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Abstract. Autonomous vehicles rely heavily on intelligent algorithms
for path planning and collision avoidance, and their functionality and
dependability can be ensured through formal verification. To facilitate
the verification, it is beneficial to decouple the static high-level planning
from the dynamic functions like collision avoidance. In this paper, we
propose a conceptual two-layer framework for verifying autonomous ve-
hicles, which consists of a static layer and a dynamic layer. We focus
concretely on modeling and verifying the dynamic layer using hybrid au-
tomata and uppaal smc, where a continuous movement of the vehicle as
well as collision avoidance via a dipole flow field algorithm are considered.
In our framework, decoupling is achieved by separating the verification
of the vehicle’s autonomous path planning from that of the vehicle au-
tonomous operation in its continuous dynamic environment. To simplify
the modeling process, we propose a pattern-based design method, where
patterns are expressed as hybrid automata. We demonstrate the applica-
bility of the dynamic layer of our framework on an industrial prototype
of an autonomous wheel loader.

1 Introduction

Autonomous vehicles such as driverless construction equipment bear the promise
of increased safety and industrial productivity by automating repetitive tasks
and reducing labor costs. These systems are being used in safety- or mission-
critical scenarios, which require thorough analysis and verification. Traditional
approaches such as simulation and prototype testing are limited in their scope of
verifying a system that interacts autonomously with an unpredictable environ-
ment that assumes the presence of humans and varying site conditions. These
techniques are either applied later in the system’s development cycle (testing), or
they simply cannot prove, exhaustively or statistically, the satisfaction of prop-
erties related to autonomous behaviors such as path planning, path following,
and collision avoidance (simulation). Formal verification is usually adopted to
compensate such shortage, yet verifying such a complex system in a continuous
and dynamic environment is still considered a big challenge [1][4].

In this paper, we approach this challenge by proposing a two-layer framework
consisting of a static and a dynamic layer, which facilitates verifying autonomous
vehicles. The structure of the framework separates the static high-level path



planning that assumes an environment with a predefined sequence of milestones
that need to be reached, as well as static obstacles, from the dynamic functions
like collision avoidance, thus providing a separation of concerns for the system’s
design, modeling, and verification. To improve on existing formal models of ve-
hicle movement [17][26], in the dynamic layer, we propose a continuous model of
the vehicle’s motion, together with a model of the environment, where moving
obstacles are either predefined or dynamically generated. The resulting models
are hybrid automata, as accepted by the input language of uppaal Statistical
Model Checker (SMC). The vehicle’s dynamics is modeled as ordinary differen-
tial equations assigned to locations in the hybrid automata. In this paper, the
hybrid automata only have non-deterministic time-bounded delays that are en-
coded based on the default uniform distributions assigned by uppaal smc. We
also consider the embedded control system of the autonomous vehicle includ-
ing the involved processes, as well as the scheduling and communication among
them. The path planning is following the Theta* algorithm [6], and the collision
avoidance relies on the dipole flow field one [29]. Both algorithms are encoded as
C-code functions in uppaal smc, within the dynamic layer of our framework.
Once this is accomplished, we can statistically model check the resulting net-
work of hybrid automata, against probabilistic invariance properties expressed in
weighted metric temporal logic [5]. To simplify the modeling process, we propose
a pattern-based design method to provide reusable templates for various com-
ponents of the framework. We demonstrate the applicability of our approach for
modeling and analyzing the dynamic layer on an industrial autonomous wheel
loader prototype that should meet certain safety-critical requirements.

This paper is organized as follows. In Section 2, we overview hybrid automata
and uppaal smc, as well as the Theta* algorithm for path planning, and the
dipole flow field algorithm for collision avoidance. Section 3 describes the function
of the autonomous wheel loader and its architecture. In Section 4, we present the
conceptual two-layer framework, and in Section 5 we propose the pattern-based
modeling of the components (of the dynamic layer) and their formal encoding.
Next, we demonstrate the applicability of the framework on the autonomous
wheel loader, and we present the verification results in Section 6. We compare to
related work in Section 7, before concluding and outlining future lines of research
in Section 8.

