In the following analysis of adopting different aspects of a component model,

the usefulness and liabilities of each particular aspect in connection with

protocol handlers will be discussed. The use of a component model to support

integration of protocol handlers in ABB’s control system is further described in

[73], where it is demonstrated that the new architecture supports distributed

development and reduces the time required to implement I/O and

communication support.

5.3 Adopting Microsoft Models

Among the most commonly used component models for desktop applications

are Microsoft’s Component Object Model (COM) and its extension Distributed

COM (DCOM) [30]. There is also great interest in the company’s new

generation of technologies, commonly denoted .NET [72], which also defines a

component model. This section explores the possibilities of using these models

in real-time systems. The most important aspects of these models will be

discussed in an incremental fashion, assuming that it may be desirable in some

situations also to adopt the models in such a fashion.

5 Paper C: Adopting a Software Component Model in Real-Time Systems Development 111

5.3.1 COM Interfaces

A key principle of COM and other component models is that interfaces are

specified separately from both the components that implement them and those

that use them. COM defines a dialect of the Interface Definition Language (IDL)

that is used to specify object-oriented interfaces. Interfaces are object-oriented

in the sense that their operations are to be implemented by a class and passed

a reference to a particular instance of that class when invoked. The code that

uses a component does not refer directly to any objects, however. Instead, the

operations of an interface supported by an object are invoked via what is

known as an interface pointer. A concept known as interface navigation makes

it possible for the user to obtain a pointer to every interface supported by the

object. For a further description of this topic, see e.g. [30].

COM also defines a run-time format for interface pointers. What an

interface pointer really references is an interface node, which in turn, contains a

pointer to a table of function pointers, called a VTABLE. Typically, the node

also contains a pointer to an object’s instance data, although this is up to the

implementation (of the supporting component technology). This use of

VTABLEs is identical to the way that many C++ compilers implement virtual

functions. Thus, the time and space overhead associated with accessing an

object through an interface pointer is the same as that incurred with virtual

C++ functions. This time overhead is very modest. The memory overhead

should also be acceptable, perhaps except for the most resource constrained

embedded systems. Figure 5-1 illustrates the typical format of interface nodes.

112 Use of Component-Based Software Architectures in Industrial Control Systems

interface pointer

interface node
instance data

VTABLE

method code

method code

method code

method code

Figure 5-1 Typical format of COM interface nodes

For most real-time systems, a more serious concern than these modest

overheads is that interface navigation introduces a possible source of run-time

errors. If the user of a component asks an object for a pointer to an interface

that the object does not support, this will not be detected during compilation.

It may be argued, in fact, that this is the principal difference between interface

navigation and interface inheritance in traditional object-oriented

programming. This can be seen as a necessary price to pay for the otherwise

desirable reduced compile-time dependence between components.

Most real-time systems are based on multi-tasking and are often built on

top of a real-time operating system (RTOS) using some kind of priority-based

scheduling. Developers of components for real-time systems will generally

need to make assumptions about how their components will be used in a

multi-tasking environment. The safest option will be always to assume that an

object can be concurrently used by several tasks, and guard all methods with

the necessary synchronization. For reasons of efficiency, however, it may be

more desirable to require the code that uses the component to provide any

necessary synchronization. The exact circumstances under which such

5 Paper C: Adopting a Software Component Model in Real-Time Systems Development 113

protection is necessary are thus an important part of the component’s

documentation.

The use of COM IDL to specify interfaces and VTABLEs to implement

interface pointers work well for protocol handlers. The concept of multiple

interfaces per object with interface navigation is useful since different protocol

handlers must provide different functionality. The object-oriented nature of

COM interfaces where each interface pointer refers to a particular instance of a

class also matches the needs of the ABB control system. Multiple instances of

the same protocol handler are useful, e.g. when a controller is equipped with

two identical communication interfaces, linking it to two separate networks of

the same type. The latest version of the control system uses COM interfaces,

but not the other parts of COM discussed below.

