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Abstract 
We compare existing component technologies for embedded systems with respect to 

industrial requirements.  The requirements are collected from the vehicular industry; and 

our findings are applicable to similar industries developing resource constrained safety 

critical embedded distributed real-time computer systems. 

One of our conclusions is that none of the studied technologies is a perfect match for the 

industrial requirements. Furthermore, no single technology stands out as being a 

significantly better choice than the others; each technology has its own pros and cons. 

The results of our evaluation can be used to guide modifications or extensions to existing 

technologies, making them better suited for industrial deployment. Companies that want to 

make use of component-based software-engineering as available today can use the 

evaluation to select a suitable technology. 

1 Introduction 
During the last few years, Component-Based Software Engineering (CBSE) for embedded real-time systems 

has received much attention in the research community. However, industrial software-developers are still, to a 

large extent, using monolithic and platform-dependent software technologies.  Especially in the embedded-

systems domain, use of component technologies has had a hard time gaining acceptance. 

In this paper we try to find out why embedded-software developers have not embraced CBSE as an attractive 

tool for software development. We do this by evaluating a set of component technologies with respect to industrial 

requirements.  The requirements have been collected from industrial actors within the business segment of heavy 

vehicles [10]. Example vehicles include wheel loaders, excavators, forest harvesters, and combat vehicles. The 

software systems developed within this market segment can be characterised as resource constrained, safety 

critical, embedded, distributed, real-time, control systems. Our findings should be applicable to other domains 

with similar characteristics. 

                                                                 
1 This work is supported KKS (The Knowledge Foundation) and SSF (Stiftelsen för Strategisk Forskning), 

within the projects HEAVE and SAVE/AutoComp . 
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This evaluation, between requirements and existing technologies, does not only help to answer why 

component-based development has not yet been embraced by the embedded-systems community;  it also helps us 

to see what modifications can be done in existing technologies to make them more appropriate for embedded-

systems developers.  Specifically, it will allow us to select a component technology that is a close match to the 

requirements and guide modifications to that technology to make it better suited for industrial use in the embedded 

system domain. 

The reason for studying component-based development in the first place, is that software developers can 

achieve considerable business benefits in terms of reduced costs , shortened time-to-market and increased software 

quality by applying a suitable component technology. It is also considered very attractive by industry to allow 

engineers to practise CBSE without involving heavy run-time mechanisms. The component technology should 

rely on powerful design and compile-time mechanisms and simple and predictable run-time behaviour. 

There is however significant risks and costs associated with the adoption of a new development technique.  

These must be carefully evaluated before introduced in the development process.  One of the apparent risks is that 

the selected component technology is not appropriate for its purpose; hence, the need to evaluate component 

technologies with respect to the requirements expressed by the software developers.  

Paper outline: Section 2 describes the requirements which are used for evaluating the component 

technologies. Section 3 presents  the selected component technologies, and a discussion of how well the 

technologies  fit the requirements. Section 4 provides a summary of our evaluation, including a graded table 

showing how well each of the technologies matches the listed requirements.  Finally, in section 5 we draw 

conclusions and present our future plans. 

2 Requirements 

The requirements discussed and described in this section are based on a previously conducted investigation 

[10]. The requirements found in that investigation are divided into two main groups, the technical requirements 

(section 2.1) and the development process related requirements (section 2.2). The reason for this classification is 

mainly to clarify that industrial actors are not only interested in technical solutions, but also in improvements 

regarding their development process. In addition, section 2.3 contains implied (or derived) requirements, i.e. 

requirements that we have synthesised from the requirements in sections 2.1 and 2.2 but that are not explicitly 

stated requirements from the vehicular industry.  

2.1 Technical Requirements 

The technical requirements describe industrial needs and desires regarding the technically related aspects and 

properties of a component technology. 

2.1.1 Analysable 

System analysis, with respect to non-functional properties, such as timing behaviour and memory 

consumption, of systems build up from well-tested components is considered highly attractive. In fact, it is one of 

the single most distinguished requirements found in our investigation. Vehicle industry strives for better analyses 

of computer system behaviour in general. This striving naturally affects requirements placed on a component 

technology. 