2 Preliminaries

In this section, we overview the background information needed for the rest of
the paper, that is, hybrid automata and uppaal smc, as well as the Theta* and
dipole flow field algorithms.

2.1 Hybrid Automata and UPPAAL SMC

uppaal smc [7] is an extension of the tool uppaal[21], which supports statistical
model checking of hybrid automata (HA). A HA is defined as the following tuple:

HA =< L, l0, X,Σ,E, F, I >, (1)



where: L is a finite set of locations, l0 ∈ L is the initial location, X is a finite
set of continuous variables, Σ = Σi ] Σo is a finite set of actions that are
partitioned into inputs (Σi) and outputs (Σo), E is a finite set of edges of the
form (l, g, a, ϕ, l′), where l and l′ are locations, g is a predicate on RX , a ∈ Σ
is an action label, and ϕ is a binary relation on RX , F (l) is a delay function
for the location l ∈ L, and I assigns an invariant predicate I(l) in/of L, which
bounds the delay time in the respective location. In uppaal smc, locations are
marked as urgent (denoted by encircled u) or committed (denoted by encircled
c), indicating that time cannot progress in such locations. Committed locations
are more restrictive, requiring that the next edge to be traversed needs to start
from a committed location. The delay function F (l) for a simple clock variable
x, which is used in (priced) timed automata, is encoded as the linear differential
equation x′ = 1 or x′ = e appearing in the invariant of l.

The semantics of the HA is defined over a timed transition system, whose
states are pairs (l, u) ∈ L × RX , with u � I(l), and transitions defined as: (i)

delay transitions (< l, u >
d−→< l, u + d > if u � I(l) and (u + d′) � I(l), for

0 ≤ d′ ≤ d), and (ii) discrete transitions (< l, u >
a−→< l′, u′ > if edge l

g,a,r−−−→ l′

exists such that a ∈ Σ, u � g, clock valuation u′ in the target state (l′, u′) is
derived from u by resetting all clocks in the reset set r of the edge, such that
u′ � I(l′)).

In uppaal smc, the automata have a stochastic interpretation based on: (i)
the probabilistic choices between multiple enabled transitions, and (ii) the non-
deterministic time delays that can be refined based on probability distributions,
either uniform distributions for time-bounded delays or user-defined exponential
distributions for unbounded delays. In this paper, only the default uniform dis-
tributions for time-bounded delays are used. Moreover, the uppaal smcmodel is
a network of HA that communicate via broadcast channels and global variables.
Only broadcast channels are allowed for a clean semantics of purely non-blocking
automata, since the participating HA repeatedly race against each other, that
is, they independently and stochastically decide on their own how much to de-
lay before delivering the output, with the “winner” being the automaton that
chooses the minimum delay.

uppaal smc supports an extension of weighted metric temporal logic for prob-
ability estimation, whose queries are formulated as follows: Pr[bound] (ap),
where bound is the simulation time, ap is the statement that supports two tem-
poral operators: “Eventually” (♦) and “Always” (�). Such queries estimate
the probability that ap is satisfied within the simulation time bound. Hypoth-
esis testing (Pr[bound](ψ) ≥ p0) and probability comparison (Pr[bound](ψ1)

≥ Pr[bound](ψ2)) are also supported.

2.2 Theta* Algorithm

In this paper, we employ the Theta* algorithm to generate an initial path for our
autonomous wheel loader. The Theta* algorithm has been firstly proposed by
Nash et al. [6] to generate smooth paths with few turns, from the starting position



to the destination, for a group of autonomous agents. Similar to the A* algorithm
that we have used in our previous study [17], the Theta* algorithm explores
the map and calculates the cost of nodes by the function f(n) = g(n) + h(n),
where n is the current node being explored, g(n) is the Euclidean distance from
the starting node to n, and h(n) is the estimated cheapest cost from n to the
destination. In this paper, we use Manhattan distance [2] for h(n). In each search
iteration, the node with the lowest cost among the nodes that have been explored
is selected, and its reachable neighbors are also explored by calculating their
costs. The iteration is eventually ended if the destination is found or all reachable
nodes have been explored. As an optimized version of A*, Theta* determines
the preceding node of a node to be any node in the searching space instead of
only neighbor nodes. In addition, Theta* adds a line-of-sight (LOS) detection to
each search iteration to find an any-angle path that is less zigzagged than those
generated by A* and its variants. For the detailed description of the algorithm,
we refer the reader to the literature [6].

