On Incorporating Security Parameters in
Service Level Agreements

Aida Causevi¢, Elena Lisova, Mohammad Ashjaei and Syed Usman Ashgar

Madlardalen University, Vasteras, Sweden
{aida.causevic, elena.lisova, mohammad.ashjaei} @mdh.se
sar18009@student.mdh.se

Keywords:
Service level agreement; security; SLAC; security process; cloud computing; run-time monitoring.

Abstract:

With development of cloud computing new ways for easy, on-demand, Internet-based access to
computing resources have emerged. In such context a Service Level Agreement (SLA) enables
contractual agreements between service providers and users. Given an SLA, service users are able
to establish trust in that the service outcome corresponds to what they have demanded during the
service negotiation process. However, an SLA provides a limited support outside of basic Quality
of Service (QoS) parameters, especially when it comes to security. We find security as an important
factor to be included in adjusting an SLA according to user defined objectives. Incorporating it
in an SLA is challenging due to difficulty to provide complete and quantifiable metrics, thus we
propose to focus on a systematic way of addressing security using the security process.

In this paper we investigate ways in which security might be incorporated already in the service
negotiation process and captured in an SLA. We propose a corresponding process to develop and
maintain an SLA that considers both design-, and run-time. To demonstrate the approach we
built upon the existing SLAC language and extend its syntax to support security. An example of

a service being provided with security guarantees illustrates the concept.

1 INTRODUCTION

Cloud computing paradigm has provided
new opportunities for resource sharing and in-
crease of interoperability between different ser-
vice providers. Given this, many organizations
have noticed benefits with increased service effi-
ciency, dynamic resource allocation and the cost
decrease related to the system development and
maintenance. However, such a business model
with outsourcing as the key principle, introduces
possible risks with regard to system security that
is one of the vital attributes to be fulfilled in any
system connected to the Internet.

Currently, to overcome security risks related
to the cloud services, service users have to rely on
a Service Level Agreements (SLA), a contractual
agreement between a service provider and a ser-
vice user established through the negotiation pro-
cess, in order to assess service provider reliability,
security policies and make an objective compar-

isons between different services offered. Beside
cost and terms of use for every service, an SLA
carries information regarding service attributes
such as performance, availability, reliability. In
most cases, service providers include into SLAs
only those service attributes that is possible to
measure and express using numeric values.

In the current practice, a cloud SLA focuses
on a limited number of attributes, in most cases
not including security, i.e., SLAs usually focus
on performance with objectives related to avail-
ability (Jaatun et al., 2012). For the very few
cases where security is taken into consideration,
the way it has been addressed might be diffi-
cult to understand by service users (da Silva and
de Geus, 2014; Casola et al., 2016a). Addi-
tionally, provided security guarantees are uniform
for all provided services and users, regardless of
particular service characteristics or specific user
needs, in most cases boiling down to the avail-
ability attribute only. Also, security is still a

non-negotiable attribute, meaning that there is
no possibility to acquire a service with specific
security characteristics (Petcu, 2014).

Many critical systems and applications are
starting to introduce cloud solutions, as for such
systems it is important to take security into
account from the very beginning, clearly de-
scribed security requirements combined with ex-
isting practice guidelines already at the design
phase might lead to implementing the system
with proper security in place. However, the ac-
tual level of system security in this case will also
depend on the cloud services being involved. Ad-
ditionally, to enable a way to deal with possible
threats and risks that an adversary may impose,
a security monitoring mechanism is required. Se-
curity monitoring in the cloud is a dynamic recur-
rent process which draws in the viable and dedi-
cated administration of cloud segments to recog-
nize and react to risks and threats on its services.
One of the challenge regarding such monitoring
is identification of relevant and effective param-
eters. However, once they are identified, based
on the monitoring information service providers
might require to refine provided guarantees and
offer an updated or completely new SLA.

To address such challenges in this paper we
focus on security considerations in SLAs with ac-
counting for Confidentiality, Integrity, Availabil-
ity (CTA) triad, where we first propose a process
to develop an SLA taking into account security as
one of the important properties to be considered.
In our process we also address a run-time moni-
toring of services and effects of changes on exist-
ing SLA guarantees and possible re-negotiation
process. Moreover, we extend the syntax of one
of the existing SLA language, namely SLA lan-
guage for Cloud Computing (SLAC), and provide
an example that takes into account the proposed
extensions.

The paper is organized as follows. Section 2
presents necessary background relevant for under-
standing the concepts of services, SLAs, SLA lan-
guages and security. Next, in Section 3 we present
our approach on incorporation of security in an
SLA where we describe the design-, and run-time
process related to development and maintenance
of an SLA along with the proposed extension of
SLAC that enables the approach formalization.
Furthermore, in Section 4 we present an example
illustrating the approach via the extended version
of SLAC. Relevant related work is described in
Section 5, whereas conclusions with future work
directions are presented in Section 6.

2 BACKGROUND

In the following we present preliminaries
needed for understanding of proposed approach.

