
Using Bayesian Networks for a Cyberattacks
Propagation Analysis in Systems-of-Systems

Jamal EL HACHEM∗, Ali Sedaghatbaf†, Elena Lisova†, Aida Čaušević†
∗Université Pau & Pays Adour, LIUPPA

{jamal.elhachem}@univ-pau.fr
†Mälardalen University

{ali.sedaghatbaf, elena.lisova, aida.causevic}@mdh.se

Abstract—System of Systems (SoS) represent a set of inde-
pendent Constituent Systems (CS) that collaborate in order
to provide functionalities that they are unable to achieve in-
dependently. We consider SoS as a set of connected services
that needs to be adequately protected. The integration of these
independent, evolutionary and distributed systems, intensifies
SoS complexity and emphasizes the behavior uncertainty, which
makes an SoS security analysis a critical challenge. One of the
major priorities when designing SoS, is to analyze the unknown
dependencies among CS services and vulnerabilities leading to
potential cyberattacks. The aim of this work is to investigate
how Software Engineering approaches could be leveraged to
analyze the cyberattack propagation problem within an SoS.
Such analysis is essential for an efficient SoS risk assessment
performed early at the SoS design phase and required to protect
the SoS from possibly high impact attacks affecting its safety
and security. In order to achieve our objective, we present a
model-driven analysis approach, based on Bayesian Networks, a
sensitivity analysis and Common Vulnerability Scoring System
(CVSS) with aim to discover potential cyberattacks propagation
and estimate the probability of a security failure and its impact
on SoS services. We illustrate this approach in an autonomous
quarry example.

Index Terms—Systems-of-Systems, Service Oriented Architec-
tures, Bayesian Networks, Cyberattacks.

I. INTRODUCTION

Software systems complexity has been systematically in-
creasing to deliver services in diverse domains, such as au-
tonomous vehicles, smart cities, defense, and E-health. These
modern solutions are application domains of a specific type of
systems called System-of-Systems (SoS). An SoS consist of
a set of distributed systems called Constituent Systems (CSs)
that interact to accomplish higher functionalities that none of
the CSs is able to deliver in isolation [1]. In our work, we
assume CSs to be services, as well as communication between
CSs as a service per se. Since reliable and predictable commu-
nication enables correct functioning of an SoS, communication
as a service is one of the main assets to consider [2].

These services are characterized by their managerial and
operational independence, their geographic distribution, evo-
lutionary development, and their emergent interactions leading
to possibly (un)expected emergent behaviors [3]. These char-
acteristics intensify SoS complexity and introduce significant
challenges into SoS engineering, such as assuring the quality
of system properties, in particular security engineering [4].

In this paper we focus on cyberattacks enabled by emergent
behaviours among other factors.

The past few years, SoS solutions have suffered from severe
security cyberattacks affecting SoS services, nation’s economic
plannings, and more importantly people’s safety. Wannacry,
Uber breach1, moving jeep hack2, Stuxnet3, and Google build-
ing attack4 are examples of recent high-impact cyberattacks
targeting different SoS application domains. Many of these
cyberattacks are results of exploiting a sequence of vulnerabil-
ities triggered in different CSs and connected through service
dependencies. Each of these vulnerabilities could be initially
judged as a low impact for the CS it is identified at. However,
the unknown sequences of triggered vulnerabilities connected
at the SoS level through CS service dependencies intensifies
the cyberattack and aggravate its effect.

The aim of this study is to address an SoS security analysis
challenge while considering SoS specific characteristics. We
focus on addressing how to analyze SoS architectures to enable
an appropriate analysis and quantitative evaluation of cyber-
attacks propagation at the SoS level. This challenge should be
addressed early at the design stage of the SoS development
lifecycle, to reduce time and cost in case of late changes and
protect SoS from cyberattacks targeting its services. Model
Driven Engineering (MDE) has emerged in recent years as a
key solution to address security-by-design challenges through
the development of dedicated languages. Moreover, MDE
offers a model transformation mechanism to automate the
analysis of several SoS security architecture alternatives, to
discover potential cyberattacks, analyze their propagation and
take corrective actions until reaching a required security level.

Bayesian networks (BN) and a sensitivity analysis play a
fundamental role in a quantitative analysis of SoS complexity
and its behavioral aspects. BN are also effective in investi-
gating CS dependencies and security emergent behaviors via
cyberattacks probability, propagation and impact [5], [6].

Therefore, in this study we present a MDE approach based
on a service decomposition, BN and a sensitivity analysis to
address the SoS cyberattacks propagation analysis challenge.

