
Pessimistic Concurrency Control and Versioning to Support Database Pointers
in Real-Time Databases ∗

Dag Nyström†, Mikael Nolin†, Aleksandra Tešanović�, Christer Norström†, and Jörgen Hansson�

†Mälardalen University �Linköping University
Mälardalen Real-Time Research Centre Dept. of Computer Science

Västerås, Sweden Linköping, Sweden
{dag.nystrom, mikael.nolin, {alete,jorha}@ida.liu.se
christer.norstrom}@mdh.se

Abstract
In this paper we present a concurrency control algo-

rithm that allows co-existence of soft real-time, relational
database transactions, and hard real-time database pointer
transactions in real-time database management systems.
The algorithm uses traditional pessimistic concurrency-
control (i.e. locking) for soft transactions and versioning
for hard transactions to allow them to execute regardless
of any database lock. We provide formal proof that the al-
gorithm is deadlock free and formally verify that transac-
tions have atomic semantics. We also present an evaluation
that demonstrates significant benefits for both soft and hard
transactions when our algorithm is used. The proposed al-
gorithm is suited for resource-constrained safety critical,
real-time systems that have a mix of hard real-time control
applications and soft real-time management, maintenance,
or user-interface applications.

1. Introduction
In this paper we present a method that allow co-existence

of soft real-time database transactions (denoted soft trans-
actions) and hard real-time database transactions (denoted
hard transactions) in a Real-Time Database Management
System (RTDBMS). To support both types of transac-
tions while eliminating transaction abortions caused by hard
transactions and avoiding long delays for hard transactions,
we propose the use of a versioning algorithm that uses tra-
ditional pessimistic concurrency control [1] for soft, rela-
tional (e.g., SQL [3]), transactions but allow hard, database
pointer [8], transactions to execute regardless of any locks
held by soft transactions.

Our concurrency control algorithm, called 2-Version
DataBase Pointer concurrency control (2V-DBP), is suited
for resource-constrained safety-critical, real-time systems
that have a mix of hard real-time control applications and

∗This work is supported by SSF within the SAVE project, SAfety criti-
cal components for VEhicular systems.

soft real-time management, maintenance, or user-interface
applications.

We have previously studied data management in real-
time control systems in an industrial case study of a vehicle
control system developed at Volvo Construction Equipment
Components AB, Sweden [9]. In this study a number of
data management requirements were presented and it was
concluded that both the system architecture, and the de-
velopment and maintenance efforts could be improved by
adopting a more structured approach to data management,
e.g., by introducing an RTDBMS. Furthermore, it was elab-
orated on how to design and integrate an RTDBMS into the
system. The RTDBMS can be used to ensure both logi-
cal and temporal consistency of application data within a
real-time system [11]. Furthermore, RTDBMSs allow, so
called, ad hoc queries that could be used by a service tech-
nician to diagnose a running system. It was concluded in the
case study that the RTDBMS must have capabilities to han-
dle both hard and soft database transactions, and that hard
database transactions were issued by safety critical I/O and
control-tasks running at high frequencies.

In [8] we proposed the concept of database pointers,
as efficient means of accessing individual data elements
within a RTDBMS. Database pointers have the efficiency
of a shared variable combined with the advantages of us-
ing a RTDBMS. They allow a fast and predictable way of
accessing data in a database without the need of consulting
the RTDBMS indexing system. Furthermore, they provide
an interface that uses a pointer-like syntax. This interface
is suitable for control-system applications using numerous
small tasks running at high frequencies. Database pointers
can be used together with more flexible relational database
queries without risking a violation of the database integrity.

This paper presents a concurrency control algorithm suit-
able for hard real-time control systems, e.g., vehicle con-
trol systems. The algorithm, which combines the con-
cept of database pointers and relational transaction manage-

1

ment, satisfies the need for predictable and time-efficient
hard real-time control-applications, while allowing rela-
tional soft management transactions access to the database
without being starved by the hard transactions. The algo-
rithm uses a versioning technique for the hard transactions
and two-phase locking high priority (2PL-HP) [1] for the
soft transactions. In order to support these two concurrency
control methods we introduce a simplified form of version-
ing, i.e., we maintain multiple (in our case two) versions
of selected data elements. Our algorithm overcomes the
widely recognized problem that transactions with low pri-
ority and long execution times are penalized due to the like-
liness of data conflicts [4].

The contributions of this paper include a novel concur-
rency control algorithm, called 2V-DBP that: (i) provides
efficient, and time-deterministic, execution of hard transac-
tions, regardless of any database locks held by other trans-
actions; (ii) bounds the maximum memory overhead caused
by adding versions of data elements; (iii) allows soft trans-
actions to be executed even though the database is read and
updated by hard transactions.

We also present an evaluation of 2V-DBP; showing sig-
nificant benefits for both hard and soft transactions.

The costs of using 2V-DBP are added (although pre-
dictable) memory overhead, since all data used by the hard
transactions is stored in two versions, and a relaxation of
the serialization criteria for soft management transactions.