When analysing a system built from well-tested, functionally correct, components, the main issue is  associated 

with composability. The composition process must guarantee non-functional properties, such as the 

communication, synchronisation, memory, and timing characteristics of the system [1].  

When considering timing analysability, it is important to be able to verify (1) that each component meet its 

timing requirements, (2) that each node, built up from several components, meet its deadlines (i.e. schedulability 

analysis), and (3) to be able to analyse the end-to-end timing behaviour of functions in a distributed system. Since 
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the systems are resource constrained, it is important to be able to analyse the memory consumption. These checks 

should be done pre-runtime to avoid failures during runtime.   

2.1.2 Testable and debugable 

It is required that there exist tools that support debugging both at component level, e.g. a graphical debugging 

tool showing the component’s in- and out-port values  (if supported by the component model), as well as on the 

traditional source code debugging level.  

 Testing and debugging is one of the most commonly used techniques , to verify software systems 

functionality. Testing is a very important complement to analysis, and testability should not be compromised 

when introducing a component technology. In fact, the ability to test embedded-system software can be improved 

when using CBSE, since it adds the ability to test components in isolation. This is a desired functionality asked for 

by the industry.  

2.1.3 Portable 

The components, and the infrastructure surrounding them, should be platform independent to the highest 

degree possible. Here, platform independency means (1) hardware independent, (2) RTOS independent and (3) 

communications protocol independent. The components are kept portable by minimising the number of 

dependencies to the software platform. Such dependencies are off course necessary to construct an executable 

system, however the dependencies should be kept to a minimum, and whenever possible dependencies should be 

generated automatically by configuration tools. 

Ideally, components should also be independent of the component framework used during run-time. This 

whish may be difficult to satisfy since traditionally a component model has been tightly integrated with its 

component frame work. However, this kind of optimisation is important for companies cooperating with different 

customers, using different hardware and operating systems. Such an approach also enhances the ability to upgrade 

or update the hardware or the operating system.  

2.1.4 Resource Constrained 

The components should be small and light-weighted and the components infrastructure and framework should 

be minimised. Ideally there should be no run-time overhead compared to not using a CBSE approach. Hardware 

used in embedded real-time systems is usually resource constrained, to lower production cost and thereby increase 

profit.  

One possibility, that can significantly reduce resource consumption of components and the component 

framework, is to limit run-time dynamics. This means that it is desirable only to allow static, off-line, configured 

systems. Many existing component technologies have been design to support high run-time dynamics, where 

components are added, removed and reconfigured at run-time. However, this dynamic behaviour comes at the 

price of increased resource consumption. 

2.1.5 Component Modelling  

The component modelling should be based on a standard modelling language like UML [4] or UML 2.0 [8]. 

The main reason to choosing UML is that it is a well known and tested modelling technique with tools and 

formats supported by many third-party developers. The reason for the vehicular industry to have specific demands 

in this detail, is that it is believed that the business segment does not have the possibility do develop their own 

standards and practices. Instead they preferably relay on the use of readily available and mature techniques.   
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2.1.6 Computational Model 

Components should preferably be passive, i.e. they should not contain their own threads of execution. A view 

where components are allocated to threads during component assembly is preferred, since this is believed to 

enhance reusability but most of all, simplicity, but without introducing any unnecessary resource consumption. 

The computational model should be focused on a pipe-and-filter model [5]. This is partly due to the well 

known ability to schedule and analyse this model off-line. Also, the pipes -and-filters model is a good conceptual 

model for control applications 

2.2 Development Requirements 

When discussing requirements for CBSE technologies, the research community often overlooks requirements 

related to the development process. For software developing companies however, these requirements are at least 

as important as the technical requirements. When talking to industry, earning money is the main focus. This 

cannot be done without having an efficient development processes deployed. To obtain industrial reliance, the 

development requirements need to be considered by the component technology and the tools associated with the 

technology. A change in development process is associated with major risks and costs. This fact implies that the 

development requirements are very essential and cannot be neglected.  

