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Abstract 

Component-based software engineering (CBSE) denotes the disciplined practice of 

building software from pre-existing smaller products, generally called software 

components, in particular when this is done using standard or de-facto standard 

component models. The popularity of such models has increased greatly in the 

last decade, particularly in the development of desktop and server-side 

software. The main expected benefits of CBSE are increased productivity and 

timeliness of software development projects. The last decade has also seen an 

unprecedented interest in the topic of software architecture in the research 

community as well as among software practitioners. CBSE has notable 

implications on a system’s architecture, and an architecture that supports 

CBSE, e.g. by mandating the use of a component model, is called a component-

based software architecture. 

This thesis investigates the benefits and problems related to the use of such 

architectures in industrial control systems, which are computer-based systems 

that control physical processes and equipment. The investigation is mainly 

performed through an industrial cases study of a global company developing 

a new generation of control systems, intended to replace several existing 

systems. To leverage its global development resources and the competency of 

different development centers, the company decided to adopt a component-

based software architecture that allows certain functionality to be realized by 

independently developed components. The architecture incorporates a limited 

version of a standard component model.  



iv  Use of Component-Based Software Architectures in Industrial Control Systems 

The process of redesigning the software architecture is presented in this 

thesis, along with the experiences made during and after the project. An 

analysis of these experiences shows that the component-based architecture 

effectively supports distributed development and that the effort required for 

implementing certain functionality has been substantially reduced. The use of 

the selected component model in real-time systems is furthermore analyzed 

from a more general perspective. It is shown that adopting the model means 

that real-time requirements can still be satisfied in most cases, but that this 

may require certain precautions to be taken. 
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1 Introduction 

Component-based software engineering (CBSE) denotes the assembling of 

software products from pre-existing smaller products, generally called 

components. In particular when this is done using (de-facto) standard 

component models and supporting technologies [1,2]. A component model 

generally defines a concept of components and rules for their design-time 

composition and/or run-time interaction, and is usually accompanied by one 

or more component technologies, implementing support for composition 

and/or interoperation.  

Software architecture (SA) is concerned with the structural decomposition 

of software, and the term is used both to denote a discipline (of software 

architects) and the artifacts produced within this discipline (the software 

architecture of a product or product family) [3,4]. Although the decomposition 

of software into modules is by no means a new idea, the field has gained much 

attention in recent years.  There is no universally accepted definition of 

software architecture, but a widely accepted terminology where the 

constituent parts of a system’s architecture are, in general, called components. 

This sometimes creates confusion since the SA and CBSE communities have 

adopted the term component independently. A widespread view in CBSE is 

that component denotes a physical part (product), while in SA a component 

can be any structural entity (file/class, process/thread, module/layer, etc.) 

and even purely conceptual (e.g. an abstraction invented by a designer). A 

software architecture designed to support CBSE is called a component-based 

architecture. 
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Real-time control systems are systems that control physical processes and 

equipment [5,6]. They are characterized (naturally) by real-time requirements. 

For industrial controllers there is always a mix of hard and soft real-time 

requirements. A hard real-time requirement means that some function must 

always be performed within a certain time. Soft real-time requirements are less 

absolute and often indicate that functions must be performed within certain 

time limits “most of the time”. A long lasting trend in industrial control 

systems is the inclusion of more advanced functionality, in particular functions 

that allow controllers to be part of increasingly well-integrated industrial IT 

systems. Typically, a controller must integrate, “upwards” to servers and 

workstations, “sideways” to other (types of) controllers, and “downwards” to 

different types of devices closer to the controlled process. Since these different 

products have different lifecycles (longer for products closer to the process), a 

new controller product must usually support at least as many protocols, 

networks, device types, etc. as the products it is intended to replace. 

The aim of this thesis is to study the possibilities and problems related to 

adopting a component-based software architecture in such controllers. The 

work is primarily based on a participatory case study in industry, where a 

global organization developed a new generation of controllers to replace 

several existing products that were independently developed for different 

regional areas and industry sectors. The main challenge of the project was to 

leverage the software development resources at different development centers 

around the world and their expertise in different areas. In particular, it was 

desirable to enable different development centers to implement support for 

different communication protocols, networks, and I/O systems. Additional 

challenges were to make the new controller platform sufficiently general, 
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flexible, and extendable to replace existing controllers, as well as to be capture 

new markets. The solution chosen to meet these challenges was to base the 

new platform on one of the existing systems while adopting a component-

based software architecture, in which interfaces were defined for interaction 

between the main part of the software and I/O and communication 

components developed throughout the distributed organization. 

The thesis is organized as follows: The rest of this chapter presents the 

research questions addressed, the research methods employed, and the 

contributions of the research. Chapter 2 provides background information by 

reviewing the current state of research and practice within the fields of 

software architecture, component-based software engineering, and industrial 

control systems. Chapters 3–5 are reproductions of three peer-reviewed 

publications. The contributions of each publication are presented in Section 

1.3. Chapter 6 analyses results, draws conclusions, and outlines future work. 

1.1 Research Questions 

The topic of this thesis is the use of component-based software architectures in 

industrial control systems. The natural question that arises is what advantages 

and liabilities the use of such architectures entails for this particular type of 

systems. Due to the challenges of the industrial project studied as part of this 

research, the potential benefit that a component-based architecture makes it 

easier to extend the functionality of the software has been singled out for 

investigation. More specifically, the project allows the two following situations 

to be compared: 
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1. The system has a monolithic software architecture and all functionality 

is implemented at a single development center. 

2. The system has a component-based software architecture and pre-

specified functional extensions can be made by different development 

centers. 

By pre-specified functional extensions is meant extensions in the form of 

components that obey interfaces already specified as part of the architecture. 

This fact is presumed to be significant, while the fact that the functionality in 

question happens to be related to I/O and communication is not. 

To aid in answering this question in a structured manner, three alternative 

hypotheses are defined, such that the investigation can be expected to support 

exactly one of these: 

H1-1. Adopting a component-based software architecture in conjunction 

with distributed development does not significantly affect the effort 

required to make pre-specified functional extensions to the software. 

H1-2. Adopting a component-based software architecture in conjunction 

with distributed development increases the effort required to make 

pre-specified functional extensions to the software. 

H1-3. Adopting a component-based software architecture in conjunction 

with distributed development reduces the effort required to make 

pre-specified functional extensions to the software. 

In the fortunate case that the third hypothesis is demonstrated, the new 

question arises of whether the effort invested in redesigning the software 
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architecture is justified by the efforts saved. This leads to the following two 

hypotheses: 

H2-1. The effort required to design the component-based software 

architecture exceeds the reduction in the effort required to make 

pre-specified functional extensions to the software. 

H2-2. The effort required to design the component-based software 

architecture is justified by the reduction in the effort required to 

make pre-specified functional extensions to the software. 

If the latter of these is true, the question furthermore arises of after how much 

time and how many functional extensions the effort saved surpasses the effort 

initially invested. 

Since real-time requirements are central in the development of controller 

products, the effect of using a component-based software architecture on the 

ability to satisfy such requirements is also investigated. In particular the effect 

of adopting a chosen software component model is investigated. In addition to 

the question of whether satisfying real-time requirements is possible while 

adopting a component model, the question of whether the ability to satisfy 

these requirements depend on any particular precautions is addressed. The 

possible answers to these questions are formulated by the following 

hypotheses: 

H3-1. Adopting the chosen software component model does not affect the 

ability to satisfy real-time requirements. 
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H3-2. Adopting the chosen software component model makes it 

impossible to satisfy real-time requirements. 

H3-3. Adopting the chosen software component model makes it necessary 

to take extra precautions to ensure that real-time requirements can 

be satisfied. 

In the cases that the latter hypothesis is strengthened, the question naturally 

arises as to which extra precautions must be taken. Another interesting but less 

fundamental question is what effect adopting the software component model 

has on the system’s performance. 

1.2 Research Methods 

This thesis, like most software engineering research, belongs to the domain of 

empirical research. As such, it differs from much computer science research, 

which is mathematical or logical in nature and focuses on formal proofs. In 

their treatment of software metrics, Fenton and Pfleeger [7] discuss empirical 

investigation in software engineering. Although they focus on investigations 

in software developing organizations as a tool for making scientific and 

objective assessments or decisions, the applicability to research is also stated. 

Formal experiments, case studies, and surveys are identified as three different 

ways of conducting empirical investigations.  

Formal experiments are used to investigate causal relationships in 

controlled settings. An example might be the effect of two different 

programming languages on productivity. An experiment would vary the 

language and measure the productivity in the development of two equivalent 
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pieces of software. It would furthermore be necessary to control that other 

parameters, such as programmer skill, that may affect the productivity is kept 

constant. In addition, formal experiments are, by definition, replicable. Due to 

these requirements on tight control and replicability, experimentation is most 

suitably performed with fairly limited activities. In fact, most formal 

experiments reported in the software engineering literature have been 

performed in academic settings with students as subjects. Thus, the validity of 

their results to industrial scale software development is often questioned, 

although some such experiments in literature are accompanied by arguments 

for wider validity [8,9]. 

In settings such as industrial software development projects, where the 

researcher does not have the level of control required for formal experiments, 

case studies or surveys can be used. A survey is retrospective in nature and 

samples the results of activities after they are completed. This is often 

performed on a large set of information, for instance obtained from a set of 

projects from one or more organizations. A case study is usually not 

retrospective, and the researcher will decide in advance what to study and 

plan how to capture the necessary data. A typical software engineering case 

study follows a development project, using direct observation as an important 

source of data. The projects selected for such studies are often those that are 

believed to be typical for an organization or an application area. Thus, there is 

a difference in scale between the different techniques where formal 

experiments can be viewed as research in the small, case studies as research in the 

typical, and surveys as research in the large. Based on the description by Fenton 

and Pfleeger [7], Table 1-1 summarizes some of the aspects in which the three 

forms of empirical investigation differ. 
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Table 1-1 Differences between three empirical investigation techniques. 

Aspect Experiments Case studies Surveys 

Level of control High Low Low 

Replicable? Yes No No 

Retrospective? No Usually not Yes 

Scale Small Typical Large 

Given the industrial setting, the research questions stated in the previous 

section have been investigated by the use of a case study. This technique is 

discussed in more detail by Robson [10], who provide the following definition: 

Case study is a strategy for doing research which involves an empirical 

investigation of a particular contemporary phenomenon within its real 

life context using multiple sources of evidence. 

Thus, rather than a single method, a case study represent a strategy that can 

include several methods, such as observation and interviews. In the research 

presented in this thesis, the investigated phenomenon was the use of a 

component-based software architecture and the context an industrial 

development project. This is a typical example in that the phenomenon is not 

easily separated from the context. The sources of evidence have included 

direct observation through project participation, interviews with project 

members, documentation, and software artifacts. Clearly, this kind of strategy 
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cannot be expected to lead to formal proofs of any of the stated hypotheses. 

Instead, an overall analysis of the collected data is expected to support more or 

less clearly one member of each set of alternative hypotheses. 

More specifically, the employed strategy can be called a participatory case 

study, since I have been an active member of the project on which the study 

was conducted. This is similar to what Robson calls action research [10]. An 

advantage of such a participatory study is that the researcher has 

opportunities to make observations that yield information that might be hard 

to obtain in other ways. There is also a risk, however, that the researcher may 

loose the required distance and objectivity. A possible way to mitigate this risk 

is to analyze and report the study in cooperation with other researchers that 

can contribute with an outsider’s view. This approach was taken in the 

preparation of this thesis. In addition to the analysis of the information 

obtained from the study, technical reasoning was employed to study the 

expected results of using approaches not demonstrated by the industrial 

project. 

1.3 Contributions 

The contributions of this thesis are manifested in three reviewed publications, 

which are reproduced here, mostly in their original form. The major deviation 

from this is that the reference lists of the publications have been merged with 

the reference list at the end of the thesis. In addition, some corrections have 

been made to Paper A, while some smaller updates to Paper C may be made 

before publication of that paper. 
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Paper A: Specification of Software Components discusses the current state of 

the practice and research of software component specification. As such, it 

contributes to the background to the research presented in this thesis rather 

than presenting original results in it self. The bulk of the paper is the 

description of three levels of software component specification, which are 

denoted syntactic, semantic and extra-functional specification. Most of this 

work, including the UML metamodeling, is my own contribution. (Therefore, 

so are the metamodelling errors in the original paper, described below). The 

co-authors contributed mainly to the introduction and summary of the paper 

and to the description of realization specifications at the end of Section 3.3. 

This version of the paper contains some corrections to the original version, 

which are described in Section 3.6. 

Paper B: Componentization of an Industrial Control System reports on an 

industrial case study concerning the use of a component-based software 

architecture to support distributed development. The new common control 

system, developed by ABB to replace several existing control systems, must 

incorporate support for a large number of I/O systems, communication 

interfaces, and communication protocols. An activity was therefore started to 

redesign the system’s architecture, to allow I/O and communication compo-

nents to be implemented by different development centers around the world. 

The paper reports on experiences from this effort, describing the system, its 

current software architecture, the new component-based architecture, and the 

lessons learned at the time of publication. The description of the project, the 

system, and its architectural changes is my contribution. The analysis of the 

experiences was initiated by me and refined in collaboration with the 

coauthors who provided the desired outsider’s views. 
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Paper C: Adopting a Software Component Model in Real-Time Systems 

Development expands on the experiences documented in Paper B. The paper 

presents a motivation for applying component-based software engineering to 

real-time systems and discusses the consequences of adopting a software 

component model in the development of such systems. Specifically, the 

consequences of adopting Microsoft’s COM, DCOM, and .NET models are 

analyzed. The most important aspects of these models are discussed in an 

incremental fashion. The analysis considers both real-time systems in general, 

and the control system introduced in Paper B where some aspects the COM 

model have been adopted. The paper is my individual contribution. 
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2 Background 

2.1 Software Architecture 

The structure and organization of software systems have been discussed, to a 

certain degree, since the late 1960s. A well-known example from the early 

literature on this topic is an influential paper by Parnas [11]. The last decade, 

however, has seen an unprecedented interest in this area, both within the 

research community and among software practitioners. In one of the first 

papers in the recent wave of software architecture literature [12], Perry and 

Wolf claim that software design, while receiving much attention in the 1970s, 

was largely overlooked during the 1980s. This paper uses the term software 

architecture instead of design to evoke notions of a professional discipline and 

to make analogies with other fields, such as building and computer 

architecture. 

2.1.1 Definitions of Software Architecture 

The recent interest in the field has resulted in an abundance of definitions of 

software architecture. This section presents and discusses some of the most 

influential of these definitions. 

The above-mentioned paper by Perry and Wolf [12] presents the following 

model of software architecture: 

Software Architecture = {Elements, Form, Rationale}. 



14  Use of Component-Based Software Architectures in Industrial Control Systems 

The elements of an architecture can be processing elements, data elements, or 

connecting elements (which may themselves be processing elements or data 

elements or both). The form specifies constraints on elements and their 

interaction with each other. The rationale provides motivations on the choice 

of elements and the form. Although nobody seems to question the value of 

documenting the rationale for a software architecture, more recent definitions 

tend to view rationale as not being part of the architecture itself. 

In the first book on the topic [3], Shaw and Garlan define the software 

architecture of system as:  

a collection of computational components–or simply components–

together with a description of the interactions among these 

components–the connectors. 

This definition is inspired by the way practitioners tend to represent software 

architectures informally in the form of box and line diagrams. For such 

diagrams to be useful for others than their creators, it is important that the 

meanings of both the boxes (components) and the lines (connectors) are 

described. 

The terminology of Shaw and Garlan’s definition has become widely 

adopted within the field. It has also been somewhat criticized, however, for 

instance in a book by staff members from the Software Engineering Institute 

(SEI) [4]. The authors argue that the term connector is unfortunate since it 

indicates a run-time mechanism, while software architecture also covers 

structures that are not observable at run-time. In the second edition of the 

book, the term component is also avoided since it has become so closely 
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associated with the topic of component-based software engineering, where 

components are usually viewed as run-time entities. The latest edition of the 

SEI book uses the following working definition: 

The software architecture of a program or computing system is the 

structure or structures of the system, which comprise software 

elements, the externally visible properties of those elements, and the 

relationships among them. 

This definition has some interesting aspects. The notion that a system may 

have multiple structures is closely related to the concept of architectural views, 

which is now widely accepted in the research community. Views are further 

discussed in this chapter in connection with architecture description and 

documentation. The definition furthermore states that an architecture includes 

the externally visible properties of components, implying that other 

component properties are not part of the architecture.  

Finally, a recommended practice for architectural documentation from the 

Institute of Electrical and Electronics Engineers (IEEE) [13] defines architecture 

as: 

The fundamental organization of a system embodied in its 

components, their relationships to each other, and to the environment, 

and the principles guiding its design and evolution. 