2.1 Services terminology

A software service is a set of functions provided
by a server software or system to a client software
or system, usually accessible through an applica-
tion programming interface (Broy et al., 2007).
It can be created, invoked, composed and de-
stroyed on demand. Services are developed to
be platform independent and suitable for hetero-
geneous applications. Composite services can be
built from the atomic ones with the main goal
of a reusable functionality being provided by ex-
isting services in a low cost and rapid develop-
ment process on demand. A composition can be
achieved either through orchestration or choreog-
raphy. The first assumes the existence of a central
controller responsible for scheduling service exe-
cution according to the user demands, while the
second assumes a mechanism of message exchange
between participants in the composition, without
requiring a central coordinator. A service inter-
face provides information about specific service
properties such as service type, capacity, time-
to-serve, etc., visible to service users and used
to find and invoke services most suitable for their
needs. On the other hand, functionality represen-
tation is hidden from the service user and avail-
able only to service developers. Such a system
development may be seen as a cost-efficient de-
velopment by reusing functionality from available
services. Also, a service becomes a single point of
maintenance for a common functionality.

2.2 Service Level Agreements

One of the main challenges of using cloud tech-
nologies is that the quality of services cannot be
controlled by cloud users. Therefore, the service
qualities are negotiated and defined by both ser-
vice users and service provider in an agreement,
known as a Service Level Agreement (SLA) (Kyr-
iazis, 2013). Given an SLA, service users are able
to establish trust in that the service outcome is
what they have demanded during the service ne-
gotiation process. An SLA contains a description
of a service that carries information about vari-
ous attributes, such as performance, availability
ratio, reliability, etc. In most cases, an SLA in-
cludes only those attributes that can be expressed

Table 1: An SLA example using SLAC.

term group:
Small_VM:
prv — cons:cCpu in [1,2] #
prv — cons:RAM in [1,1] gb
Cluster:
prv — cons:RT._delay in
[0.0,0.6] ms
[2,2] of Small_VM
terms:
[1,1] of Cluster
prv — cons:replication is True

in terms of numerical values. On the other hand,
security aspects of services cannot be presented as
measurable number that makes them more diffi-
cult to be included and negotiated about. SLAs
also contain a set of penalties that specify the
regulations when the provider fails at delivering
services at the agreed level of quality.

2.3 SLA Languages

In order to ease preparation and negotiation of
an SLA several specialized languages are de-
veloped. SLA languages facilitate automat-
ing SLA negotiations and automatically creating
SLA terms with their compositions. Among var-
ious SLA languages, the common ones include:
Web SLA Language (WSLA) (Keller and Ludwig,
2003), Cloud SLA Language (CSLA) (Kouki and
Ledoux, 2012), and a formal SLA language for
Cloud Computing (SLAC) (Uriarte et al., 2014).
A review of SLA specification languages has been
done in (Maarouf et al., 2015), where the au-
thors highlight the requirements, strengths and
weaknesses of each language compared to each
other. According to this work, all reviewed lan-
guages have formal syntax, however only CSLA
and SLAC support formal semantics and formal
verification. Moreover, SLAC provides support
for incorporating brokers (by defining various par-
ties), thus for this work we consider SLAC. In the
following we explain the SLAC language syntax
and structure in more details.

The core elements of the SLAC language in-
clude contract terms and definition of guarantees
for terms. The contract terms specify the char-
acteristics of a service given by a provider. Each
agreement requires at least one term, which can
be a metric or a group of terms. Further, a met-
ric can be categorized by NumericMetric, which
defines a range of values, BooleanMetric, which
defines a 2-level value, and ListMetric that de-

System
Threat 1 / ¥
Threat 2
|
Threatk A7~y A5
Threat N : ,‘1\

Vulnerabilities
Figure 1: Security terminology.

fines a list of values for a service. The SLAC lan-
guage allows to define a set of terms in a group
to be reused for several services. In this case the
services should be clustered, e.g., a cluster of vir-
tual machines with the same characteristics. In
contrast to the terms, guarantees are not manda-
tory in an agreement. If a guarantee is defined
in an SLA, in case of violation a penalty will be
enforced to the service provider. A guarantee can
be referred to a particular term or to any term in
the agreement. When a violation occurs a set of
conditions is evaluated and a set of actions can
be taken. In such case, the conditionAction and
actions should be defined in the SLA. The full se-
mantics of the language can be found in (Uriarte
et al., 2014).

Table 1 illustrates an example of an SLA us-
ing the SLAC language adopted from (Uriarte,
2015). In the assumed example, prv is a ser-
vice provider, while cons is a service user. A
virtual machine (VM) is defined in the agree-
ment with two CPUs and 1 Gb RAM, which are
defined by cons:cCput and cons :RAM respec-
tively. Then, two of the VMs are clustered with
a specific term on response time delay RT_delay
within [0.0, 0.6]ms. Finally, a term is defined for
the cluster, which means it applies on all VMs
in the cluster, that enables the replication. Note
that in SLAC any term is defined in a range and
the unit after the range, e.g., [1,1] gb means 1 Gb,
while [1,2] # means between 1 and 2 units.