In section 2, our system model and transaction models
are presented. The paper then recapitulates the database
pointer concept in section 3. The proposed concurrency
algorithm is then presented, verified, and evaluated in sec-
tion 4. We conclude the paper in section 5.

2. System model

This paper focuses on real-time applications used to con-
trol a process, e.g., critical control-functions in a vehicle
such as engine or brake control. The basic flow of execu-
tion in such a system is [9]: (i) periodic scanning of sensors,
(ii) execution of control algorithms, such as PID-regulators,
and (iii) propagation of the result to the actuators. Typically,
the application is structured into multiple tasks executed by
a preemptive real-time operating system. The tasks use the
RTDBMS to access and manipulate shared data. Hence,
the RTDBMS needs some form of concurrency control to
maintain consistency given multiple concurrent accesses.
In traditional relational databases, data manipulation is per-
formed using queries formulated in a special purpose lan-
guage such as SQL. Such queries can either be created dy-
namically (during run-time), so called ad-hoc queries, or be
created before run-time and stored in a precompiled format.
The latter is the common case in real-time systems, since
precompiling a query saves both time and memory during
run-time.

Task type H
ar

d
R

T
So

ft
R

T
Fr

eq
ue

nc
y

Tr
an

s.
ty

pe

Pr
ec

om
pi

le
d

A
d

ho
c

Control tasks x H U x
I/O tasks x H RW x
Management tasks x L RWU (x) (x)

Legend:
x - the property is true for the task type
(x) - the property is true for some tasks of the task type
H/L - indicates high, or low frequency
RWU - indicates read only, write only, or update transaction type

Table 1. Transaction properties for the sys-
tem’s task types.

2.1. Application and task model

We classify the tasks in the system into three cate-
gories, namely, I/O-tasks, control-tasks, and management-
tasks [9]. The I/O-tasks are typically executed periodically,
often at high frequencies. There are two types of I/O-
tasks; (i) tasks that read a sensor, and write the value to the
database using a write only transaction , and (ii) tasks that
read a value from the database, using a read only transac-
tion, and then write it to an actuator. Table 1 summarizes the
properties of the three types of tasks. I/O-tasks touch very
few, in most cases only one, data element in the database,
and their transactions are always precompiled.

Control tasks take a set of data values and derive new
actuator values, thus performing update transactions on the
database, i.e., performing a number of read operations fol-
lowed by a number of write operations. For most control
tasks in a real-time control system, reading the freshest data
values available is sufficient (and preferable). Note that this
desire to read fresh data is not always adhered to by RT-
DBMSs, since they focus on preserving transaction order-
ing rather than providing data freshness.

Management tasks are the only tasks running soft trans-
actions. An example of a management task might be a task
presenting statistical information about the current state of
the vehicle to the user. A management transaction might
also be constructed during run-time, for example by a ser-
vice technician using a service tool connected to the vehicle.

2.2. Transaction models

All tasks in the system that interact with the RTDBMS do
this through database transactions. A database transaction
consists of a set of database operations, e.g., read and write
operations. We denote transactions residing in hard real-
time tasks as hard transactions, while transactions residing
in soft real-time tasks are referred to as soft transactions.
A task can only execute one transaction at a time, but any
number of transactions in sequence.

2

1 TASK OilTempReader(void) {
2 int s;
3 DBPointer *ptr;
4 bind(&ptr, "SELECT temperature FROM engine

WHERE subsystem=oil;");
5 while(1) {
6 s=read_sensor();
7 write(ptr,s);
8 waitForNextPeriod();

}
}

Figure 1. An I/O task that uses a database
pointer

The two different transactions types are characterized as:
(i) Soft transactions utilize a relational database query in-
terface, e.g., SQL, for database access. These transactions
provide flexible and dynamic access to data in the database.
(ii) Hard transactions utilize the database pointer interface.
The database pointer interface only allows one operation on
one data element per transaction. This operation can either
be a read or a write operation. Hard transactions cannot be
aborted and will always complete successfully. All transac-
tion have atomic semantics, i.e., either they are fully exe-
cuted or not executed at all.

3. Database pointers

Before addressing the concurrency control algorithm,
we will recapitulate the database pointer concept presented
in [8]. Noteworthy is that in that work (and, hence, in this
section) database pointers use pessimistic concurrency con-
trol (i.e. locks).

Figure 1 shows an example of a I/O task that periodi-
cally reads a sensor and propagates the sensor value to the
database using a database pointer, in this case the oil tem-
perature in the engine relation. The task consists of two
parts, an initialization part (lines 2–4) executed when the
system is starting up, and a periodic part (lines 5–8) scan-
ning the sensor. The initialization of the database pointer is
first done by declaring the database pointer (line 3) and then
binding it to the data element containing the oil temperature
in the engine (line 4). When the initialization is completed,
the task begins to periodically read the value of the sensor
(line 6), then propagates the value to the RTDBMS using
the database pointer (line 7), and finally awaits the next in-
vocation of the task (line 8).