The main novelty of this definition is its mention of the system’s environment. 

This is also an example of a process-oriented definition that includes design 

and evolution principles. As is the case with rationale, the majority of the 
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literature seems to consider such principles to be important but distinct from 

the architecture itself. 

2.1.2 Architectural Design 

It was described earlier how Perry and Wolf selected to use the term software 

architecture instead of the more traditional term software design. The question 

still arises, however, as to the precise relationship between architecture and 

design. A common view is expressed in [14]: 

Architecture is design, but not all design is architecture. 

In other words, a system’s software architecture comprises some, but not all, 

the decisions made in the design of the system. The definitions presented in 

the previous section do, to varying degrees, specify which types of design 

decisions an architecture should include. It can generally be said that software 

architecture is concerned with high-level design decisions that are made at an 

early stage of the design process. The term architectural design is often used to 

denote this early stage. In this thesis, the term architectural decision will 

furthermore be used to denote design decisions made during this stage, and a 

software architecture will at times be viewed as a set of architectural decisions. 

Shaw and Garlan characterizes architectural design as being concerned 

with structural issues, such as: 

global control structures; the protocols for communication, 

synchronization, and data access; the assignment of functionality to 

design elements; the composition of design elements; physical 
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distribution; scaling and performance; dimensions of evolution; and 

selection among design alternatives. 

The SEI book [4] presents guidelines for making architectural decisions 

that help to ensure a system’s quality properties. Decisions that target 

particular properties are called architectural tactics. For example, fault-tolerance 

is an availability tactic and information hiding is a modifiability tactic. A set of 

related tactics is called an architectural strategy. Bosch [15] suggests a method of 

architectural design where an initial architecture is designed based on the 

system’s functional requirements. The architecture is then evaluated against 

the extra-functional requirements for the systems and transformed if 

necessary. This process of evaluation and transformation is applied iteratively 

until the architecture is believed to meet all functional and extra-functional 

requirements. Evaluation of software architectures is discussed later in this 

chapter. An approach developed by Siemens Corporate Research [16] focuses 

on identifying factors that influence architectural issues, which are classified 

into technical, organizational, and product factors. Based on analyses of these 

factors, strategies are determined to resolve the issues. The early design of a 

system’s architecture is also a central concept in the Rational Unified Process 

(RUP) [17]. In this influential process model, a stable architecture is the main 

milestone of the elaboration phase, which precedes the labor-intensive 

construction phase. 

In all engineering disciplines, successful solutions to past problems are 

often used as models when new problems are to be solved. This is also true for 

software architecture, where architects have primarily drawn on their own 

experiences or that of their development organization. The research 
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community has realized the benefit of having a collection of well-documented 

prototype solutions. The term architectural style was introduced by Perry and 

Wolf in [12] to denote such a prototype solution.  

This term is also used by Shaw and Garlan [3]. Drawing on their definition 

of software architecture, they present the following definition of architectural 

style: 

An architectural style defines a vocabulary of component and connector 

types, and a set of constraints on how they may be combined. There 

may also exist one ore more semantic models that specifies how to 

determine a system’s overall properties from the properties of its parts. 

The use of the word vocabulary emphasizes that styles are intended for 

communicating software architecture solutions. The authors go on to identify a 

number of commonly occurring styles. Some of these are briefly discussed 

below. 

• Pipes and filters. The components in this style are called filters and each 

have a set of inputs and a set of outputs. The outputs of a filter can be 

attached to inputs of other filters via simple connectors called pipes. 

Typically, the filters transform streams of input data to streams of 

output data in an incremental fashion. An important constraint is that 

filters should be independent in the sense that they do not share state 

and each filter is unaware of the identities of the other filters it is 

connected to. 

• Object-oriented systems. In this style, the components are objects that 

encapsulate abstract data types and their associated operations. An 
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object can be “connected” to other objects by holding references to them 

and invoke their operations. Typically, the sets of components and 

connectors are dynamic, since objects can create and delete other objects 

and object references can be passed as parameters to operations. 

• Event-based systems. The components in this style have interfaces that 

provide both operations and events. A component’s operations may be 

invoked directly by other components as in object-oriented systems. In 

addition, a component may register an interest in an event that another 

component provides by associating one of its own operations with it. 

When the second component subsequently announces the event, the 

registered operation is invoked, along with any operations that other 

components have registered. Thus, there are two distinct types of 

connectors in this style. 

• Layered systems. The components in this style are called layers and are 

commonly thought of as being stacked on top of each other. Each layer 

provides services to the layer above it and is a client of the layer below 

it. The connectors are defined by the protocols used between the layers. 

A variation of the style is systems where a layer may use the services 

provided by all lower layers. 

• Repositories. In this style there are two distinct types of components: a 

central data store that represents the state of the system and a set of 

independent components that operate on the data store. An interesting 

sub-style is systems where computation is entirely controlled by the 

state of the data store and the independent components react to changes 

to this state in an opportunistic fashion. 
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A valuable property of these and other common styles is that the 

consequences of using them as the basis for a system’s software architecture 

are fairly well understood. The pipes and filters style, for instance, results in 

systems of highly independent components, where filters can suitably be 

developed and tested separately and possibly reused in different 

configurations. A possible disadvantage is that all filters have to comply with 

the data format required by the pipes, which may not be optimally suited for 

their computation and result in loss of performance and increased internal 

complexity. An advantage of object-oriented systems is that algorithms and 

data representation are encapsulated and can be maintained locally. On the 

other hand, system wide modifications, such as adding new objects, can be 

difficult since objects need to know the identity of other objects in order to 

invoke their operations. Event-based systems represent a possible solution to 

this problem, although the components are not as independent as in the pipes 

and filters style.  

A common occurrence in practice is systems that incorporate several 

architectural styles. For instance, a system may have components and 

connectors that match the types defined by several styles. An example is a 

layered event-based system where each layer provides both operations and 

events to the layer(s) above it. Another way to combine styles is to mix 

different components and connectors in the same system, which is sometimes 

called heterogeneous architectures. For instance, a part of a system could be 

organized as a repository where one or more of the independent components 

exchange data with another part of the system that consists of pipes and filters. 

Hierarchical heterogeneity occurs when a component in a system of one style 

is internally organized using another style. A common example is a layer 
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containing an object structure, which may even be reflected in the layer’s 

services. 

A recent direction within the software engineering community is the 

widespread interest in object-oriented design patterns [18]. Since architecture 

is commonly viewed as a special case of design, it is not surprising that the 

patterns paradigm has also been applied to architectural design. The most 

comprehensive work in this area has been performed by staff at the German 

company Siemens, who call their approach pattern-oriented software architecture 

[19]. As with other design patterns, this effort focuses on cataloging known 

solutions to known problems in given contexts. This approach is similar that of 

identifying and documenting architectural styles, and there is now a 

widespread view that patterns and styles are synonymous. 

2.1.3 Evaluation of Software Architectures 

As previously noted, software architecture is concerned with early design 

decisions. Clearly, it is important to be able to reason about the effects these 

decisions will have on the properties of the finished system. The research 

community has developed a number of architecture analysis and evaluation 

techniques. 

One of the most popular techniques is the architecture trade-off analysis 

method (ATAM) [20] developed by the Software Engineering Institute. The aim 

of this method is to balance the different quality goals of a system under 

development, which is very often conflicting. For instance, an architectural 

decision that results in a very maintainable system may result in sub-optimal 
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performance. ATAM is typical in that it is based on the use of scenarios to 

analyze how well candidate architectures meet a system’s quality goals. 

Depending on what qualities are being analyzed, scenarios may be operational 

or related to the system’s development or evolution, while the evaluation of 

their effect may be based on quantitative or qualitative analysis. 

ATAM provides a way of determining technical measures of a system’s 

quality goals resulting from a proposed architecture, and thus (viewing the 

architecture as a set of architectural decisions) from proposed architectural 

decisions. Software development organizations, however, usually need to 

consider the costs incurred with these decisions and to balance this with the 

benefits gained. This is need is addressed by an extension of ATAM called the 

cost benefit analysis method (CBAM) [4]. The purpose of CBAM is to calculate 

the return on investment (ROI) for each proposed architectural strategy. The 

inputs to this calculation are estimated costs of architectural strategies and 

measures of the corresponding benefits derived from the ATAM. For a specific 

architectural strategy, the benefit Bi is defined as: 

( )∑ ×=
j jjii WbB ,  

where bi,j is the benefit of strategy i in scenario j and Wj is a weight assigned to 

scenario j, reflecting its relative importance. Each bi,j is the estimated effect of 

strategy i on the quality goal analyzed in scenario j. If Uexpected is the measure 

of the quality goal obtained from ATAM in scenario j when strategy i is 

included in the architecture and Ucurrent is the measure when the strategy is 

excluded, then bi,j = Uexpected − Ucurrent. The measures of the quality goals are 

numbers between 0 and 100, corresponding to the worst-case and best-case 
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situations respectively. For an architectural strategy with cost Ci and benefit Bi, 

the ROI value is calculated as: 

i

i
i C

BR =  

Techniques for cost estimation have been widely studied and reported, for 

instance by Boehm and others [21]. 

A recently reported analysis method is the architecture-level modifiability 

analysis method (ALMA) [22] by Bengtsson and others. As the name indicates, 

this method focuses particularly on analyzing the modifiability of a system 

based on a proposed architecture for the system. Like ATAM, ALMA is 

scenario-based. The only scenarios considered are change scenarios, and the 

output of running a scenario consists of measures of the impact of the change 

on the system and the effort required to implement the change. Depending on 

the purpose of the analysis this can be described qualitatively or 

quantitatively. Another recent development is reported by Svahnberg [23]. 

This work extends the state of the art in architecture evaluation with a 

quantitative method for selecting between candidate architectures. The first 

step of the method is to define a set of quality goals as the base for the 

selection and assign numerical values to these goals that determine their 

relative importance. The next step is to evaluate each of the candidate 

architectures with respect to each quality goal, which results in a matrix of 

numerical scores. These scores need not be meaningful absolute measures of 

each architecture’s ability to meet the quality goals, as long as they serve to 

relate the abilities of the architectures to each other. By weighing the scores 
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with the importance of each quality goals, the best architecture can finally be 

determined. 

2.1.4 Architectural Description and Documentation 

In practice, software architectures are usually described using informal box 

and line diagrams accompanied by descriptive prose. The research community 

has pointed out that such descriptions are often ambiguous and there is 

extensive work on architectural description and documentation in the 

literature. 

One research direction is the development of architecture-description 

languages (ADLs). A bafflingly high number of such languages have been 

published, differing in such aspects as use of graphics or text, formality of 

semantics, emphasis on certain domains or styles, available analyses and tool 

support etc. In [3], Shaw and Garlan discusses the requirements for ADLs and 

reviews three early languages and their associated tools. A recent and 

extensive survey is that of Medvidovic and Taylor [24]. Despite the great 

volume of work on ADLs there are few testimonies of industrial adoption in 

the literature. The use of the Koala language at Philips [25] is perhaps the only 

reported example. This language is fairly implementation-oriented and can be 

seen as something on the borderline between an ADL and a graphical 

programming language. Koala is furthermore the name of a related software 

component model, which is discussed in Section 2.2.2 of this thesis. 

A language that has been widely adopted is the Unified Modeling Language 

(UML) [26]. Although UML has become the standard notation for 
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documenting software design, its suitability for describing software 

architecture has been questioned. The problem is that UML has its roots in 

object-oriented methods and is mainly intended for modeling a system as a set 

of interrelated classes, a concept usually considered to be at a lower level of 

granularity than software architecture. Still, it has been demonstrated how the 

language can be used for architectural documentation. One example is the 

aforementioned approach of Siemens Corporate Research [16]. Their 

architecture descriptions are written using special architecture-level modeling 

elements, which have been defined using UML’s extensibility mechanisms. 

Although it would be possible for other organization to re-use these 

architecture-level modeling elements, it is not likely to occur on a large scale 

until such elements are standardized and supported by major tool vendors.  

Fortunately, such standardization has now taken place in UML 2.0 [27]. 

This new standard defines the following architectural concepts, which are also 

central in most ADLs: 

• Component. A component is a modular unit with well-defined interfaces 

that is replaceable within its environment. The external view of a 

component is a set of provided and required interfaces, which may be 

exposed via ports (see below). A component may also have an internal 

view in the form of a realization, which is a set of instances of classes or 

smaller components that collaborate to implement the services exposed 

by the component’s provided interfaces while relying on the services of 

its required interfaces. The concept can be used to specify both logical 

and physical components. 
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• Port. A port is a named and typed interaction point of a component. A 

provided port is typed by a provided interface, a required port by a 

required interface, and a complex port by an arbitrary set of provided 

and required interfaces. Complex ports enable the localization of 

complex interaction patterns where calls may occur in both directions. 

Unlike interfaces, a port may be associated with a behavior, specifying 

the externally observable behavior of the component when interacting 

through the port. This allows the specification of semantic contracts, 

similar to those described in Paper A. A component may have multiple 

ports typed by the same interface, and is able to distinguish between 

calls received through different ports. 

• Connector. A connector is a link that may be of kind delegation or 

assembly. A delegation connector either links a provided port of a 

component to a part of the component’s realization, signifying that 

requests received through the port is forwarded to the part, or it links a 

realization part to a required port, signifying that request sent through 

the port originates in the part. Several connections may exist between a 

single port and different realization parts. An assembly connector links a 

required interface or port of a component to a matching provided 

interface or port of another component. 

Figure 2-1 is a UML 2.0 diagram that illustrates these modeling elements. The 

diagram shows a component with one port, typed by one required and one 

provided interface. The component also has a realization, consisting of two 

component instances. Delegation connectors link the outer component’s port 

to a provided port of one of these instances and a required port of the other 
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instance to the outer port. The two instances furthermore have ports linked by 

an assembly connector. The diagram does not show port names. 

Component1

: Component2

: Component3: Component3

Interface4

Interface1

Interface2

<<delegate>>

<<delegate>>

Interface3

Interface1

Interface2

 

Figure 2-1 Architectural modeling elements in UML 2.0. 

The production of professional software architecture documentation has 

been studied at the Software Engineering Institute [14]. This work focuses 

more on the organization of architecture documents than on particular 

notations. The central organizing unit for such documents is that of a view, 

which is defined as follows: 

A view is a representation of a set of system elements and the 

relationships associated with them. 

Thus, a view represents a subset of the information contained in an 

architecture. The use of views is motivated by the fact that software 
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architectures are complex entities that cannot be adequately described in a 

simple one-dimensional fashion. 

One of the most influential publications on architectural views is 

Kruchten’s paper on the 4+1 view model [28]. His approach, which has been 

adopted as a central part of the Rational Unified Process, defines the following 

views: 

• The logical view primarily supports behavioral requirements: the services 

the system should provide to its end users. 

• The process view addresses concurrency and distribution, system 

integrity, and fault tolerance. 

• The development view focuses on the organization of the software 

modules in the software development environment. 

• The physical view maps the various elements identified in the logical, 

process, and development views onto the processing nodes. 

• The use case view contains a small subset of important use cases, 

intended to show that the elements of the other four vies work together 

seamlessly. 

 The last view is called the +1 view since it is redundant with, and serves to 

validate, the other views. Another model that has received considerable 

attention is sometimes called the Siemens 4 view architecture model and is a 

central part of Siemens Corporate Research’s approach, mentioned above. It 

defines the following views: 
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• The conceptual view describes the system in terms of its major design 

elements and the relationships among them. 

• The module interconnection view describes functional decomposition and 

layering. 

• The execution view describes the dynamic structure of a system. 

• The code view describes how the source code, binaries, and libraries are 

organized in the development environment. 

The conceptual view has no direct counterpart in the 4+1 view model, while 

the module interconnection view corresponds roughly to the logical view, the 

execution view to the process and physical views, and the code view to the 

development view. 

The IEEE recommended practice for architectural description of software-

intensive systems (IEEE Standard 1471-2000) [13] focuses on the contents and 

intended use of architectural description documents. To this end, it defines a 

conceptual framework, which is illustrated in the UML class diagram in Figure 

2-2. Thus, according to the standard, a system has an architecture, which is 

described by an architectural description. Furthermore, the system has a 

number of stakeholders, which each has a number of concerns, and the 

architectural description shall explicitly identify these stakeholders and their 

concerns. The architectural description must furthermore provide a rationale 

for the architecture and shall be organized into views.  
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Figure 2-2 The conceptual framework for architectural description of IEEE Standard 1471-2000. 