2.4 Security Terminology

Security can be defined as a system property
that allows the system “to perform its mis-
ston or critical functions despite risks posed by
threats” (Kissel, 2013), where a threat is de-
fined as “the potential source of an adverse
event” (Kissel, 2013).

In every system there is a set of assets, i.e.,
values that need to be protected against a mali-
cious adversary. A wvulnerability is described as a
flaw in the system that enables a threat target-
ing one of the system assets. An attack is real-

ization of a threat by exploiting a vulnerability
in an attempt to break a system asset as it is
demonstrated in Figure 1. Countermeasures are
“actions, devices, procedures, or techniques that
meet or oppose (i.e., counters) a threat, a vulner-
ability, or an attack by eliminating or preventing
it” (Kissel, 2013). One can classify them as (%)
preventive, e.g., encryption, (i) detective, e.g.,
intrusion detection systems, (4ii) responsive, e.g.,
blacklisting of a detected attack source (Miede
et al., 2010). Countermeasures support security
objectives, e.g., confidentiality and authentica-
tion.

Security process is a continuous process and it
can be split into following steps (Kizza, 2017): (i)
system security policy formulation, (i7) a secu-
rity requirements elicitation, (i) a threat iden-
tification, (iv) a threat analysis, (v) a vulnera-
bility identification and assessment, (vi) a secu-
rity certification, (vii) a security monitoring and
auditing. A security policy can be defined as a
set of policies and procedures that regulates ac-
tions of people and systems within the informa-
tion system security domain (Lopes et al., 2017).
A policy can be evaluated for violations and en-
forced by mechanisms, it states how a high level
security goal is achieved. Applied to a system
level, two main groups of policies can be identi-
fied (McDaniel, 2005): (i) provisioning policies
that prescribe a configuration meeting system re-
quirements; (i4) authorization policies that map
entities and resources into allowable actions. The
latter is split into authentication policies respon-
sible for stating how an identity of an entity can
be established, and access control policies map-
ping the established identity to a set of corre-
sponding rights.

3 SECURITY
CONSIDERATIONS IN SLAs

SLAs include a set of attributes and guaran-
tees on them, all of which are negotiated between
a service provider and a user. These attributes
can be quantifiable, e.g., a bandwidth, availabil-
ity in terms of a guaranteed up-time, and non-
quantifiable; e.g., safety, security. For the first
group, it is straightforward to provide guarantees
in terms of numbers, i.e., define ranges and condi-
tions under which the attribute is guaranteed to
be kept. However, providing guarantees for the
second group is more challenging. This work is fo-
cused on a non-quantifiable attribute, namely se-

curity, that cannot be straightforwardly assessed
by a number or by the fact that a security mech-
anism is being in place.

Security has to be addressed systematically,
where particular solutions support corresponding
security objectives. For example, an encryption
protocol under assumptions about adequacy of
its implementation and adequate usage, supports
data confidentiality. However, the fact that en-
cryption is correctly implemented and used, does
not say anything about system security or even
data confidentiality, as key handling and how
data is stored at a server, have to be considered
as well for assessing the security level. Given the
complexity of assessing a service security level,
it is a challenge to present it in a comprehensive,
structured and clear way to a service user. Hence,
we propose to divide assessment of the security
process required for the further service negotia-
tion into two parts: (i) assessment by a third
independent party focused on a systematic side
of the process, adequacy of analyses conducted,
solutions, policies; (it) assessment by a user, who
trusts in the assessment conducted by the third
parties and assess, i.e., negotiates, only particular
security solutions, as they may contribute to dif-
ferent levels of security and imply different costs.

In the following we describe the process of
incorporating security during design-time, and
monitoring and maintaining it at run-time.

3.1 SECURITY PROCESS FOR
SLAs

In this work we consider security being incor-
porated in an SLA already at the design-time as
it is one of the most important attributes to be
considered in systems being connected to the In-
ternet (i.e., left-hand side in Figure 2). More-
over, as security is dynamic by its nature, we con-
sider run-time monitoring of services and effects
of changes on existing SLA guarantees and possi-
ble re-negotiation process, as well (i.e., right-hand
side in Figure 2).

Figure 2 presents the adopted security pro-
cess (Kizza, 2017) embedded in the SLA devel-
opment process divided into steps from 1 to 10.
The combination of process allows to address se-
curity in a systematic way and develop an SLA
for a service security level. Block 1 includes spec-
ification of a service, e.g., its functional specifica-
tion, definition of required resources and connec-
tions. Block 2 contains application assumptions

service design/development

<&
<

Service
Specification

Security 3 Policies

Analysis

Security
Mechanisms

Application 2
Assumptions

Security 4

> <€ 'service operation —_
R —

Run-Time
Assessment I
Guarantees
_ J:__:J 10

1 Run-Time I
. ,_Y_B Monitorin
' | Refinement I
¢ ¥,
SLA

Figure 2: Process of development and maintaining an SLA for a service security level.

capturing possible instantiations of service func-
tionalities for the assumed application and possi-
ble user requirements. Once the service and its
specification are available, in Block 3 a security
analysis of the service is performed, i.e., relevant
security goals are specified, threat and vulnera-
bilities analyses are conducted.