2.2.1 Introducible 

Appropriate support for companies to gradually migrate into a new development technology should be 

considered by the component technology. It is important to make the change in development process and 

techniques as safe and inexpensive as possible. Revolutionary changes in development techniques are associated 

with high risks and costs. Therefore a new technology should be possible to divide into smaller parts, which can 

be introduced incrementally.  

Another aspect, to make a technology introducible, it to allow legacy code within systems designed with the 

new technology. Often systems are developed in an incremental way, where new versions build on previous 

versions. To redevelop the whole system from scratch, just to adapt it to a new development technique is far too 

expensive. 

2.2.2 Reusable 

Components should be reusable, e.g., for use in new applications or environments than those for which they 

where originally designed [8]. Reusability can more easily be achieved if a loosely coupled component technology 

is used, i.e. the components are focusing on functionality and do not contain any direct operating system or 

hardware dependencies. Reusability is further enhanced by using configuration parameters to the components. The 

parameters, which are fixed at compile-time, should allow both configuration of behaviour and automatic 

reduction of run-time overhead and complexity. 

A clear, explicit, and well-defined component interface is crucial to enhance the software reusability. Also, 

specification of non-functional properties and requirements (such as execution time, memory usage, deadlines, 

etc.) simplify reuse of components since it makes (otherwise) implicit assumptions explicit. Behavioural 

descriptions (such as state diagrams or interaction diagrams) of components can be used to further enhance 

reusability. 

2.2.3 Maintainable 

The components should be easy to change and maintain, meaning that developers that are about to change a 

component need to understand the full impact of the proposed change. Thus, not only knowledge about 

component interfaces and their expected behaviour is needed. Also, information about current deployment 

contexts may be needed in order not to break existing systems where the component is used. The components can 
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be stored in a repository where different versions and variants need to be managed in a sufficient way. The 

maintainability requirement also includes sufficient tools  supporting the service of deployed and delivered 

products. These tools need to be component aware and handle error diagnostics from components and support for 

updating software components.  

2.2.4 Understandable 

The component technology and the systems constructed using it should be easy to understand. This should also 

include making the technology easy and intuitive to use in a development project.  

The reason for this requirement is to simplify evaluation and verification both on the system level and on the 

component level. Also, focusing on an understandable model makes the development process faster and it is likely 

that there will be fewer bugs. This requirement is also related to the introducible requirement (section 2.2.1) in 

that an understandable technique is also more introducible. 

It is desirable to hide as much complexity as possible from system developers. Ideally, complex tasks (such as 

mapping signals to memory areas or bus messages, or producing schedules or timing analysis) should be 

performed by tools. 

2.3 Derived Requirements 

Here, we present two implied requirements, i.e. requirements that we have synthesised from the requirements 

in sections 2.1 and 2.2, but that are not explicit requirements from industry.  

2.3.1 Source Code Components 

A component should be source code, i.e., no binaries. The reasons for this include that companies are used to 

have access to the source code, to find functional errors, and enable support for white box testing (section 2.1.2). 

Since source code debugging is demanded, even if a component technology is used, black box components is 

undesirable. However, the desire to look into the components does not necessary imply a desire to be allowed to 

modify them2. 

Using black-box components would lead to a fear of loosing control over the system behaviour (section 2.2.4). 

Provided that all components in the systems are well tested, and that the source code are checked, verified, and 

qualified for use in the specific surrounding, the companies might alleviate their source code availability.  

Also with respect to the resource constrained requirements (section 2.1.4), source code components allow for 

unused parts of the component to be removed at compile time. 

2.3.2 Static Configurations 

For a component model to better support the technical requirements of analysability (section 2.1.1), testability 

(section 2.1.2), and resource consumption (section 2.1.4), the component model should be configured pre-runtime, 

i.e. at compile time. Here a configuration means both configuration of component behaviour and interconnections 

between components. Component technologies for use in the Office/Internet domain usually focus on dynamic 

configurations [2][3]. This is of course appropriate in this specific domain where one usually has access to ample 

resources . Embedded systems, however, face another reality; that is, with resource constrained nodes running 

complex, dependable, control applications.  