5.3.2 Instantiation and Dynamic Linking

The previous section stated that the code of a COM component is

implemented in classes, without discussing how instances are created. Also,

nothing was said about how and when the code in different components is

linked together. COM defines a policy for instantiation, which is intended to

ensure that different components can be installed in a system at different

times. When a component is installed, information about it must be registered

somewhere in the system, linking the identity of its classes to the code that

implement these. COM also requires a run-time library, called the COM

library, to be installed on the system. When some code wants to use a

component, it uses an operation provided by the COM library to ask for an

instance of a class and an initial interface pointer to it. If the code of the

114 Use of Component-Based Software Architectures in Industrial Control Systems

component is not already loaded into memory, the COM library uses the

registered information to locate the code and load it before an instance is

created.

Thus, creation of an instance involves searching the information about

registered classes and possibly loading of code. This leads to a noticeable

overhead when compared to instantiation in for instance C++. Furthermore,

this overhead will vary, depending on whether the code implementing a class

has already been loaded or not. This variability can be eliminated, however, by

designing the software such that all components that may be used will be

loaded at start-up. Note that removal of instances is subject to the same

variability, since COM states that code can be unloaded when the last instance

that rely on it is removed.

A benefit that follows from COM’s way of creating instances is that the

code that implements a component can be built independently of any code

that uses the component. Since instantiation involves passing the identity of

the desired class as a parameter to a system operation, it is a possible source of

run-time errors, which is not present during instantiation in traditional object-

oriented programming, since attempting to instantiate a class that does not

exist will result in a compilation error in this case. Again, this is a necessary

price to be paid for decreased coupling.

COM’s principle of instantiation is well suited for creating instances of

protocol handlers, since no knowledge of the set of available protocol handlers

should be built into the system. The overhead associated with looking up

classes and dynamic loading of code is expected to be tolerable, especially

since the software is designed such that protocol handlers need only be

5 Paper C: Adopting a Software Component Model in Real-Time Systems Development 115

instantiated and deleted during program download. Thus, the extra time taken

by this way of instantiation will not interfere with the continuous operation of

the system. An additional benefit of using this technique for instantiation is

that protocol handlers can be deployed (and updated) independently of the

rest of the system. Future versions of the control system may include a COM

library and employ dynamic linking of components. It is possible that a

commercial component technology, such as WindRiver’s implementation of

COM for the VxWorks RTOS (http://www.windriver.com) will be used.

5.3.3 Location Transparency with DCOM

DCOM is an extension of COM, which allows component-based applications

to be distributed across memory spaces or physical machines. This is realized

using auxiliary objects known as proxies and stubs. When some code asks the

COM library to create an instance of a class that is implemented in a

component in a different location, the instance is created in the remote location

along with a stub. The code that asked for the instance is passed an interface

pointer to a proxy object, created on its side. When an operation is invoked via

this interface pointer, the proxy translates this to a remote procedure call

(RPC) to the remote stub, which in turn invokes the corresponding operation

on the real object. It may also be necessary to create a proxy-stub pair at other

times than object instantiation. This happens when an interface pointer is

passed as a parameter to an operation of an object in a remote location. This

process is known as marshalling. Proxy and stub code is usually generated

automatically from IDL specifications.

116 Use of Component-Based Software Architectures in Industrial Control Systems

The ability to deal with memory spaces may not be of great consequence to

real-time systems, since real-time operating systems do not traditionally use

memory spaces. The ability to deal with such may, however, be useful in

parallel processor architectures. DCOM may be useful in simplifying the

implementation of distributed real-time systems. The transparency to the

programmer of accessing remote objects is not completely valid for real-time

systems, however. Since the timing of object operations will differ between

local and remote invocations, real-time software developers will still need to

consider whether their code uses components in another location or not. It is

also useful for developers of components to be aware of whether their

components will be remotely accessed. For instance, one may consider

exploiting the ability to define asynchronous interfaces for such components.

An additional benefit of using DCOM in real-time systems is that it may

simplify the implementation of communication between these systems and

COM-based desktop applications, such as operator stations.

In addition to the extra time overhead associated with remote invocation

and marshalling, DCOM also requires more space than COM, to store the

proxy and stub code as well as the RPC mechanism. The proxy and stub are

generally quite small and executes relatively quickly, however, so the time and

space overhead is mostly due to the RPC mechanism. Therefore, using DCOM

does not result in much of an overhead for distributed real-time systems,

where RPC or some other communication mechanism would be needed

anyway.