Based on the analysis results security goals
are translated into corresponding requirements.
We skip the implicit step of requirements elicita-
tion and instead, as more relevant for guarantees,
present security policies and security mechanisms
to be implemented, in Block 4 and Block 5 corre-
spondingly. The term security policy is defined in
Section 2.4. We choose to separate policies and
mechanisms in two blocks as we want to make
sure that the detailed technical specification of
a particular mechanism mentioned in policies is
captured in the right way, and both further are
connected to guarantees.

The security process presented in Blocks 1-
5 is supported by argumentation over adequacy
of security level of the service. Further, mecha-
nisms and policies are translated into guarantees,
see Block 6, which contains assertions of what
is guaranteed, under which conditions and with
which possible following actions (e.g., to update,
patch, maintain (Russo, 2018)). These guaran-
tees later on are formalized by an SLA language
into SLAs in Block 7. We assume Blocks 1-7 to
present the design phase of the service and thus
SLAs developed at this stage are the ones used
for negotiation before the service being provided.

The rest of blocks (in bold) are used at run-
time, i.e., during the service operation. Secu-
rity mechanisms have to be monitored at run-
time, see Block 10, to maintain an acceptable
confidence level in their adequacy. Security poli-
cies also have to be assessed at run-time, marked
as Block 9. These two are separated in differ-

ent activities as monitoring implies checking val-
ues of particular parameters, e.g., a real-time
check of consumed bandwidth, while assessment
in our case implies non-quantifiable check, e.g.,
that policies are followed. Both blocks provide
input to Block 6, as guarantees has to be checked
at run-time, as well, for identification of possi-
ble violations. Once there are violations or possi-
ble changes leading to future violations, Block 6
sends this information to Block 8, where a refine-
ment is performed. Block 8 maps the occurred
change to a required refinement of an SLA and
sends this information to Block 7, where the re-
finement is applied, i.e., the required correspond-
ing action is triggered.

Above we described the development of an
SLA starting at the service design, upon detec-
tion at run-time a violation or a change leading
to future violations, two ways of addressing it are
possible. The first one includes an update of the
SLA, i.e., the SLA stays with the same terms.
The second option is that due to a significant
change we have to renegotiate the SLA, thus basi-
cally we develop at run-time a new SLA, building
on top of the existing one.

As mentioned, we propose to divide assess-
ment of an SLA development process and an SLA
itself between an independent trusted third party
and the service user. Blocks 1-3 represent a part
of the security process and can better be assessed
by a security expert. Similarly, the quality of de-
sign and implementation of Blocks 9 and 10 can
be more effectively assessed by a security expert.
Users in their turn, can assess results of Blocks
4-6 captured with a specific language in SLAs
formulated in Block 7. Note, that SLAs also cap-
ture what is monitored and assessed and provided
guarantees, without assuming that a user can ef-
fectively assess the quality of monitoring, assess-
ment mechanisms, and their implementation.

3.2 SLAC EXTENSION

In this subsection we present how guarantees
from Block 6 in Figure 2 are transformed into the
corresponding SLAs in Block 7. The formaliza-
tion is done using the SLAC language, which is
briefly described in Section 2.3. However, the de-
fined language does not support constructs to in-
corporate security into it, thus, we built upon the
already defined syntax in SLAC and extend it fur-
ther to introduce security considerations within
the development process presented in Figure 2.

The first step towards extending SLAC to
cover security considerations is to add the term
objective. We propose to include possible secu-
rity objectives in the syntax, e.g., Confidential-
ity, Integrity. The objective can further have var-
ious categorization, similar to the metrics as ex-
plained in the language syntax. For our purpose,
we consider to enrich BooleanObjective to include
security mechanisms, such as Access Control, En-
cryption, Log, Key Management, Integrity Check.
We consider presence of those mechanisms and
correctness via a binary scale without an inter-
mediate step reflecting low confidence in the cor-
rectness of an operating mechanism. Thus, we
propose to set the access confidence level in this
parameters as Boolean, i.e., it is either correctly
implemented and used or not. Finally, Manage-
mentAction includes Patch, Update and Main-
tain, where Patch and Update enforce a notifi-
cation to the user about the action being taken.

As it was described in Section 3 incorpora-
tion of security requires applying the systematic
security process and an independent assessment
provided by a third party of its results and the
process itself. However, a service user has an op-
portunity to grasp a highlight of the process by
assessing security policies that complement secu-
rity mechanisms. Thus, we propose to introduce
a construct enabling a policy hierarchy and an in-
dication which policies pool it is a part of, namely
belong. Policies are abstract and formulated on a
high level of details, thus they are often decom-
posed further into (sub)policies associated with a
particular objectives.