Each view must conform to what is called a viewpoint. A viewpoint is a 

general (i.e. system independent) template of a view, and is intended to 

address a certain subset of stakeholders and concerns. A view is a system 

specific instance of a viewpoint. The viewpoint specifies the format for 

describing the view, including languages and notations used as well as any 

analysis technique that may be applied. The architectural description shall 

state which viewpoints are used and present the specification of these or refer 

to other documents where specifications may be found. The standard 

emphasizes the potential for reuse of viewpoints, and therefore states that a 

viewpoint may be a library viewpoint. The architectural description is 
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required to include at least one viewpoint and corresponding view, but there 

are no predefined compulsory views. It follows from this that the standard 

does not prescribe any particular language or notation. 

2.2 Component-Based Software Engineering 

Component-based software engineering (CBSE) denotes the assembling of 

software products from pre-existing smaller products, generally called 

components. In particular when this is done using (de-facto) standard 

component models and supporting technologies. A component model 

generally defines a concept of components and rules for their design-time 

composition and/or run-time interaction, and is usually accompanied by one 

or more component technologies, implementing support for composition 

and/or interoperation.  

2.2.1 Definitions of Software Components 

Within the field of software architecture there is a widely accepted 

terminology where the constituent parts of a system’s architecture are, in 

general, called components. This sometimes creates confusion since the 

architecture and CBSE communities have adopted the term component 

independently. A widespread view in CBSE is that component denotes a 

physical part (product), while in architecture a component can be any 

structural entity (file/class, process/thread, module/layer, etc.) and even 

purely conceptual (e.g. an abstraction invented by a designer). At the risk of 
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adding to the confusion, this thesis uses the term component-based software 

architecture to mean a software architecture designed to support CBSE. 

One of the most influential definitions of software components (in the 

CBSE sense of the word) is that of Szypersky [1]: 

A software component is a unit of composition with contractually 

specified interfaces and explicit context dependencies only. A software 

component can be deployed independently and is subject to 

composition by third parties. 

The first part of the definition is technical, and states that software components 

should be “blackboxes” to be composed without modification (obviously, the 

definition means that interfaces and context dependencies are the only visible 

parts of the component). Szypersky asserts that source code modules do not 

qualify as software components since they make it possible for the composer 

to rely on implementation details, thus violating the principle of blackbox 

composition. The second part of the definition is more market-oriented, 

effectively stating that it should be possible to market software components as 

independent products and that buyers should be able to use them as parts in 

their own products. Naturally, independent deployment also has technical 

implications, namely that it must be possible to deploy (e.g. upgrade) a single 

component without any modification, recompilation, or similar of the rest of 

the systems of which the component is a part. 

In what is sometimes called The CBSE Handbook [2] Heineman and 

Councill present the following definition: 
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A software component is a software element that conforms to a 

component model and can be independently deployed and composed 

without modification according to a composition standard. 

According to this definition, all components must conform to a component 

model, which the authors define as specifying interaction and composition 

standards. This requirement is quite reasonable, since it is hard to see how 

CBSE could work without some standards for interaction and composition. It 

is worth noting that the definition does not require that the component model 

is defined by a standards body or platform supplier, or that a commercial 

platform implementation is used. It is furthermore concluded that the two 

definitions principally agree, since the requirement that components can be 

modified without modification can only be satisfied if interfaces and context 

dependencies are well defined and that compliance with a standard naturally 

supports composition by third parties. 

Finally, a definition of software components that must be expected also to 

receive widespread attention is that of UML 2.0 [27], which has already been 

mentioned in this thesis. From the discussion of the previous section, the 

following definition can be extracted: 

A component is a modular unit with well-defined required and 

provided interfaces that is replaceable within its environment. The 

concept can be used to model both logical and physical components. 

In the context of CBSE, a software component corresponds to what UML 2.0 

calls physical components. Although some will object to the use of the word 

physical to describe software components, this is the term used by the UML 
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2.0 specification to denote deliverables such as COM+, EJB, or CCM 

components. The definition is somewhat broader than the previous two, as 

“replaceable within its environment” is a weaker requirement than “subject to 

independent deployment and composition by third parties”. The definition is 

interesting primarily as it helps to establish required and provided interfaces 

as part of the standard terminology of software component. 

2.2.2 Software Component Models and Technologies 

As already mentioned, a software component model specifies standards for 

composition of and interaction between software components. To facilitate the 

use of such models, dedicated software tools and infrastructures are often 

implemented. These may include run-time environments for component 

execution and interaction as well as tools for component development, 

composition, and deployment. A software component technology is a set of 

dedicated software products supporting the use of a specific software 

component model. Heineman and Councill use the term component model 

implementation to denote the run-time parts of a software component 

technology. 

One of the most widely used component models is Microsoft’s Component 

Object Model (COM) [29]. Microsoft first used this model internally, in its 

Windows operating systems as well as in applications available on that 

platform, before releasing the COM specification. Thus, in this case, a 

component technology already existed when the component model was 

published. Today, there are numerous vendors of COM components and 

COM-based applications for the Windows platform. Technologies are also 
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available on several other platforms, but COM has never gained widespread 

popularity outside the world of Windows. 

On the Windows platform, a COM component is an executable or dynamic 

link library (DLL) that implements a set of COM classes that each implements a 

set of COM interfaces. Classes may also have optional or required outgoing 

interfaces, i.e. interfaces to be used by the classes and implemented by other 

components. Both classes and interfaces are identified by globally unique 

identifiers (GUIDs), which are 128-bit numbers that can be generated by an 

algorithm that virtually ensures their uniqueness. The GUIDs of any classes 

implemented by the components installed on a system are stored in the 

Windows registry along with references to the implementing components. The 

COM library provides an API that an application or components, called a COM 

client, can use to create COM objects by supplying the GUIDs of the desired 

class and interface. COM does not specify how classes should be implemented. 

Instead, components are required to provide a factory interface that the COM 

library uses to instruct components to instantiate their own classes.  

What COM does specify is the binary format of interfaces. A client interacts 

with a COM object through a pointer to an interface node, which includes a 

pointer to a table of function pointers. Since the interface standard is binary, 

COM is oblivious to the programming languages use to implement 

components and clients. Once the COM library has created an object, it returns 

a pointer to one of the object’s interfaces to the client. The client can use an 

operation of this interface to request pointers to any other interfaces the object 

supports. This technique is called interface navigation. In addition, the COM 

specification includes a set of predefined interfaces for such purposes as 
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scripting, error handling, and connection-oriented composition. Distributed 

COM (DCOM) [30] is an extension of COM that supports distributing 

applications across physical machines. The basic interoperability mechanisms 

of COM and DCOM are discussed more deeply in Paper C in this thesis. 

A special type of COM components is ActiveX controls [31]. These 

components implement and use predefined interfaces, which are designed to 

allow interaction with both (visual) composition tools and run-time 

environments, called containers. A typical application is in graphical user 

interface (GUI) controls, including controls automatically downloaded from 

web servers and executed in a web browser. Typically, such controls make use 

of outgoing interfaces to notify their containing application or web browser of 

events. A similar component model is Sun’s JavaBeans [32]. These components 

are built from Java classes that implement predefined interfaces and use 

special event objects for notification. JavaBeans share many of the 

characteristics of ActiveX controls, the main difference being that they must be 

written in the Java programming language [33] and executed on a Java virtual 

machine (JVM) [34]. Sun provides a solution that makes it possible to use 

JavaBeans in ActiveX containers. Component technologies related to ActiveX 

controls and JavaBeans include tools for packaging and deployment of 

components with associated resources and type information. 

COM+ [35] is an extension of COM incorporating support for services, 

such as transactional processing and message queuing, that are commonly 

used in distributed information systems. These services are not invoked 

programmatically from inside the components. Instead, declarative attributes 

can be associated with components and applications, specifying which services 
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can or must be provided and at which level. The COM+ run-time system uses 

this information to intercept component interactions and insert system calls as 

required. This allows existing COM components to be transparently 

augmented with, for instance, transactional processing and used as part of 

COM+ applications. 

Another model providing similar services is Sun’s Enterprise JavaBeans 

(EJB) [36], which is based on Java but not on the aforementioned JavaBeans 

model. The required service levels for a set of EJB components are expressed 

declaratively in a file called a deployment descriptor. After deployment, each of 

the objects implemented by the components, generally called beans, live inside 

an EJB container, which also contains objects generated from the deployment 

descriptor. Clients invoke a bean’s operations via these generated objects, 

which ensure the correct service levels. Unlike JavaBeans, beans in EJB do not 

communicate through events. There are two principal types beans. Entity beans 

are used to encapsulate access to database records. An entity bean may 

implement its own persistence management or let the container manage 

persistence as specified by the deployment descriptor. Session beans, which 

may be stateful or stateless, represent interaction sessions with clients. 

Message-driven beans can be seen as a special kind of stateless session beans that 

represent asynchronous interaction session. A session bean may control 

transactions or leave that to the container. EJB requires the Java 2 Enterprise 

Edition (J2EE) platform [37]. 

A third model that is similar to COM+ and EJB is the CORBA Component 

Model (CCM) [38]. CCM is standardized by the Object Management Group 

(OMG) and require that clients and components communicate using an object 
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request broker (ORB) as defined by version 3.0 of the OMG’s Common ORB 

Architecture (CORBA) [39]. A CCM component is delivered in a package, 

which contains a description in XML and possibly binaries for multiple 

platforms. A CCM application is an assembly of CCM and possibly EJB 

components, whose configuration is described in XML. A CCM component 

belongs to one of four possible categories. Service components correspond to 

stateless session beans in EJB, and maintain no state. Session components 

correspond to stateful beans and maintain state for the duration of a 

transaction. Entity components, as entity beans, encapsulate database access. 

Process components maintain persistent state throughout the lifetime of a 

process. Similarly to in EJB, the instances of a CCM component resides within 

a CCM container, and transaction control as well as persistence may be 

container managed or self managed. CCM components interact with clients 

and each other through attributes and port. A port is a facet, a receptacle, an 

event sources, or an event sink. Facets and receptacles are provided and required 

interfaces respectively. A facet of one component can be connected to a 

receptacle of another components. Event sources and sinks are connected via 

event channels. CCM also specify two predefined interfaces that are clearly 

inspired by COM. All component instances provide the equivalence interface for 

interface navigation and all components implement the home interface for 

instance creation. 

Koala [25] is a software component model specially intended for 

embedded software in consumer products. In particular, it is being used by 

Philips in products such as televisions and VCRs. A Koala component has a set 

of provided and required interfaces, and interacts with its environment 

through these interfaces only. A Koala configuration specifies a collection of 
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component instances, the parts list, and a set of connections between these 

instances, the net list. In the simplest case, a connection links a required 

interface of one component instance to a matching provided interface of 

another component instance. Glue code may be associated with connections to 

provide more complex interactions. Configurations may themselves be used as 

components in a hierarchical fashion. Koala provides notations for specifying 

interfaces and components and a graphical language for defining 

configurations. Basic Koala components, i.e. those that are not configurations, 

are sets of C source code files. As such they do not satisfy the definitions of 

software components discussed above. However, the motivation for using 

source code is efficiency and not exposition of implementation details, and the 

Koala configuration language encourages blackbox composition. The Koala 

compiler optimizes configurations by inserting into the code of the 

components static references to connected components wherever possible. 

Still, puritans may prefer to view Koala as a technology for modular, graphical 

programming rather than a component model. For instance, it does not 

support independent component deployment as discussed in the previous. 

As noted by e.g. Wallnau and others [40], software component models are 

closely related to the concept of architectural styles. Thus, as discussed in the 

previous section, one may expect the choice of a component model to affect a 

system’s properties in a predictable way. The component models discussed 

above each defines one or more types of components as well as different ways 

in which such components may be connected. Not surprisingly, the object-

oriented systems style is evident in most of these models. This style 

corresponds directly to the way that EJB systems and most COM-based 

systems are organized. ActiveX, JavaBeans, and CCM correspond to an object-
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oriented, event-based systems style, which may also be used with 

COM/COM+. Recall that the primary assumed benefit of the object-oriented 

systems style is encapsulation of implementation details, while the event-

based systems style is assumed to result in increased extensibility. Koala 

differs from the other discussed models in that components are explicitly 

disallowed to contain references to other components. In a way, this resembles 

the pipe and filters style, and might be expected to promote reusability. A 

notable difference, which should not affect reusability however, is that the 

function calls flowing across Koala connections can result in bi-directional data 

flows. 

The definition of architectural style presented in the previous section states 

that a style might include one or more semantic models that allow a system’s 

properties to be inferred from the properties of its parts. No such models are 

included in any of the component models discussed above, and this seems also 

to be the case for other models. This is being addressed by the work on 

prediction enabled component technology (PECT), conducted at the Software 

Engineering Institute [41]. A PECT is defined as consisting of a constructive 

model, which, like the component models discussed so far, supports the 

implementation of systems as assemblies of components, and an analytical 

model, which defines techniques for predicting different properties of such 

assemblies from the properties of components. 

2.2.3 Component-Based Software Engineering Practices 

As already mentioned, CBSE denotes the practice of assembling software from 

existing components. Thus, in comparison to traditional software engineering, 
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the activity of assembling replaces that of programming. In practice, however, 

some programming is usually needed to make a set of independently 

developed component work together. Furthermore, traditional development 

models, where design and implementation follows strictly from a preceding 

stage of requirements identification, is less suited for CBSE, where it is usually 

necessary also to adjust requirements to match what available components can 

offer. For reference, Figure 2-3 is a simple UML activity diagram illustrating 

the traditional waterfall model of software development [42]. In more modern 

models, such as the Rational Unified Process [17], these activities are repeated 

iteratively. 

Requirements 
identification Design Implementation Verification 

& Validation
 

Figure 2-3 Waterfall model of software development 

Among the first to address the particular practices required for 

component-based software in a systematic fashion were Brown and Wallnau 

[43], who define a reference model for such systems. As illustrated in Figure 

2-1, the model focuses on the system as a set of components that progresses 

through various states during development and evolution. Off-the-shelf 

components are pre-existing components that may have been acquired 

externally or reused from previous projects within the development 

organization. They are characterized by having hidden interfaces, where 

interface is interpreted to include not only a functional description but also all 

other information that is needed to use a component. Qualification is the 

process of discovering the hidden parts of the interfaces. The qualified 

components are subsequently adapted to remove architectural mismatch. This 
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concept was first described by Garlan and others [44], and refers to 

mismatches between components originating from incompatible assumptions 

by the component designers about the system’s architecture. Adaptation is 

usually accomplished by writing wrappers. The adapted components are 

composed according to a selected architectural style. As discussed in the 

previous section, selecting a component model in part determines this 

architectural style. Composition may include writing some additional code, 

which is often call glue code. The system finally enters a stage of evolution 

where component may be updated. 

off-the-shelf
components

qualified
components

adapted
components

assembled
components

updated
components

qualification to
discover interface

adaptation to 
remove architec-
tural mismatch

composition into 
selected architec-
tural style

evolution to 
update
components

 

Figure 2-4 Reference model for architectural composition of components. 

A central aspect of this model is the assumption that components initially 

have hidden interfaces, which is particularly important when using 

commercial components. This work has more recently been extended by 

Wallnau and others [45], with an even more pronounced focus on commercial 
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components. A central concept of the work is that of an assembly, which is a 

set of interoperating components that may form part of a system. It is for 

instance argued that assemblies are more useful as units of evaluation and 

selection than individual components. 

In other component-based systems, as in that of the case study presented in 

this thesis, components are implemented to comply with pre-specified 

interfaces. In these cases, the activities of requirements identification and 

design will be less different from traditional software engineering, since there 

is no evaluation, selection, qualification, or adaptation of existing components. 

However, an essential goal of the design activity is to identify the components 

to be developed and allocate functionality to them. This can be seen as input 

for identifying requirements for each component, which can subsequently be 

independently developed and tested. This leads to a form of nested 

development process where similar activities are performed on both system 

and component levels. Based on the waterfall model in Figure 2-3, this can be 

depicted as in Figure 2-5. 

Requirements 
identification Design Implementation 

(assembly)
Verification & 

Validation

Requirements 
identification #1 Design #1 Implementation #1 Verification & 

Validation #1

Requirements 
identification #n Design #n Implementation #n Verification & 

Validation #n

…

 

Figure 2-5 Waterfall model adopted for component-based software development. 
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In addition to the practices of developing component-based system, the 

literature also discusses non-technical aspects of CBSE. For instance, Szyperski 

[1] points out that a component market of critical size is needed for the 

development of commercial components to represent a viable business 

opportunity. Another example is Heineman and Councill’s book [2], which 

covers regulatory and legal issues, such as the applicability of commercial law 

to software components. 

2.3 Industrial Control Systems 

Simply put, industrial control systems are computer systems that control 

physical processes and equipment. More specifically, this thesis is concerned 

with the types of system used in the control of industrial plants. In practically 

all cases, these are distributed systems in which control functions are 

performed by several nodes that communicate via different types of networks. 