A possible reason for using DCOM in ABB’s control system, is that

protocol handlers could be located in the communication interfaces or I/O

5 Paper C: Adopting a Software Component Model in Real-Time Systems Development 117

modules they support, rather than in the central processing unit. The

usefulness of this is not obvious, however, especially when considering the

required additional overhead. Thus, there is no current plans to adopt DCOM

in the system.

5.3.4 The Next Generation: .NET

The name .NET is used by Microsoft to denote a comprehensive set of new

technologies. This includes a new component model, intended to replace

COM/DCOM. A notable development is that .NET moves the responsibility of

providing certain functionality from the components to a more sophisticated

run-time system. In particular, COM/DCOM requires components to provide

a considerable amount of “house-keeping” functionality that is taken care of

by the .NET run-time. Much of the flexibility that follows from having such

implementations in each component is maintained under .NET, where

components can affect the operation of the run-time by setting declarative

attributes.

A potential advantage of this development is increased reliability, since it

may be assumed that more effort may be invested in ensuring the quality of a

run-time system to be re-used in a large number of systems. Another attractive

consequence of having more code in a common run-time is that the total size

of the software may decrease. Obviously, this advantage of grows with the

number of components in the system. On the other hand, using a sophisticated

run-time system, possibly without using much of its functionality, may lead to

unnecessarily large software. This is a particular problem for resource

constrained embedded systems. Fortunately, Microsoft has defined a special

118 Use of Component-Based Software Architectures in Industrial Control Systems

compact version of .NET that limits this problem somewhat. What is assumed

to be the greatest strength of .NET is the potential for increased development

productivity. This relies both on the aforementioned run-time system with its

associated libraries, and on advanced development tools. As usual, this gain is

achieved at the expense of some run-time overhead. While it seams clear that

this cost is acceptable for desktop software, the corresponding question for

real-time systems is more open.

5.4 Related work

There are some work on software component models and real-time or

embedded systems in recent literature. This work is dominated by efforts to

define component models particularly targeted at real-time embedded systems

or even narrower application domains. Examples include Philip’s Koala

component model for consumer electronics [25], the component model for

industrial field devices developed in the PECOS project [74], and the

commercial product ControllShell [75], which is based on visual composition

and automatic code generation. Work on using “mainstream” component

models in real-time systems is less common. One example is [76], which also

discusses COM. This work, however, focuses on extensions to COM rather

than the consequences of using the existing model in real-time systems.

5.5 Conclusion

This paper has discussed the idea of using a software component model in

real-time systems. In particular, using Microsoft models, both from the

5 Paper C: Adopting a Software Component Model in Real-Time Systems Development 119

perspective of real-time systems in general and from that of ABB’s control

system. In general, it has been seen that each of the levels of adopting the

models that have been discussed, introduces some degree of time and space

overhead. In addition, new potential sources of run-time errors are introduced,

corresponding to compilation errors in traditional object-oriented

programming. It is concluded that COM/DCOM may be used for real-time

systems, provided that any overhead is acceptable or can be compensated by

hardware, and that the software designer takes care that the potential run-time

errors are not allowed to materialize and result in a loss of predictability.

The major conclusions to be drawn from the discussions in this paper are

as follows. COM interfaces, which provide a way to separate the specification

of interfaces from component implementation, carry with them a very modest

time and memory overhead. Compared to interface inheritance in object-

oriented programming, COM interfaces introduce a potential source of run-

time errors. COM’s mechanism for instantiating objects and loading code at

run-time has a considerable overhead when compared to instantiation in for

example C++. This overhead is subject to a certain variability, which may be

avoided by careful application design. DCOM is an extension of COM that

allows applications to access COM objects across memory spaces and physical

machine boundaries. The time and space overhead associated with this is

dominated by the underlying communication mechanisms. The new .NET

platform promises increased development productivity, but it remains to be

seen to what extent it is suitable for real-time systems.

121

6 Conclusion and Future Work

6.1 Experiences from Industry

The industrial project that has been the main source of information for this

thesis was described in Paper B: Componentization of an Industrial Control

System. It was recorded there that the effort invested in componentization

seemed to be of the same order of magnitude as the effort required to

implement a communication protocol in the old way, and that the adoption of

the chosen subset of COM seemed to result in acceptable system performance.

The ability to meet hard real-time requirements has not been affected by the

component-based architecture, since all such requirements are handled by

threads that cannot be interrupted by the protocol handlers.

