
Cluster-Based Test Scheduling Strategies Using Semantic
Relationships between Test Specifications

Sahar Tahvili
RISE SICS Västerås AB

Västerås, Sweden
sahar.tahvili@ri.se

Leo Hatvani
Mälardalen University
Västerås, Sweden

leo.hatvani@mdh.se

Michael Felderer
University of Innsbruck

Innsbruck, Austria
michael.felderer@uibk.ac.at

Wasif Afzal
Mälardalen University
Västerås, Sweden
wasif.afzal@mdh.se

Mehrdad Saadatmand
RISE SICS Västerås AB

Västerås, Sweden
mehrdad.saadatmand@ri.se

Markus Bohlin
RISE SICS Västerås AB

Västerås, Sweden
markus.bohlin@ri.se

ABSTRACT
One of the challenging issues in improving the test efficiency is
that of achieving a balance between testing goals and testing re-
sources. Test execution scheduling is one way of saving time and
budget, where a set of test cases are grouped and tested at the
same time. To have an optimal test execution schedule, all related
information of a test case (e.g. execution time, functionality to be
tested, dependency and similarity with other test cases) need to
be analyzed. Test scheduling problem becomes more complicated
at high-level testing, such as integration testing and especially in
manual testing procedure. Test specifications are generally writ-
ten in natural text by humans and usually contain ambiguity and
uncertainty. Therefore, analyzing a test specification demands a
strong learning algorithm. In this position paper, we propose a
natural language processing-based approach that, given test spec-
ifications at the integration level, allows automatic detection of
test cases semantic dependencies. The proposed approach utilizes
the Doc2Vec algorithm and converts each test case into a vector
in n-dimensional space. These vectors are then grouped using the
HDBSCAN clustering algorithm into semantic clusters. Finally, a
set of cluster-based test scheduling strategies are proposed for exe-
cution. The proposed approach has been applied in a sub-system
from the railway domain by analyzing an ongoing testing project
at Bombardier Transportation AB, Sweden.

KEYWORDS
Software testing, Test optimization, NLP, Dependency, Clustering,
Doc2Vec, HDBSCAN
ACM Reference Format:
Sahar Tahvili, Leo Hatvani, Michael Felderer, Wasif Afzal, Mehrdad Saa-
datmand, and Markus Bohlin. 2018. Cluster-Based Test Scheduling Strate-
gies Using Semantic Relationships between Test Specifications. In RET’18:
RET’18:IEEE/ACM 5th International Workshop on Requirements Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RET’18, June 2, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5749-4/18/06. . . $15.00
https://doi.org/10.1145/3195538.3195540

and Testing , June 2, 2018, Gothenburg, Sweden. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3195538.3195540

1 INTRODUCTION
For over a decade, applications of natural language processing (NLP)
techniques were considered in different domains such as machine
learning, deep learning, artificial intelligence, and static analysis.
Moreover, using the NLP techniques might be a suitable approach
for improving the efficiency of documentation processes, which can
be applied in different phases of software development life cycle
(SDLC) such as requirement analysis, planning, and also testing.
Since, in many cases, both requirements and test cases are formu-
lated in a natural text, NLP techniques can be used for analyzing the
details of a textual specification. Some specific information such as
the functionality to be tested and the relationship between test cases
can be detected by analyzing the textual specifications. One chal-
lenge for improving a testing process is detecting the dependency
between test cases. By having an overview of dependent test cases,
we can prioritize, select, and schedule test cases for execution. Some
previous studies show that, there are different types of dependency
between test cases, which will impact the result of a test execu-
tion [1]. In our previous work [15] we proposed a manual method
for measuring the degree of dependency between test cases. Since
the number of required test cases for testing a system is rather large,
a manual approach is not suitable to solve the problem efficiently. In
the present position paper, we propose an NLP-based approach for
detecting the semantic dependency between test cases automatically,
based on the textual test specifications. We also present a set of
cluster-based strategies for scheduling tests. This paper provides
the following contributions: (1) detecting the semantic dependency
between test cases through analyzing test specifications, (2) cluster-
ing test cases based on the semantic dependency, and (3) proposing
a set of cluster-based test scheduling strategies for execution.