1https://money.cnn.com/2017/12/18/technology/biggest-cyberattacks-of-
the-year/index.html

2https://www.youtube.com/watch?v=ysAam9Zmdv0
3http://large.stanford.edu/courses/2015/ph241/holloway1/
4https://www.wired.com/2013/05/googles-control-system-hacked/



We use the SoSSec approach [7] to model an SoS architecture,
and propose a mapping of such a model to BNs. Using BNs
allows us to get a quantitative assessment for which initial
probability estimations are required. The ways of getting such
estimations are discussed in this work as well. Moreover, a
sensitivity analysis of the results from a BN model analysis,
helps to interpret the actual meaning of derived probabilities
of the services being attacked in an SoS context. We illustrate
the proposed approach on an autonomous quarry example,
modeled as a complex SoS.

The rest of the paper is organized as following. Section II
presents the background. Section III introduces an autonomous
quarry as our running example. The details of our approach
are presented in Section IV, whereas analysis results are
demonstrated in Section V. Section VI concludes the paper.

II. BACKGROUND

A. Security terminology

Security can be defined as a system property allowing a
system “to perform its mission or critical functions despite
risks posed by threats” [8], where a threat can be defined as
“the potential source of an adverse event” [8]. A vulnerability
is a flow in the system that can be exploit by an adversary
that targets one of the system assets, i.e., things needs to be
protected. A concrete threat realization is an attack, where a
cyberattack is an attack performed via a cyberspace.

B. Investigating Existing Approaches for SoS Security Archi-
tecture Analysis

Several works have been proposed to address an SoS
analysis, but only few consider SoS security. These can be
divided in the following categories.

Goal-based approaches: In [9] the authors propose dy-
namic Agent Based Game Theoretic simulations to analyze
smart grids information security. Although the proposed ap-
proach seems promising to calculate the probability of suc-
cessful attacks at a specific time of a scenario simulation, the
attacker/defender model, in its current form, is too simple
to represent an SoS with its CSs and their interactions.
Moreover, the analysis does not reveal specific information
on the vulnerabilities and how they are triggered, leading to
the successful elementary attacks. [10] present an agent-based
modeling language to analyze threats at the requirement level
of the SoS development. The analysis is based on a set of
identified threatening event and assumptions rules over goal
decomposition trees which make it limited to the specified
rules. Moreover, the paper does not show details on how
the rules are selected and defined. In [11] authors propose a
simulation approach based on multi-agent systems to simulate
and analyze cascading attacks. The presented method seems
promising, however the analysis is qualitative which is not
helpful to guide the architect decisions.

Threat-based approaches: In [12] authors discuss the
challenges towards safe and secure SoS. They propose to use
the system theoretic safety analysis method to systematically

uncover possible undesired losses in SoS. This work is at
its early stages and authors note that their method needs
further development to be applicable to SoS security analysis.
Authors of [13] present a framework for formal SoS threat
analysis. They study the impact of threats that can arise
from adding or removing assets in an SoS scenario. The
proposed approach for run-time analysis mainly considers the
evolutionary characteristic of an SoS. However, the approach
analyzes the distribution of known threats/vulnerabilities over
the CSs at run-time, not those triggered and linked due CSs
interactions and dependencies.

Graph-based approaches: [14] presents a use-case sce-
narios based approach, for safety and security consideration
in smart homes. The approach uses attack trees and safety
use cases to harmonize the security structure to the safety
requirements. This approach allows risk assessment related
to a specific SoS application domain and based on defined
attack scenarios. However, the idea lacks deeper investigation
and corresponding tools. In [15], authors extend the Functional
Dependency Network Analysis (FDNA) to make it applicable
for an SoS to analyze the impact of cyberattacks on the SoS
interdependencies. In this study, security is barely considered
by adding a weight indicating the availability of data to
model the effect of an attack. There are no security concepts
describing the vulnerabilities or the attack, neither the SoS
emergent behavior. A similar study [16] introduces a general
framework to assess the security risk of a single security
incident on multiple CSs. FDNA is used to measure the SoS
ability to operate effectively if one or more CS fail.

The presented studies touch on security only in a broad
way. Most of them do not explicitly or clearly consider the
SoS specific characteristics in the analysis. Moreover, they lack
pertinent details to analyze SoS interactions, dependencies and
emergent behavior, as well as to support the early discovery
and anticipation of unforeseen security problems.