4 EXAMPLE

To demonstrate how security considerations
can be included in an SLA, we extend the ex-
ample described in Section 2.3. The provided

Table 2: The SLA example illustrating the proposed
language extension.

term group:
Small_VM:
prv — cons:cCpu in [1,2] #
prv — cons:RAM in [1,1] gb
prv — cons:authorization:
authentication is True
prv — cons:authorization:
accessControl belong to
authorizationPolicy
prv — cons:password has
{Char[8]}, {INT, SYMB}
Cluster:
prv — cons:RTdelay in
[0.0,0.6] ms
pPrv — cons:encryptionAES
in [128, 256] b
[2,2] of Small_VM
terms:
[1,1] of Cluster
prv — cons:replication is True
prv — cons:encryption is True
prv — cons:authorization is
True

service is the same, i.e., computational resources
via a virtual machine, however now we enrich the
system description with related security require-
ments. For example, considering data confiden-
tiality and integrity we can formulate the follow-
ing requirements: Requirement 1 — communica-
tion between Cluster and a user is adequately se-
cure, and Requirement 2 — access to Cluster is
adequately secure. In both cases the term ade-
quate can be defined, e.g. according to ISO/IEC
27017 (ISO, 2015).

Considering related policies, there are two
main groups. The first one reflects that system-
atic part of the process has to be reviewed inde-
pendently, thus it can be formulated via the fol-
lowing non-use case specific policies: Policy 1 — a
security case is built in parallel with service devel-
opment, where security case is defined as in (We-
instock et al., 2014) and Policy 2 — the security
assurance case is assessed by a third party. The
second group of policies is more service specific
and relates to security mechanisms. In this work
we do not consider all required policies but focus
only on those that support data confidentiality
and integrity, namely Policy 3 — the authorization
policy, which includes how authentication and ac-
cess control are addressed.

Table 2 describes how the considered exam-

ple can be expressed by means of the proposed
extension of the SLAC language in Section 3.2.
In order to capture relevant security mechanisms,
Small_VM properties (cCpu, RAM) are compli-
mented by authorization which is further pre-
sented by authorization:authentication
and authorization:accessControl. Note,
these two objectives are defined via different
types, i.e., authentication just needs to be in place
(boolean), as there is no related (sub)policy, only
a mechanism that can be associated, and access-
Control has a corresponding policy that belongs
to the pool of authorizationPolicy. This policy
defines which rights are granted to a particu-
lar authenticated user and might depend on e.g.,
a user, current service status, time of the day,
location from where access is requested. Addi-
tionally, Small_VM has an objective regarding a
possible stored password, as the point of the ex-
ample is just to illustrate the approach, we con-
sider a simple password structure and do not con-
sider a key management and distribution. Above
we consider authorization for a particular vir-
tual machine, additionally at the Cluster level we
have an objective supporting secure data trans-
mission, namely encryptionAES, i.e., support
for data encryption by means of the Advanced
Encryption Standard (AES) algorithm. Finally,
in terms we specify that the encryption and
authorization may be included in the con-
tract and their inclusion is a part of negotiation.
Note, that the assessment of the algorithm’s im-
plementation, done by a third party, depends on
an assessor and evidences provided in the corre-
sponding security case, while negotiation is done
only upon including or not including those secu-
rity mechanisms.

Moreover, one can specify guarantees to define
actions given that a violation for an existing SLA
occurs. Within guarantees one have a possibil-
ity to enforce quality of the service or an action
will be taken in case of violations. In Table 3 we
choose to put guarantees on encryption being
in place and accessControl defined based on
policies in authorisationPolicy. In case of
violation of such guarantees a provider is obliged
to provide an update action within specified
time and renegotiate with user (update in 24
hour AND negotiate). In case of such agree-
ment between provider and user, one could choose
to charge penalties in terms of bonus (bonus:
1 hour of ([1l,1] of Cluster)).

Making service provision more flexible espe-
cially with regard to security related violations,

Table 3: Guarantees for the SLA example in Table 2.

guarantees:
On violation of any:
IF encryption FALSE
OR accessControl NOT belong to
authorisationPolicy
update in 24 hour AND negotiate
ELSE
update in 24 hour AND bonus:
1 hour of ([1l,1] of Cluster)

one can look into different degrees of violations.
It may help to provide means to distinguish and
correspondingly respond differently to e.g., regu-
lar patching in a maintenance manner and a spe-
cific attack. Considering handling of new vulner-
abilities, one can look into a vulnerabilities clas-
sification, e.g., a Common Vulnerabilities Scoring
System (CVSS) (Mell et al., 2006), and provide
responses correspondingly. In this work we do not
go further in fine tuning guarantees in regards to
different degrees of violation, as we only illustrate
the main concept of incorporating security.