Database pointers are implemented using the data struc-
tures shown in figure 2. The binding of a database pointer
to a database element is performed in the following steps:

1. A new database pointer entry is created in the RT-
DBMS.

2. The SQL query is executed. It is required that the re-
sult of the query is a single data element. If it is the first
time the data element is bound to a database pointer, a
new data pointer is created in the RTDBMS. The data

ptr
...

ptr
...

ptr
...

ptr
...

dataPtr
type
lock

Database

Database pointer
entries

Data pointers

Figure 2. The data structures for database
pointers.

pointer is initialized with the address of the data ele-
ment, the data type of the element, and a pointer to the
lock for the data element.

3. The database pointer entry is set to point at the data
pointer.

4. Finally, the pointer to the database pointer entry is re-
turned as a DBPointer*.

In addition to the bind(ptr,q) operation, the
database pointer interface consists of the remove(ptr)
operation which deallocates a database pointer, the
write(ptr,data), and the read(ptr) operations
which updates, respectively reads the data element.

4. The 2-version database pointer algorithm
(2V-DBP)

The 2V-DBP algorithm allows hard database transac-
tions to execute without being blocked by soft database
transactions. Furthermore, soft transactions, using the rela-
tional part of the RTDBMS are allowed to execute without
being blocked or aborted by the hard database transactions.
To achieve this behavior, two versions of all data elements
pointed out by database pointers must exist in the database
in a similar way as in the two-version priority ceiling proto-
col proposed by Kuo, Kao, and Shu [5].

The behavior, at a high level of abstraction, of 2V-DBP
is discussed in sections 4.1 to 4.4, while the underlying ver-
sioning algorithm that ensures the desired behavior is pre-
sented in sections 4.5 to 4.6.

4.1. Soft transactions

The soft transactions utilize the relational part of the RT-
DBMS, and use an extended form of 2PL-HP [1]. Soft
transactions pass through the following steps throughout
their executions:

1. The Begin of Transaction step (BOT) in which the
transaction becomes active.

2. The lock-obtaining step in which the transaction ob-
tains all locks necessary to complete. In 2V-DBP,

3

the set of locks does not have to be defined prior to
the BOT of a transaction, i.e., 2V-DBP allow ad hoc
queries.

3. The committing step in which the transaction starts to
write back the updated data elements to the database.
Up to this step, the transaction might be aborted due
to some data conflict. However, when the transaction
enters the committing step it cannot be aborted any
longer.

4. The End Of Transaction (EOT) step in which the
transaction releases all locks, and the transaction is
completed. When the EOT step has been executed, all
changes to the database made by the transaction are
made visible to other transactions.

The following rules are applicable for soft transactions:

Rule 1 Soft transactions can read a data element from the
database after having successfully obtained either a read
lock or a write lock.

Rule 2 Soft transactions can change a value of a data el-
ement in the database after having successfully obtained a
write lock.

Rule 3 All locks needed for completing a soft transaction
must be obtained prior to the transaction entering the com-
mitting step.

Rule 4 Read locks on a particular data element in the
database can be held by multiple soft transactions simul-
taneously, thus read locks are compatible with other read
locks for the same data element.

Rule 5 A write lock on a particular data element in the
database grants a soft transaction exclusive access to the
data element, so that no other soft transactions can hold,
or obtain, any type of lock on the data element in question
during the time the write lock is held. Thus write locks are
incompatible with any other lock for the same data element.

Rule 6 A transaction takes the database from a consistent
state to a new consistent state. This means that during the
execution of a soft transaction no changes to the database,
caused by the transaction, are visible to other transactions
until it finishes EOT.

Rule 7 If two soft transactions attempt to obtain a read lock
or a write lock, which violate the lock compatibility stated
in rule 4 and 5, result in that the transactions are considered
to be in conflict with one another.

4.2. Hard transactions

All hard transactions use database pointers. Even though
hard transactions can access the same data elements as
soft transactions, hard transactions are never blocked by
database locks. However, hard transactions take database
locks in consideration and access the database differently if
the data element is locked, see section 4.5.

The following rules are applicable to all hard transac-
tions:
Rule 8 A hard transaction can either read or write a data
element, even if the data element is locked by a soft trans-
action.

Rule 9 A hard transaction can never come in conflict with
any other transaction.

Rule 9 is enforced by making hard transactions non-
preemptable, see section 4.5.

4.3. Transaction conflicts

Since soft transactions might be in conflict with other
soft transactions, as stated in rule 7, a policy on how to
resolve these conflicts is needed. The following rules are
applicable to solve transaction conflicts:

Rule 10 A soft transaction that has not yet entered the com-
mitting step will be aborted by the concurrency control al-
gorithm iff it is in conflict, according to rule 7, with a soft
transaction executing with a higher priority.

Rule 11 A soft transaction that is in conflict, according to
rule 7, with a soft transaction executing at a lower priority
which has entered the committing step, will be blocked from
execution until the committing transaction has finished its
execution.

Theorem 1 A database transaction can never enter a state
of deadlock caused by conflicts with any other database
transaction.