C. Bayesian Networks for a Cyberattacks Analysis

Among the probabilistic graph models approaches, Bayesian
Betworks (BN) gained a noticeable interest as a suitable
approach to express the conditional dependencies between
random variables, e.g. CS vulnerabilities and dependencies,
therefore BN are applicable to address the cyberattacks prop-
agation analysis challenge.

BN are probabilistic directed acyclic graphs that have been
effectively used in various areas, e.g., medical diagnosis [17],
reliability engineering [18] and system troubleshooting [19].
However, the area of SoS security analysis has not gained
much attention. BNs are a powerful tool for representing
causal dependencies and reasoning under uncertainties. This
makes them an appropriate means to analyze cyberattacks
propagation.

In a BN, each node represents a random variable and
each arc indicates a probabilistic dependency between two
variables. If there is an arc from node X to node Y , X is
called the parent of Y, and any change in X may affect the



value of Y. Nodes without parents are called root nodes, and
nodes without children are called leaf nodes. To each root node
a prior probability table (PPT) is associated, which assigns a
probability to each value that the random variable may take.
To propagate changes from the root nodes to other nodes in
the graph, a probability function is associated to each non-
root node. This function takes as input the set of possible
values for parent nodes and gives as output the probabilities of
possible values for the variable represented by the node itself.
The relation between input and output values is represented
by a conditional probability table (CPT).

For any subset of BN nodes, we can define a joint probabil-
ity distribution, which can be computed using the following
formula (1). We can estimate the probability distribution of
any none-root node by marginalizing the joint distribution with
respect to the variable represented by that node [20].

P (X1, X2, ..., Xn) =

n∏
i=1

P (Xi|parents(Xi)) (1)

Compared to traditional attack modeling methods e.g., at-
tack trees (AT), BNs have attractive features for representing
complex dependencies, such as:

1) Logic gates in ATs (e.g., AND gates and OR gates)
can only represent simple and deterministic dependencies
among nodes, whereas CPTs can represent complex and
probabilistic dependencies with deterministic dependency
being just a special case (i.e., probability 1 or 0);

2) In an AT, each node has a binary state, while BN allows
us to consider multiple security states for each node;

3) ATs cannot model dependencies among nodes at the same
level, whereas BNs impose no limitations on dependency
ends.

The last feature is of special importance for analyzing the
propagation of cyberattacks.

III. AN AUTONOMOUS QUARRY SOS

In this paper we use an example of an autonomous quarry
consisting of the following: (1) a remote control room with
a human operator overviewing all processes and having a
possibility to take over control if needed; (2) a fleet of
fully autonomous carriers, that move the load, e.g., stones
of different granularity; (3) a carrier charging station; (4) a
stone extraction point at which a wheel loader loads the carrier
with stones; (5) a point where larger stones are crashed into
smaller ones; (6) a storage facility where carriers deliver lower
granularity stones. The decision making part is placed in both
the control room and locally at carriers. In a normal operation
mode the carrier just follows the receiving commands, as the
control room keeps the communication with carriers, updating
them on changes in the quarry (i.e., routes, other carriers
locations and statuses), current tasks to be done, available
maneuver space, and the allowed speed.

As a quarry is a harsh environment, quality of communi-
cation with the control can degrade. Therefore, a carrier is
equipped with sensors to enable localization of objects in a

Fig. 1: The proposed approach

close proximity, detection of their speed and making its own
decision regarding required actions even if it overrules the
command from the control room, e.g., an emergency stop
when an object has been detected dangerously near by. To
overrule the prescribed action and switch to a self-control
mode, a carrier has to make a decision about a communication
channel with the control room being unreliable enough and
detect a condition requiring an emergent response. After this
the carrier executes one of the failing safe scenarios. The
remote control room might as well broadcast an emergency
stop message as a safety measure to react upon a detected
hazardous situation. Due to the harsh environment in the
quarry, additional techniques like relaying can be used to
increase the reliability of a broadcast communication to an
acceptable level [21].

We consider the following types of communication to exist
in the quarry [2]: (1) point-to-point (p2p) communication
between the control room and every vehicle in the quarry,
to transmit the control information about vehicle’s actions
and relevant information about current status of other vehicles
and quarry in general; (2) broadcast communication from the
control room that propagates the emergency stop message to
all vehicles whenever needed; (3) broadcast communication
from each vehicle with a smaller range than type (2) communi-
cation, as it’s main function is to broadcast a status information
regarding vehicles in the quarry to increase awareness of
vehicles in the close proximity. The functionality is redundant
in the normal operational mode.