5 RELATED WORK

Addressing elicitation of security requirements
for SLAs, in cloud services domain, is still in
evolving stages. Luna et al. (Luna Garcia et al.,
2012) justify the need of cloud administration
architectures which depend on security require-
ments in an SLA. To identify the security pa-
rameters, there are distinct international stan-
dardization and rules, which help in specifying
a common classification of security controls with
both specialized and non-specialized features of
security, i.e., the ISO27002 standard (ISO/IEC
27002, 2013), the NIST Security Control Frame-
work (NIST SP-800-53, 2013), and the Cloud
Control Matrix - CCM from Cloud Security Al-
liance (Cloud Security Alliance, 2013). An SLA
alone does not ensure that the predetermined
characteristics are met, but rather it characterizes
the necessary monitoring mechanisms and actions
following up identified events. Service level mon-
itoring and support for its run-time adaptation
are as imperative as the specification of an SLA.

Different commercial cloud service providers
usually have their own solution for service moni-
toring. Microsoft Azure Suite (Microsoft Corpo-
ration, 2010) provides Azure Fabric Controller,

which observes and oversees the servers, and also
assigns resources for applications. The Ama-
zon AWS platform offers CloudWatch (Amazon
Web Services, 2006), where an observing frame-
work has been offered for the control of resources
and application administration. Google App En-
gine (Google, 2008) offers different monitoring so-
lutions, e.g., CloudStatus (Hyperic, 2008) by uti-
lizing a different set of APIs. All above men-
tioned providers do not offer SLAs with specific
security guarantees, yet. Currently, a user can-
not customize security features required for an
application as documents that describe security
in general are available. Thus, a user is lacking a
possibility to specify a required security level and
assess the satisfaction of the requirements from
the provider’s side.

Petcu et al. (Petcu, 2014) have investigated
monitoring types, monitoring behavior and a level
of monitoring in the cloud services context. Based
on their findings, security monitoring can be exe-
cuted: on-premises, on monitored Infrastructure
as a Service (TaaS) or via Software as a Service
(SaaS). Security Information and Event Manage-
ment (SIEM) systems are used in the first two
cases. In the first case, a SIEM system uses spe-
cific APIs to collect logs from servers, whereas in
the second case, a STEM system can be loaded di-
rectly into an TaaS. In the last case, a particular
information from the cloud services is gathered (if
accessible) and handed over to a security service
provider. Munoz et al. (Mufloz et al., 2012) have
identified two types of approaches for monitoring
software assets that provide assurance of the be-
haviors of software elements, static and dynamic.
Static approaches focus on checking the security
at development time, usually in simulated envi-
ronments, while the dynamic approaches such as
monitoring, surveillance and other forms of run-
time analyses focus on the observation of the run-
time software behavior.

Based on work of Aceto et al.(Aceto et al.,
2013), one can distinguish between high and low
level monitoring. The former relates to informa-
tion on the status of the virtual platform that
is collected at the middleware, application and
user layers by providers or users through plat-
forms and services operated by themselves or by
third parties. The latter relates to information
collected by the providers and usually not ex-
posed to the users, with focus on the status of the
physical infrastructure of the whole cloud (e.g.
servers and storage areas). Security monitoring
can be considered within high-level monitoring,

while in low-level monitoring, specific utilities for
collecting information about security might be re-
lated to the hardware layer, workload, voltage,
temperature, to the operating system, software
vulnerabilities and bugs, etc.

Kaaniche et al. (Kaaniche et al., 2017) present
an SLA monitoring system based on the rSLA
framework for the security properties in cloud ser-
vices. Their work also describes the whole life-
cycle of an SLA along with addressed security
issues. Emeakaroha et al. (Emeakaroha et al.,
2012b), present the DeSVi architecture used to
detect an SLA violation via resource monitor-
ing. The fundamental segments of the architec-
ture are the automatic VM deployer, in charge
of the distribution of resources and for mapping
of assignments; application deployer, in charge of
the execution of client applications; and LoM2HiS
framework that screens the execution of the appli-
cations and makes an interpretation of low-level
metrics into high-level SLAs. In their work they
focus on monitoring and detecting an SLA viola-
tion at cloud infrastructure level only, but do not
consider the application layer. In the other work,
Emeakaroha et al. (Emeakaroha et al., 2012a)
propose an architecture for monitoring, SLA vio-
lation identification at the application provision-
ing layer in Clouds, named Cloud Application
SLA Infringement Detection (CASViD). The fo-
cus is on the application-level monitor, which
is equipped for monitoring application measure-
ments at runtime to decide their asset utilization
practices and execution. Casola et al. (Casola
et al., 2016b) provide a methodology to guide
development of catalog of security services. Us-
ing such a methodology a user can negotiate and
monitor the security adequacy of security ser-
vices. The use of this system is the premise to em-
power the automatic enforcement of Security-as-
a-Service. Moreover, the authors have proposed
an approach to tackle this issue by introducing a
per-service SLA model, which entails the use of a
“tailored” SLA for each service. Rojas et al. (Ro-
jas et al., 2016) propose a framework that pro-
vides a management of cloud services using the
information about security requirements defined
by the SLA, automatically, during its entire life-
cycle. Moreover, proposed mechanisms offer sup-
port of all the phases of the SLA lifecycle. The
framework comprises two sides: the user side that
provides the interface to communicate with the
provider, and the provider side that contains the
proposed framework and their reconciliation with
the cloud services infrastructure.