Proof Since a hard database transaction can never be in con-
flict with any other transaction (rule 9), conflicts can thus
only occur among soft transactions. Transaction conflicts
among soft transactions are resolved in two ways; (i) If the
conflicting transaction is executing at a lower priority than
any other conflicting transaction, and has not yet entered
the committing step it is aborted (rule 10), thus resolving
the conflict. (ii) If the conflicting transaction is executing at
a lower priority than any other conflicting transaction, and
has entered the committing step, any conflicting transaction
will be blocked until the transaction is completed (rule 11),
and thus releasing all it locks. Since a transaction, which
has entered the committing step, cannot obtain any further
locks (rule 3), it cannot cause any further conflicts with any
other transaction. ∴

4

4.4. Transaction serialization and relaxation

The goal of a concurrency control algorithm is to resolve
data conflicts between concurrent transactions so that it ap-
pears that they are run in sequence, hence transactions are
serialized. The traditional notion of serialization is to seri-
alize transactions in the order that they commit, i.e., in the
order their updates are visible to other transactions. How-
ever, it has been recognized that this notion of serialization
is not ideal for accessing real-time data [6], since freshness
of data often is more important than traditional serializa-
tion. Hence, relaxing this serialization criteria, in a con-
trolled way, might increase the freshness of the accessed
data.

In 2V-DBP, the following serialization rules apply to
transactions:
Rule 12 A set of executing soft transactions are serialized
in the order they perform EOT, thus making their changes
visible to other transactions.

Rule 13 A hard transaction, reading or writing the value of
a data element x, is serialized before all hard transactions
reading or writing the value x at a later time. Furthermore,
the transaction is serialized before any soft database trans-
action obtaining a lock on x at a later time.

Rule 14 A hard transaction, updating the value of a data
element currently locked by a soft transaction, is serialized
after that transaction.

Intuitively, rule 14 implies that if, during the execution of
a soft transaction, a hard transaction updating the database
is serialized after the soft transaction, the soft transaction
must not update the data element in question. This is be-
cause the hard transaction is serialized after the soft trans-
action, and thus the value produced by the soft transaction is
already overwritten by the hard transaction, since logically
it was executed after the soft transaction.

Rule 13 and 14 imply a relaxation of the serialization
order. Consider the example given in figure 3 where
transactions T1 to T3 execute in the following way:

Event Data State Comment
T1 BOT {x, y} T1 starts
T1 W lock(x) T1 obtains write lock on x, thus obtained

a local copy of x.
T2 Write(x) → x′ {x′, y} T2 pre-empts T1 and updates x. Since x

is write locked by T1, T2 is serialized
after T1, according to rule 14.

T3 Write(y) → y′ {x′, y′} T3 updates y. Since y is not yet write-
locked by T1, T3 is serialized before
T1, according to rule 13.

T1 W lock(y′) T1 obtains write lock in y, thus obtaining
a local copy of x′.

T1 Execute query T1 derives x′′ and y′′.
T1 committing T1 enters the committing step.
T1 ¬(Upd(x′′)) T1 does not update x− > x′′,

according to rule 14.
T1 Upd(y′) → y′′ T1 updates y, however this update is not

yet visible to other transactions.
T1 EOT {x′, y′′} T1 ends and releases its locks. y′′ is now

visible to other transactions.

TimeT1 (soft)

T2 (hard)

T3 (hard)

Time

Time

BOT
W_lock(x)

Write(x)->x'

Write(y)->y'

W_lock(y')
Execute COMMITTING

Update(x'') Update(y'')

Derive x'' & y''

EOT

Data in Db {x,y} {x',y} {x',y'} {x',y''}

Serialized after T1

Serialized before T1

Figure 3. An execution-trace of three transac-
tions

ptr
...

ptr
...

ptr
...

ptr
...

dataPtr
update
trans
version

state
localVer
...

state
localVer
...

state
localVer
...

Soft transactions

Database

Database pointer
entries

Data pointers

Figure 4. The data structures used for ver-
sioning

From the example we see that the resulting serialization
order is T3, T1, and T2, even though the actual order of
commit is T2 , T3 , and T1 . This relaxation of the serial-
ization does, however, not imply that soft transactions read
inconsistent data since all transactions, according to rule 6,
take the database from one consistent state to another, see
section 4.6. This serialization approach trades a relaxation
of serialization for freshness of data.

4.5. Realizing 2V-DBP using versioning

As stated earlier, the RTDBMS maintains two versions
of data items that have data pointers to them. These ver-
sions are used to realize 2V-DBP, as described by rules 8, 9,
and 12–14. The data structures from figure 2 are modified
as follows (depicted in figure 4):

• A list of the active soft transactions, where each entry
consists of, among other information, the current state
(state) of the transaction, and a local working copy
of the data element (localVer).

• A second version of the data element (version) as
well as a flag (update) are added to the data pointer.
The update flag can have the values clean and
dirty, where the latter indicates that the data has
been updated by a hard transaction since it was pre-
viously write locked by a soft transaction. Since hard
transactions do not use database locks, the lock entry
presented in figure 2 is removed.