A motivation for the static configuration is that a typical embedded system does not interact directly with the 

user. A node is started, e.g., when the ignition key is turned on, and is running as a self-contained control unit until 

the key is turned off. Hence, there is no need to reconfigure the system during runtime. However, most vehicles 

                                                                 
2 This can be view as a “glass box” component model, where it possible to acquire a “use-only” license from a 

third party. This license model is today quite common in the embedded systems market. 
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can operate in different modes, hence the technology must support switches between a set of statically configured 

modes. Static configuration also improves the development process related requirement of understandability 

(section 2.2.4), since each possible configuration is known before run-time. 

3 Component Technologies 
In this section, existing component technologies for embedded systems are described and evaluated. The 

technologies considered originate both from academia and industry. The selection criterion for a component 

technology has firstly been that there is enough information available, secondly that the authors claim that the 

technology is suitable for embedded systems, and finally we have tried to achieve a combination of both academic 

and industrial technologies.  

The technologies described and evaluated are PECT, Koala, Rubus Component Model, PBO, PECOS and 

CORBA-CCM. We have chosen CORBA-CCM to represent the set of technologies existing in the PC/Internet 

domain (other examples are COM, .NET [2] and Java Enterprise Beans [3]) since it is the only technology that 

explicitly address embedded and real-time issues. Also, the Windows CE version of .NET [2] is omitted, since it 

is targeted towards embedded display-devices, which only constitute a small subset of the devices in vehicular 

systems. 

3.1 PECT 
Prediction-Enabled Component Technology (PECT) [11] is a development infrastructure that incorporates 

development tools and analysis techniques. PECT is an ongoing research project at the Software Engineering 

Institute (SEI) at Carnegie Mellon University3. PECT focuses on analysis; in principle any analysis could be 

incorporated. However, the framework does not include any theories on how to analyse different properties, just 

definitions of how analysis shall be applied in a so called reasoning framework. To be able to analyse using 

PECT, proper analysis theories must be found and implemented and a suitable underlying component technology 

must be available. A PECT is an abstract model of a component technology, consisting of a construction 

framework and a reasoning framework. When concretizating a PECT it is neces sary to choose an underlying 

component technology, define restrictions on that technology to allow predictions, and find and implement proper 

analysis theories. The PECT concept is highly portable, since it does not include any parts that are bound to a 

specific platform. Although to move from one platform to another, the choice of the underlying technology may 

become important in practice. For modelling or describing a component based system the Construction and 

Composition Language (CCL) [11]; which is not UML-compliant, is used. PECT is highly introducible, in 

principle it should be possible to analyse a part of an existing system using PECT. It should be possible to 

gradually model larger parts of a system using PECT. A system constructed with PECT can be difficult to 

understand; mainly because of the mapping from the abstract component model to the concrete component 

technology. It is probably the case that systems that look identical at the PECT-level behave differently when 

realised on different component technologies. 

PECT is an abstract technology that requires an existing underlying component technology. For instance, how 

testable and debugable a system is depends highly on the technical solutions in the underlying run-time system. 

Resource consumption, computational model, reusability, maintainability, black- or white-box components, static- 

or dynamic-configuration are also not possible to determine without knowledge of the underlying component 

technology. Worth to notice is that although reusability and maintainability is not directly addressed by PECT, the 

analysability increases these abilities.   

  

                                                                 
3 Software Engineering Institute, CMU; Home Page http://www.sei.cmu.edu 
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3.2  Koala 
The Koala component technology [12] is designed and used by Philips4 for development of software in 

consumer electronics. Typically, consumer electronics are resource constrained systems since they are using cheap 

hardware components to keep development costs low. Koala is a light weight component model, tailored for 

Product Line Architectures [24]. The Koala components can interact with the environment or other components 

through explicit interfaces only. The source code of Koala the components are fully visible for the developers, i.e. 

they are not binaries or any other intermediate formats. There are two types of interfaces in the Koala model, the 

provides- and the requires- interfaces, with the same meaning as in UML 2.0 [8]. The provides interface specify 

methods to access the component from the outside, while the required interface defines what is required by the 

component from its environment. The interfaces are statically connected at design time. 