Typically, these nodes also communicate with other computer systems, such as 

different types of servers and workstations. 

2.3.1 Levels of Industrial Control Systems 

Figure 2-6 illustrates a typical configuration of interconnected information 

processing and control nodes in an industrial system. The controllers and field 

devices are furthermore connected to physical processes and equipment to be 

controlled. 
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Client/server 
Network   

Control  Network   

Fieldbus  

Intranet   

Controllers     

Servers   

Workplaces 
(Rich clients)Router

Workplaces  
(Thin or rich  
clients) 

Field devices     

Firewall 

Internet   
Workplaces  (Thin clients)  

Server 

 
Figure 2-6 Typical configuration of industrial information and control systems. 

This system comprises different types of computers and other devices that 

communicate over different networks. The client/server network is used for 

communication between servers and between servers and workplaces. In some 

cases, a computer may be used as both a server and a workplace. The network 

may be connected to an intranet via a router and further to the Internet via a 

firewall. The control network connects servers and controllers. In small 

systems, the control and client/server networks may be combined in one 

physical network. Different types of fieldbuses are used to interconnect field 



46  Use of Component-Based Software Architectures in Industrial Control Systems 

devices and to connect them to the rest of the system, either via controllers as 

the figure shows or directly to servers. In some cased, fieldbuses and the 

control network may share the same physical medium. 

It is customary to divide the functionality of this kind of systems into 

levels, where the functions of each level depend on those of the lower levels. 

• The workplace level comprises different types of user interaction. A 

typical example is the software used by operators in control rooms to 

view and possibly alter the state of the controlled processes. This level 

also includes applications for such task as analysis of process data and 

configuration of process equipment. Applications usually run on PCs or 

other types of workstations, which may be attached to the client/server 

network, an intranet, or the Internet. 

• A central function of the server level is to collect and store process data, 

which is used by different types of applications. These are typically 

client-server applications where data presentation is implemented on 

the workplace level and the majority of computation and storage on the 

server level. In addition, data and commands, possibly originating in the 

Workplace level, may be sent to process equipment. The server level 

may also include functions, such as optimization, that determine long-

term control strategies. The server machines that provide this 

functionality is connected to the client/server network and, at least 

some of them, to the control network. 

• The main function of the control level is the execution of control software 

by dedicated controllers. Typically, these repeatedly read values from 
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sensors and computes values to be written to actuators. Control 

applications may be much more complex, however, for instance 

including sophisticated communication with other devices. Controllers 

are attached to the control network and possibly to fieldbuses. 

• The field level comprises functions performed by different types of field 

devices. The simplest of these are I/O modules, which perform 

translations between physical signals and controller data. There may 

also be more advanced devices, such as smart sensors and actuators, 

which may be connected to a controller or directly to a server. Field 

devices communicate over fieldbuses. 

These levels are defined from the premise that the functions within each 

may require the presence of functions at lower levels but should be able to 

operate independently of higher-level functions. In addition, the functions 

within each level share characteristics that affect (among other things) the 

design of the software that implements them. One example is the different 

real-time and performance requirements. As discussed further in the following 

section, the control and field levels are dominated by hard and soft real-time 

deadlines. This often mandates the use of real-time operating systems. To 

ensure availability, redundant hardware architectures may be used, in which 

the actual control of the process is performed by a primary processor, with 

additional processors working in stand-by mode and able to take over in case 

the primary processor fails. Although the functions in the server layer may 

also be subject to response-time requirements, they tend to be dominated by a 

desire to maximize average throughput. Thus, they are usually implemented 

on top of general-purpose operating systems, such as Windows or Unix, and 
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other platform products, such as database management systems. This 

furthermore makes the use of component technologies, such as COM+ and 

EJB, a realistic possibility. Redundancy may also be employed at this level, 

typically in the form of server groups. Unlike in the redundant architectures 

used at the lower levels, the servers in a group usually perform load balancing. 

Thus, if one server fails, the system will continue to operate with reduced 

performance. The user interface functions of the workplace level are usually 

not subject to real-time requirements. They are often implemented using 

graphical design tools and possibly such technologies as ActiveX controls and 

JavaBeans. 

Another characterizing feature of the levels is the difference in product life 

cycles. As a general rule, hardware and software components at lower levels 

are updated less often than at higher levels. According to experiences from 

ABB, applications have a life span of 3–5 years at the workplace level, 5–8 

years at the server level, 8–15 years at the controller level, and 10–20 years at 

the field level. One result of this is that applications at one level are often 

required to work with legacy applications at lower levels, but less often at 

higher levels. For instance, new releases of client applications at the workplace 

level typically need to work with existing server software, while it is more 

common for new releases of server software also to require updated client 

applications. On the other hand, new server releases are usually required to 

support legacy hardware and software at the control and field levels. This 

difference in life cycles is in part motivated by the unidirectional dependence 

between the levels, which means that updates at one level is likely to disturb 

functions at all higher levels. Thus, in general, upgrades at lower levels entail 

more widespread disturbances and associated costs. Another factor that tend 



2 Background 49 

to make product updates more costly at, in particular, the control and field 

levels, is the possible need of disrupting the controlled process. 

As already mentioned, applications at the workplace and server levels are 

often organized as client-server applications, where the server level is 

responsible for any communication with controllers and field devices. To 

simplify the implementation of client applications that can work with 

equipment from different vendors, a COM-based standard called OLE for 

process control (OPC) [46] has been created. OPC defines a set of COM 

interfaces for supporting basic data access as well as such functionality as 

alarm and event handling, historic data access, batch processing, etc. Many 

vendors of process equipment now provide OPC servers that implement (a 

subset of) these interfaces, which client applications can access using DCOM. 

The OPC standard is managed by an industry association called the OPC 

Foundation, which has over 300 member organizations and lists more than 250 

manufacturers of OPC-compliant products. A standard that can be used for 

communication between servers and controllers is the manufacturing message 

specification (MMS) [47], which specifies services suitable for such applications 

as data exchange and download of control software. As for the field level, a 

number of fieldbuses have been standardized [48], some of which are 

particularly popular within certain industry sectors or geographical areas. A 

strong current trend is the increased popularity of fieldbuses based on 

standard network technology, such as TCP/IP and Ethernet. 
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2.3.2 Programmable Controllers 

As stated in the previous section, control software is usually executed on 

controllers, equipped with physical interfaces for reading from sensors and 

writing to actuators. Control applications can be categorized into continuous, 

discrete, and hybrid control. In the first category, a controller samples 

continuous signals at regular intervals and computes streams of data to 

produce approximations of continuous output signals. An example application 

is the control of a valve to keep the flow of a fluid constant in the presence of 

varying supply pressure. In the second category, the controller reacts to 

discrete events and affect discrete actions. For instance, a controller could 

detect the level of fluid in a tank reaching minimum or maximum levels, and 

turn the supply on or off accordingly. Hybrid control applications combine 

both the other two types of control. 

Continuous control applications can further be divided into closed-loop 

control and open-loop control. In the case where a single output of a physical 

process is being controlled using closed-loop control, the controller measures 

this output, called the controlled variable, and compares it with the desired 

value, the reference. Based on the difference, an input signal to the process, 

called the manipulated variable, is produced to drive the output in the desired 

direction. In this way, the controller can make the process output track a 

variable reference, or keep it constant in the presence of external disturbances. 

Figure 2-7 illustrates the principle, which is also known as feedback control. For 

simplicity, sensors and actuators are not shown, but taken to be part of the 

controller. 
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Figure 2-7 Closed-loop control system. 

In some cases, it may be advantageous to use the principle of open-loop 

control. As illustrated in Figure 2-8, the controller measures the disturbance 

and sets the manipulated variable so as to keep the process output equal to the 

reference. Clearly, this requires that the process is well understood so that the 

combined effect of the measured disturbance and the computed input can be 

accurately predicted. This principle is also known as feed-forward control. In 

addition to such pure closed-loop and open-loop applications as presented 

here, there are applications where both the disturbance and the process output 

are measured. Also, there are multi-variable control applications in which 

multiple process variables are measured and controlled. 

Controller Process
Reference

Controlled
variable

Manipulated
variable

Disturbance

 

Figure 2-8 Open-loop control system. 

In the purest form of discrete control, the controller is only equipped with 

digital (i.e. binary) inputs and outputs, and the control software can be viewed 
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as emulating digital electronic circuits. This has been utilized in graphical 

programming tools. Figure 2-9 shows a simple example of such a program in 

which the output Run becomes true when the input Start becomes true, and 

then stays true until the input Stop becomes true. The block marked “≥1” is a 

logical or-gate and the block marked “&” is a logical and-gate with its lower 

input inverted. 

&Start

Stop

Run
≥1

 

Figure 2-9 Example logic for discrete control system. 

In continuous control loops, the process is usually modeled as a system of 

differential equations, with the inputs and outputs being functions of time. 

Often, the controls software is also implemented so as to approximate a system 

of differential equations. The modeling of physical processes and design of 

control equations is the topic of control theory [5]. For the techniques of control 

theory to be useful, it is essential that the frequency with which the controller 

reads input signals and updates output signals, the sampling frequency, is 

sufficiently high to ensure faithful approximation of the control equations. 

Obviously, this translates into a real-time deadline on the computations the 

controller performs at each sample. In a programmable controller product, the 

application programmer should be able to set the sampling frequency (within 

a certain supported interval), and this frequency should be guarantied with 

some accuracy. This leads to hard real-time deadlines in the design of the 
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controller product. In discrete and hybrid control, real-time requirements are 

also common to ensure the timing of actions in relation to events. 

Traditionally, controller products have been designed for either continuous 

or discrete control. Two important categories of programmable controller 

products have been distributed control systems (DCSs) for continuous control 

and programmable logic controllers (PLCs) for discrete control. In the past, PLCs 

usually only supported simple computations on digital data, and the costs for 

these were considerably lower than for DCSs, which were required to perform 

at least numerical computations. However, the dramatic reduction in the price 

of computing hardware has resulted in both more sophisticated PLCs and less 

expensive DCSs. These trends have lead to a convergence of these product 

categories into a single category of products often called programmable 

controllers. Such products still vary noticeably in price, functionality, and other 

attributes, though. 

Some concepts of programmable controllers have been standardized in the 

industry standard IEC 61131 [49]. In particular, the part of the standard called 

IEC 61131-3 [50] standardizes a programming model and a set of 

programming languages. This set comprises the graphical languages Ladder 

Diagram (LD), Function Block Diagram (FBD), and Sequential Function Chart 

(SFC), and the textual languages Instruction List (IL) and Structured Text (ST). 

All languages share a set of standard data types for representing Booleans, 

character strings, date and time values, numbers, enumerations, arrays, and 

structures. In addition, the programming model supports three kinds of 

program organizing units (POUs), called programs, function blocks, and functions. 
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Functions take input parameters and provide a return value in the normal 

way. They can be written in any of the above languages except SFC. 

Function blocks are instances of function block types. A function block 

type consists of a declaration part and an implementation part. The declaration 

part defines variables, which may be of type input, output, input/output, 

internal, external, or temporal, and possibly a set of instances of other function 

blocks. External variables are references to variables defined outside the 

function block. Temporal variables are allocated and initialized at every 

invocation of an instance. An example declaration part of a function block is 

shown below.  

 
FUNCTION_BLOCK  PID 
 VAR_INPUT 
  Kp : REAL;    (* Proportional gain *) 
  Ki : REAL;  (* Integral gain *) 
  Kd : REAL;  (* Differential gain *) 
  T : REAL;  (* Sampling interval *) 
  Input : REAL;  (* Actual process value *) 
  Reference : REAL;  (* Desired process value *) 
 END_VAR; 
 VAR_OUTPUT 
  Output : REAL;  (* Controller output *) 
 END_VAR; 
 VAR 
  Error : REAL;  (* Difference between actual and desired *) 
  Error_old : REAL := 0; (* Error of previous sample *) 
  Sum : REAL := 0;  (* Accumulated error *) 
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 END_VAR; 
END_FUNCTION_BLOCK; 
 

This function block type defines a number of input, output, and internal 

variables, necessary to implement a proportional-integral-differential (PID) 

controller, which is a very common type of controller used in closed-loop 

control applications. Viewing the difference between the process output and 

the reference (the error signal) as a continuous function e(t) of time, a PID 

controller computes an approximation of a process input m(t) defined by: 

dt
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A function block implementation can be written in any of the available 

languages. The implementation is executed once every time a function block is 

invoked. A simple implementation of the PID controller in Structured Text is 

shown below. 

 
Error := Reference – Input; 
Sum := Sum + Error; 
Output = Kp*Error + Ki*Sum*T + Kd*(Error – Error_old)/T; 
Error_old := Error; 
 

As one would expect, input variables are read-only within the 

implementation. In addition to primitive statements, function block 

implementations may contain function and function block invocations. The 
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rules that govern the execution of function blocks are the same as those for 

programs, which are discussed in the following. 

Programs are instances of program types, which, like function block types, 

have declaration and implementation parts. A program’s declaration part 

declares variables and function block instances as illustrated in the example 

below. A variable can either be of one of the kinds used in a function block 

declaration or it can be a global variable or an access variables. These 

additional kinds of variables are explained later. 

 
PROGRAM  PIDLoop 
 VAR 
  Kp : REAL;    (* Proportional gain *) 
  Ki : REAL;  (* Integral gain *) 
  Kd : REAL;  (* Differential gain *) 
  T : REAL;  (* Sampling interval *) 
  Input : REAL  AT %IW01; (* Actual process value *) 
  Ref : REAL;  (* Desired process value *) 
  Output : REAL  AT %QW01; (* Controller output *) 
 (* Function blocks *) 
  PID1 : PID;  (* PID controller *) 
  Scale1 : ScaleIn;  (* Scaling and conversion of input *) 
  Scale2 : ScaleOut;  (* Scaling and conversion of output *) 
 END_VAR; 
END_PROGRAM; 
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This program can be used to implement a PID control loop on a controller 

equipped with an input unit that produces integer data and a corresponding 

output unit. To achieve this it uses the PID function block from above and two 

other function blocks for conversion and scaling of data between the formats 

used by I/O units and the PID function block. Notice how the variables Input 

and Output are connected to the addresses of the I/O units using a special 

syntax. This makes the Input variable read-only. An implementation of the 

program in the Function Block Diagram language is show in Figure 2-10. Each 

function block instance appears on the diagram as a rectangle with inputs on 

the left and outputs on the right. Similar symbols are used for operations and 

function calls, which are not named. Lines are used to connect these entities to 

each other and to variables and constants. Outputs of all entities are read-only. 

In the typical case, all entities are invoked from left to right once every time the 

program executes, although function block execution may be configured 

otherwise, as described later. Program and function block implementations 

may include multiple instances of the same function block type, in which case 

each instance maintains its own copies of all variables except those that are 

declared as external. 

Kp
Ki
Ki
T
Input
Reference

Output

PID1 : PID
Kp
Ki
Ki
T

Ref

In

Scale2 : ScaleOut

Out

In

Scale1 : ScaleIn

Out

Output
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Figure 2-10 Function Block Diagram. 
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To control how programs and function blocks are executed on a controller, 

IEC 61131 defines the concepts of configurations, resources, and tasks. A 

configuration contains all the run-time entities of a single physical controller, 

which, at the top level, consists of one or more resources and zero or more 

variables. Each resource is a virtual run-time environment that controls some 

percentage of the processor time. A resource contains one or more program 

instances, zero or more tasks, and zero or more variables. The variables 

declared by configurations and resources are either global variables or access 

variables. Recall that programs can also declare such variables. Global 

variables are accessible to all elements in the declaring context through the use 

of external variable declarations. Access variables are accessible from other 

controller via communication services. Such services are specified in IEC 

61131-5 [51]. Similarly to external variable declarations, access variable 

declarations are references to variables declared elsewhere. Configurations 

and resources may also define resource specific initializations, which specifies 

initial values for variables of contained program and function block instances 

and overrides any initializations specified by their types. The UML class 

diagram in Figure 2-11 illustrates the run-time elements of a controller and 

their relationships.  

Tasks represent concurrent threads of execution within a resource and can 

be periodic or event-driven or both. Each task has an associated priority, each 

periodic task an associated period time, and each event-driven task an 

associated Boolean variable. A program or function block instance may be 

assigned to a task, and each task attempts to execute the instances assigned to 

it once every period and/or at each event occurrence. For instance, the PIDLoop 

program above must be assigned to a periodic task with a period equal to the 
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specified sampling interval in order to work as intended. Scheduling of tasks is 

priority based and may be preemptive or non-preemptive. Preemptive 

scheduling always gives access to the available processor resources to the task 

with the highest priority among those that are ready to execute their instances. 