• A pointer (trans) to any soft transaction holding a

5

1 trans.state=EXECUTING; //BOT
2 For each tuple loop
3 obtainLock(tuple);
4 For each element in tuple loop
5 if (HasDbP(element) and isWriteLocked(tuple))
6 beginATOM();
7 DbP.version=Database.element;
8 DbP.trans=currentTrans();
9 DbP.update=CLEAN;
10 localVer=Database.element;
11 endATOM();
12 else
13 localVer=Database.element;
14 End if
15 End loop
16 End loop
17 //Manipulate tuples
18 trans.state=COMMITTING
19 For each manipulated tuple loop
20 For each element in tuple loop
21 if (HasDbP(element))
22 beginATOM();
23 if (DbP.update==CLEAN)
24 Database.element=localVer;
25 End if
26 endATOM();
27 else
28 Database.element=localVer;
29 End if
30 End loop
31 End loop
32 releaseAllLocks(trans); //EOT
33 trans.state=NO_TRANS; //EOT

Figure 5. A soft transaction

write lock on the data element is added to the data
pointer.

The implementation of a soft transaction is presented in
figure 5. First the BOT step is executed (line 1), by set-
ting the state of the transaction to executing. The next
step, the lock obtaining step, is then executed (lines 2-16)
by obtaining a lock for each tuple (line 3). When the lock is
granted, the data element in the tuple is fetched to the local
version. If a write locked data element is also pointed out
by a database pointer, lines 6-11 are atomically executed,
i.e., without being preempted. This atomicity is ensured by
the beginATOM() and endATOM() functions, e.g., by
temporarily disabling all interrupts. When fetching the data
element, the version and the trans in the data pointer
are also updated. Furthermore, the update flag is set to
clean (line 9), to indicate that no hard transaction has al-
tered the data element since the locking of the tuple. Finally,
the data element is read from the database (line 10).

When all data elements of all tuples needed by the trans-
actions are locked and copied to local versions, the trans-
action executes the query, in which all local versions of the
write locked data elements can be manipulated.

The next step, the committing step, is entered (line 18)
by changing the state of the transaction. Now the trans-
action can write all manipulated data elements back to the
database (line 19-31) The data elements pointed out by
database pointers are only updated if the update flag still
indicates clean. Note that the second version (version)
is not updated.

1 beginATOM(); //BOT
2 if (DbP.trans->state!=NO_TRANS)
3 version=NEW_VALUE;
4 update=DIRTY;
5 End if
6 *(DbP.dataPtr)=NEW_VALUE;
7 endATOM(); //EOT

Figure 6. A hard write transaction
1 beginATOM(); //BOT
2 if (DbP.trans->state!=NO_TRANS)
3 localVer=version;
4 else
5 localVer=*(DbP.dataPtr);
6 End if
7 endATOM(); //EOT

Figure 7. A hard read transaction

In the last step, the EOT step, the transaction releases all
its obtained locks (line 32), and changes state to no trans
(line 33). The algorithm ensures that no data produced by
the transaction is visible to any other transaction prior to this
final step, see section 4.6 for the verification of this property.

Hard transactions execute entirely in one atomic oper-
ation, this implies that BOT and EOT coincide in time.
This atomicity is, again, provided by beginATOM() and
endATOM(), see lines 1 and 7 in figures 6 and 7. A hard
transaction will read the data element in the database if the
data element is not write locked by a transaction. Other-
wise, it will read the value from the version in the data
pointer. A hard transaction always writes directly to the data
element in the database. However, if it is locked by a write
lock, it will also update the version in the data pointer, as
well as setting the update flag to dirty to indicate that
the data element is now updated after it was write locked by
the transaction.

4.6. Formal verification of the versioning algorithm

In order to formally show the correctness of the version-
ing algorithm in section 4.5, we have chosen to use the tool
UPPAAL [7] to verify important properties of the algorithm.

One important property to verify is whether or not trans-
actions always read the correct version of a data element,
i.e., the value produced by the last serialized transaction up-
dating that particular data element. We refer to this as the
durability of transactions. Another equally important prop-
erty is to verify that no intermediate results produced by
executing transactions are visible to other transactions, e.g.,
verify the consistency of transactions. Finally, we verify
that the versioning algorithm is deadlock-free.

UPPAAL is a toolbox for modeling, verification and val-
idation of real-time systems. It is appropriate for systems
that can be modeled as a collection of non-deterministic
processes with finite control structure and real-valued
clocks, communicating through channels and (or) shared
variables. UPPAAL is designed mainly to check invariant
and reachability properties by exploring the state space of
a system [7]. UPPAAL provides a graphical interface in
which the user graphically models the system using timed

6

automatas. Each transition in the automatas can have guards
assigned to them, preventing the system to perform the tran-
sition if the condition stated in the guard is not fulfilled.
Guards use the same syntax as conditions in c, e.g., op ==
op, op < op, and op != op. If a transition is per-
formed, a (possibly empty) set of assignments is executed,
e.g., op := op. All operations, e.g., guards, assignments
and synchronization, performed during one transition are
considered to be one atomic operation which cannot be pre-
empted by other transitions. It is also possible to use com-
munication channels in which two automatas can perform
synchronized transitions. When the real-time system has
been modeled, the system can be model-checked using re-
quirement specification queries.