One of the primary advantages with Koala is that it is resource constrained. In fact low resource consumption 

was one of the requirements considered when Koala was created. Koala has passive components that interact 

through a pipes-and-filters model, which is allocated to active threads. Koala uses a construction called thread 

pumps to decrease the number of processes  in the system. Components are stored in libraries, with support for 

version numbers and compatibility descriptions. Furthermore components can be parameterised to fit different 

environments. Koala also has rules telling when a component can be changed to another component based on the 

provided interface and the produced result set. 

Koala does not support analysis of run-time properties. Research has presented how properties like memory 

usage can be analysed, but the thread pumps used in Koala might cause some problems to apply existing timing 

analysis theories. Koala has no explicit support for testing and debugging, but they use source code components, 

and a simple interaction model. Furthermore, Koala is implemented for a specific operating system. A specific 

compiler is used, which routes all interaction to the operating system through Koala connectors. The modelling 

language is defined and developed in-house. Although it seams to be rather straight forward to map UML 2.0 

component diagrams to Koala, using provided and required ports. It is difficult to see an easy way to gradually 

introduce the Koala concept, it is all or nothing.  

3.3 Rubus Component Model 
The Rubus Component Model [22] is developed by Arcticus systems 6. The component model incorporates 

tools, e.g. a scheduler and a graphical tool for application design, and it is tailored for resource constrained 

systems with real-time requirements. Rubus has one time -triggered part, used for time -critical hard real-time 

systems, and one event-triggered part, used for less time-critical soft real-time systems . However, the Rubus 

Component Model is only supported by the time-triggered part.  

The Rubus Component Model runs on top of the Rubus Operating System [23], and the component model 

requires the Rubus configuration compiler. There is support for different hardware platforms, but regarding to the 

requirement of portability (section 2.1.3), this is not enough since the Rubus component model is too tightly 

coupled to the Rubus operating system. The Rubus OS is very small, and all component and port configuration is 

resolved off-line by the Rubus configuration compiler.  

Non-functional properties can be analysed since the component technology is statically configured, but timing 

analysis on component and node level (i.e. schedulability analysis) is the only analysable properties implemented 

in the Rubus tools. Testability is facilitated by static scheduling (which gives predictable execution patterns). 

Testing the functional behaviour of the source code can also be achieved using the Rubus Windows simulator, 

which can be used to run the systems on a regular PC.  

                                                                 
4 Phillips International, Inc; Home Page http://www.phillips.com 
6 Arcticus Systems; Home Page http://www.arcticus.se 
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Applications are described in the Rubus Design Language, which is an in-house non-standard language. The 

fundamental building blocks are passive. Components may or may not include execution threads. The interaction 

model is the required pipes-and-filters (section 2.1.6). The graphical representation of a system is quite intuitive, 

and the Rubus Component Model itself is also easy to understand. Complexities such as schedule generation and 

synchronisation are hidden in tools . 

The components are source code and open for inspection. However, there is no support for debugging the 

application on a component level, but COTS debuggers can be used to debug the source code.  The components 

are very simple, but the component technology does not include any supporting tools to enhance reusability. The 

components can be parameterised, which improves the possibility to change the component behaviour without 

changing the component source code. This enhances the possibilities to reuse the components. Component 

simplicity makes the systems fairly simple to maintain, however, no explicit support for maintainability exists. 

Smaller pieces of legacy code can, after minor modifications, be encapsulated in Rubus components. Larger 

systems of legacy code can be executed as background service (without using the component concept or timing 

guarantees).  