Since the publication of the paper, the parts of the generic I/O and

communication framework needed to support communication protocols have

been completed, requiring an estimated effort of 15–20 person-years. A

number of protocols have been implemented using the new architecture. The

total effort required to implement a protocol (including the protocol handler,

device driver, firmware, and possibly IEC 61131-3 function blocks) is

estimated to be 3–6 person-years. The reduction in this effort compared to that

required with the previous architecture is estimated to vary from one third to

one half, or 1–3 person-years. According to current plans, a total of 12

protocols will have been implemented by the end of 2004.

122 Use of Component-Based Software Architectures in Industrial Control Systems

Another interesting experience is that the componentization is believed to

have resulted in a more modularized and better documented system. Two

characteristics generally believed to enhance quality. This experience concurs

with the view of Szypersky [25] that adopting a component-based approach

may be used to achieve modularization, and may therefore be effective even in

the absence of externally developed components. The reduction in the effort

required to implement communication protocols is partly due to the fact that

the framework now provides some functionality that was previously provided

by individual protocol implementations. This is also believed to have

increased quality, since the possibility of each protocol implementation

introducing new errors in this functionality has been removed.

Among the problems encountered with the componentization, the most

noticeable was the difficulty of splitting functionality between independent

components, i.e. between the framework and the protocol handlers, and thus

determining the interfaces between these components. In all probability, this

was in large parts due to the lack of any prior experiences with similar efforts

within the development organization. Initially, the task of specifying interfaces

was given to the development center responsible for developing the

framework. This changed during the course of the project, however, and the

interfaces ultimately used were in reality defined in an iterative way in

cooperation between the organizational unit developing the framework and

those developing protocol handlers. Other problems are of a non-technical

nature. An example is the potential problem of what business processes to use

if protocol handlers are to be deployed as stand-alone products. So far,

protocol handlers have only been deployed as parts of complete controller

products, comprising both hardware and software.

6 Conclusion and Future Work 123

6.2 Analysis of Results

The experiences described above show that the effort required to add support

for communication protocols in the controller product has been considerably

reduced since the adoption of the new architecture. Thus, the investigation

supports the hypothesis H1-3:

Adopting a component-based software architecture in conjunction with

distributed development reduces the effort required to make pre-

specified functional extensions to the software.

Comparing the invested effort of 15–20 person-years with the saving of 1–3

person-years per protocol handler it is furthermore concluded that the

hypothesis H2-2:

The effort required to design the component-based software

architecture is justified by the reduction in the effort required to make

pre-specified functional extensions to the software.

is supported. Assuming an average effort of 2 person-years to implement a

protocol handler, the savings surpass the investment after 8–10 such

implementations. Thus, based on current plans for protocol handlers to be

implemented, is it expected that the savings exceed the investment by the end

of 2004.

Paper C: Adopting a Software Component Model considered the use of

Microsoft’s component models COM, DCOM, and .NET in real-time systems.

In general, the analyses support the hypothesis H3-3:

124 Use of Component-Based Software Architectures in Industrial Control Systems

Adopting the chosen software component model makes it necessary to

take extra precautions to ensure that real-time requirements can be

satisfied.

In the simplest case where only COM interfaces are used, precautions should

be taken to avoid unpredictable behavior resulting from possibility of run-time

errors introduced by interface navigation. When dynamic linking is used in

connection with object creation, the overhead and possible variation in

execution time must be addressed, for instance by only allowing object

creation at certain times. The main challenge when adopting DCOM is to

ensure that possible communication delays and failures are considered when

invoking operations that may be implemented remotely. The effects of

adopting COM/DCOM on performance is dominated by the extra overhead in

connection with object creation.

6.3 Outline of Future Work

The experiences with the use of a component-based software architecture in

ABB’s control system could be further evaluated. For instance, as more

protocol handlers are completed, the confidence in the estimated reduction of

effort can be increased. Another opportunity is to study the effect on other

system properties, such as performance or reliability. A challenge is that this

would require that meaningful measures of such properties could be defined

and that measures could be obtained from one or more versions of the system

before the componentization. Since a number of protocol handlers have been

implemented and even more are planned, there is probably a good

opportunity to study the experiences of protocol implementers, which may

6 Conclusion and Future Work 125

shed additional light on the qualities of the adopted architecture and

component model. One possibility would be to conduct a survey, which might

include several development centers. Further opportunities to study the use of

a software component model in a real-time system might be offered by a

future version of the controller that adopts more of COM and possibly uses a

commercial COM implementation.