IV. BAYESIAN NETWORKS FOR AN ATTACK PROPAGATION
ANALYSIS IN SOS

Fig. 1 depicts the methodology proposed in this paper
used for analyzing SoS and can be synthesized as follows:
(1) the SoS to be analyzed is modelled using the SoSSec
modeling language and graphical editor; (2) the resulting
SoS security architecture is transformed into a BN model;
(3) the obtained BN model is analyzed to discover the potential
cyberattacks and estimate the probability of a security breach



and quantitatively assess its impact on SoS services. In the
following sub-sections we detail each step.

A. SoS architectures modeled using the SoSSec Method

To properly analyze an SoS including security, we need
well defined models representing the SoS security architec-
tures [22]. To achieve this we choose to use the SoSSec
approach [7]. SoSSec extends the System Modeling Language
(SysML) to model the structure of an SoS considering its char-
acteristics (i.e., CSs, interfaces, global and individual goals)
and its behavior (i.e., interactions, operations, exchange of
data). SoSSec allows description of known vulnerabilities for
each CS, including the conditions that trigger these vulnerabil-
ities as well as those resulting from a triggered vulnerability,
respectively denoted by pre-, and post-condition(s).

Once the SoS security architecture is modeled, the next
step is to perform its analysis to discover potential sequences
of triggered vulnerabilities possibly exploited by cyberattacks,
and formally evaluate their probability and impact. This anal-
ysis results provide an useful feedback and recommendations
that could be sent to the security architects, helping them
improve the SoS security architecture and avoid discovered
cyberattacks. One of the main advantages of choosing the
SoSSec method as the basis for our cyberattacks analysis is
the fact that SoSSec is built following the MDE principles
and guarantee an automated mapping between the modeling
and analysis phases, thereby allowing an iterative analysis of
several SoS security architectures until reaching an acceptable
security level.

Fig. 2 and Fig. 3 depict an autonomous quarry SoS ar-
chitecture. Based on the scenario introduced in Section III,
Fig. 2 shows the SoSSec structural Block Diagram (BD)
illustrating two CSs: the Remote Control Room CS and the
Vehicle Control Room CS. Each of these CS are managed by
an independent organisation (SoS managerial independence
characteristic) and have its own operations (SoS operational
independence characteristic). Fig. 3, on the other hand, shows
the SoSSec behavioral Activity Diagram (AD) illustrating an
autonomous quarry scenario, in particular the CS interactions.
For each CS, a list of potential vulnerabilities is defined by
the security architects and analysts. For our autonomous quarry
scenario we studied existing reviews, conference papers and
and reports/press news such as [23]–[26] to assign the list of
vulnerabilities shown in red.

Each vulnerability is enriched by a list of pre-, and post-
conditions representing constraints that trigger a vulnerability
and the results of a triggered vulnerability. The vulnerability
details are extracted from the Common Vulnerabilities and
Exposures (CVE) catalog. CVE is a list of common identifiers
for known security vulnerabilities, result of the international
cyber security community effort, and is considered as the
industry standard for vulnerability and exposure names. For
each vulnerability and exposure, CVE offers a standardized
description allowing the extraction of such information as a
vulnerability type, its pre-, and post-conditions.

Fig. 2: An autonomous quarry block diagram modeled using the
SoSSec graphical editor

B. Mappings from SoSSec to Bayesian Networks

To perform an analysis of the SoS emergent cyberattacks ex-
ploiting service interactions and communication, the approach
should include the properties described in models [27], [28].
SoSSec supports specification of known vulnerabilities and
their pre-, and post-conditions. However, the sequences of vul-
nerabilities exploited through the service interactions and de-
pendencies, their success probability and their impact on SoS
security remain unknown. The complexity and heterogeneity
inherited in an SoS makes this task even more challenging. In
order to reason about a security level of an SoS architecture
and decide about appropriate attack countermeasures, there is
a need for a formalism that can capture this uncertainty. BNs
can graphically model the dependencies among vulnerabilities
and services, and provide a probabilistic results to reason about
the impact of different attack scenarios to SoS security.

Therefore, in the second step of our approach, the MDE
model-to-model technique is used to semi-automatically gen-
erate a BN corresponding to a SoS architecture modeled using
SoSSec. Algorithm 1 describes the BN models generation
procedure. The generated BN has four conceptual levels (see
Fig. 4). At the highest level, we have a single leaf node
which value indicates whether SoS security is compromised
or not. Each node at the second level corresponds to a CS
in the SoSSec model. There is an arc from each node at this
level towards the leaf node, since security of each CS directly
affects SoS security. The third level is dedicated to the services
provided by each CS. Each service has one outgoing arc to its
encompassing CS. Also, there is an arc from a service node
A to a service node B if at least one of the post-conditions
of the node A is the same as one of the pre-conditions of the
node B in one of the Activity Diagrams (ADs). At least one
vulnerability is associated to each of the services at the third
level in the SoSSec AD. These vulnerabilities are presented
in the fourth level of the generated BN. Similar to service-
level connections, vulnerability nodes may be connected to
each other or to services if they have common pre-, or post-
conditions.