This may involve suspending (i.e. preempting) an already executing task with 

lower priority. Non-preemptive scheduling lets an already executing task 

finish, even if tasks with higher priority become ready. Programs that are not 

explicitly assigned to a task can be though of as being implicitly assigned to a 

task that has lower priority than any other tasks and is always ready to 

execute. Thus, the presence of such programs results in 100% utilization of the 

resource’s processor time. A function block that is not explicitly assigned to a 

task is executed once every time its containing program or function block is 

executed. 

 
Figure 2-11 Run-time entities of the IEC 61131 programming model 
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3.1 Introduction 

In its simplest form a software component contains some code (that can be 

executed on certain platforms) and an interface that provides (the only) access 

to the component. The code represents the operations that the component will 

perform when invoked. The interface tells the component-user everything he 

needs to know in order to deploy the component. Components can of course 

be deployed in many different contexts. 

Ideally, components should be black boxes, to enable users to (re)use them 

without needing to know the details of their inner structure. In other words, 

the interface of a component should provide all the information needed by its 

users.  Moreover, this information should be the only information they need. 

Consequently, the interface of a component should be the only point of access 

to the component. It should therefore contain all the information that users 
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need to know about the component's operations (that is, what its code enables it 

to do) and its context dependencies (that is, how and where the component can 

be deployed). The code, on the other hand, should be completely inaccessible 

(and invisible), if a component is to be used as a black box.  

The specification of a component is therefore the specification of its 

interface. This must consist of a precise definition of the component's 

operations and context dependencies and nothing else. Typically, the 

operations and context dependencies will contain the parameters of the 

component. 

The specification of a component is useful to both component users and 

component developers. For users, the specification provides a definition of its 

interface, viz. its operations and context dependencies. Since it is only the 

interface that is visible to users, its specification must be precise and complete. 

For developers, the specification of a component also provides an abstract 

definition of its internal structure. Whilst this should be invisible to users, it is 

useful to developers (and maintainers), not least as documentation of the 

component. 

In this chapter, we discuss the specification of software components. We 

will identify all the features that should be present in an idealized component, 

indicate how they should be specified, and show how they are specified using 

current component specification techniques.  
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3.2 Current Component Specification Techniques 

The specifications of components used in practical software development 

today are mostly limited to what we will call syntactic specifications. This 

form of specification includes the specifications used with technologies such as 

Microsoft’s Component Object Model (COM) [29], the Object Management 

Group’s Common Object Request Broker Architecture (CORBA) [52], and 

Sun’s JavaBeans [32]. The first two of these use different dialects of the 

Interface Definition Language (IDL) while the third uses the Java 

programming language to specify component interfaces. In this section, COM 

is mainly used to illustrate the concepts of syntactic specification of software 

components. 

First, we take a closer look at the relationships between components and 

interfaces. A component provides the implementation of a set of named 

interfaces, or types, each interface being a set of named operations. Each 

operation has zero or more input and output parameters and a syntactic 

specification associates a type with each of these. Many notations also permit a 

return value to be associated with each operation, but for simplicity we do not 

distinguish between return values and output parameters. In some 

specification techniques it is also possible to specify that a component requires 

some interfaces, which must be implemented by other components. The 

interfaces provided and required by a component are often called the 

incoming and outgoing interfaces of the component, respectively.  
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Figure 3-1  UML metamodel of the concepts used in syntactic specification of software 
components. 

Figure 3-1 is a UML class diagram [26] showing the concepts discussed 

above and the relationships between them. Note that instances of the classes 

shown on the diagram will be entities such as components and interfaces, 

which can themselves be instantiated. The model is therefore a UML 

metamodel, which can be instantiated to produce other models. It is worth 
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noting that this model allows an interface to be implemented by several 

different components, and an operation to be part of several different 

interfaces. This independence between interfaces and the components that 

implement them is an essential feature of most component specification 

techniques. The possibility of an operation being part of several interfaces is 

necessary to allow inheritance, or subtyping, between interfaces. The model 

also allows parameters to be simultaneously input and output parameters. 

The model presented above is intended to be a generic representation of 

the relationships between components, interfaces, and operations. In practice, 

these relationships vary between specification techniques. For example, one 

can distinguish between object-oriented specifications and what might be 

called procedural specifications. In this chapter we will only consider object-

oriented specifications that are used by current technologies.  This leads to no 

loss of generality, as procedural specification can be seen as a special case of 

object-oriented specification. There are subtle differences in the precise nature 

of the relationship between a component and its interfaces in different object-

oriented specification techniques. In COM, for example, a component 

implements a set of classes, each of which implements a set of interfaces. The 

statement that a component implements a set of interfaces thus holds by 

association. In more traditional object-oriented specification techniques, a 

component is itself a class that has exactly one interface. The statement that a 

component implements a set of interfaces still holds, because this interface can 

include, or be a subtype of, several other interfaces. 

As an example of a syntactic specification, we now consider the 

specification of a COM component. Below is a slight simplification of what 
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might be the contents of an IDL file. First, two interfaces are specified, 

including a total of three operations which provide the functionality of a 

simple spell checker. Both interfaces inherit from the standard COM interface 

IUnknown. (All COM interfaces except IUnknown must inherit directly or 

indirectly from IUnknown. See [29] for more information about the particulars of 

COM.) All operations return a value of type HRESULT, which is commonly 

used in COM to indicate success or failure. A component is then specified 

(called a library in COM specifications), this implementing one COM class, 

which in turn implements the two interfaces previously specified. This 

component has no outgoing interfaces.  

 
interface ISpellCheck : IUnknown 
{ 
 HRESULT check([in] BSTR *word, [out] bool *correct); 
}; 
 
interface ICustomSpellCheck : IUnknown 
{ 
 HRESULT add([in] BSTR *word); 
 HRESULT remove([in] BSTR *word); 
}; 
 
library SpellCheckerLib 
{ 
 coclass SpellChecker 
 { 
  [default] interface ISpellCheck; 
  interface ICustomSpellCheck; 
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 }; 
}; 
 

Relating this specification to the model above, there is one instance of 

Component, which is associated with two instances of Interface. Taking a closer 

look at the first interface, it is associated with a single instance of Operation, 

which is itself associated with one instance of InParameter and two instances of 

OutParameter, representing the two named parameters and the return value.  

The information that can be obtained from a component specification such 

as the above is limited to what operations the component provides, and the 

number and types of their parameters. In particular, there is no information 

about the effect of invoking the operations, except for what might be guessed 

from names of operations and parameters. Thus, the primary uses of such 

specifications are type checking of client code and as a base for interoperability 

between independently developed components and applications. Different 

component technologies have different ways of ensuring such interoperability. 

For example, COM specifies the binary format of interfaces while CORBA 

defines a mapping from IDL to a number of programming languages. 

An important aspect of interface specifications is how they relate to 

substitution and evolution of components. Evolution can be seen as a special 

case of substitution where a newer version of a component is substituted for 

an older version. Substituting a component Y for a component X is said to be 

safe if all systems that work with X will also work with Y. From a syntactic 

viewpoint, a component can safely be replaced if the new component imple-

ments at least the same interfaces as the older components, or, in traditional 

object-oriented terminology, if the interface of the new component is a subtype 
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of the interface of the old component. For substitution to be safe however, 

there are also constraints on the way that the semantics of operations can be 

changed, as we shall see in the next section. 

3.3 Specifying the Semantics of Components 

While syntactic specifications of components are the only form of 

specifications in widespread use, it is widely acknowledged that semantic 

information about a component’s operations is necessary to use the component 

effectively. Examples of such information are the combinations of parameter 

values an operation accepts, an operation’s possible error codes, and 

constraints on the order in which operations are invoked. In fact, current 

component technologies assume that the user of a component is able to make 

use of such semantic information. For instance, COM dictates that the error 

codes produced by an operation are immutable, i.e. changing these is 

equivalent to changing the interface. These technologies do not, however, 

support the specification of such information. In the example with COM, there 

is no way to include information about an operation’s possible error codes in 

the specification. 

Several techniques for designing component-based systems that include 

semantic specifications are provided in the literature. In this section, we shall 

examine the specification technique presented in [53], which uses UML and 

the Object Constraint Language (OCL) [54] to write component specifications. 

OCL is included in the UML specification. Another well-known method that 

uses the same notations is Catalysis [55]. The concepts used for specification of 

components in these techniques can be seen as an extension of the generic 
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model of syntactic specification presented in the previous section. Thus, a 

component implements a set of interfaces that each consists of a set of 

operations. In addition, a set of pre-conditions and post-conditions is 

associated with each operation. Pre-conditions are assertion that the 

component assumes to be fulfilled before an operation is invoked. Post-condi-

tions are assertions that the component guarantees will hold just after an 

operation has been invoked, provided the operation’s pre-conditions were true 

when it was invoked. In this form of specification, nothing is said about what 

happens if an operation is invoked while any of its pre-conditions are not 

fulfilled. Note that pre- and post-conditions is not a novel feature of 

component-based software development, and is used in a variety of software 

development techniques, such as the Vienna Development Method [56] and 

Design by Contract [57]. 

Naturally, an operation’s pre- and post-conditions will often depend on 

state maintained by the component. Therefore, the notion of an interface is 

extended to include a model of that part of a component’s state that may affect 

or be affected by the operations in the interface. Now, a pre-condition will in 

general be a predicate over the operation’s input parameters and this state, 

while a post-condition is a predicate over both input and output parameters as 

well as the state just before the invocation and just after. Furthermore, a set of 

invariants may be associated with an interface. An invariant is a predicate over 

the interface’s state model that will always hold. Finally, the component 

specification may include a set of inter-interface conditions, which are predi-

cates over the state models of all the component’s interfaces.  
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Figure 3-2  UML metamodel of the concepts used in semantic specification of software 
components. 

The concepts introduced here and the relationships among them are 

shown on the UML class diagram in Figure 3-2. For the sake of readability, the 

classes Name, Type, and InOutParameter are not shown, since they have no direct 

relationships with the newly introduced classes. Note that this model allows 

the same state to be associated with several interfaces. Often, the state models 

of different interfaces of a component will overlap rather than be exactly the 
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same. This relationship cannot be expressed in the model since we cannot 

make any assumptions about the structure of state models. Note also how each 

post-condition is associated with both input and output parameters and only 

one instance of State. The states before and after an invocation are represented 

by two separate instances of this single instance of (the metaclass) State. 

In the model presented above, a partial model of the state of a component 

is associated with each interface, to allow the semantics of an interface’s 

operations to be specified. It is important to note that this is not intended to 

specify how state should be represented within the component. While state 

models in component specifications should above all be kept simple, the actual 

representation used in the component’s implementation will usually be subject 

to efficiency considerations, depend on the programming language, and so on. 

It is also worth mentioning that the above model is valid for procedural as well 

as object-oriented specification techniques. 

check(in word : String, out correct : Boolean) : HRESULT

«interface type»
ISpellCheck String

1

words

*

add(in word : String) : HRESULT
remove(in word : String) : HRESULT

«interface type»
ICustomSpellCheck

1

words

*

String

 

Figure 3-3 Example interface specification diagram. 

Before discussing the ramifications of this model any further, we now look 

at an example specification using the technique of [53]. Figure 3-3 is an 

example of an interface specification diagram. It shows the two interfaces 
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introduced in the previous section as classes with the <<interface type>> 

stereotype. Thus, all the information in the syntactic interface specifications is 

included here. The state models of the interfaces are also shown. A state model 

generally takes the form of one or more classes having at least one composition 

relationship with the interface the state belongs to. The special stereotype 

<<interface type>> is used instead of the standard <<interface>> since this would 

not allow the state models to be associated with the interfaces in this way. 

The interface specification diagram is only a part of the complete interface 

specifications. The pre- and post-conditions that specify the semantics of the 

operations as well as any invariants on the state model is specified separately 

in OCL. Below is a specification of the three operations of the two interfaces 

above. There are no invariants on the state models in this example.  

 
context ISpellCheck::check(in word : String, out correct : Boolean) : HRESULT 
pre: 

 word <> " "  

post: 
 SUCCEEDED(result) implies correct = words->includes(word) 

 
context ICustomSpellCheck::add(in word : String) : HRESULT 
pre: 

 word <> " " 

post: 
  SUCCEEDED(result) implies words = words@pre->including (word) 
 
context ICustomSpellCheck::remove(in word : String) : HRESULT 
pre: 
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 word <> " " 

post: 
 SUCCEEDED(result) implies words = words@pre->exluding(word)  
 

The pre-condition of the first operation states that if it is invoked with an input 

parameter that is not the empty string, the post-condition will hold when the 

operation returns. The post-condition states that if the return value indicates 

that the invocation was successful then the value of the output parameter is 

true if word was a member of the set of words and false otherwise. The speci-

fications of the two last operations illustrate how post-conditions can refer to 

the state before the invocation using the @pre suffix. This specification 

technique uses the convention that if a part of an interface’s state is not 

mentioned in a post-condition, then that part of the state is unchanged by the 

operation. Thus, words = words@pre is an implicit post-condition of the first 

operation. All the specifications refer to an output parameter called result, 

which represents the return value of the operations. The function SUCCEEDED 

is used in COM to check whether a return value of type HRESULT indicates 

success or failure.  

Similarly to interface specification diagrams, component specification 

diagrams are used to specify which interfaces components provide and 

require. Figure 3-4 is an example of such a diagram, specifying a component 

that provides the two interfaces specified above. The component is 

represented by a class with stereotype <<comp spec>> to emphasize that it 

represents a component specification. UML also has a standard component 

concept, which is commonly used to represent a file that contains the 

implementation of a set of concrete classes. 
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«comp spec»
SpellChecker

ISpellCheck
ICustomSpellCheck

 
Figure 3-4 Example component specification diagram. 

The component specification is completed by the specification of its inter-

interface constraints. The component in this example has one such constraint, 

specifying that the sets of words in the state models of the two interfaces must 

be the same. This constraint relates the operations of the separate interfaces to 

each other, such that invocations of add or remove affect subsequent 

invocations of check. The constraint is formulated in OCL below. 

 
context SpellChecker 
ISpellCheck::words = ICustomSpellCheck::words 
 

An important property of the model presented above is that state models 

and operation semantics are associated with interfaces rather than with a 

component. This means that the semantics is part of the interface specification. 

Consequently, a component cannot be said to implement an interface if it 

implements operations with the same signatures as the interface’s operations 

but with different semantics. It should be noted that the terminology varies in 

the literature on this point, as interfaces are sometimes seen as purely syntactic 

entities. In such cases, specifications that also include semantics are often 

called contracts. UML, for instance, defines an interface to be a class with only 

abstract operations, which can have no state associated with it. 

While the main uses of syntactic specifications are type checking and 

ensuring interoperability, the utility of semantic specifications is potentially 
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much larger. The most obvious use is perhaps tool support for component 

developers as well as developers of component-based application. For the 

benefit of component developers, one can imagine an automatic testing tool 

that verifies that all operations produce the correct post-conditions when their 

pre-conditions are satisfied. For this to work, the tool must be able to obtain 

information about a component’s current state. A component could easily be 

equipped with special operations for this purpose, which would not need to be 

included in the final release. Similarly, for application developers, one can 

imagine a tool that generates assertions for checking that an operation’s pre-

conditions are satisfied before the operation is invoked. These assertions could 

either query a component about its current state, if this is possible, or maintain 

a state model of their own. The last technique requires that other clients do not 

affect the state maintained by a component, however, since the state model 

must be kept synchronized with the actual state. Such assertions would 

typically not be included in a final release, either. 

With a notion of interface specification that include semantics, the concept 

of substitution introduced in the previous section can now be extended to 

cover semantics. Clearly, if a component Y implements all the (semantically 

specified) interfaces implemented by another component X, then Y can be 

safely substituted for X. This condition is not necessary, however, for 

substitution to be safe. What is necessary is that a client that satisfies the pre-

conditions specified for X will always satisfy the pre-conditions specified for 

Y, and that the client can rely on the post-conditions ensured by X also to be 

ensured by Y. This means that Y must implement operations with the same 

signatures as the operations of X, and with pre- and post-conditions that 

ensures the condition above. More specifically, if X implements an operation 
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O, where pre(O) is the conjunction of its pre-conditions and post(O) the 

conjunction of its post-conditions, Y must implement an operation O’ with the 

same signature such that pre(O’) implies pre(O) and post(O) implies post(O’). 

In other words, the interfaces implemented by Y can have weaker pre-

conditions and stronger post-conditions than the interfaces implemented by X. 

It follows from this that the state models used for specifying the interfaces of X 

and Y need not be identical. This condition for semantically safe substitution of 

components is an application of Liskov’s principle of substitution [58].  