2.3 Dipole Flow Field for Collision Avoidance

Searching for a path from the starting point to the goal point, assuming a large
map, is not an easy task and it is usually computationally intensive. Hence,
some studies have adopted methods to generate a small deviation from the ini-
tial path, which is much easier to compute than an entirely new path, while
being able to avoid obstacles. To avoid collisions, Trinh et al.[29] propose an
approach to calculate the static flow field for all objects, and the dynamic dipole
field for the moving objects in the map. In the theory of dynamic dipole field,
every object is assumed to be a source of magnetic dipole field, in which the
magnetic moment is aligned with the moving direction, and the magnitude of
the magnetic moment is proportional to the velocity. In this approach, the static
flow field is created within the neighborhood of the initial path generated by the
Theta* algorithm. The flow field force is a combination of the attractive force
drawing the autonomous wheel loader to the initial path, and the repulsive force
pushing it away from obstacles. Unlike the dipole field force, the flow field force
always exists, regardless of whether the vehicle is moving or not. As soon as the
vehicle equipped with this algorithm gets close enough to a moving obstacle, the
magnetic moment around the objects keeps them away from each other. The
combination of the static flow field and the dynamic dipole field ensures that
the vehicle moves safely by avoiding all kinds of obstacles and that it eventu-
ally reaches the destination, as long as a safe path exists. Compared with other
methods [30][16], this algorithm provides a novel method for path planning of
mobile agents, in the shared working environment of humans and agents, which
suits our requirements well. For details, we refer the reader to the literature [29].

3 Use Case: Autonomous Wheel Loader

In this section, we introduce our use case, which is an industrial prototype of an
autonomous wheel loader (AWL) that is used in construction sites to perform



operations without human intervention [17]. On one hand, like other autonomous
vehicles, autonomous wheel loaders need to be equipped with path-planning and
collision-avoidance capabilities. On the other hand, they also ought to accom-
plish several special missions, e.g., autonomous digging, loading and unloading,
often in a predefined sequence. Furthermore, autonomous wheel loaders usually
work in unpredictable environments – dust and various sunlight conditions (from
dim to extremely bright) that might cause inaccuracy or even errors in image
recognition and obstacle detection. Moving entities, e.g., humans, animals, and
other machines, might also behave unpredictably, for there are no traffic lights
and lanes. Despite such disadvantages, the AWL’s movements are less restricted
if compared to, for instance, self-driving cars, as there are only a few traffic rules
in sites. They can also stop and wait as long as they need without influencing the
vehicles behind them. All these characteristics make our path-planning (Theta*)
and collision-avoidance (Dipole Flow Field) algorithms applicable.

The architecture of the AWL’s control system, presented in Figure 1, con-
sists of three main units: a vision unit, a control unit, and an execution unit,
which are connected by CAN buses. In this paper, we mainly focus on the con-

Fig. 1. The architecture of the AWL’s embedded control system

trol unit that consists of three parallel processes, namely ReadSensor, Main,
and CalculateNewPath, as depicted in Figure 2. These three processes are ex-
ecuted in parallel on independent cores. The process ReadSensor acquires data
from sensors (e.g., LIDAR, GPS, angle and speed sensors, etc.) and sends them
to the shared memory before they are accessed by process Main that runs the
path-planning algorithm and invokes a function called Execution Function,
in which three sub-functions are called. The function AdjustAngle adjusts the

Fig. 2. Process allocation in the control system

moving angle of the AWL, based on its own and the obstacles’ positions. Func-
tion Turn judges if the AWL arrives at one of the milestones on its initial path
calculated by the path-planning algorithm, and changes its direction based on
the result. Function Arrive judges if the AWL reaches the destination and sends
the corresponding commands. Basically, the processes Main and ReadSensor are



responsible for the AWL’s regular routine. However, when an unforeseen obsta-
cle suddenly appears in its vision, the process Main sends a request to process
CalculateNewPath, in which the collision-avoidance algorithm is executed and
a new and safe path segment is generated if it exists. Note that, although the
AWL has more functionality, e.g., digging and loading, we focus only on the path
planning and collision avoidance in this paper.