The BN derived from the SoSSec model of an autonomous
quarry is depicted in Fig. 5. The BN has two nodes at the



Fig. 3: An autonomous quarry activity diagram modeled using the SoSSec graphical editor

second level corresponding to the two CSs in our SoSSec
model (i.e., VehicleControlRoom and RemoteControlRoom).
According to the AD in Fig. 3, each of these CSs provides
only one service. Therefore, the third level of the BN model
includes two nodes. The arc between these nodes indicates the
possibility of an attack propagation from CtrlInfoDelivery to
CtrlAction. The fourth level includes three vulnerability nodes
derived from the AD. Since RelayingSignals is both a pre-
condition of LIDARRelay and a post-condition of SignalInt.,
there is an arc from SignalInt. to LIDARRelay at the fourth
level.

C. Security Evaluation

In order to evaluate SoS security, each node of the BN
model generated in step two, needs to be enriched with appro-
priate estimations for the PPT/CPT values. In the following
sub-sections, we elaborate how to provide these estimations
and incorporate them in the BN analysis.

1) PPT Estimation: Each root node in the BN generated
by Algorithm 1, has assigned PPT that includes a single
entry denoting an exploitation probability of the vulnerability
modeled for that node. For scoring vulnerabilities, there is
a considerable research done, e.g., Common Vulnerability
Scoring System (CVSS)5 is a well-known and standard scoring
system for estimating the severity of network vulnerabilities.
There are also other scoring systems, e.g., DREAD [29] and
OWASP [30].

5https://www.first.org/cvss/v3.0/specification-document

In this paper, we propose a group of basic metrics inspired
by the CVSS system to score vulnerabilities. We select the
following metrics, as described in Table I, suitable to help
security analysts to produce scores that are consistent and
arguable across various situations in the context of our work.

CVSS is composed of three metric groups, Base, Temporal,
and Environmental, each consisting of a set of metrics. In
this work, we focused on the Base metric group representing
the intrinsic characteristics of a vulnerability that are constant
over time and across user environments. It is composed of two
sets of metrics: 1) The Exploitability metrics (Attack Vector,
Privileges Required, User Interaction and Scoop in table I)
reflect the ease and technical means by which the vulnerabil-
ity can be exploited; 2) The Impact metrics (Confidentiality
Impact, Integrity Impact and Availability Impact in table I)
reflect the direct consequence of a successful exploit, and
represent the consequence to the thing that suffers the impact,
which we refer to formally as the impacted component. When
the Base metrics are assigned values by an analyst, the Base
equation computes a CVSS score ranging from 0.0 to 10.0. In
order to convert this score to a PPT entry, we simply divide
it by 10 since a PPT entry is a probabilistic value between
zero and one. For example, 10, 8.2 and 7.5 are the CVSS
scores calculated for Signal Interference, LIDDAR Relay and
Camera Vulnerability in the Autonomous Quarry example.
Their corresponding PPT value would be 1, 0.82 and 0.75.

2) CPT Estimation: Providing estimations for CPT values
is more difficult than for PPTs, since there is no well-known
metric for quantifying the dependencies among vulnerabilities,



SysNode← new BNNode();
for each CS block cs in SoSSec BD do

CSNnode← new BNNode();
SysNode.addParent(CSNode);
for each service block sv in SoSSec BD do

SV Node← new BNNode();
CSNode.addParent(SV Node);

end
end
for each AD ad in SoSSec model do

for each service sv in ad do
for each vulnerability vl associated to sv do

V LNode← new BNNode();
SV Node.addParent(V LNode);

end
end
for each pair (sv, vl) of services and vulnerabilities

in ad do
let SPre be the set of pre-conditions of sv;
let SPost be the set of post-conditions of vl;
if SPre ∩ SPost 6= Ø then

SV Node.addParent(V LNode);
end

end
for each pair (vl1, vl2) of vulnerabilities in ad do

let V Pre be the set of pre-conditions of vl1;
let V Post be the set of post-conditions of vl2;
if V Pre ∩ V Post 6= Ø then

V L1Node.addParent(V L2Node);
end

end
end Algorithm 1: A BN generation algorithm

services and corresponding CSs. In this case, it is possible to
rely on security experts’ knowledge, who may suggest proper
values based on their experience from past incidence reports
and their knowledge about each service/CS functionality.