Silva et al. (da Silva and de Geus, 2014) pro-
pose a methodology to support the concept where
a user may choose security metrics of required ser-
vices with continuous monitoring provided by the
environment. Authors focus on automatic cre-
ation of an SLA with security metrics defined and
the depiction of the monitoring process for the
cloud service infrastructure. They monitor secu-
rity through a range of values (0 — 4) and focus on
the problem of managing intangible and unmea-
surable numbers. Moreover, they provide a way
to manage security levels (top-down view) that
considers values for each security metric with its
respective risk, Quality of Service (QoS) and im-
pact.

When compared to our approach, most of the
above described contributions do not consider
the specific security metrics being in place, i.e.,
encryption, authentication, authorization, etc.,
thus ways how security is expressed is limited.
The closest work to ours is the one presented by
Muiioz et al. (Munoz et al., 2012). However, com-
pared to that work we go one step further and in
the process assume an external third-part secu-
rity assessor to maintain the quality of the SLA
design.

6 CONCLUSIONS

The current state of the art limits SLAs
to consider only those service quality attributes
that are possible to be expressed using quantifi-
able metrics, such as performance, reliability, etc.
However, given the development of cloud comput-
ing and new ways services are provided to their
users, we find it as an important task to enable
non-quantifiable qualities, such as security and
safety to be included in SLAs, as well. There
are some works that have already put some ef-
fort in defining ways to include security into an
SLA (Munoz et al., 2012; Casola et al., 2016b;
Kaaniche et al., 2017), mostly focusing on ex-
pressing security levels or security in terms of
availability. However, we target to provide an
SLA that includes a larger set of security objec-
tives (i.e., in context of CIA triad) during the
design-time such that user gets guarantees on
what is provided with respect to security. More-
over, we need to enable an SLA monitoring, main-
tenance, and renegotiation in case a provider fails
at providing the guaranteed level of security.

To enable this, we have first propose a process
of SLA development and maintenance in order to

be able to capture security-relevant information
and provide guarantees on top of it. Secondly,
we extend syntax of an already existing SLA lan-
guage, SLAC, to include security objectives. Ad-
ditionally, an example of a service being provided
with security guarantees captured within an SLA
is used to illustrate the concept.

In the future work, we aim at implementing
the constructs into the existing tools. Moreover,
we plan to investigate how to address a confidence
level in security SLA and possible degrees of vio-
lations and their consequences.

ACKNOWLEDGEMENTS

This work is supported by the Serendipity
project funded by SSF, the SAFSEC-CPS project
funded by The Knowledge Foundation, the FiC
project funded by SSF, and within the context of
the XPRES framework.

REFERENCES

Aceto, G., Botta, A., de Donato, W., and Pescap, A.
(2013). Cloud monitoring: A survey. Computer
Networks, 57(9):2093 — 2115.

Amazon Web Services (2006). Inc. amazon
cloudwatch. http://aws.amazon.com/
cloudwatch.

Broy, M., Kriiger, I. H., and Meisinger, M. (2007).
A formal model of services. ACM Trans. Softw.
Eng. Methodol.

Casola, V., Benedictis, A. D., Modic, J., Rak, M., and
Villano, U. (2016a). Per-service security sla: A
new model for security management in clouds.
In IEEE 25th International Conference on En-
abling Technologies: Infrastructure for Collabo-
rative Enterprises, pages 83-88.

Casola, V., d. Benedictis, A., Eracu, M., Rak, M.,
and Villano, U. (2016b). A security sla-driven
methodology to set-up security capabilities on
top of cloud services. In 2016 10th International
Conference on Complex, Intelligent, and Soft-
ware Intensive Systems, pages 549-554.

Cloud Security Alliance (2013). Cloud control matrix
v3.0.

da Silva, C. A. and de Geus, P. L. (2014). An ap-
proach to security-sla in cloud computing envi-
ronment. In IEEE Latin-America Conference on
Communications, pages 1-6.

Emeakaroha, V. C., Ferreto, T. C., Netto, M. A. S.,
Brandic, I., and Rose, C. A. F. D. (2012a).
Casvid: Application level monitoring for sla
violation detection in clouds. In 2012 IEEE

36th Annual Computer Software and Applica-
tions Conference, pages 499-508.

Emeakaroha, V. C., Netto, M. A., Calheiros, R. N.,
Brandic, 1., Buyya, R., and Rose, C. A. D.
(2012b). Towards autonomic detection of sla vi-
olations in cloud infrastructures. Future Gen-
eration Computer Systems, 28(7):1017 — 1029.
Special section: Quality of Service in Grid and
Cloud Computing.

Google (2008). Inc. google app engine. https://
developers.google.com/appengine/.
Hyperic (2008). Cloud status. http:
//www.hyperic.com/products/

cloud-status-monitoring.

ISO (2015). ISO/IEC 27017: Information technol-
ogy — Security techniques — Code of practice for
information security controls based on ISO/IEC
27002 for cloud services.