2 BACKGROUND AND RELATEDWORK
The lack of accurate test specifications analysis may lead to an in-
efficient testing process. Knowing the execution time, requirement
coverage and the dependency between test cases, are some required
information that testers have to receive in the early stage of a test-
ing process. Paying no attention to dependencies between test cases
may lead to sequential failure of them and thereby waste of testing
resources. In [13] we showed that the dependencies among test

https://doi.org/10.1145/3195538.3195540
https://doi.org/10.1145/3195538.3195540

RET’18, June 2, 2018, Gothenburg, Sweden Tahvili, S. et al

Derive similarity
vectors from

the Doc2Vec model

Test specifications
(*. docx files)

Cluster the
similarity vectors
using HDBSCAN

Propose a set
of non-clusterable

vectors

Schedule the clusters for
execution based on

the proposed strategies

Input Step 1 Step 2 Step 3 Step 4

Figure 1: The steps of the proposed approach

cases give partial information on the verdict of a test case from
the verdict of another one. Arlt et al. in [1] showed that test cases
will be failed after each other if the testers do not care about the
dependency between test cases. In integration testing, the software
modules are combined and tested as a group, therefore, the prob-
lem of detecting the dependency between test cases will be more
highlighted for the testers. Test optimization is the main purpose of
using test case dependency information, where test cases will be pri-
oritized and scheduled by using this. Indumathi et al. in [7] propose
a manual method for detecting the functional dependency between
test cases. The proposed method in [7] deals with the sequence
execution between test cases. Since the dependency information
is extracted manually, the method is not scalable to handle a large
set of test cases. Component dependency model (CMD) represents
another type of test cases dependency, introduced by Caliebe et al.
in [3]. The proposed method in [3] is applicable for the component-
based systems and the dependencies can be identified through
analyzing system structure, architecture, and requirements.

3 SEMANTIC-DEPENDENCY MODEL
None of the researched dependencies in software testing domain,
handles the semantic relationships between the test cases. Gener-
ally, the semantic relationship is the associations that exist between
the meanings of sentences [12]. The semantic dependency between
manual test cases can be summarized as the conceptual associa-
tions between the meaning of the test specifications. A typical test
specification has multiple test steps including preconditions, test
activities and post-conditions, which are described textually. There-
fore, detecting the semantic relationship between test cases, which
are conceptually associated, requires deeper vocabulary analysis.
Executing a group of test cases, which are semantically dependent
on each other, can lead to an optimal usage of testing resources. In
following scenarios are considered in the present work:

• Test cases have similar preconditions, initial state or post-
conditions

A precondition for a test case specifies the setup needed for the
test case to be executed successfully. The precondition includes
the state that a system and its environment must satisfy before
executing a test case [2]. A post-condition is a statement which
describes the conditions that will be true when a test case has been
executed successfully. The test specifications are written by humans
and are not easy to detect the similar preconditions and neither
the post-conditions. Moreover, making a system ready for testing
(running the preconditions in a test case) is a resource consuming
process. Therefore, when the system is reaching an acceptable state,
more test cases, which require the same system state, can be tested
as a group together. However, though running those test cases
which require same post-conditions, we are able to save more time.

• Test cases test same functionality of a software

The main function which will be tested by a manual test case,
is usually described textually into several test steps. Moreover,
a functionality of a software to be tested, can be divided within
different test cases. Providing a group of test cases which test the
same functionality, can help testers to save more time. Test cases
which have a semantic dependency might test same functionality
of a software application and should be tested in succession.