3) BN Analysis: Based on the input PPT/CPT values, a
security failure probability for each service/CS and the whole
SoS can be estimated. In the BN model generated in step
two, let us assume that X(l,n) denotes the nth node at the
lth level, and PAR(X(l,n)) denotes the set of parent nodes
of X(l,n). For example, for node X(2,2) in Fig. 4, we have
PAR(X(3,1)) = {X(3,2), X(4,1), X(4,2)}. Using Eq. 1, we can
calculate the joint probability of each node and its parent
nodes. For example, the joint probability of X(3,1) and its
parents can be derived as:

P (X(3,1), X(4,1), X(4,2)) = P (X(3,1)|X(4,1), X(4,2)).

P (X(4,1), X(4,2))
(2)

where P (X(4,1), X(4,2)) can be decomposed recursively. Now,
based on the joint probability, the marginal probability for each
node can be obtained using the following:

Fig. 4: A multi-level BN

Fig. 5: A BN model of autonomous quarry

P (X(l,n)) =
∑

PAR(X(l,n))

P (X(l,n), PAR(X(l,n))) (3)

P (X(l,n)) can be estimated for each non-root node using Eq. 3.
The estimated value expresses the probability of a security
failure for the corresponding service/CS in the SoS (or the
whole SoS if it is related to the leaf node).

V. ANALYZING AN ATTACK PROPAGATION IN AN
AUTONOMOUS QUARRY SOS

A. Initial Evaluations
To assess applicability of our methodology, we have ana-

lyzed the BN model of an autonomous quarry presented in
Fig. 5. The PPT values evaluated using CVSS scores and the
CPT values suggested by security experts, are presented in
Fig. 6. Using these values and Eq. 3 we have estimated the
probability of a security failure for service, CSs and the whole
SoS. The estimations in Tab. II indicate that CtrlAction is more
vulnerable than CtrlInfoDel. and CtrlRoom is more affected by
the vulnerabilities and their propagation than Vehicle.

Using this approach, we are able to estimate and compare
security levels of different CSs and services. Also we can
analyze and compare an impact of removing vulnerabilities to
security of the SoS, its CSs and their services. For example,



TABLE I:
SIGNAL INTERFERENCE VULNERABILITY SCORE CALCULATION USING CVSS BASE SCORE CALCULATOR

Metric Value Comments

Attack Vector Network Signal Interference vulnerability is remotely exploitable by transmitting a high-range
signal for example

Attack Complexity Low
The attacker doesn’t need a specialized access conditions and can expect repeatable
attack success against the physical transmission of signals during a communication
process e.g. through situations such as noise, interference and collision

Privileges Required None The attacker is unauthorized prior to attack, consequently he does not require any
access to settings or files to achieve his attack

User Interaction None The physical support for signal transmission can be exploited without interaction
from any user

Scope Changed The Signal Interference exploited vulnerability can affect the situational awareness
info as well as the signals transmitted to another system component

Confidentiality
Impact None There is no confidentiality loss within the impacted component

Integrity Impact High Exploiting this vulnerability results in a loss of integity and/or protection of the data
transmitted on the wireless medium e.g. through noise, interference, collision

Availability Impact High After exploiting this vulnerability the attacker is able to deny access to resources in
the impacted component such as blocking access to situational awareness information

current evaluations indicate that the probability of a security
breach is 0.7659 for an autonomous quarry. Assuming that the
camera has no vulnerabilities, this probability would reduce to
0.4801, whereas removing the SignalInt. vulnerability would
lead to a higher decrease (i.e., approximately 0.4411).

TABLE II:
BN ANALYSIS RESULTS

Element Security Failure Probability
CtrlAction 0.9011

CtrlInfoDel. 0.8375
CtrlRoom 0.816

Vehicle 0.7619
AutonomousQuarry 0.7835

VI. CONCLUSION AND FUTURE WORK

A. Sensitivity Analysis

We have demonstrated how the BN analysis might help
in quantifying the effects of cyberattacks propagation to SoS
security. However, reliability of the analysis results depends on
the accuracy of the input parameters, i.e., PPTs and CPTs. Due
to data scarcity, it is rather difficult to assure the accuracy of
PPT/CPT entries. To address this issue, a sensitivity analysis
is an adequate solution not only to detect the input parameters
that have the highest effect on the accuracy of the analysis
results, but also, to determine the robustness of the analysis
results against small changes in PPT/CPT values.