3.4 PBO 
Port Based Objects (PBO) [13] combines object oriented design, with port automaton theory. PBO was 

developed as a part of the Chimera RTOS project [18], at the Advanced Manipulators Laboratory at Carnegie 

Mellon University9. Together with Chimera, PBO forms a framework aimed for development of sensor-based 

control systems, with specialisation in reconfigurable robotics applications. One important goal of the work was to 

hide real-time programming and analysis details. Another explicit design goal for a system based on PBO was to 

minimise communication and synchronisation, thus facilitating reuse.  

PBO implements analysis for timeliness and facilitates behavioural models to ensure predictable 

communication and behaviour. However, there are few additional analysis properties in the model. The 

communication and computation model is based on the pipes-and-filters model, to support distribution in 

multiprocessor systems the connections are implemented as global variables. Easy testing and debugging is not 

explicitly addressed. However, the technology relies on source code components and therefore testing on a source 

code level is achievable. The PBOs are modular and loosely coupled to each other, and that admits easy unit 

testing. A PBO is however tightly coupled to the Chimera operating system and system calls are widely used. A 

PBO is an independent concurrent process, i.e. an active object.  

Since PBO is coupled to the Chimera OS, it can not be easily introduced in any legacy system. The Chimera 

operating system is a large and dynamically configurable operating system, and since the objects in PBO are 

active and run as tasks and support dynamic binding etc. hence it can not be considered resource constrained.  

PBO is a simple and intuitive model that is highly understandable, both at system level and within the 

components themselves. The low coupling between the objects makes it easy to modify or replace a single 

component. However, there is no explicit way of modelling objects; also no modelling language is suggested to be 

suitable or compatible. Although, PBO use port-automaton theory that provides an algebraic model of the system 

that is suitable for control systems. PBO is built with active and independent objects that are connected with the 

pipes-and-filters model. Due to the low coupling between objects through simple communication and 

synchronisation the objects can be considered to be highly reusable. The maintainability is also affected in a good 

way due to the loose coupling between the components; it is easy to modify or replace a single component.  

                                                                 
9 Carnegie Mellon University; Home Page http://www.cmu.edu 
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3.5 PECOS 
PECOS11 (PErvasive COmponent Systems) [20][21] is a collaborative project between ABB Corporate 

Research Centre 12 and academia. The original motivation for the PECOS project was to expand the field-device 

market and the needs to develop systems more quickly and at lower costs.  The goal for the PECOS project was to 

enable component-based technology with appropriate tools to specify, compose, validate and compile software for 

embedded systems. The component technology is designed especially for field devices, i.e. reactive embedded 

systems that gathers and analyse data via sensors and react by controlling actuators, valves, motors etc. 

Furthermore, PECOS is a project where much focus has been put on non-functional properties such as memory 

consumption, timeliness etc. which makes PECOS analysable.  

Non-functional properties like memory consumption and worst-case execution-times are associated with the 

components . These are used by different PECOS tools, such as the composition rule checker and the schedule 

generating and verification tool. The schedule is generated using the information from the components and 

information from the composition. The schedule can be constructed off-line, i.e. a static pre-calculated schedule, 

or dynamically during run-time. 

The PECOS model has an execution model that describes the behaviour of a field device. The execution model 

deals with synchronisation and timing related issues, and it uses Petri-Nets [25] to model concurrent activities like 

component compositions, scheduling of components, and synchronisation of shared ports [14]. Debugging can be 

performed using COTS debugging and monitoring tools. However, the component technology does not support 

debugging on component level as described in section 2.1.2.  

The PECOS Component Technology uses layered software architecture. The chosen approach is rather similar 

to the requirements of portability (section 2.1.3). There is a Run-Time Environment (RTE) that takes care of the 

communication between the application specific parts and the real-time operating system. The systems are 

implemented using the cheapest possible hardware (e.g. 16-bit microprocessor, 256 kB ROM, 40 kB RAM [21]). 

These systems are considered small compared to the systems used in vehicular industries [10].  

The PECOS component technology uses a modelling language that is easy to understand, however no standard 

language is used. Each component is responsible for a single piece of functionality, executed repeatedly in a cyclic 

behaviour. The components communicate using a data-flow-oriented interaction, it is a pipe-and-filter concept, 

but the comp onent technology uses a shared memory, contained in a blackboard-like structure.  