127

7 References
[1] Szyperski C., Component Software - Beyond Object-Oriented Programming (2nd edition),

ISBN 0-201-74572-0, Addison-Wesley, 2002.

[2] Heineman G. T. and Councill W. T., Component-based Software Engineering, Putting the

Pieces Together, ISBN 0-201-70485-4, Addison-Wesley, 2001.

[3] Shaw M. and Garlan D., Software Architecture: Perspectives on an Emerging Discipline,

ISBN 0-13-182957-2, Prentice-Hall, 1996.

[4] Bass L., Clements P., and Kazman R., Software Architecture in Practice (2nd edition),

ISBN 0-321-15495-9, Addison-Wesley, 2003.

[5] Åström K. J. and Wittenmark B., Computer Controlled Systems (3rd edition), ISBN

0133148998, Prentice-Hall, 1996.

[6] Cooling J., Software Engineering for Real-Time Systems, ISBN 0-201-59620-2, Addison-

Wesley, 2003.

[7] Fenton N. E. and Pfleeger S. L., Software Metrics - A Rigorous & Practical Approach (2nd

edition), ISBN 0-534-95425-1, PWS Publishing Company, 1997.

[8] Runeson P., "Using Students as Experiment Subjects - An Analysis on Graduate and

Freshmen Data", In Proceedings of the 7th International Conference on Empirical Assessment

& Evaluation in Software Engineering, 2003.

[9] Höst M., "Using Students as Subjects - A Comparative Study of Students and

Professionals in Lead-Time Impact Assessment", In Empirical Software Engineering,

volume 5, issue 3, 2000.

128 Use of Component-Based Software Architectures in Industrial Control Systems

[10] Robson C., Real World Research (2nd edition), ISBN 0-631-21305-8, Blackwell Publishers,

2002.

[11] Parnas D.L., "On the Criteria To Be Used in Decomposing Systems into Modules", In

Communications of the ACM, volume 15, issue 12, 1972.

[12] Perry D.E. and Wolf A. L., "Foundations for the study of software architecture", In ACM

SIGSOFT Software Engineering Notes, volume 17, issue 4, 1992.

[13] IEEE, IEEE Recommended Practice for Architectural Description of Software-Intensive

Systems, ISBN 0-7381-2518-0, Institute of Electrical and Electronics Engineers, 2000.

[14] Clements P., Bachmann F., Bass L., Garlan D. , Ivers J., Little R., Nord R., and Stafford J.,

Documenting Software Architectures: Views and Beyond, ISBN 0-201-70372-6, Addison-

Wesley, 2002.

[15] Bosch J., Design & Use of Software Architectures, ISBN 0-201-67494-7, Addison-Wesley,

2000.

[16] Hofmeister C., Nord R., and Soni D., Applied Software Architecture, ISBN 0-201-32571-3,

Addison-Wesley, 2000.

[17] Kruchten P., The Rational Unified Process: An Introduction (2nd edition), ISBN 0-201-

70710-1, Addison-Wesley, 2000.

[18] Gamma E., Helm R., Johnson R., and Vlissidies J., Design Patterns - Elements of Reusable

Object-Oriented Software, ISBN 0-201-63361-2, Addison-Wesley, 1995.

[19] Bushmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M., Pattern-Oriented

Software Architecture - A System of Patterns, ISBN 0-471-95869-7, John Wiley & Sons,

1996.

7 References 129

[20] Clements P., Bachmann F., Bass L., Garlan D., Ivers J., Little R., Nord R., and Stafford J.,

Evaluating Software Architectures, ISBN 0-201-70482-X, Addison-Wesley, 2001.

[21] Boehm B., Horowitz E., Madachy R., Reifer D., Clark B. K., Steece B., Brown A. W.,

Chulani S., and Abts C., Software Cost Estimation with COCOMO II, ISBN 0-13-026692-2,

Prentice-Hall, 2000.

[22] Bengtsson P., Architecture-Level Modifiability Analysis, Ph.D. Thesis, Blekinge Institute of

Technology, Sweden, 2002.

[23] Svahnberg M., Supporting Software Architecture Evolution, Ph.D. Thesis, Blekinge

Institute of Technology, Sweden, 2003.