The loader’s architecture (Figures 1, 2), including the parallel processes and
functions, is hierarchical. Moreover, the distributed nature of the AWL’s compo-
nents, and the dynamic nature of its movement (including collision avoidance)
call for a separation of concerns along the static and the dynamic dimensions of
the system. Hence, in the following, we propose a two-layer framework to model
and verify autonomous vehicles on different levels.

4 A Two-level Framework for Planning and Verifying
Autonomous Vehicles

As it is shown in Figure 3, our two-level framework consists of a static layer
and a dynamic layer, between which data is exchanged according to a defined/-
chosen communication protocol. The static layer is responsible for path and
mission planning for the AWL, according to possibly incomplete information of
the environment. In this layer, known static obstacles are assumed, together with
milestones representing points of operation of the loader. The dynamic layer is
dedicated to simulating and verifying the system following the reference path
given by the static layer, while considering continuous dynamics in an environ-
ment containing moving and unforeseen obstacles.

Fig. 3. Two-layer framework for planning and verifying autonomous vehicles

Static layer. The static layer is defined as a tuple < Es, Ss,Ms >, where Es

denotes a discrete environment, Ss is a set of known static obstacles, and Ms

is a set of milestones associated to missions (e.g., digging, loading, unloading,
charging), including the order of execution, and timing requirements. As the
path found by the path-planning algorithm is a connection of several straight-line
segments on the map, realistic trajectories and continuous dynamics do not need
to be considered in this layer. Hence, the environment is modeled as a discrete



Cartesian grid whose resolution is defined appropriately to present various sizes
of static obstacles, e.g., holes, rocks, signs, etc. Even if not entirely faithful to
reality, the Cartesian grid provides a proper abstraction of the map for path and
mission planning. As the static layer is still at the conceptual stage currently,
we propose several possible options for modeling and verification of this layer.
DRONA [10] is a programming framework for building safe robotics systems.
which has been applied in collision-free mission planning for drones. Rebeca is
a generic tool for actor-based modeling and has been proven to be applicable
for motion planning for robots [18]. Mission Management Tool (MMT) is a tool
allowing a human operator an intuitive way of creating complex missions for
robots with non-overlapping abilities [25].
Dynamic layer. The dynamic layer is defined as a tuple < Ed, Ts, Sd,Md, Dd >,
where Ed is a continuous environment, Ts is the trajectory plan input by the
static layer, Sd is a set of static obstacles, Md is a set of moving obstacles that are
predefined, Dd is a set of unforeseen moving obstacles that are dynamically gen-
erated. The speed and direction of a moving obstacle m0 ∈ Md are predefined
as constant values in our model. The dynamically generated moving obstacle
d0 ∈ Dd is instantiated during the verification when its initial location, mov-
ing speed and angle are randomly determined. Collision-avoidance algorithms
are executed in this layer if the vehicle meets moving obstacles or unforeseen
static obstacles. Ordinary differential equations (ODEs) are adopted to model
the continuous dynamics of moving objects (e.g., vehicle, human, etc.), and the
embedded control system of the autonomous vehicle is modeled in this layer.

This two-layer design has many benefits. Firstly, it provides a separation
of concerns for the system’s design, modeling, and verification. As a path plan
does not concern the continuous dynamics of the vehicle, the discrete model
in the static layer is a proper abstraction, which sacrifices some unnecessary
realistic elements but preserves the possibility of exhaustive verification. The
dynamic layer, which concerns the actual trajectories of moving objects, consists
of hybrid models that contain relatively more realistic details of the system
and environment, which enhance the truthfulness of the model. However, as a
tradeoff, only probabilistic verification is supported in this layer. In addition,
modification of algorithms or design is only restricted within the corresponding
layer, so potential errors will not propagate in the entire system. Secondly, the
two-layer framework is open for extension. It provides a possibility to add layers
for new functions, such as artificial intelligence or centralized control.