The automatas depicted in figures 8 to 11 show
the behavior of transactions (for a data element
pointed out by a data pointer), as modeled in UP-
PAAL. In the modeling of the system, two states
(AFTERREAD VERIFICATION STATE in fig-
ure 8 and 10) and one variable (lastCommitted-
Transaction) have been added. These do not affect
the behavior of the model, but are added for verification
purposes. Three of the states are marked with the letter “C”,
which, in UPPAAL, indicates that the state is committed,
i.e., the automata must immediately move to the next state.

The hard write, the hard read, and the soft read opera-
tions are a direct translation of the pseudo programs pre-
sented in section 4.5. The soft write transactions presented
in figure 8, however, deserve further explanation:

1. The transition from BOT to EXECUTING (The
AFTERREAD VERIFICATION STATE is disre-
garded for now) corresponds to the lock obtaining step
of the transaction.

2. The transition from EXECUTING to COMMITTING
NOT WRITTEN DATA correspond with the transac-

tion entering the committing state.

3. In the COMMITTING NOT WRITTEN DATA the de-
cision whether or not to update the database is taken
based upon the value of the update flag.

4. The transition from COMMITTING HAS WRITTEN
DATA to EOT corresponds to lines 32-33 in figure 5.

In our verification we parallel compose the four automa-
tons. This configuration is minimalistic but sufficient in or-
der to capture all possible types of interactions where hard
and soft transactions can interfere with each other (i.e., soft
read vs. hard write, soft write vs. hard write, soft write vs.
hard read, and all possible orderings of these pairs of inter-
actions).

In this verification, three properties are verified, (i) that
the algorithm is deadlock-free, (ii) that the value written by

data_locked==false
version:=DbValue,
localVer:=DbValue,
data_locked:=true,
transState:=STATE_EXECUTING

C
BOT

EXECUTING
AFTERREAD_VER
IFICATION_STATE

transState:=STATE_COMMITTING

COMMITTING_NOT_
WRITTEN_DATA

update==UPD_CLEAN
DbValue:=TRANS_SOFTDATA

update==UPD_DIRTYCOMMITTING_HAS_
WRITTEN_DATA

EOT

//Point of commit
transState:=TRANS_NOTRANS,
data_locked:=false,
update==UPD_CLEAN? //if
 lastCommittedTransaction:=TRANS_SOFTDATA; //then
 lastCommittedTransaction:=lastCommittedTransaction //else

Figure 8. Automata for a soft write transaction

BOT_EOTtransState!=STATE_NOTRANS
DbValue:=TRANS_HARDDATA,
version:=TRANS_HARDDATA,
update:=UPD_DIRTY,
lastCommittedTransaction

:=TRANS_HARDDATA

transState==STATE_NOTRANS
DbValue:=TRANS_HARDDATA,
lastCommittedTransaction

:=TRANS_HARDDATA

Figure 9. Automata for a hard write transac-
tion

the last committed transaction is the value read by other
transactions, i.e., the durability of transactions, and (iii) the
consistency of transactions. The syntax of the queries in
UPPAAL are not be explained in this paper, instead we refer
to [7] for a detailed description of the UPPAAL syntax.

Verification that the versioning algorithm is deadlock-
free This property is trivial to check, since UPPAAL al-
ready has a mechanism to verify this. The result of the
query A[] not deadlock showed that the algorithm is
deadlock-free.

Verification of the durability of transactions To verify
this property, four queries are used, namely:

1. A[] ((SR.AFTERREAD VERIFICATION STATE

and SR.localVer==TRANS HARDDATA) imply

(lastCommittedTransaction==TRANS HARDDATA))

where SR is a soft read transaction. The query can
be interpreted as “Is it always so that if a soft read
transaction has read a value produced by a hard
transaction, the latest serialized transaction was a hard
transaction?”

2. A[] ((SR.AFTERREAD VERIFICATION STATE

and SR.localVer==TRANS SOFTDATA) imply

(lastCommittedTransaction==TRANS SOFTDATA))

where SR is a soft read transaction. The query
can be interpreted as “Is it always so that if a soft
read transaction has read a value produced by a soft
transaction, the latest serialized transaction was a soft
transaction?”

3. A[] ((HR.EOT and SR.localVer==TRANS HARDDATA)

imply (lastCommittedTransaction==TRANS HARDDATA))

7

data_locked==false
localVer:=DbValue,
data_locked:=true,

C

BOT

AFTERREAD_VER
IFICATION_STATE

EOT

EXECUTING

data_locked:=true

Figure 10. Automata for a soft read transac-
tion

C

BOT

EOT

localVer:=TRANS_NODATA

transState!=STATE_NOTRANS
localVer:=version

transState==STATE_NOTRANS
localVer:=DbValue

Figure 11. Automata for a hard read transac-
tion

where HR is a hard read transaction. The query can be
interpreted as “Is it always so that if a hard read trans-
action has read a value produced by a hard transac-
tion, the latest serialized transaction was a hard trans-
action?”