Since the software infrastructure does not depend on any specific hardware or operating system, the 

requirement of introducability (section 2.2.1) is to some extent fulfilled. One of the motivating factors for starting 

the PECOS project was to enhance maintainability of the software systems. The PECOS component technologies 

support for maintainability is enhanced by using a development and testing toolkit including editors, code 

browsers, and code generators supports target development. Schedule computation and testing is also supported. 

Most of these tools are integrated in the PECOS component environment. 

There are two types of components, leaf components (black-box components) and composite components. 

These components can be passive (explicitly scheduled by its nearest ancestor), active (have their own thread of 

execution), and event components (triggered by an event). The requirement of openness is not considered 

fulfilled, due to the fact that PECOS uses black-box components. In later releases, the PECOS project is 

considering to use a more open component model [19]. The devices are statically configured. 

                                                                 
11 PECOS Project, Home Page: http://www.pecos-project.org/ 
12 ABB Corporate Research Centre in Ladenburg, Home Page: http://www.abb.com/  
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3.6 CORBA Based Technologies 
The Common Object Request Broker Architecture (CORBA) is a standard that provides a set of rules for 

writing platform independent applications. The CORBA standard is developed by the Object Management 

Group15 (OMG). A major drawback with CORBA is that it requires a lot of functionality in order to connect 

diverse platforms within a heterogonous system. Because of this, variants of CORBA exist, two major are 

MinimumCORBA [15] for resource constrains systems, and RT-CORBA [17] for time-critical systems. 

RT-CORBA is a set of extensions to CORBA tailored to equip Object Request Brokers (ORBs) to be used as a 

component of a real-time system. Features supported by RT-CORBA are explicit thread pools and queuing 

control. RT -CORBA builds on controlling the use of processor, memory and network resources. Since RT -

CORBA adds complexity to the standard CORBA it is not considered very useful for vehicular systems. 

MinimumCORBA defines a subset of the CORBA functionality that is more suitable for resource-constrained 

systems , where e.g. some or the dynamics is reduced. 

OMG has defined a CORBA Component Model (CCM) [16], which extends the CORBA object model by 

defining features and services that enables application developers to implement, mange, configure and deploy 

components. In addition the CCM allows a better software reuse for server-applications and provides a greater 

flexibility for dynamic configuration of CORBA applications. 

CORBA is a middleware architecture that defines communication between nodes, independent of computer 

architecture, operating system or programming language. Because of the platform and language independence 

CORBA becomes highly portable. To support the platform and language independence, CORBA implements an 

Object Request Broker (ORB) that during run-time acts as a virtual bus over which objects transparently interact 

with other objects located locally or remote. The ORB is responsible for finding a requested objects 

implementation, make the method calls and carry the response back to the requester, all in a transparent way. 

Since CORBA run on virtually any platform, legacy code can exist together with the CORBA technology. This 

makes CORBA highly introducible. 

While CORBA is portable, and powerful, it is very run-time demanding and e.g. bindings are performed 

during run-time. Because of the run-time decisions, CORBA is not very deterministic or analysable. There is no 

explicit modelling language for CORBA. CORBA uses a client server model for communication, where each 

object is active. There are no extra-functional properties or any specification of interface behaviour. A CCM 

component can have strong, undocumented, assumptions on its use and context. All these things together make 

reuse virtually impossible in embedded systems. The maintainability is also suffering from the lack of clearly 

specified interfaces. 