[24] Medvidovic N. and Taylor R. N., "A Classification and Comparison Framework for

Software Architecture Description Languages", In IEEE Transactions on Software

Engineering, volume 26, issue 1, 2000.

[25] van Ommering R., van der Linden F., and Kramer J., "The Koala Component Model for

Consumer Electronics Software", In IEEE Computer, volume 33, issue 3, 2000.

[26] Booch G., Rumbaugh J., and Jacobson I., The Unified Modeling Language User Guide, ISBN

0201571684, Addison-Wesley, 1999.

[27] Object Management Group, UML 2.0 Superstructure Specification, report ptc/03-08-02,

2003.

[28] Kruchten P., "The 4+1 View Model of Architecture", In IEEE Software, volume 12, issue

6, 1995.

[29] Microsoft Corporation, The Component Object Model Specification, v0.99, 1996.

130 Use of Component-Based Software Architectures in Industrial Control Systems

[30] Redmond III F. E., DCOM: Microsoft Distributed Component Object Model, ISBN 0-764-

58044-2, IDG Books, 1997.

[31] Chappell D., Understanding ActiveX and OLE, ISBN 1-572-31216-5, Microsoft Press, 1996.

[32] Sun Microsystems, JavaBeans Specification, Version 1.01, 1997.

[33] Joy B., Steele G., Gosling J., and Brach G., The Java Language Specification (2nd edition),

ISBN 0-201-31008-2, Addison-Wesley, 2000.

[34] Lindholm T. and Yelling F., The Java Virtual Machine Specification (2nd edition), ISBN 0-

201-43294-3, Addison-Wesley, 1999.

[35] Platt D. S., Understanding COM+, ISBN 0-7356-0666-8, Microsoft Press, 1999.

[36] Sun Microsystems, Enterprise JavaBeans Specification, Version 2.0, 2001.

[37] Shannon B., Java 2 Platform Enterprise Edition Specification, v1.3, Sun Microsystems, 2001.

[38] Object Management Group, CORBA Components, Version 3.0, report formal/02-06-65,

2002.

[39] Object Management Group, Common Object Request Broker Architecture: Core

Specification, Version 3.0, report formal/02-12-06, 2002.

[40] Wallnau K. C., Stafford J., Hissam S. A., and Klein M., "On the Relationship of Software

Architecture to Software Component Technology", In Proceedings of the Sixth

International Workshop on Component-Oriented Programming, 2001.

[41] Hissam S.A., Moreno G. A., Stafford J., and Wallnau K. C., "Enabling Predictable

Assembly", In Journal of Systems & Software, volume 65, issue 3, 2003.

7 References 131

[42] Royce W. W., "Managing the Development of Large Software Systems: Concepts and

Techniques", In Proceedings of WESCON, 1970.

[43] Brown A. W. and Wallnau K. C., "Engineering of Component-based Systems", In

Proceedings of the 2nd International Conference on Engineering of Complex Computer Systems,

1996.

[44] Garlan D., Allen R., and Ockerbloom J., "Architectural Mismatch: Why Reuse is so

Hard", In IEEE Software, volume 12, issue 6, 1995.

[45] Wallnau K. C., Hissam S. A., and Seacord R. C., Building Systems from Commercial

Components, ISBN 0-201-70064-6, Addison-Wesley, 2001.

[46] Iwanitz F. and Lange J., OPC - Fundamentals, Implementation and Application (2nd.

edition), ISBN 3-7785-2883-1, Hüthig Fachverlag, 2003.

[47] Consortium CCE-CNMA, MMS: A Communication Language for Manufacturing, ISBN 3-

540-59061-7, Springer Verlag, 1995.

[48] Mahalik N. P., Fieldbus Technology, ISBN 3-540-40183-0, Springer Verlag, 2003.

[49] International Electrotechnical Commission, Programmable controllers - Part 1: General

information (2nd edition), report IEC 61131-1, 2003.

[50] International Electrotechnical Commission, Programmable controllers - Part 3:

Programming languages (2nd edition), report IEC 61131-3, 2003.

[51] International Electrotechnical Commission, Programmable controllers - Part 5:

Communications, report IEC 61131-5, 2000.

[52] Object Management Group, The Common Object Request Broker: Architecture and

Specification, report formal/00-10-01, 2000.