4. A[] ((HR.EOT and SR.localVer==TRANS SOFTDATA)

imply (lastCommittedTransaction==TRANS SOFTDATA))

where HR is a hard read transaction. The query can be
interpreted as “Is it always so that if a hard read trans-
action has read a value produced by a soft transaction,
the latest serialized transaction was a soft transaction?”

The verification showed that all four queries were fulfilled.

Verification of the consistency of transactions This
property was implicitly verified when the durability prop-
erty was verified, since if the value visible to transactions al-
ways originate from the last committed transaction, no data
can be visible from uncommitted transactions.

4.7. Performance evaluation

We have performed a performance evaluation of 2V-
DBP. The goal of the evaluation is to illustrate, for a syn-
thetic but realistic scenario, the positive impact 2V-DBP
has, comparing it to traditional pessimistic concurrency
control. Specifically, the goal is to demonstrate that 2V-
DBP provides significant benefits for both soft and hard
transactions, illustrating that 2V-DBP do not represent a
tradeoff between good service for either soft or hard trans-
actions.

To evaluate the performance of the 2V-DBP algorithm,
we compared it with using the 2PL-HP algorithm for both
soft and hard transactions. 2PL-HP is a well-known pes-
simistic concurrency control algorithm which can be imple-

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Time (s)

A
b

o
rt

io
n

 r
at

e
(%

)

2V-DBP

2PL-HP

Figure 12. Abortion-ratios for soft transac-
tions

mented on all priority-based operating systems. To achieve
this evaluation, a real-time system executing soft relational
transactions and hard database pointer transactions was im-
plemented on the Asterix real-time kernel [14]. These tests
were then executed on a standard PC with an Intel Pentium
350MHz processor.

The Asterix real-time kernel is an operating system, us-
ing fixed priority scheduling, intended for small embedded
applications. Since Asterix supports pre-emptable schedul-
ing, semaphores are needed to ensure task synchronization.
In Asterix, semaphores are implemented using the imme-
diate inheritance protocol [2]. The interrupt latency of the
kernel, executing on the computer used in these tests, is in
the order of 20µs.

The RTDBMS in the test consists of 300 tuples with four
data elements each. Also 300 randomly selected data ele-
ments are pointed out by database pointers. Every 400ms a
soft transaction is launched into the system. Each soft trans-
action randomly write- and/or read locks up to 200 tuples.
Also, every 20ms, a hard transaction is launched. The hard
transaction executes either a read or a write operation on a
randomly selected database pointer.

This transaction schedule mimics a hard real-time ve-
hicle control system with numerous hard I/O and control
tasks, as well as a number of management tasks execut-
ing data intensive soft transactions. It is, furthermore, fair
to assume that for RTDBMSs residing in vehicle control
systems, a significant part of the database is accessed by
hard transactions, since most execution in these systems
would involve the controlling of the vehicle, hence the high
amount of database pointers.

In figure 12 the mean abortion ratios for both 2V-DBP
and 2PL-HP is presented. The system’s abortion rate is
sampled with an interval of two seconds, and the sam-
ples (indicated by boxes and diamonds in figure 12) show
the mean abortion ratio for each interval. The comparison
shows that the total mean abortion ratio for 2V-DBP is 25%,
compared to approximately 75% for 2PL-HP. Furthermore,
it is noticeable that all abortions for 2V-DBP are induced by
soft transactions aborting other soft transactions, and that

8

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

Time (s)

R
es

p
o

n
se

 ti
m

e
(u

s)
2V-DBP

Figure 13. Response-times for hard transac-
tions using 2V-DBP

no transactions are aborted because of transaction conflict
with a hard transaction.

Figure 13 shows the response times for the hard trans-
actions executing under 2V-DBP. The figure shows that all
5000 transactions launched during the 100 second test inter-
val, but a handful (∼20 transactions) have constant execu-
tion time (5 µs). The remaining transactions have suffered
from latency caused by the kernel, i.e., a timer interrupt has
occurred during the execution of the transaction.

Figure 14 shows the corresponding response times for
hard transactions executing under 2PL-HP. Roughly, the re-
sponse times can be grouped into three classes, namely:
• Transactions executed without interference from other

transactions. More than 95% of the hard transactions
falls into this class. These transactions have a response
time similar to the 2V-DBP case, i.e., 5-8µs. However,
a fraction of these have also suffered from the kernel
timer interrupt.

• Transactions causing soft transactions to be aborted.
This implies that the hard transaction must execute the
abort transaction procedure before continuing. These
transactions, which are just above 4% of all hard trans-
actions, have an execution time of 95µs.

• Transactions suffering from priority inversion. Due
to the use of a common semaphore to administrate
the 2PL-HP lock tables these transactions have been
blocked by soft transactions. The execution times of
these transactions range up to ∼180µs. Only a small
fraction (0.1%) of all transactions fall into this class.

The measurements taken from these two execution cases
show that 2V-DBP outperforms 2PL-HP, both with respect
to a minimized amount of aborted transactions, as well as
constant execution times for hard transactions. This shows
that 2V-DBP is a suitable approach to manage hard trans-
actions in real-time control systems, since it provide high
throughput of soft transaction, as well as short constant ex-
ecution times for hard transactions.