5 Pattern-based Modeling of the Dynamic Layer

A classic control system consists of four components: a plant containing the
physical process that is to be controlled, the environment where the plant oper-
ates, the sensors that measure some variables of the plant and the environment,
and the controller that determines the system state and outputs timed-based
signals to the plant [22]. In our case, as shown in Figure 1, the execution unit is
the “plant” that describes the continuous dynamics of the AWL. The “sensors”



are divided into two classes: vision sensors (LiDAR) connecting to the vision
unit, and motion sensors (GPS, IMU, Angle and Speed sensors) connecting to
the execution unit.

5.1 Patterns for the Execution Unit

Currently, the vision unit and vision sensors have no computation ability, so they
are simply modeled as data structures. The execution unit is modeled in terms
of hybrid automata, in which the motion of the AWL is given by a system of
three ordinary differential equations:

ẋ(t) = v(t)cosθ(t) ẏ(t) = v(t)sinθ(t) (2)

θ̇(t) = ω(t), (3)

where, ẋ(t) and ẏ(t) are the projections of the linear velocity on x and y axes,
ω(t) is the angular velocity, and v(t) is the linear velocity, which follows the
Newton’s Law of Motion: v(t) = F−k×M

M , where F is the force acting on the
AWL, k is the friction coefficient, and M is the mass of the AWL.

(a) The skeleton of the pattern (b) The hybrid automaton of the pattern

Fig. 4. The pattern of the linear motion component in the execution unit

The pattern of the execution unit is a hybrid model consisting of two hybrid
automata, namely linear motion and rotation. Here we use the linear motion
component as an example to present the idea. As depicted in Figure 4(a), there
are four locations indicating four moving states of the AWL, that is, stop at Idle,
acceleration at Acc, moving at a constant speed at Constant, and deceleration at
Dec. Therefore, the derivatives of the position (pcx′, pcy′) and the velocity (v′)
are assigned to zero at Idle for the stop state. According to different moving
states, variations of equation 2 should be encoded in the refinement of each
location in the blank boxes in 4(a). Figure 4(b) is an instance of the pattern,
where v′ is set to a positive value (v′ == (AF − k ∗m)/m) at location Acc to
present acceleration. Once the velocity reaches the maximum value (maxS) or
the automaton receives a brake signal (denoted as a channel brake), it goes to
location Constant or Dec, where the ODEs are changed to make the AWL move
at a constant speed or decelerate.



5.2 Patterns for the Control Unit

As a part of an embedded system, the control unit model has three basic com-
ponents: a scheduler, a piece of memory, and a set of processes. Currently, the
memory is modeled as a set of global variables, hence the scheduler pattern and
the processes patterns are the essence. Due to its safety-critical nature, the con-
trol unit is assumed to be a multi-core system and the processes are scheduled
in a parallel, predictable, and non-preemptive fashion. This scheduling policy is
inspired by Timed Multitasking [22], which tackles the real-time programming
problem using an event-driven approach. However, instead of the preemptive
scheduling, we apply a non-preemptive strategy. To illustrate this scheduling
strategy, we use the three processes in the control unit (Figure 2) as an example.
The process ReadSensor is firstly triggered at the moment Trigger1 when the

Fig. 5. Process scheduling

process reads data from sensors and runs its function as illustrated in Figure 5.
Regardless of the exact execution time of a process, the inputs are consumed
and the outputs are produced at well-defined time instances, namely trigger and
deadline. As the input of Main is the output of ReadSensor, the former is trig-
gered after the latter finishes. At same the moment, CalculateNewPath finishes
its execution immediately as no input comes. This is actually reasonable, since
process CalculateNewPath does not need to be executed every round, as it is
responsible for generating a new path segment only when the AWL encounters
an obstacle. For the benefits brought by the explicit execution time and deadline,
we refer the interested readers to the literature [22] for detail.