Note that the above discussion is only valid for sequential systems. For 

multi-threaded components or components that are invoked by concurrently 

active clients, the concept of safe substitution must be extended as discussed in 

[59]. Finally, it must be noted that a client may still malfunction after a 

component substitution, even if the components fulfill semantic specifications 

that satisfy the above condition. This can happen, for instance, if the designers 

of the client and the new component have made conflicting assumptions about 

the overall architecture of the system. The term “architectural mismatch” has 

been coined to describe such situations [44]. 

The component specification diagram in Figure 2.4 shows how we can 

indicate which interfaces are offered by a component. In this example, we 

indicated that the spell checker offered the interfaces ISpellCheck and 

ICustomSpellCheck and used the constraint 

 
ISpellCheck::words = ICustomSpellCheck::words 
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to specify that the interfaces act upon the same information model. We could, 

however, extend such diagrams to indicate the interfaces on which a 

component depends. This is illustrated in Figure 3-5. 

<<comp spec>>
SomeComponent

ISomeInterface

IAnotherInterface

IUsedInterface

<<comp spec>>
SomeComponent

ISomeInterface

IAnotherInterface

IUsedInterface  

Figure 3-5 Component specification showing an interface dependency. 

We can also specify realization contracts using collaboration interaction 

diagrams. For example, in Figure 3-6 we state that whenever the operation op1 

is called, a component supporting this operation must in invoke the operation 

op2 in some other component. Component specification diagrams and 

collaboration interaction diagrams may therefore be used to define behavioral 

dependencies. 

1: op1

/IUsedInterface

1.1: op2

/ISomeInterface

1: op1

/IUsedInterface

1.1: op2

/ISomeInterface

 

Figure 3-6 Collaboration interaction diagrams. 
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3.4 Specifying Extra-Functional Properties of Components 

The specification of extra-functional properties of software components has 

recently become a subject of interest, mainly within the software architecture 

community. In [60], it is argued that the specification of architectural 

components is not properly addressed by conventional software doctrine. 

Architectural components are components of greater complexity than 

algorithms and data structures. Software components, as defined above, 

generally belong to this class. Conventional software doctrine is the view that 

software specifications must be sufficient and complete (say everything a user 

needs to know and is permitted to rely on about how to use the software), 

static (written once and frozen), and homogeneous (written in a single notation). 

To use an architectural component successfully, information about more 

things than its functionality is required. This includes structural properties, 

governing how a component can be composed with other components; extra-

functional properties, such as performance, capacity, and environmental 

assumptions; and family properties, specifying relations among similar or 

related components. It is not realistic to expect specifications to be complete 

with respect to all such properties, due to the great effort that would require, 

even if the developer of a component were able to anticipate all aspects of the 

component its users might care about. Often, this is even unrealistic in itself. 

Since we cannot expect software components to be delivered with 

specifications that are sufficient and complete, and since developers are likely 

to discover new kinds of dependencies as they attempt to use independently 

developed components together, specifications should be extensible. 

Specifications should also be heterogeneous, since the diversity of properties 
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that might be of interest is unlikely to be suitably captured by a single 

notation. 

The concept of credentials is proposed in [60] as a basis for specifications 

that satisfy the requirements outlined above. A credential is a triple 

<Attribute, Value, Credibility>, where Attribute is a description of a property 

of a component, Value a measure of that property, and Credibility a 

description of how the measure has been obtained. A specification technique 

based on credentials must include a set of registered attributes, along with 

notations for specifying their value and credibility, and provisions for adding 

new attributes. A technique could specify some attributes as required and 

others as optional. The concept has been partially implemented in the 

architecture description language UniCon [61], which allows an extendable list 

of <Attribute, Value> pairs to be associated with a component. The self-

describing components of Microsoft’s new .NET platform [62] includes a 

concept of attributes in which a component developer can associate attribute 

values with a component and define new attributes by sub-classing an existing 

attribute class. Attributes are part of a component’s metadata, which can be 

programmatically inspected, and is therefore suitable for use with automated 

development tools. 

The concept of credentials has been incorporated in an approach to 

building systems from pre-existing components called Ensemble [63]. This 

approach focuses on the decisions that designers have to make, in particular 

when faced with a choice between competing technologies, competing 

products within a technology, or competing components within a product. In 

Ensemble, a set of credentials may be associated with a single technology, 
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product, or component, or with a group of such elements. In addition, a 

variation of credentials is introduced to handle measures of properties that are 

needed but have not yet been obtained. These are called postulates and can be 

describes as credentials where the credibility is replaced by a plan for 

obtaining the measure. The credential triple is thus extended with a flag 

isPostulate. 

Component

Interface

Operation

*

in-interfaces*

*

*

Attribute
Value
Credibility
IsPostulate : Boolean

Credential

*
0..1

* 0..1

*

0..1

Parameter

1

*

Type

1 *

*

out-interfaces

*

 

Figure 3-7 UML metamodel of concepts used to specify extra-functional properties of software 
components. 

Returning our focus to the specification of single components, we now 

extend the ideas of Ensemble to allow a set of credentials to be associated with 

a component, an interface, or an operation. A UML metamodel with the 

concepts of syntactic specification augmented with credentials is shown in 
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Figure 3-7. The class Name and the subclasses of Parameter have been omitted 

for brevity. Note that the concept of credentials is complementary to the 

specification of a component’s functionality and completely orthogonal to the 

concepts introduced for semantic specifications. Since the specification of 

extra-functional properties of software components is still an open area of 

research, it would probably be premature to proclaim this as a generic model. 

Since the extra-functional properties that may be included in a component 

specification can be of very different natures, it is not possible to formulate a 

general concept of safe substitution for components that includes changes of 

such properties. A set of extra-functional properties, which can all be 

expressed as cost specifications, is studied in [64] were it is shown that, 

depending on the chosen property, weakening, strengthening, or equivalence 

is required for substitution to be safe 

3.5 Summary 

A component has two parts: an interface and some code. The interface is the 

only point of access to the component, and should ideally contain all the 

information that users need to know about the component's operations, i.e. 

what it does, and how and where the component can be deployed, i.e. its 

context dependencies. The code, on the other hand, should be completely 

inaccessible (and invisible). The specification of a component therefore must 

consist of a precise definition of the component's operations and context 

dependencies. In current practice, component specification techniques specify 

components only syntactically. The use of UML and OCL to specify 

components represents a step towards semantic specifications. Specification of 
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extra-functional properties of components is still an open area of research, and 

it is uncertain what impact it will have on the future of software component 

specification. 

3.6 Corrections to the Original Version 

This chapter contains some corrections to the originally published version of 

the paper. These are all related to the UML metamodels of component 

specifications. In Figure 3-1, the multiplicities of Component and Interface in their 

association with Name have been changed from “1” to “1..0”. In Figure 3-2, the 

multiplicity of State in its association with OutParameter has been changed from 

“2” to “1” and the description of the figure in the text has been updated 

accordingly. Specifically, the text 

Note also how each post-condition is associated with both input and 

output parameters and only one instance of State. The states before and 

after an invocation are represented by two separate instances of this 

single instance of (the metaclass) State. 

on page 71 in this thesis replaces 

Note also how each post-condition is associated with both input and 

output parameters and two instances of the state model, representing 

the state before and after an invocation. 

of the original version. Finally, in Figure 3-7, the multiplicity of the three 

classes associated with Credential have been changed from “1” to “0..1”. 
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Abstract: When different business units of an international company are responsible 

for the development of different parts of a large system, a component-based software 

architecture may be a good alternative to more traditional, monolithic architectures. 

The new common control system, developed by ABB to replace several existing control 

systems, must incorporate support for a large number of I/O systems, communication 

interfaces, and communication protocols. An activity has therefore been started to 

redesign the system’s architecture, so that I/O and communication components can be 

implemented by different development centers around the world. This paper reports on 

experiences from this effort, describing the system, its current software architecture, 

the new component-based architecture, and the lessons learned so far. 
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4.1 Introduction 

Increased globalization and the more competitive climate make it necessary 

for international companies to work in new ways that maximize the synergies 

between different business units around the world. Interestingly, this may 

also require the software architecture of the developed systems to be 

rethought. In a case where different development centers are responsible for 

different parts of the functionality of a large system, a component-based 

architecture may be a good alternative to the more traditional, monolithic 

architectures, usually comprising a large set of modules with many visible 

and invisible interdependencies. Additional, expected benefits of a 

component-based architecture are increased flexibility and ease of 

maintenance [65,66]. 

This paper reports on experiences from an ongoing project at ABB to 

redesign the software architecture of a control system to make it possible for 

different development centers to incorporate support for different I/O and 

communication systems. The main challenge has been to achieve a good 

design of the architecture where the interfaces between components are clear 

and sufficiently general, while minimizing the additional costs in the starting 

phase of the project. Another challenge is to keep the performance of the 

existing system, since the componentization and introduction of generic 

interfaces between components may cause overhead in the code execution.  In 

addition, parts of the system have inflexible real-time requirements, which the 

new architecture must support. 

The remainder of the paper is organized as follows. In Section two, the 

ABB control system is described with particular focus on I/O and 
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communication. The software architecture and its transformation are 

described in more detail in Section three. A brief analysis of the effects on 

different quality attributes is also presented. In Section four, we analyze the 

experiences from the project and try to extract some lessons of general value. 

Section five reviews some related work in this area, and Section six present our 

conclusions and outlines future work. 

4.2 The ABB control system 

Following a series of mergers and acquisitions, ABB now has several 

independently developed control systems for the process and manufacturing 

industries. To leverage its worldwide development resources, the company 

has decided to continue development of only a single, common control system 

for these and related industries. One of the existing control systems was 

selected to be the starting point of the common system. This system is based 

on the IEC 61131-3 industry standard for programmable controllers [67]. The 

software has two main parts, the ABB Control Builder, which is a Windows 

application running on a standard PC, and the system software of the ABB 

controller family, running on top of a real-time operating system (RTOS) on 

special-purpose hardware. The latter is also available as a Windows 

application, and is then called the ABB Soft Controller.  

The Control Builder is used to specify the hardware configuration of a 

control system, comprising one or more controllers, and to write the programs 

that will execute on the controllers. The configuration and the control 

programs together constitute a control project. When the control project is 

downloaded to the control system via the control network, the system 
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software of the controllers is responsible for interpreting the configuration 

information and for scheduling and executing the control programs. Only 

periodic execution is supported. Figure 4-1 shows the Control Builder with a 

control project opened. It consists of three structures, showing the libraries 

used by the control programs, the control programs themselves, and the 

hardware configuration, respectively. The latter structure is expanded to show 

a configuration of a single AC800M controller, equipped with an analogue 

input module (AI810), a digital output module (DO810), and a communication 

interface (CI851) for the PROFIBUS-DP protocol. 

 

Figure 4-1 The ABB Control Builder. 

To be attractive in all parts of the world and a wide range of industry 

sectors, the common control system must incorporate support for a large 
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number of I/O systems, communication interfaces, and communication 

protocols. In the current system, there are two principal ways for a controller 

to communicate with its environment, I/O and variable communication. When 

using I/O, variables of the control programs are connected to channels of 

input and output modules using the Control Builder. For instance, a Boolean 

variable may be connected to a channel on a digital output module. When the 

program executes, the value of the variable is transferred to the output channel 

at the end of every execution cycle. Variables connected to input channels are 

set at the beginning of every execution cycle. Real-valued variables may be 

attached to analogue I/O modules. 

To configure the I/O modules of a controller, variables declared in the 

programs running on that controller is associated with I/O channels using the 

program editor of the Control Builder. Figure 4-2 shows the program editor 

with a small program, declaring one input variable and one output variable. 

Notice that the I/O addresses specified for the two variables correspond to the 

position of the two I/O modules in Figure 4-1. 

Variable communication is a form of client/server communication and is 

not synchronized with the cyclic program execution. A server supports one of 

several possible protocols and has a set of named variables that may be read or 

written by clients that implement the same protocol. An ABB Controller can be 

made a server by connecting program variables to so-called access variables in 

a special section of the Control Builder. Servers may also be other devices, 

such as field-bus devices. Any controller, equipped with a suitable 

communication interface, can act as a client by using special routines for 

connecting to a server and reading and writing variables via the connection. 
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Such routines for a collection of protocols are available in the Communication 

Library, which is delivered with the Control Builder. 

 

Figure 4-2  The program editor of the Control Builder. 

4.3 Componentization 

4.3.1 Current software architecture 

The software of the ABB Control System consists of a large number of source 

code modules, each of which are used to build the Control Builder or the 

controller system software or both. Figure 4-3 depicts this architecture, with 

emphasis on I/O and communication. Many modules are also used as part of 

other products, which are not discussed further here. This architecture is thus 

a product line architecture [15], although the company has not yet adopted a 

systematic product line approach. The boxes in the figure represent logical 
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components of related functionality. Each logical component is implemented 

by a number of modules, and is not readily visible in the source code. 
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Figure 4-3 The current software architecture. 

To see the reason for the overlap in the source code of the Control Builder 

and that of the controller system software, we look at the handling of 

hardware configurations. The configuration is specified using the control 

builder. For each controller in the system, it is specified what additional 

hardware, such as I/O modules and communication interfaces, it is equipped 

with. Further configuration information can be supplied for each piece of 

hardware, leading to a hierarchic organization of information, called the 

hardware configuration tree. The code that builds this tree in the Control 

Builder is also used in the controller system software to build the same tree 

there when the project is downloaded. If the configuration is modified in the 

Control Builder and downloaded again, only a description of what has 

changed in the tree is sent to the controller. 
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The main problem with the current software architecture is related to the 

work required to add support for new I/O modules, communication 

interfaces, and protocols. For instance, adding support for a new I/O system 

may require source code updates in all the components except the User 

Interface and the Communication Server, while a new communication 

interface and protocol may require all components except I/O Access to be 

updated. 

As an example of what type of modifications may be needed to the 

software, we consider the incorporation of a new type of I/O module. To be 

able to include a device, such as an I/O module, in a configuration, a 

hardware definition file for that type of device must be present on the 

computer running the Control Builder. For an I/O module, this file defines the 

number and types of input and output channels. The Control Builder uses this 

information to allow the module and its channels to be configured using a 

generic configuration editor. This explains why the user interface does not 

need to be updated to support a new I/O module. The hardware definition file 

also defines the memory layout of the module, so that the transmission of data 

between program variables and I/O channels can be implemented in a generic 

way.  

For most I/O modules, however, the system is required to perform certain 

tasks, for instance when the configuration is compiled in the Control Builder 

or during start-up and shutdown in the controller. In today’s system, routines 

to handle such tasks must be hard-coded for every type of I/O module 

supported. This requires software developers with a thorough knowledge of 

the source code. The situation is similar when adding support for 
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communication interfaces and protocols. The limited number of such 

developers therefore constitutes a bottleneck in the effort to keep the system 

open to the many I/O and communication systems found in industry. 

4.3.2 Component-based software architecture 

To make it much easier to add support for new types of I/O and 

communication, it was decided to split the components mentioned above into 

their generic and non-generic parts. The generic parts, commonly called the 

generic I/O and communication framework, contains code that is shared by all 

hardware and protocols implementing certain functionality. Routines that are 

special to a particular hardware or protocol are implemented in separate 

components, called protocol handlers, installed on the PC running the Control 

Builder or on the controllers. This component-based architecture is illustrated 

in Figure 4-4. To add support for a new I/O module, communication interface, 

or protocol to this system, it is only necessary to add protocol handlers for the 

PC and the controller along with a hardware definition file and possibly a 

device driver. The format of hardware definition files is extended to include 

the identities of the protocol handlers  

Essential to the success of the approach, is that the dependencies between 

the framework and the protocol handlers are fairly limited and, even more 

importantly, well specified. One common way of dealing with such 

dependencies is to specify the interfaces provided and required by each 

component. The new control system uses the Component Object Model (COM) 

[29] to specify these interfaces, since COM provides suitable formats both for 

writing interface specification, using the COM Interface Description Language 
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(IDL), and for run-time interoperability between components. For each of the 

generic components, two interfaces are specified: one that is provided by the 

framework and one that may be provided by protocol handlers. Interfaces are 

also defined for interaction between protocol handlers and device drivers. The 

identities of protocol handlers are provided in the hardware definition files as 

the Globally Unique Identifiers (GUIDs) of the COM classes that implement 

them. 
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Figure 4-4  Component-based software architecture. 

COM allows several instances of the same protocol handler to be created. 

This is useful, for instance, when a controller is connected to two separate 

networks of the same type. Also, it is useful to have one object, implementing 

an interface provided by the framework, for each protocol handler that 
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requires the interface. An additional reason that COM has been chosen is that 

commercial COM implementations are expected to be available on all 

operating systems that the software will be released on in the future. The 

Control Builder is only released on Windows, and an effort has been started to 

port the controller system software from pSOS to VxWorks. In the first release 

of the system the protocol handlers will be implemented as C++ classes, which 

will be linked statically with the framework. This works well because of the 

close correspondence between COM and C++, where every COM interface has 

an equivalent abstract C++ class.  