For the autonomous quarry example, we varied the value of
each PPT/CPT entry by 0.1 (while keeping others unchanged)
and repeated the BN analysis step. For each PPT we recorded
the amount of change in the SoS security failure probability.

True False
SignalInt. 1 0

CameraVul. 0.75 0.25

(a) SignlaInt. & CamVul. PPTs

SignalInt. True False
True 0.82 0.18
False 0.12 0.88

(b) CPT of LIDARRelay

CtrlAction True False
True 0.9 0.1
False 0.05 0.95

(c) CPT of CtrlRoom

CtrlInfoDel. True False
True 0.9 0.1
False 0.05 0.95

(d) CPT of Vehicle

SignalInt. LIDARRel. True False
False False 0 1
False True 0.3 0.7
True False 0.4 0.6
True True 0.99 0.01

(e) CPT of CtrlAction

SignalInt. CameraVul. True False
False False 0 1
False True 0.5 0.5
True False 0.5 0.5
True True 0.95 0.05

(f) CPT of CtrlInfoDelivery

CtrlRoom Vehicle True False
False False 0 1
False True 0.6 0.4
True False 0.4 0.6
True True 1 0

(g) CPT of AQ

Fig. 6: Input estimations for autonomous quarry



Fig. 7: Sensitivity analysis results

However, for CPTs the recorded value was the average of
the changes made by all entries. Fig. 7 shows the recorded
changes. Accordingly, sensitivity of the output accuracy to
the probability of the SignalInt. vulnerability is more than the
vulnerability in cameras. The analyst should be more careful
about the CPTs of an autonomous quarry and Vehicle, since
they have a higher impact on the output accuracy.

Given the complexity of SoS and the growth of their
application, there is a need for a suitable security analysis
that can capture dependencies between CSs. In this paper we
present a semi-automatic approach for modeling and analysis
of a cyberattack propagation in SoS. The foundation of our
approach is MDE where we start from already existing SoSSec
and compliment it with a semi-automatic transformation to
BNs for analysis purposes. Given this we are able to estimate a
probability of a security failure and compare security levels of
different CSs in an SoS as well as to estimate how mitigation
of a particular vulnerability affects the security level. For
example, for the considered autonomous quarry mitigating a
vulnerability related to signal interference is more effective
from a security perspective compared to other analyzed vul-
nerabilities. As a future work, we aim to provide a complete
tool support for the presented approach.

ACKNOWLEDGEMENT

This work is supported by the Serendipity project funded
by SSF, the SAFSEC-CPS project funded by KKS.

REFERENCES

[1] M. Maier, “Architecting principles for SoS,” Systems Engineering, vol. 1,
pp. 267 – 284, 1998.

[2] E. Lisova, J. El Hachem, and A. Causevic, “Investigating attack propaga-
tion in a sos via a service decomposition,” in IEEE SERVICES Workshop
on Cyber Security and Resilience in the Internet of Things, July 2019.

[3] H. Kopetz, O. Höftberger, B. Frömel, F. Brancati, and A. Bondavalli,
“Towards an understanding of emergence in SoS,” in System of Systems
Engineering Conference, Texas, USA, 2015, pp. 214–219.

[4] J. Dahmann, “System of systems pain points,” INCOSE International
Symposium, vol. 24, no. 1, pp. 108–121, 2014.

[5] S. Chockalingam, W. Pieters, A. Teixeira, and P. van Gelder, “Bayesian
network models in cyber security: A systematic review,” in Secure IT
Systems. Springer International Publishing, 2017, pp. 105–122.

[6] Y. Zhou, C. Zhu, L. Tang, W. Zhang, and P. Wang, “Cyber security
inference based on a two-level bayesian network framework,” in 2018
IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 2018, pp. 3932–3937.

[7] J. El Hachem, T. A. Khalil, V. Chiprianov, A. Babar, and P. Aniorte,
“A model driven method to design and analyze secure architectures of
systems-of-systems,” in 22nd International Conference on Engineering
of Complex Computer Systems, Fukuoka, Japan, 2017, pp. 166–169.

[8] R. Kissel, Glossary of key information security terms. U.S. Dept. of
Commerce, National Institute of Standards and Technology, 2006.

[9] R. Abercrombie and F. Sheldon, “Security analysis of smart grid
cyber physical infrastructures using game theoretic simulation,” in IEEE
Symposium Series on Computational Intelligence, 2015, pp. 455–462.