The pattern of a process consists of two parts: a state module and an oper-
ation module. Similar to the state machine function-block and modal function-
block in related work [19], the state module describes the mode transition struc-
ture of the processes, and the operation module describes the procedure or com-
putation of the process. Because of their definition, the state modules are mod-

Fig. 6. A process model example

eled as discrete automata, and the operation modules are modeled as discrete



automata or computation formulas according to their specific functionality. Fig-
ure 6 shows the inputs of the process coming to the state module in which the
state of the process transfers according to the inputs. Some state transitions of
the state module are detailed by the functions in the operation module in the
sense that the former invokes the latter for concrete computation. Specifically,
functions in the operation module could be modeled as discrete automata when
they involve logic, or executable code when they are purely about computation.
After executing the corresponding functions in the operation module, some re-
sults are sent out of the process as output, and some are sent back to the state
module for state transitions, which might also produce output. The designs of
the state module and operation module for different processes have both simi-
larities and differences. They all need to be scheduled, to receive input, produce
output, etc., but their specific functionality is different. To make our patterns
reusable, we design fixed skeletons of the process patterns, which are presented
as hybrid automata.

5.3 Encoding the Control Unit Patterns as Hybrid Automata

Scheduler. To model the scheduler as a hybrid automaton in uppaal smc, we
first discretize the continuous time as a set of basic time units to mimic the
clock in an embedded system. As depicted in Figure 7, we use an invariant at
location Init (clock xd ≤ UNIT), and a guard on its outgoing edge (xd ==
UNIT) to capture the coming basic time unit. We also declare a data structure
representing processes, as follows:

typedef struct{

int id; //process id

bool running; // whether the process is being executed

int period; //counter for the period of the process

int executionTime; //counter for the execution time of the process

}PROCESS;

When a basic time unit comes, the scheduler transfers to location Updating. In
the function update(), the period counters of all processes are decreased by one,
and so are the execution time counters if the variable running in the process
structure is true. When the period of a process equals zero, its id is inserted
into a queue called ready and the variable readyLen indicating the length of
the queue is increased by one. Similarly, when the executionTime equals zero,
the process’s id is inserted into a queue called done. The fact that the queue
done is not empty (doneLen > 0) implies that the execution times of some
processes have elapsed, so the scheduler changes from Updating to Finishing

to generate the outputs of those processes. The self loop at location Finishing

indicates that the outputs of all the processes in queue done are generated orderly
by the synchronization between the scheduler and the corresponding process
automaton via the channel output. If the queue ready is not empty (readyLen
> 0), similarly, the scheduler moves to location Execution to trigger the top
process in ready via the channel execute, and waits there until the process



finishes, when the scheduler is then synchronized again with the process via
channel finish. Note that the process finishes its function instantaneously and
stores its output in the local variables, which will only be transferred to the
other processes via global variables when the execution time passes.

Fig. 7. The pattern of the scheduler

Process. A typical state module of a process consists of four states: being trig-
gered, doing its own function, idle, and output. A typical pattern for it is shown
in Figure 8(a). Except locations Start and Idle, all locations are urgent because
the execution is instantaneous, and the output is generated when the execution
time is finished. From location Start to O1, the process is being triggered by
the scheduler by synchronizing on channel execute[id], in which id is the pro-
cess’s ID. If the input is valid (input == true), the process starts to execute by
leaving O1 to the next location, otherwise, it finishes its execution immediately
by going back to Start without any output generated, just as the description
of the scheduling policy in Section 5.2. The blank box indicates the process’s
own function that is created in an ad-hoc fashion, so it is not part of the fixed
skeleton of the pattern. After executing its own function, the process synchro-
nizes again with the scheduler on channel finish[id], when the process finishes
and gives control back to the scheduler. The output is generated from location
Idle to Notification. The broadcast channel notify[id] is for notifying other
processes waiting for the output of the current process. Based on this idea, we
give an example instantiated from this pattern in Figure 8(b). The automaton
goes from O2 to O3 through two possible edges based on data1, which is the
outcome of function ownJob1(). The concrete computation is encoded in func-
tions ownJob2() and ownJob3(), which are the counterparts of the functions in
the operation module of Figure 6. If the specific function of the process is more
complex than in this example, or it includes function invocation, this blank box
can be extended with synchronizations with other automata. We will elaborate
this by revisiting our use case in the next section.