An important constraint on the design of the architecture is that hard real-

time requirements, related to scheduling and execution of control programs, 

must not be affected by interaction with protocol handlers. Thus, all code in 

the framework responsible for instantiation and execution of protocol 

handlers, always executes at a lower priority than code with hard deadlines. 

When a control system is configured to use a particular device or protocol, 

the Control Builder uses the information in the hardware definition file to load 

the protocol handler on the PC and execute the protocol specific routines it 

implements. During download, the identity of the protocol handler on the 

controller is sent along with the other configuration information. The 

controller system software then tries to load this protocol handler. If this fails, 

the download is aborted and an error message displayed by the Control 

Builder. This is very similar to what happens if one tries to download a 

configuration, which includes a device that is not physically present. If the 

protocol handler is available, an object is created and the required interface 

pointers obtained. Objects are then created in the framework and interface 
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pointers to these passed to the protocol handler. After the connections between 

the framework and the protocol handler has been set up through the exchange 

of interface pointers, a method will usually be called on the protocol handler 

object that causes it to continue executing in a thread of its own. Since the 

interface pointers held by the protocol handler references objects in the 

framework, which are not used by anyone else, all synchronization between 

concurrently active protocol handlers can be done inside the framework. 

To make this more concrete, we now consider the interface pair IGenServer, 

which is provided by the framework, and IPhServer, which is provided by 

protocol handlers implementing the server side of a communication protocol 

on the controllers. Figure 4-5 is a UML structure diagram showing the 

relationships between interfaces and classes involved in the interaction 

between the framework and such a protocol handler. The class CMyProtocol 

represents the protocol handler. The interface IGenDriver gives the protocol 

handler access to the device driver for a communication interface.  

CGenServer

«interface»
IGenServer

«interface»
IPhServer

«interface»
IGenDriver

CGenDriver

CMyProtocol
 

Figure 4-5  Interfaces for communication servers. 
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The definition of IPhServer is shown below. Three operations are defined by 

this interface. The first two are used to pass interface pointers to objects 

implemented by the framework to the protocol handler. The other two 

operations are used to start and stop the execution of the protocol handler in a 

separate thread.  

interface IPhServer : IUnknown 
{ 
 HRESULT SetServerCallback([in] IGenServer *pGenServer); 
 HRESULT SetServerDriver ([in] IGenDriver *pGenDriver); 
 HRESULT ExecuteServer(); 
 HRESULT StopServer(); 
}; 

The UML sequence diagram in Figure 4-6 shows an example of what might 

happen when a configuration is downloaded to a controller, specifying that 

the controller should provide server-side functionality. The system software 

first invokes the COM operation CoCreateInstance to create a protocol handler 

object and obtain an IPhServer interface pointer. Next, an instance of CGenServer 

is created and a pointer to it passed to the protocol handler using 

SetServerCallback. Similarly, a pointer to a CGenDriver object is passed using 

SetDriverCallback. Finally, ExecuteServer is invoked, causing the protocol handler 

to start running in a new thread. 
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COM

CoCreateInstance()

 : CMyProtocolnew()

 : CGenServernew()

SetServerCallback()

 : CGenDrivernew()

SetServerDriver()

ExecuteServer()

 

Figure 4-6  Call sequence to set up connections. 

To see how the execution of the protocol handler proceeds, we first look at 

the definition of IGenServer. This interface defines four operations. The two first 

are used to inform the framework about incoming requests from clients to 

establish a connection and to take down an existing connection. The two last 

operations are used to handle requests to read and write named variables, 

respectively. The index parameter is used with variables that hold structured 

data, such as records or arrays. All the methods have an out parameter that is 

used to return a status word. 
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interface IGenServer : IUnknown 
{ 
 HRESULT Connect([out] short *status); 
 HRESULT Disconnect([out] short *status); 
 HRESULT ReadVariable( 
  [in] BSTR *name, [in] short index, [out] tVal *pVal, [out] short *status); 
 HRESULT WriteVariable( 
  [in] BSTR *name, [in] short index, [in] tVal *pVal, [out] short *status); 
}; 

Running in a thread of its own, the protocol handler uses the IGenDriver 

interface pointer to poll the driver for incoming requests from clients. When a 

request is encountered the appropriate operation is invoked via the IGenServer 

interface pointer, and the result of the operation, specified by the status 

parameter, reported back to the driver and ultimately to the communication 

client via the network. As an example, Figure 4-7 shows how a read request is 

handled by calling ReadVariable. The definition of the IGenDriver interface is not 

included in this discussion for simplicity, so the names of the methods invoked 

on this interface are left unspecified in the diagram. Write and connection 

oriented requests are handled in a very similar manner to read requests. 
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 : CGenServer  : CGenDriver  : CMyProtocol

ReadVariable()

 

Figure 4-7  Call sequence to handle variable read. 

The last scenario to be considered here, is the one where configuration 

information is downloaded, specifying that a protocol handler that was used 

in the previous configuration should no longer be used. In this case, the 

connections between the objects in framework and the protocol handler must 

be taken down and the resources allocated to them released. Figure 4-8 shows 

how this is accomplished by the framework first invoking StopServer and then 

Release on the IPhServer interface pointer. This causes the protocol handler to 

decrement its reference count, and to invoke Release on the interface pointers 

that have previously been passed to it. This in turn, causes the objects behind 

these interface pointers in the framework to release themselves, since their 

reference count reaches zero. Assuming that its reference count is also zero, 

the protocol handler object also releases itself. If the same communication 

interface, and thus the protocol handler object, had also been used for different 
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purposes, the reference count would have remained greater than zero and the 

object not released. 

 : CGenServer  : CGenDriver : CMyProtocol

Release()

Release()

Release()

StopServer

 

Figure 4-8  Call sequence to take down connections. 

4.3.3 Quality attribute analysis 

The software architecture of a system is considered a primary means of 

achieving the correct quality attributes for the system [68]. In this section, the 

possible effects of componentization on the quality attributes of the ABB 

control system is analyzed. This analysis is based on preliminary experiences 

with the system as well as our reflections on the general effects of adopting a 

component-based architecture. The quality attributes discussed include 

attributes observable at run time, such as performance and reliability, and 



100  Use of Component-Based Software Architectures in Industrial Control Systems 

attributes such as maintainability and scalability, which are only observable 

during development.  

Performance. As for all embedded, real-time systems, performance in 

terms of both time and memory usage is a primary concern for the controller. 

It is not expected that the componentization will affect the system’s ability to 

meet its real-time deadlines, since code related to I/O and communication in 

the framework as well as the protocol handlers will execute in threads of lower 

priority than the time-critical control tasks. A component technology such as 

COM is expected to introduce some memory overhead. By taking care only to 

use expensive features when absolutely necessary, however, general 

experience with COM indicates that this overhead will be acceptable. 

Reliability. The integration of independently developed components into 

an industrial system raises the question of reliability. Special functions for 

supervision of components and possibly automatic reset of components 

exhibiting faulty behavior might be necessary to detect and contain the effects 

of faulty components. Although no such functions have been implemented, it 

is expected that supervision of software components can be added without to 

much effort by reusing existing functions for supervision of hardware 

components. 

Maintainability. The maintainability of the system, defined as the ease of 

making corrections, adaptations, and extensions to the system, should be 

positively affected by the adoption of a component-based architecture. 

Changes made to a component that only interacts with the rest of the system 

through well-defined interfaces, is less likely to have unforeseen consequences 



4 Paper B: Componentization of an Industrial Control System 101 

for other parts of the system than changes made to a module with many 

visible and invisible interdependencies with other modules. 

Scalability. One aspect of scalability, the possibility to deploy the software 

on platforms of varying size and performance, is an important concern for the 

controller system software. The component-based architecture is expected to 

have a positive affect on this attribute, since protocol handlers can easily be left 

out on platform where they will not be used. The possibility of using the 

generic interfaces without relying on COM and dynamic linking makes it easy 

to deploy the software on platforms where the overhead of a component 

technology cannot be afforded or where COM support is not available. 

4.4 Lessons learned 

The definitive measure of the success of the project described in this paper will 

be how large the effort required to redesign the software architecture has been 

compared to the effort saved by the new way of adding I/O and 

communication support. It is important to remember, however, that in 

addition to this cost balance, the business benefits gained by shortening the 

time to market must be taken into account. Also important, although harder to 

assess, are the long time advantages of the increased flexibility that the 

component-based software architecture is hoped to provide. 

At the time of writing, the design of the framework, including the 

specification of interfaces, is largely completed and implementation has 

started. It is thus too early to say exactly how much work has been needed, but 

it seems safe to conclude that the efforts are of the same order of magnitude as 



102  Use of Component-Based Software Architectures in Industrial Control Systems 

the work required to add support for an advanced I/O or communication 

system the old way, that is by adding code to the affected modules. From this 

we can infer, that if the new software architecture makes it substantially easier 

to add support for such systems, the effort has been worthwhile. We therefore 

find that the experiences with the ABB control system supports our hypothesis 

that a component-based software architecture is an efficient means for 

supporting distributed development of complex systems. 

Another lesson of general value is that it seems that a component 

technology, such as COM, can very well be used on embedded platforms and 

even platforms where run-time support for the technology is not available. 

Firstly, we have seen that the overhead that follows from using COM is not 

larger than what can be afforded in many embedded systems. In fact, used 

with some care, COM does not introduce much more overhead than do virtual 

methods in C++. Secondly, in systems where no such overhead can be 

allowed, or systems that run on platforms without support for COM, IDL can 

still be used to define interfaces between components, thus making a future 

transition to COM straightforward. This takes advantage of the fact that the 

Microsoft IDL compiler generates C and C++ code corresponding to the 

interfaces defined in an IDL file as well as COM type libraries. Thus, the same 

interface definitions can be used with systems of separately linked COM 

components and statically linked systems where each component is realized as 

a C++ class or C module. 

An interesting experience from the project is that techniques that were 

originally developed to deal with dynamic hardware configurations have been 

successfully extended to cover dynamic configuration of software components. 
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In the ABB control system, hardware definition files are used to specify what 

hardware components a controller may be equipped with and how the system 

software should interact with different types of components. In the redesigned 

system, the format of these files has been extended to specify which software 

components may be used in the system. The true power of this commonality is 

that existing mechanisms for handling hardware configurations, such as 

manipulating configuration trees in the Control Builder, downloading 

configuration information to a control system, and dealing with invalid 

configurations, can be reused largely as is. The idea that component-based 

software systems can benefit by learning from hardware design is also aired in 

[65]. 

4.5 Related work 

The use of component-based software architecture in real-time, industrial 

control has not been extensively studied, as far as we know. One example is 

documented in [69]. This work is not based on experiences from industrial 

development, however, but rather from the construction of a prototype, 

developed in academia for non-real-time platforms with input from industry. 

It also differs from our work in that it focuses on the possibility of replacing 

the multiple controllers usually found in a production cell with a single 

controller, rather than on supporting distributed development. 

The use of software components in embedded systems is also discussed in . 

This work is more ambitious than ours in one sense, as it focuses on techniques 

and tools to ensure correct composition of components. It is more limited in 
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another way, however, since dynamic configuration is not handled by the 

suggested techniques. 

An example of a commercial system that supports component-based 

development of control systems is ControlShell [70]. This system is, however, 

substantially different from the system described in this paper, since 

ControlShell focuses on constructing control systems from re-usable 

components, using a graphical editor and automatic code generation, and is 

not concerned with independently deployable components and dynamic 

system configuration. 

4.6 Conclusions and future work 

The initial experiences from the effort to redesign the software architecture of 

ABB’s control system to support component-based development are 

promising, in that the developers have managed to define interfaces between 

the framework and the protocol handlers. Since the effort to redesign the 

system has not been too extensive, we conclude that the project has met its first 

challenge successfully. Preliminary results using emulated COM suggest that 

the performance of the systems will be acceptable. A solution based on COM 

has yet to be implemented. 

An issue that may be addressed in the future development at ABB is richer 

specifications of interfaces. COM IDL only specifies the syntax of interfaces, 

but it is also useful to specify loose semantics, such as the allowed parameters 

and possible return values of methods, and timing constraints. Since UML has 

already been adopted as a design notation, one possibility is to use the 
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specification style suggested in [53]. One concern, however, is the lack of 

support for specifying timing constraints in UML [71]. Another continuation of 

the work presented here, would be to extend the component approach beyond 

I/O and communication. An architecture were general functionality can be 

easily integrated by adding independently developed components, would be a 

great benefit to this type of system, which is intended for a large range of 

control applications. 

In our continued research concerning this effort we plan to study in more 

detail how different quality attributes are addressed by the software 

architecture. We will, for instance, look at reliability, which is an obvious 

concern when externally developed software components are integrated into 

an industrial system. We have already claimed that the experiences recorded 

in this paper support our hypothesis that component-based software 

architectures is a good alternative to monolithic architectures for complex 

systems developed in distributed organizations. It will be a primary goal of 

our future work to strengthen this claim by presenting data that verifies that 

the development of I/O and communication support is made substantially 

easier by the new architecture.  
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Abstract: Component-based software engineering (CBSE) and the use of (de-facto) 

standard component models have gained popularity in recent years, particularly in the 

development of desktop and server-side software. This paper presents a motivation for 

applying CBSE to real-time systems and discusses the consequences of adopting a 

software component model in the development of such systems. Specifically, the 

consequences of adopting Microsoft’s COM, DCOM, and .NET models are analyzed. 

The most important aspects of these models are discussed in an incremental fashion. 

This analysis will consider both real-time systems in general, and a real-life industrial 

control system where some aspects the COM model have been adopted. 

 

5.1 Introduction 

Component-based software engineering (CBSE) denotes the assembling of 

software products from pre-existing smaller products, generally called 

components. In particular when this is done using (de-facto) standard 
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component models and supporting technologies [1]. A component model 

generally defines a concept of components and rules for their design-time 

composition and/or run-time interaction, and is usually accompanied by one 

or more component technologies, implementing support for composition 

and/or interoperation. 

In recent years, the use of component models has gained popularity in the 

development of desktop and server-side software. Two popular models in 

desktop applications are Sun’s JavaBeans [32] and Microsoft’s ActiveX controls 

[31], where the latter is built on top of the more basic Component Object Model 

(COM) [29]. Both of these are particularly suited for components to be used 

with visual composition tools. The best-known models in the server domain 

are Sun’s Enterprise JavaBeans (EJB) [36], Microsoft’s COM extension COM+ 

[35], and the Object Managements Group’s new CORBA Component Model 

(CCM) [38]. These models offer similar support for transactional processing 

and persistent data management. 

This paper discusses the possibilities of using such component models in 

real-time systems. In particular, the feasibility of using COM, the most basic of 

these models, is analyzed and illustrated through a case study. Microsoft’s 

latest model .NET [72] is also briefly discussed. Section two presents 

motivations for adopting a component model, both in real-time systems 

generally and in a real-world industrial control system. Section three discusses 

the implications of adopting different aspects of a particular component 

model. An overview of related work is given in Section four. Finally, Section 

five concludes the paper. 
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5.2 Motivation 

The general motivation for component-based software engineering is the 

prospect of increased productivity and timeliness of software development 

projects. Indeed, this is as desirable for real-time and embedded software as 

for any other application. It could also be argued that some characteristics of 

CBSE make it particularly attractive for real-time systems. For instance, real-

time software often requires more extensive testing, so the use of pre-tested 

components may be particularly time saving in the development of such 

system. Another example is that many embedded systems, such as mobile 

telephones, could benefit from reuse of components across products and 

models. Conversely, there are also barriers to CBSE particular to real-time and 

embedded systems. Most obviously, there may be a risk that component 

models and technologies may introduce unacceptable overhead or loss of 

predictability. 

An example of a real-time system where the use of a component model has 

been useful is the industrial control system by ABB called ControlIT 

(http://www.abb.com). This product is a modular controller consisting of a 

central processing unit with two expansion buses. One bus is for I/O modules 

of different types and is used to connect the controller to physical signals. The 

other bus is for communication interfaces and allows the controller to 

communicate with other devices using different media and protocols. The 

controller also has two built-in serial ports and redundant Ethernet ports. 

ABB’s development organization is globally distributed, and the interest in 

component models first arose from a wish to make it easier for different 

development centers to add I/O and communication support to the system. It 
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was decided to redesign the system’s architecture so that all code particular to 

a certain I/O module, communication interface, or protocol resides in a 

separate component called a protocol handler. To achieve this, rules and 

formats for interaction between these protocol handlers and the rest of the 

system had to be decided on. In other words, a component model was needed. 