4 THE APPROACH
This section describes our approach for scheduling manual test
cases based on the semantic dependency between them. The pro-
posed approach is based on the valuation of test specifications, as
well as clustering of the dependent test cases. Three test sched-
uling strategies, based on the semantic dependency between the
test cases, will be proposed. Our approach is based on two main
algorithms, which can handle a large set of data. Moreover, the
testers can easily re-run the proposed algorithms, when new test
specifications are added to the set. Figure 1 represents the structure
of our approach, where the blue color represents the NLP stage and
the green color shows the cluster analysis stages. The steps of the
proposed approach are described in follow:
Step 1: detecting the semantic relationships between manual test
cases using the Doc2Vec algorithm.
Step 2: cluster the semantic dependent test cases using HDBSCAN
algorithm.
Step 3: propose a set of non-clusterable test cases as independent
test cases.
Step 4: use one of the cluster-based scheduling strategies for test
execution.

As illustrated in Figure 1, the required input for running our
approach is a test specification. By running the Doc2Vec algorithm,
a set of vectors (which represent each test case) in a n-dimensional
space will be generated. Thereby, HDBSCAN algorithm classifies
test cases into several clusters. Finally, a set of scheduling strategies
will be proposed for execution. In other words, the expected output
of the proposed approach is a set of semantic dependent test cases,
arranged for execution, based on scheduling strategies.

4.1 Document Embedding Using Doc2Vec
Algorithm

The Doc2Vec algorithm consists a set of shallow and two-layer
neural networks models which are designed to produce document
embedding [10]. The basis of the Doc2Vec is based on learning rep-
resentations forward in such a way that Doc2Vec takes as its input a
large corpus of text and generates a unique vector in n-dimensional
space for each unique document in the corpus [8]. From here, we
can measure the similarity between two documents by calculating

Cluster-Based Test Scheduling Strategies Using Semantic Relationships RET’18, June 2, 2018, Gothenburg, Sweden

the Cosine similarity of the two vectors that represent the corre-
sponding documents. The similarities in the n-dimensional space
can be extracted to do comparison [8] where the words with sim-
ilar meaning end up lying close to each other. Furthermore, the
Doc2Vec uses vector arithmetic to work with analogies, for instance
the famous example: Doctor - Man + Woman = Nurse and also USB
- Port + Display = HDMI. In this study, we train the Doc2Vec algo-
rithm in such a way that each test specification is considered as an
input document. As the first step, Doc2Vec extracts the semantic
dependency between test specifications automatically, through uti-
lizing deep linguistic patterns which have been defined over the
dependency grammar of sentences [8].

4.2 Clustering with HDBSCAN Algorithm
After running the Doc2Vec algorithm, a set of high dimensional
vectors (which represents each test specification) is generated. The
vectors which have less distances to each other can be classified as
a cluster. This step, will be performed by a fast and robust algorithm
called HDBSCAN (Hierarchical Density-Based Spatial Clustering
of Applications with Noise), which handles large high-dimensional
data sets. TheHDBSCANmeasures the distance between the vectors
and provides a set of clusters and also a set of non-clusterable
vectors. Other clustering algorithms are designed to cluster every
vector to some cluster, which indicates their inability to handle noise
in the clustering process, or, in some case, the algorithms cannot
properly process high-dimensional data. In this work, we interpret
the non-clusterable vectors as independent test cases, which can be
executed in no particular order. Furthermore, each cluster consists
of a set of test cases which have a semantic dependency and must
be tested together at the same time.

4.3 Cluster-Based Test Scheduling Strategies
In this subsection, we propose a set of cluster-based test case sched-
uling strategies based on the semantic dependency between test
cases. The following definitions are applicable:

Definition 4.1. Let C := {C1,C2, . . . ,Cn } where, each Cj is a
cluster, j = 1, 2, . . . ,n.

Definition 4.2. Let cardinality of each Cj be Kj , where Kj ∈ N
and Kj > 1. We define Kj as a cluster size. The size of cluster
represents the number of test cases per cluster.

Definition 4.3. P := {P1, P2, . . . , Pm } where each Pj is a unique
property for all member of Cj ; that is ∀x ∈ Cj ,∃ ! Psj such that
x ∈ Psj , for every j ∈ {1, 2, ..,n}.

In this work, we utilize the functional requirement group (FG)
as a cluster property, where, every test case belongs to one func-
tional group and tests a specific part of a system under test. For
instance, brake system and radio are two different functional groups.