6 Use Case Revisited: Applying Our Method on AWL

As the patterns of linear motion and rotation components and the scheduler are
totally applicable in the use case, they are simply transplanted in the model



(a) The skeleton of the pattern (b) An instance of the pattern

Fig. 8. The pattern of a generic process
of the AWL with parameter configuration. Hence, in this section, we mainly
demonstrate how the processes in AWL’s control unit are modeled using the
proposed patterns, and present the verification results.

6.1 Formal Model of the Control Unit

The control unit contains three parallel processes (Figure 2). ReadSensor and
CalculateNewPath are relatively simple because they do not invoke other func-
tions, while Main calls function Execution, which calls other three functions:
AdjustAngle, Turn, and Arrive. Therefore, The state modules of ReadSensor

and CalculateNewPath are modeled as single automata and the operation mod-
ules are the functions at edges encoding the computation of their functionality.
Differently, the state module of Main is a mutation of the process pattern ex-
tended with a preprocessing step calculating an initial path by running Theta*
algorithm. Figure 9 depicts the automaton of the state module of Main, in which
another automaton representing the function Execution is invoked via channel
invoke[0], where 0 is the ID of the function Execution. Note that the tran-

Fig. 9. The automaton of the state module of the process Main

sition from the location Init to Moving is the preprocessing step and Theta*
algorithm is implemented in the function main, which will be moved to the
static layer eventually after the entire framework is accomplished. As the pro-
cess Main invokes other functions, its operation module is a network of automata
containing the function Execution, AdjustAngle, Turn, and Arrive, which are
called by using synchronizations between the state module automata and opera-
tion module automata (channels invoke, respond, finish). After calling other



functions, Main goes to the location Idle via three edges based on the return
values of the invoked functions and waits to generate output there.

6.2 Statistical Model Checking of the AWL Formal Model

Environment configuration. In the following we consider a continuous map
with the size 55 × 55, where five static obstacles and two moving obstacles are
predefined, and another moving obstacle is dynamically generated during the
verification. In order to achieve this, we leverage the spawning command of
UPPAAL SMC to instantiate new time automata instance of the moving obstacle
that “appears” in the map whenever it is generated by the automaton called
generator and “disappears” from the map when its existence time terminates.
The speed of the moving obstacles is a constant value indicating that they move
one unit distance per second and their moving directions are either opposite
or the same as it of the AWL. The parameters of the AWL are the weight of
it, acceleration and deceleration force, friction coefficient and maximum speed,
which are defined as constant values in UPPAAL SMC.

Path generation and following. Given a start and a goal and a set of mile-
stones, the AWL must be able to calculate a safe path passing through them
orderly avoiding static obstacles if the path exists and follow it. To verify this
requirement, we first simulate the model in UPPAAL SMC using the command:

simulate 1[<= 110] {pcx, pcy} (4)

where pcx and pcy are the real-valued coordinate of the AWL. Figure 10(a)
shows the result of the simulation, and the result data is exported into Excel
to depict the moving trajectory of the AWL shown in Figure 10(b). The AWL

(a) Coordinate changing of the AWL (b) Moving trajectory of the AWL in Excel

Fig. 10. Moving trajectory of the AWL generated by the command {simulate
1[<=110] pcx,pcy} in UPPAAL SMC and exported in Excel

perfectly follows the generated path that avoids all the static obstacles. But the
simulation only runs one possible execution trace of the AWL model. Hence, we
further verify the model with a query:

Pr[<= 70](<> arrived && counter <= 60) (5)

Pr[<= 110]([] followedPath) (6)



where arrived and counter in query 5 are a Boolean variable and a clock that
reflect if the AWL arrives at the destination and what the minimum time does it
take, followedPath in query 6 is a Boolean variable indicating if the AWL has
reached the destination and come back to the start by visiting all the milestones
orderly. To update the value of followedPath timely and periodically during the
verification, we create an independent automaton called monitor that checks the
index of the model. The monitor is triggered by the scheduler every time unit
that is small enough to ensure the position of the AWL does not change much
during this time interval. The probability interval of satisfying these queries is
[0.902606, 1] with 95% confidence obtained from 36 runs.
Collision avoidance. By the nature of the Theta* algorithm, AWL is able
to avoid the static obstacles as long as it sticks to the initial path. When it
meets an unforeseen static obstacle or a moving obstacle, the AWL must run
the dipole flow field algorithm timely to avoid it. Two queries are designed to
get the simulated moving trajectory and estimate the probability of satisfaction:

simulate 1[<= 110] {pcx, pcy, ocx[0], ocy[0], ocx[1], ocy[1], ocx[3], ocy[3]} (7)