4 Summary of Evaluation 
In this section we assign numerical grades to each of the component technologies in section 3, grading how 

well they fulfil each of the requirements of section 2. The grade is based on the account for each technology given 

in section 3 and the papers references in the respective subsection. We use a simple 3 level grade, where 0 means 

that the requirement is not addressed by the technology and is not fulfilled, 1 means that the requirement is 

addressed by the technology and/or that is partially fulfilled, and 2 means that the requirement is addressed and is 

satisfactory fulfilled. For PECT, which is not a complete technology several requirements depended on the 

underlying technology chosen, for these requirements we do not assign a grade (indicated with NA, Not 

                                                                 
15 Object Management Group. CORBA Home Page. http://www.omg.org/corba/ 
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Applicable, in figure 1). For the CORBA based technologies we have listed the best grade applicable to any of the 

3 CORBA flavours mentioned in section 3.6. 

For each requirement we have also calculated an average grade. This grade should be taken with a grain of 

salt, and is only interesting if it is extremely high or extremely low. In the case that the average grade for a 

requirement is extremely low, it could either indicate that the requirement is very difficult to satisfy, or that 

component-technology designers have paid it very little attention. 

In the table we see that only two requirements have average grades below 1.0. The requirement "Component 

Modelling" has the grade 0 (!), and "Testing and debugging" has 1.0. Since these requirements should be quite 

easy to satisfy we can only draw the conclusion that component-technology designers have not paid any attention 

to these requirements. We also note that no requirements have a very high grade (above 1.5). This indicate that 

none of the requirement we have listed general (or important) enough to have been considered by all component-

technology designers. However, if ignoring CORBA (which is not designed for embedded systems) and PECT 

(which is not a complete component technology) we see that there are a handful of our requirements that are 

addressed and at least partially fulfilled by all technologies. 

We have also calculated an average grade for each component technology. Again, this average grade should be 

taken with a grain of salt; e.g., the average cannot be directly used to rank technologies among each other. 

However, the two technologies PBO and CORBA stand out as having significantly lower average values than the 

other technologies. They are also distinguished by having many 0’s and few 2’s in their grades, indicating that 

they are not very attractive choices. Among the complete technologies with an average grade above 1.0 we notice 

Rubus and PECOS as being the most complete technologies (with respect to this set of requirements) since they 

have the fewest 0’s. Also, Koala and PECOS can be recognised as the technologies with the broadest range of 

good support for our requirements, since they have the most number of 2’s. 

However, we also notice that there is no technology that fulfils (not even partially) all requirements, and that 

no single technology stands out as being the preferred choice. Comparing for example PECOS and CORBA is not 

fare, since they are aiming for different types of systems . But the evaluation of each of the component 

technologies  based on the requirements in section 2 is appropriate. 
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Figure 1: Grading of component technologies with respect to industrial requirements 

5 Conclusion 
In this paper we have compared some existing component technologies for embedded systems with respect to 

real industrial requirements.  The requirements have been collected from industrial actors within the business 

segment of heavy vehicles [10].  The software systems developed in this segment can be characterised as resource 

constrained, safety critical, embedded, distributed, real-time, control systems.  Our findings should be applicable 

to software developers whose systems have similar characteristics. 

We have noticed that, for a component technology to be fully accepted by industry, the whole systems 

development context needs to be considered. It is not only the technical properties, such as modelling, 

computation model, and openness, that needs to be addressed, but also development requirements like 

maintainability, reusability, and to which extent it is possible to gradually introduce the technology. It is important 

to keep in mind that a component technology alone cannot be expected to solve all these issues; however a 

technology can have more or less support for handing the issues. 

The result of the investigation is the conclusion is that there is no component technology available that fulfil 

all the requirements listed in section 2. Further, no single component technology stands out as being the obvious 

best match for the requirements. Each technology has its own pros and cons.  It is interesting to see that most 

requirements are fulfilled by one or more techniques, which implies that good solutions to these requirements 

exist. 

The question, however, is whether it is possible to combine solutions from different technologies in order to 

achieve a technology that fulfils all listed requirements? Our next step is to assess to what extent existing 

technologies can be adapted in order to fulfil the requirements, or whether selected parts of existing technologies 

can be reused if a new component technology needs to be developed.  Examples of parts that could be reused are 

file and message formats, interface description languages, or middleware specifications/implementations.  Further, 

for a new/modified technology to be accepted it is likely that it have to be compliant to one (or even more than 

one) existing technology. Hence, we will select on of the technologies and try to make as small changes as 

possible to that technology. 
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