[10] P. Meland, E. Paja, E. Gjære, S. Paul, F. Dalpiaz, and P. Giorgini, “Threat
analysis in goal-oriented security requirements modelling,” International
Journal on Secure Software Engineering, vol. 5, no. 2, pp. 1–19, 2014.

[11] J. El Hachem, V. Chiprianov, V. V. Graciano Neto, and P. Aniorte,
“Extending a multi-agent systems simulation architecture for systems-of-
systems security analysis,” in 2018 13th Annual Conference on System
of Systems Engineering, 2018, pp. 276–283.

[12] A. Kobetski and J. Axelsson, “Towards safe and secure systems of sys-
tems: Challenges and opportunities,” in Proceedings of the Symposium
on Applied Computing, ser. SAC, 2017, pp. 1803–1806.

[13] M. Mori, A. Ceccarelli, T. Zoppi, and A. Bondavalli, “On the impact
of emergent properties on SoS security,” in 11th System of Systems
Engineering Conference, Kongsberg, Norway, 2016, pp. 1–6.

[14] J. Nicklas, M. Mamrot, P. Winzer, D. Lichte, S. Marchlewitz, and
K. Wolf, “Use case based approach for an integrated consideration of
safety and security aspects for smart home applications,” in 11th System
of Systems Engineering Conference, Kongsberg, Norway, 2016, pp. 1–6.

[15] C. Guariniello and D. DeLaurentis, “Communications, information, and
cyber security in systems-of-systems: Assessing the impact of attacks
through interdependency analysis,” Procedia Computer Science, vol. 28,
pp. 720 – 727, 2014.

[16] J. Dahmann, G. Rebovich, M. McEvilley, and G. Turner, “Security
engineering in a system of systems environment,” in IEEE Systems
Conference, 2013.

[17] Y. S. Chang, C. T. Fan, W. T. Lo, W. C. Hung, and S. M. Yuan, “Mobile
cloud-based depression diagnosis using an ontology and a bayesian
network,” Future Generation Computer Systems, vol. 43, pp. 87–98,
2015.

[18] J. Luque and D. Straub, “Reliability analysis and updating of deteriorat-
ing systems with dynamic bayesian networks,” Structural Safety, vol. 62,
pp. 34–46, 2016.

[19] D. Lang, P. Wunderlich, M. Heinz, L. Wisniewski, J. Jasperneite,
O. Niggemann, and C. Röcker, “Assistance system to support trou-
bleshooting of complex industrial systems,” in 14th IEEE International
Workshop on Factory Communication Systems.

[20] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. Elsevier, 2014.

[21] S. Girs, E. Uhlemann, and M. Björkman, “Increased reliability or
reduced delay in wireless industrial networks using relaying and luby
codes,” in 2013 IEEE 18th Conference on Emerging Technologies
Factory Automation (ETFA), Sep. 2013, pp. 1–9.

[22] J. El Hachem, Z. Pang, V. Chiprianov, A. Babar, and P. Aniorte,
“Model Driven Software Security Architecture of Systems-of-Systems,”
in APSEC, Hamilton, New Zealand, 2016, pp. 89–96.

[23] V. H. Le, J. den Hartog, and N. Zannone, “Security and privacy for inno-
vative automotive applications: A survey,” Computer Communications,
vol. 132, pp. 17 – 41, 2018.

[24] D. Elliott, W. Keen, and L. Miao, “Recent advances in connected and
automated vehicles,” Journal of Traffic and Transportation Engineering
(English Edition), vol. 6, no. 2, pp. 109 – 131, 2019.

[25] N. Sousa, A. Almeida, J. Coutinho-Rodrigues, and E. Natividade-
Jesus, “Dawn of autonomous vehicles: review and challenges ahead,”
Proceedings of the Institution of Civil Engineers - Municipal Engineer,
vol. 171, no. 1, pp. 3–14, 2018.

[26] “The white-hat hacking machine: Meet mayhem, winner of the darpa
contest to find and repair software vulnerabilities,” IEEE Spectrum,
vol. 56, no. 2, pp. 30–35, Feb 2019.

[27] INCOSE Systems Engineering Body of Knowledge, version 1.6. IN-
COSE UMS, March 2016.

[28] N. Medvidovic and R. Taylor, “A classification and comparison frame-
work for software architecture description languages,” IEEE Transac-
tions on Software Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[29] J. Meier, A. Mackman, M. Dunner, S. Vasireddy, R. Escamilla, and
A. Murukan, Improving web application security: threats and counter-
measures. Microsoft Corporation Washington, DC, 2003.

[30] OWASP, “The open web application security project,”
https://www.owasp.org/, 2019.