ISO/IEC 27002 (2013). Information technology, secu-
rity techniques, code of practice for information
security management. International Organiza-
tion for Standardization.

Jaatun, M. G., Bernsmed, K., and Undheim, A.
(2012). Security slas — an idea whose time
has come? In Quirchmayr, G., Basl, J., You,
1., Xu, L., and Weippl, E., editors, Multidis-
ciplinary Research and Practice for Informa-
tion Systems, pages 123-130, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Kaaniche, N., Mohamed, M., Laurent, M., and Lud-
wig, H. (2017). Security SLA Based Monitoring
in Clouds. In 2017 IEEE International Confer-
ence on Edge Computing, pages 90-97.

Keller, A. and Ludwig, H. (2003). The wsla frame-
work: Specifying and monitoring service level
agreements for web services. Journal of Network
and Systems Management, 11(1):57-81.

Kissel, R. (2013). Glossary of key information secu-
rity terms, Revision 2. U.S. Dept. of Commerce,
National Institute of Standards and Technology.

Kizza, J. M. (2017). Security Assessment, Analysis,
and Assurance. Springer.

Kouki, Y. and Ledoux, T. (2012). CSLA : a Language
for improving Cloud SLA Management. In In-
ternational Conference on Cloud Computing and
Services Science.

Kyriazis, E. D. (2013). Cloud computing service level
agreements - exploitation of research results. Fu-
ropean Commission Directorate General Com-
munications Networks, Content and Technology
Unit E2 Software and Services, Cloud.

Lopes, 1. M., Pereira, J. P., and Oliveira, P. (2017).
Definition of information systems security poli-
cies. In Rocha, A., Correia, A. M., Adeli, H.,
Reis, L. P., and Costanzo, S., editors, Recent
Advances in Information Systems and Technolo-
gies, pages 225-234, Cham. Springer Interna-
tional Publishing.

Luna Garcia, J., Langenberg, R., and Suri, N. (2012).
Benchmarking cloud security level agreements

using quantitative policy trees. In Proceedings
of the ACM Workshop on Cloud Computing Se-
curity Workshop, pages 103-112, New York, NY,
USA. ACM.

Maarouf, A., Marzouk, A., and Haqiq, A. (2015). A
review of sla specification languages in the cloud
computing. In 10th International Conference on
Intelligent Systems: Theories and Applications.

McDaniel, P. (2005). Policy, pages 461-464. Springer
US, Boston, MA.

Mell, P., Scarfone, K., and Romanosky, S. (2006).
Common vulnerability scoring system. IEEE Se-
curity Privacy, 4(6):85-89.

Microsoft Corporation (2010). Microsoft azure.
http://www.windowsazure.comn.

Miede, A., Nedyalkov, N., Gottron, C., Knig, A.,
Repp, N., and Steinmetz, R. (2010). A Generic
Metamodel for IT Security Attack Modeling for
Distributed Systems. In International Confer-
ence on Availability, Reliability and Security.

Munoz, A., Gonzalez, J., and Mana, A. (2012). A
performance-oriented monitoring system for se-
curity properties in cloud computing applica-
tions. Comput. J., 55(8):979-994.

NIST SP-800-53 (2013). Nist sp-800-53: Recom-
mended security controls for federal information
systems. National Institute of Standards and
Technology.

Petcu, D. (2014). SLA-Based Cloud Security Moni-
toring: Challenges, Barriers, Models and Meth-
ods. In Lopes, L., Zilinskas, J., Costan, A.,
Cascella, R. G., Kecskemeti, G., Jeannot, E.,
Cannataro, M., Ricci, L., Benkner, S., Petit,
S., Scarano, V., Gracia, J., Hunold, S., Scott,
S. L., Lankes, S., Lengauer, C., Carretero, J.,
Breitbart, J., and Alexander, M., editors, Euro-
Par 2014: Parallel Processing Workshops, pages
359-370, Cham. Springer International Publish-
ing.

Rojas, M. A. T., Gonzalez, N. M., Sbampato, F. V.,
Redgolo, F. F., Carvalho, T., Ullah, K. W.,
Nslund, M., and Ahmed, A. S. (2016). A frame-
work to orchestrate security sla lifecycle in cloud
computing. In 2016 11th Iberian Conference on
Information Systems and Technologies, pages 1—
7.

Russo, M. A. (2018). STEPI1: The Cloud Service
Level Agreement (CSLA). Cyber Risk LLC.
Uriarte, R. B. (2015). Supporting Autonomic Man-
agement of Clouds: Service-Level-Agreement,
Cloud Monitoring and Similarity Learning. PhD

thesis, IMT Institute for Advanced Studies.

Uriarte, R. B., Tiezzi, F., and Nicola, R. D. (2014).
Slac: A formal service-level-agreement language
for cloud computing. In 2014 IEEE/ACM 7th
International Conference on Utility and Cloud
Computing, pages 419-426.

Weinstock, C. B., Lipson, H. F., and Goodenough,
J. (2014). Arguing security creating security
assurance cases.