Definition 4.4. We define tj as a time function for every Cj such
that tj : Cj −→ (0,∞).

The time function in the present work, represents the required
time that a cluster of test cases takes for execution (the sum of
test cases execution time). Since each test case takes different time
for execution, then tj will be changed for every Cj . In [14], we
showed that the execution time for test cases can be predicted by

performing some regression analysis on previous executed test
cases. If there is no execution data available for test cases, we
can assume all test cases have the same execution time. Using
the proposed definitions, we define the following cluster-based
strategies for test case scheduling:

• Strategy 1 : Ci has a higher priority than Cj if and only if
Ki > Kj , where i, j ∈ {1, 2, . . . ,n}, moreover this strategy
can be called as increasingly ordering. However, strategy 1
can be defined as decreasingly ordering such that: Ci has
a higher priority than Cj if and only if Ki < Kj , where
i, j ∈ {1, 2, . . . ,n}.

In other words, the clusters are ranked in strategy 1 based on
their size. However, if two (or more) clusters have a same size
(Ki = Kj), then strategy 1 is not applicable and a new strategy
should be considered.

• Strategy 2 : Let Ci={x1,i ,x2,i , ...,xKi ,i } , Cj={x1, j ,x2, j , ...,xKj , j },
where Ki=Kj . If xl,i ∈Psl ,i and xl, j ∈Psl , j , for l=1,2, ...,Ki . We
define: I:={Ps1,i ,Ps2,i , ...,PsKi ,i } and J:={Ps1, j ,Ps2, j , ...,PsKj , j }.
Thus Ci has a higher priority than Cj if and only if |I |> |J |.

In strategy 2, the clusters which contain test case with different
property (functional group) are top ranked. In fact, if Ci includes
two test cases with two different properties (2 unique FGs), has a
higher priority than Cj with the same size (2 test cases) which test
just one FG (test cases have a same property). However, strategy 2
is not applicable if two (or more) clusters contain test cases which
have a same property (|I | = |J |) with the same size (Ki = Kj).

• Strategy 3 : We define Ti :=
∑Ki
k=1 ti (xk,i), xk,i ∈ Ci and

Tj :=
∑Kj
k=1 tj (xk, j), xk, j ∈Cj , where Ki=Kj and k ∈{1,2, ...,Ki }. Thus

Ci has a higher priority than Cj if and only if Ti<Tj .
However if Ti=Tj , there is no priority ordering to those clusters.

In strategy 3, the clusters which take less time for execution are top
ranked. Strategy 3 is applicable when an estimation of execution
time for test cases is available. As stated before, through historical
analysis of previously executed test cases, the execution time for
test cases can be predicted [14]. Furthermore, if we assume same
execution time for test cases we are faced with the situation that
two (or more) clusters have a same size and same property, we can
run those clusters without any order.

5 PROOF OF CONCEPT
6 DISCUSSION & FUTURE EXTENSIONS
To detect different type of dependencies between test cases, various
phases of a software development life cycle (SDLC) such as design,
requirements and testing need to be analyzed. In this paper, we
strive to propose a solution for such a situation that other infor-
mation (requirement, internal signals, software architecture, etc.)
are assumed to be not available. Executing a set of test cases which
require the same system and environment setting is extractable
from test specification. However, other clustering algorithms such
as Fuzzy C-means, k-means can be utilized for the clustering part
of the proposed approach. Finally, a decision support system can be
designed to schedule test cases for execution, based on the depen-
dencies between test cases, requirement coverage and execution
time.

RET’18, June 2, 2018, Gothenburg, Sweden Tahvili, S. et al

7 SUMMARY & CONCLUSION
In this position paper, we proposed a cluster-based approach for
scheduling integration test cases based on the semantic dependency
between test specifications. The proposed approach has been ap-
plied to an industrial use case at Bombardier Transportation AB.
The results of the proof of concept indicate that the concept of
semantic dependency exists between integration test cases from
different functional groups and can be detected through text analy-
sis. Additionally, test cases have been divided into several clusters
based on their semantic dependencies. Moreover, three different
scheduling strategies have been proposed, where test cases will be
given a different order for execution based on the proposed strate-
gies. Finally, we interpret non-clusterable vectors as independent
test cases.