132 Use of Component-Based Software Architectures in Industrial Control Systems

[53] Cheesman J. and Daniels J., UML Components - A Simple Process for Specifying

Component-Based Software, ISBN 0-201-70851-5, Addison-Wesley, 2000.

[54] Warmer J. and Kleppe A., The Object Constraint Language: Precise Modeling with UML,

ISBN 0201379406, Addison-Wesley, 1999.

[55] D'Souza D. and Wills A. C., Objects, Components and Frameworks: The Catalysis Approach,

Addison-Wesley, 1998.

[56] Jones C. B., Systematic Software Development using VDM, ISBN 0138807256, Prentice-

Hall, 1986.

[57] Meyer B., Object-Oriented Software Construction (2nd edition), ISBN 0136291554,

Prentice-Hall, 2000.

[58] Liskov B., "Data Abstraction and Hierarchy", In Addendum to the Proceedings of OOPSLA

'87, 1987.

[59] Schmidt H. and Chen J., "Reasoning About Concurrent Objects", In Proceedings of the

1995 Asia-Pacific Software Engineering Conference, 1995.

[60] Shaw M., "Truth vs Knowledge: The Difference Between What a Component Does and

What We Know It Does", In Proceedings of the 8th International Workshop on Software

Specification and Design, 1996.

[61] Shaw M. and others, Abstractions for Software Architecture and Tools to Support

Them, IEEE Transactions on Software Engineering, volume 21, issue 24, 1995.

[62] Conrad J., Dengler P., Francis B., Glynn J., Harvey B., Holllis B., Ramachandran R.,

Schenken J., Short S., and Ullman C., Introducing .NET, Wrox Press, 2000.

7 References 133

[63] Wallnau K. C. and Stafford J., "Ensembles: Abstractions for A New Class of Design

Problem", In Proceedings of the 27th Euromicro Conference, 2001.

[64] Schmidt H. and Zimmerman W., "A Complexity Calculus for Object-Oriented

Programs", In Object-Oriented Systems, volume 1, issue 2, 1994.

[65] Szyperski C., Component Software - Beyond Object-Oriented Programming, ISBN 0-201-

17888-5, Addison-Wesley, 1998.

[66] Hermansson H., Johansson M., and Lundberg L., "A Distributed Component

Architecture for a Large Telecommunication Application", In Proceedings of the Seventh

Asia-Pacific Software Engineering Conference, 2000.

[67] International Electrotechnical Comission, Programmable Controllers - Part 3: Programming

Languages, report IEC 61131-3, 1992.

[68] Bass L., Clements P., and Kazman R., Software Architecture in Practice, ISBN 0-201-19930-

0, Addison-Wesley, 1998.

[69] A.Speck, "Component-Based Control System", In Proceedings of the Seventh IEEE

International Conference and Workshop on the Engineering of Computer-Based Systems, 2000.

[70] Schneider S. A., Chen V. W., and Pardo-Castellote G., "ControlShell: Component-Based

Real-Time Programming", In Proceedings of the 1995 Real-Time Technology and

Applications Symposium, 1995.

[71] Object Management Group, UML Profile for Scheduling, Performance, and Time - Request

for Proposal, report ad/99-03-13, 1999.

[72] Lowy J., Programming .NET Components, ISBN 0596003471, O'Reilly & Associates, 2003.

134 Use of Component-Based Software Architectures in Industrial Control Systems

[73] Lüders F., Use of Component-Based Software Architectures in Industrial Control Systems,

Technology Licentiate Thesis, Mälardalen University, Sweden, 2003.

[74] Nierstrasz O., Arévalo G., Ducasse S., Wuyts R., Black A., Müller P., Zeidler C.,

Genssler T., and van den Born R., "A Component Model for Field Devices", In

Proceedings of the First International IFIP/ACM Working Conference on Component

Deployment, 2002.

[75] Schneider S. A., Chen V. W., and Pardo-Castellote G., "The ControlShell Component-

Based Real-Time Programming System", In Proceedings of the 1995 IEEE International

Conference on Robotics and Automation, volume 3, 1995.

[76] Chen D., Mok A., and Nixon M., "Real-Time Support in COM", In Proceedings of the 32nd

Hawaii International Conference on System Sciences, 1999.