In the following analysis of adopting different aspects of a component model, 

the usefulness and liabilities of each particular aspect in connection with 

protocol handlers will be discussed. The use of a component model to support 

integration of protocol handlers in ABB’s control system is further described in 

[73], where it is demonstrated that the new architecture supports distributed 

development and reduces the time required to implement I/O and 

communication support. 

5.3 Adopting Microsoft Models 

Among the most commonly used component models for desktop applications 

are Microsoft’s Component Object Model (COM) and its extension Distributed 

COM (DCOM) [30]. There is also great interest in the company’s new 

generation of technologies, commonly denoted .NET [72], which also defines a 

component model. This section explores the possibilities of using these models 

in real-time systems. The most important aspects of these models will be 

discussed in an incremental fashion, assuming that it may be desirable in some 

situations also to adopt the models in such a fashion. 
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5.3.1 COM Interfaces 

A key principle of COM and other component models is that interfaces are 

specified separately from both the components that implement them and those 

that use them. COM defines a dialect of the Interface Definition Language (IDL) 

that is used to specify object-oriented interfaces. Interfaces are object-oriented 

in the sense that their operations are to be implemented by a class and passed 

a reference to a particular instance of that class when invoked. The code that 

uses a component does not refer directly to any objects, however. Instead, the 

operations of an interface supported by an object are invoked via what is 

known as an interface pointer. A concept known as interface navigation makes 

it possible for the user to obtain a pointer to every interface supported by the 

object. For a further description of this topic, see e.g. [30]. 

COM also defines a run-time format for interface pointers. What an 

interface pointer really references is an interface node, which in turn, contains a 

pointer to a table of function pointers, called a VTABLE. Typically, the node 

also contains a pointer to an object’s instance data, although this is up to the 

implementation (of the supporting component technology). This use of 

VTABLEs is identical to the way that many C++ compilers implement virtual 

functions. Thus, the time and space overhead associated with accessing an 

object through an interface pointer is the same as that incurred with virtual 

C++ functions. This time overhead is very modest. The memory overhead 

should also be acceptable, perhaps except for the most resource constrained 

embedded systems. Figure 5-1 illustrates the typical format of interface nodes. 
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Figure 5-1 Typical format of COM interface nodes 

For most real-time systems, a more serious concern than these modest 

overheads is that interface navigation introduces a possible source of run-time 

errors. If the user of a component asks an object for a pointer to an interface 

that the object does not support, this will not be detected during compilation. 

It may be argued, in fact, that this is the principal difference between interface 

navigation and interface inheritance in traditional object-oriented 

programming. This can be seen as a necessary price to pay for the otherwise 

desirable reduced compile-time dependence between components. 

Most real-time systems are based on multi-tasking and are often built on 

top of a real-time operating system (RTOS) using some kind of priority-based 

scheduling. Developers of components for real-time systems will generally 

need to make assumptions about how their components will be used in a 

multi-tasking environment. The safest option will be always to assume that an 

object can be concurrently used by several tasks, and guard all methods with 

the necessary synchronization. For reasons of efficiency, however, it may be 

more desirable to require the code that uses the component to provide any 

necessary synchronization. The exact circumstances under which such 
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protection is necessary are thus an important part of the component’s 

documentation. 

The use of COM IDL to specify interfaces and VTABLEs to implement 

interface pointers work well for protocol handlers. The concept of multiple 

interfaces per object with interface navigation is useful since different protocol 

handlers must provide different functionality. The object-oriented nature of 

COM interfaces where each interface pointer refers to a particular instance of a 

class also matches the needs of the ABB control system. Multiple instances of 

the same protocol handler are useful, e.g. when a controller is equipped with 

two identical communication interfaces, linking it to two separate networks of 

the same type. The latest version of the control system uses COM interfaces, 

but not the other parts of COM discussed below. 

5.3.2 Instantiation and Dynamic Linking 

The previous section stated that the code of a COM component is 

implemented in classes, without discussing how instances are created. Also, 

nothing was said about how and when the code in different components is 

linked together. COM defines a policy for instantiation, which is intended to 

ensure that different components can be installed in a system at different 

times. When a component is installed, information about it must be registered 

somewhere in the system, linking the identity of its classes to the code that 

implement these. COM also requires a run-time library, called the COM 

library, to be installed on the system. When some code wants to use a 

component, it uses an operation provided by the COM library to ask for an 

instance of a class and an initial interface pointer to it. If the code of the 
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component is not already loaded into memory, the COM library uses the 

registered information to locate the code and load it before an instance is 

created. 

Thus, creation of an instance involves searching the information about 

registered classes and possibly loading of code. This leads to a noticeable 

overhead when compared to instantiation in for instance C++. Furthermore, 

this overhead will vary, depending on whether the code implementing a class 

has already been loaded or not. This variability can be eliminated, however, by 

designing the software such that all components that may be used will be 

loaded at start-up. Note that removal of instances is subject to the same 

variability, since COM states that code can be unloaded when the last instance 

that rely on it is removed. 

A benefit that follows from COM’s way of creating instances is that the 

code that implements a component can be built independently of any code 

that uses the component. Since instantiation involves passing the identity of 

the desired class as a parameter to a system operation, it is a possible source of 

run-time errors, which is not present during instantiation in traditional object-

oriented programming, since attempting to instantiate a class that does not 

exist will result in a compilation error in this case. Again, this is a necessary 

price to be paid for decreased coupling. 

COM’s principle of instantiation is well suited for creating instances of 

protocol handlers, since no knowledge of the set of available protocol handlers 

should be built into the system. The overhead associated with looking up 

classes and dynamic loading of code is expected to be tolerable, especially 

since the software is designed such that protocol handlers need only be 
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instantiated and deleted during program download. Thus, the extra time taken 

by this way of instantiation will not interfere with the continuous operation of 

the system. An additional benefit of using this technique for instantiation is 

that protocol handlers can be deployed (and updated) independently of the 

rest of the system. Future versions of the control system may include a COM 

library and employ dynamic linking of components. It is possible that a 

commercial component technology, such as WindRiver’s implementation of 

COM for the VxWorks RTOS (http://www.windriver.com) will be used. 

5.3.3 Location Transparency with DCOM 

DCOM is an extension of COM, which allows component-based applications 

to be distributed across memory spaces or physical machines. This is realized 

using auxiliary objects known as proxies and stubs. When some code asks the 

COM library to create an instance of a class that is implemented in a 

component in a different location, the instance is created in the remote location 

along with a stub. The code that asked for the instance is passed an interface 

pointer to a proxy object, created on its side. When an operation is invoked via 

this interface pointer, the proxy translates this to a remote procedure call 

(RPC) to the remote stub, which in turn invokes the corresponding operation 

on the real object. It may also be necessary to create a proxy-stub pair at other 

times than object instantiation. This happens when an interface pointer is 

passed as a parameter to an operation of an object in a remote location. This 

process is known as marshalling. Proxy and stub code is usually generated 

automatically from IDL specifications. 
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The ability to deal with memory spaces may not be of great consequence to 

real-time systems, since real-time operating systems do not traditionally use 

memory spaces. The ability to deal with such may, however, be useful in 

parallel processor architectures. DCOM may be useful in simplifying the 

implementation of distributed real-time systems. The transparency to the 

programmer of accessing remote objects is not completely valid for real-time 

systems, however. Since the timing of object operations will differ between 

local and remote invocations, real-time software developers will still need to 

consider whether their code uses components in another location or not. It is 

also useful for developers of components to be aware of whether their 

components will be remotely accessed. For instance, one may consider 

exploiting the ability to define asynchronous interfaces for such components. 

An additional benefit of using DCOM in real-time systems is that it may 

simplify the implementation of communication between these systems and 

COM-based desktop applications, such as operator stations.  

In addition to the extra time overhead associated with remote invocation 

and marshalling, DCOM also requires more space than COM, to store the 

proxy and stub code as well as the RPC mechanism. The proxy and stub are 

generally quite small and executes relatively quickly, however, so the time and 

space overhead is mostly due to the RPC mechanism. Therefore, using DCOM 

does not result in much of an overhead for distributed real-time systems, 

where RPC or some other communication mechanism would be needed 

anyway.  

A possible reason for using DCOM in ABB’s control system, is that 

protocol handlers could be located in the communication interfaces or I/O 
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modules they support, rather than in the central processing unit. The 

usefulness of this is not obvious, however, especially when considering the 

required additional overhead. Thus, there is no current plans to adopt DCOM 

in the system. 

5.3.4 The Next Generation: .NET 

The name .NET is used by Microsoft to denote a comprehensive set of new 

technologies. This includes a new component model, intended to replace 

COM/DCOM. A notable development is that .NET moves the responsibility of 

providing certain functionality from the components to a more sophisticated 

run-time system. In particular, COM/DCOM requires components to provide 

a considerable amount of “house-keeping” functionality that is taken care of 

by the .NET run-time. Much of the flexibility that follows from having such 

implementations in each component is maintained under .NET, where 

components can affect the operation of the run-time by setting declarative 

attributes.  

A potential advantage of this development is increased reliability, since it 

may be assumed that more effort may be invested in ensuring the quality of a 

run-time system to be re-used in a large number of systems. Another attractive 

consequence of having more code in a common run-time is that the total size 

of the software may decrease. Obviously, this advantage of grows with the 

number of components in the system. On the other hand, using a sophisticated 

run-time system, possibly without using much of its functionality, may lead to 

unnecessarily large software. This is a particular problem for resource 

constrained embedded systems. Fortunately, Microsoft has defined a special 
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compact version of .NET that limits this problem somewhat. What is assumed 

to be the greatest strength of .NET is the potential for increased development 

productivity. This relies both on the aforementioned run-time system with its 

associated libraries, and on advanced development tools. As usual, this gain is 

achieved at the expense of some run-time overhead. While it seams clear that 

this cost is acceptable for desktop software, the corresponding question for 

real-time systems is more open. 

5.4 Related work 

There are some work on software component models and real-time or 

embedded systems in recent literature. This work is dominated by efforts to 

define component models particularly targeted at real-time embedded systems 

or even narrower application domains. Examples include Philip’s Koala 

component model for consumer electronics [25], the component model for 

industrial field devices developed in the PECOS project [74], and the 

commercial product ControllShell [75], which is based on visual composition 

and automatic code generation. Work on using “mainstream” component 

models in real-time systems is less common. One example is [76], which also 

discusses COM. This work, however, focuses on extensions to COM rather 

than the consequences of using the existing model in real-time systems. 

5.5 Conclusion 

This paper has discussed the idea of using a software component model in 

real-time systems. In particular, using Microsoft models, both from the 
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perspective of real-time systems in general and from that of ABB’s control 

system. In general, it has been seen that each of the levels of adopting the 

models that have been discussed, introduces some degree of time and space 

overhead. In addition, new potential sources of run-time errors are introduced, 

corresponding to compilation errors in traditional object-oriented 

programming. It is concluded that COM/DCOM may be used for real-time 

systems, provided that any overhead is acceptable or can be compensated by 

hardware, and that the software designer takes care that the potential run-time 

errors are not allowed to materialize and result in a loss of predictability. 

The major conclusions to be drawn from the discussions in this paper are 

as follows. COM interfaces, which provide a way to separate the specification 

of interfaces from component implementation, carry with them a very modest 

time and memory overhead. Compared to interface inheritance in object-

oriented programming, COM interfaces introduce a potential source of run-

time errors. COM’s mechanism for instantiating objects and loading code at 

run-time has a considerable overhead when compared to instantiation in for 

example C++. This overhead is subject to a certain variability, which may be 

avoided by careful application design. DCOM is an extension of COM that 

allows applications to access COM objects across memory spaces and physical 

machine boundaries. The time and space overhead associated with this is 

dominated by the underlying communication mechanisms. The new .NET 

platform promises increased development productivity, but it remains to be 

seen to what extent it is suitable for real-time systems. 
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6 Conclusion and Future Work 

6.1 Experiences from Industry 

The industrial project that has been the main source of information for this 

thesis was described in Paper B: Componentization of an Industrial Control 

System. It was recorded there that the effort invested in componentization 

seemed to be of the same order of magnitude as the effort required to 

implement a communication protocol in the old way, and that the adoption of 

the chosen subset of COM seemed to result in acceptable system performance. 

The ability to meet hard real-time requirements has not been affected by the 

component-based architecture, since all such requirements are handled by 

threads that cannot be interrupted by the protocol handlers. 

Since the publication of the paper, the parts of the generic I/O and 

communication framework needed to support communication protocols have 

been completed, requiring an estimated effort of 15–20 person-years. A 

number of protocols have been implemented using the new architecture. The 

total effort required to implement a protocol (including the protocol handler, 

device driver, firmware, and possibly IEC 61131-3 function blocks) is 

estimated to be 3–6 person-years. The reduction in this effort compared to that 

required with the previous architecture is estimated to vary from one third to 

one half, or 1–3 person-years. According to current plans, a total of 12 

protocols will have been implemented by the end of 2004. 
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Another interesting experience is that the componentization is believed to 

have resulted in a more modularized and better documented system. Two 

characteristics generally believed to enhance quality. This experience concurs 

with the view of Szypersky [25] that adopting a component-based approach 

may be used to achieve modularization, and may therefore be effective even in 

the absence of externally developed components. The reduction in the effort 

required to implement communication protocols is partly due to the fact that 

the framework now provides some functionality that was previously provided 

by individual protocol implementations. This is also believed to have 

increased quality, since the possibility of each protocol implementation 

introducing new errors in this functionality has been removed. 

Among the problems encountered with the componentization, the most 

noticeable was the difficulty of splitting functionality between independent 

components, i.e. between the framework and the protocol handlers, and thus 

determining the interfaces between these components. In all probability, this 

was in large parts due to the lack of any prior experiences with similar efforts 

within the development organization. Initially, the task of specifying interfaces 

was given to the development center responsible for developing the 

framework. This changed during the course of the project, however, and the 

interfaces ultimately used were in reality defined in an iterative way in 

cooperation between the organizational unit developing the framework and 

those developing protocol handlers. Other problems are of a non-technical 

nature. An example is the potential problem of what business processes to use 

if protocol handlers are to be deployed as stand-alone products. So far, 

protocol handlers have only been deployed as parts of complete controller 

products, comprising both hardware and software. 
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6.2 Analysis of Results 

The experiences described above show that the effort required to add support 

for communication protocols in the controller product has been considerably 

reduced since the adoption of the new architecture. Thus, the investigation 

supports the hypothesis H1-3: 

Adopting a component-based software architecture in conjunction with 

distributed development reduces the effort required to make pre-

specified functional extensions to the software. 

Comparing the invested effort of 15–20 person-years with the saving of 1–3 

person-years per protocol handler it is furthermore concluded that the 

hypothesis H2-2: 

The effort required to design the component-based software 

architecture is justified by the reduction in the effort required to make 

pre-specified functional extensions to the software. 

is supported. Assuming an average effort of 2 person-years to implement a 

protocol handler, the savings surpass the investment after 8–10 such 

implementations. Thus, based on current plans for protocol handlers to be 

implemented, is it expected that the savings exceed the investment by the end 

of 2004. 

Paper C: Adopting a Software Component Model considered the use of 

Microsoft’s component models COM, DCOM, and .NET in real-time systems. 

In general, the analyses support the hypothesis H3-3: 
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Adopting the chosen software component model makes it necessary to 

take extra precautions to ensure that real-time requirements can be 

satisfied. 

In the simplest case where only COM interfaces are used, precautions should 

be taken to avoid unpredictable behavior resulting from possibility of run-time 

errors introduced by interface navigation. When dynamic linking is used in 

connection with object creation, the overhead and possible variation in 

execution time must be addressed, for instance by only allowing object 

creation at certain times. The main challenge when adopting DCOM is to 

ensure that possible communication delays and failures are considered when 

invoking operations that may be implemented remotely. The effects of 

adopting COM/DCOM on performance is dominated by the extra overhead in 

connection with object creation. 

6.3 Outline of Future Work 

The experiences with the use of a component-based software architecture in 

ABB’s control system could be further evaluated. For instance, as more 

protocol handlers are completed, the confidence in the estimated reduction of 

effort can be increased. Another opportunity is to study the effect on other 

system properties, such as performance or reliability. A challenge is that this 

would require that meaningful measures of such properties could be defined 

and that measures could be obtained from one or more versions of the system 

before the componentization. Since a number of protocol handlers have been 

implemented and even more are planned, there is probably a good 

opportunity to study the experiences of protocol implementers, which may 
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shed additional light on the qualities of the adopted architecture and 

component model. One possibility would be to conduct a survey, which might 

include several development centers. Further opportunities to study the use of 

a software component model in a real-time system might be offered by a 

future version of the controller that adopts more of COM and possibly uses a 

commercial COM implementation.  
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