REFERENCES
[1] S. Arlt, T. Morciniec, A. Podelski, and S. Wagner. 2015. If A Fails, Can B Still

Succeed? Inferring Dependencies between Test Results in Automotive System
Testing. In 8th International Conf. on Software Testing, Verification and Validation.

[2] M. Bertrand. 1997. Object-oriented Software Construction. Prentice-Hall, Inc.
[3] P. Caliebe, T. Herpel, and R. German. 2012. Dependency-Based Test Case Selection

and Prioritization in Embedded Systems. In 5th International Conf. on Software
Testing, Verification and Validation.

[4] L. Hatvani. 2018. Paragraph-vectors implementation. https://github.com/inejc/
paragraph-vectors. (2018).

[5] L. Hatvani. 2018. The used implementation of the HDBSCAN algorithm. https:
//github.com/scikit-learn-contrib/hdbscan. (2018).

[6] H. Hemmati, L. Briand, A. Arcuri, and Sh. Ali. 2010. An enhanced test case selec-
tion approach for model-based testing: An industrial case study. In Proceedings
of the 18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. USA.

[7] C.P. Indumathi and K. Selvamani. 2015. Test Cases Prioritization Using Open
Dependency Structure Algorithm. Procedia Computer Science 48 (2015), 250 –
255. International Conference on Computer, Communication and Convergence
(ICCC 2015).

[8] Q. Le and T. Mikolov. 2014. Distributed Representations of Sentences and Docu-
ments. In Proceedings of the 31st International Conference on Machine Learning
(Proceedings of Machine Learning Research), Vol. 32. China.

[9] I. Medeiros, N. Neves, and M. Correia. 2016. DEKANT: A Static Analysis Tool
That Learns to Detect Web Application Vulnerabilities. In 25th International
Symposium on Software Testing and Analysis (ISSTA 2016). USA.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient Estimation of Word
Representations in Vector Space. CoRR abs/1301.3781 (2013). arXiv:1301.3781
http://arxiv.org/abs/1301.3781

[11] P. Runeson, , and H. Martin. 2008. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering 14, 2
(2008).

[12] V. C. Storey. 1993. Understanding semantic relationships. The VLDB Journal 2, 4
(01 Oct 1993), 455–488. https://doi.org/10.1007/BF01263048

[13] S. Tahvili, M. Bohlin, M. Saadatmand, S. Larsson, W. Afzal, and D. Sundmark. 2016.
Cost-Benefit Analysis of Using Dependency Knowledge at Integration Testing.
In 17th International Conf. On Product-Focused Software Process Improvement.

[14] S. Tahvili, M. Saadatmand, M. Bohlin, W. Afzal, and Sh. Hasan Ameerjan. 2017.
Towards Execution Time Prediction for Test Cases from Test Specification. In
43rd Euromicro Conference on Software Engineering and Advanced Applications.

[15] S. Tahvili, M. Saadatmand, S. Larsson, W. Afzal, M. Bohlin, and D.Sundmark.
2016. Dynamic Integration Test Selection Based on Test Case Dependencies. In
11th Work. on Testing: Academia-Industry Collaboration, Practice and Research
Techniques.

https://github.com/inejc/paragraph-vectors
https://github.com/inejc/paragraph-vectors
https://github.com/scikit-learn-contrib/hdbscan
https://github.com/scikit-learn-contrib/hdbscan
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/BF01263048

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Semantic-Dependency Model
	4 The Approach
	4.1 Document Embedding Using Doc2Vec Algorithm
	4.2 Clustering with HDBSCAN Algorithm
	4.3 Cluster-Based Test Scheduling Strategies

	5 Proof of Concept
	6 Discussion & Future Extensions
	7 Summary & Conclusion
	References