Pr[<= 110]([] !collided) (8)

Arrays ocx and ocy in query 7 represent the positions of moving obstacles at
x and y axes. The trajectories got from query 7 is shown in Figure 11, where
“A” and “B” are two predefined moving obstacles and “C” is a dynamically
generated obstacle that moves “recklessly” towards the AWL, so the latter turns
around to avoid the obstacle. The overlap of two trajectories at “C” does not

Fig. 11. The trajectory of the AWL in a map with three moving obstacles

imply a collision because the AWL and the moving obstacle are not at the
same position at the same moment. To prove this, query 8 is designed, where
collided is a Boolean variable indicating if the AWL has collided with any static
or moving obstacles during the verification time. Similar to the verification of
path generation and following, the automaton monitor is extended to update
this variable periodically by checking if the current coordinate of the AWL is
close to any obstacle in the map, and the threshold of the distance is 0.8 in this
case. The probability interval of satisfying this query is [0.902606,1] with 95%
confidence obtained from 36 runs.



7 Related Work

Automata-based methods [12][20][26][28] have been used for path or motion
planning. Different from our work, these studies aim to solve the vehicle-routing
problem by using temporal logic. These studies accomplish many typical au-
tonomous tasks like searching for an object, avoiding an obstacle, and missions
sequencing. However, as they focus on achieving collision avoidance in design,
uncertainties in the real deployment like transmission time of sensors data in the
embedded system and unforeseen obstacles have not been considered.

Runtime verification that monitors the behavior of autonomous systems com-
plements this shortage to some extend [11][15][23][24]. This technique extracts
information from a running system, based on which the behavior of the system is
verified. Runtime overhead caused by the monitor is the most common problem
introduced by this method.

Agent-based method is another widely studied approach for autonomous sys-
tems [3][8][11][13][14]. As the predominant form of rational agent architecture
is that provided through the Beliefs, Desires, and Intentions (BDI) approach,
these studies aim to translate the agent-based language to a formal language to
verify the behavior of the agent. But this method usually does not concern the
detail of the embedded control system and continuous dynamics of the vehicle.

There are also some studies providing a framework for verification of au-
tonomous vehicles or robots. In [27], the authors captured the behavior of an
unmanned aerial vehicle performing cooperative search mission into a Kripke
model to verify it against the temporal properties expressed in Computation
Tree Logic (CTL). Their model contains a decision making layer and a path
planing layer. In [9], the authors propose an approach combining model check-
ing with runtime verification to bridge the gap between software verification
(discrete) and the actual execution of the software on a real robotic platform in
the physical world. The software stack of a robotics system providing different
verification capability focusing on different functionality has inspired our work.
However, our framework provides an ability to encode the collision avoidance
algorithm in the model and verifying it in a continuous environment.

8 Conclusions and future work

We have proposed a conceptual two-layer framework for formally verifying au-
tonomous vehicles that decouples the high-level static planning from dynamic
functions like collision avoidance, etc. The framework provides a separation of
concerns for the complex modeling and verification of autonomous vehicles. The
static layer focuses on making the optimal plan for the vehicle to accomplish a
sequence of missions based on the incomplete information of the environment.
While the dynamic layer concerns the execution of the plan with vehicle dynam-
ics in a continuous environment model where unforeseen moving obstacles appear
randomly. Hence, a collision avoidance algorithm relying on dipole flow field is
implemented in the model of the embedded control system in this layer. We are



currently engaged in modeling the dynamic layer using hybrid automata and
UPPAAL SMC, and designing a pattern-based method to simplify the modeling
process and increase reusability. The dynamic layer has been applied to model
and verify a prototype of an autonomous wheel loader and the verification result
shows the capability and applicability of statistical model checking adopted in
autonomous vehicles. We expect to report our research of the static layer and
the combination of these two layers in the years to come.
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