4.8. Memory overhead of 2V-DBP
Another important issue for embedded systems is the

memory overhead. In most cases there is a clear trade-off

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

Time (s)

R
es

p
o

n
se

 ti
m

e
(u

s)

2PL-HP

Figure 14. Response-times for hard transac-
tions using 2PL-HP

between functionality and resource allocation; 2V-DBP is
no exception. However, the memory consumption of 2V-
DBP is bounded and predictable. Consider the example
database presented in 4.7.

This database would, for an average length of each data
element of 2 bytes, add up to 2,3kb (300 tuples * 4 data el-
ements * 2 bytes). To structure the data, a RTDBMS needs
to use additional memory, e.g., overhead used to index data
and to store relation information. The commercial Poly-
hedra embedded database management system [10] has an
overhead of 28 bytes/tuple [13]. Using this RTDBMS for
the database would add 8,2 kb of overhead. Adding 300
database pointers that uses locking would imply an extra
overhead of 2,7kb (if pointers use 4 bytes, integers use 2
bytes, and the lock information is stored in an integer). On
the other hand, e.g., if 300 database pointers use 2V-DBP
instead of locking, implying an overhead of no more than
3,6kb.

This implies that for a system that uses 2PL-HP the to-
tal memory consumption would be 13,2 kb. The memory
consumption for the same system using 2V-DBP would be
14,1 kb, i.e., 2V-DBP increases the overhead by 6,8 %.

5. Conclusions and future work

We have presented a concurrency control algorithm that
allows co-existence of soft real-time, relational database
transactions (soft transactions) and hard real-time database
pointer transactions (hard transactions) [8] in a Real-Time
Database Management System (RTDBMS). The method,
called 2-Version DataBase Pointer concurrency control (2V-
DBP) uses, traditional, pessimistic concurrency control for
soft transactions and a simplified form of versioning, i.e.,
we maintain multiple (in our case two) versions of data ac-
cessed by database pointers [8].

2V-DBP supports soft transactions with long execution
times without risking that soft transactions are aborted by
high priority hard transactions. Thus, 2V-DBP overcomes
the recognized problem that transactions with low priority
and long execution times are penalized due to the likeliness
of data conflicts, resulting in frequent aborts [4].

9

2V-DBP supports hard transactions without risking hard
transactions being delayed by long-running soft transac-
tions. Such delays could otherwise be the case even if high
priority abort is employed, since (i) abort of soft transac-
tions is itself a time-consuming procedure, and (ii) once a
soft transaction reaches the commit state it can no longer be
aborted. Also, database pointers ensure fast and determinis-
tic access to data elements, allowing access to the database
without consulting the RTDBMS indexing system.

We have proved that 2V-DBP is free of deadlocks and
formally verified that the versioning algorithm provides
consistency and durability of transactions. Unlike tradi-
tional versioning algorithms for databases [12], the 2V-DBP
uses a bounded number of versions: two versions for data
that are accessed by database pointers, other data uses one
single version.

We have implemented 2V-DBP and compared it to the
pessimistic concurrency-control algorithm two-phase lock-
ing high priority (2PL-HP). Our comparison scenario shows
that the abortion ratio was significantly decreased, from an
average of 75% using 2PL-HP to 25% using 2V-DBP. Fur-
thermore, the worst observed response-time for hard trans-
actions was greatly reduced from about 175µs to 27µs (of
which 20µ is the system interrupt latency; the actual exe-
cution times for hard transactions were always in the range
5-7µs). Thus, we conclude that both hard and soft transac-
tions benefit from the 2V-DBP algorithm. The cost for in-
troducing 2V-DBP is slightly increased memory overhead
for maintaining internal data structures and one extra ver-
sion of the data elements used by hard transactions. For an
example database, the overhead of using 2V-DVP instead
2PL-HP was calculated to 6,8%.

In our future work we will derive response time analysis
for both hard and soft transactions. Response times for hard
transactions will be trivial to derive since they no longer
interfere with soft transactions and, thus, their accesses to
the database can be modeled as accesses to shared vari-
ables. However, for soft transactions the response time anal-
ysis will be more advanced, and a suitable modeling tech-
nique has been deployed. Also, further performance eval-
uations, comparing 2V-DBP to other concurrency-control
algorithms under various workloads are planned.

Some hard real-time applications may have consistency
requirements when reading multiple values, i.e. they are not
necessarily interested in the most recent values. For this
reason we plan to introduce a snapshot functionality in 2V-
DBP where also hard transactions way be able to read a
consistent set of values.

References

[1] R. Abbott and H. Garcia-Molina. Scheduling real-time
transactions: A performance evaluation. ACM Transactions
on Database Systems, 17, September 1992.

[2] A. Burns and A. Wellings. Real-Time Systems and Pro-
gramming Languages, chapter 13.10.1 Immediate Ceiling
Priority Inheritance. Addison-Wesley, second edition, 1996.
ISBN 0-201-40365-X.

[3] S. Cannan and G. Otten. SQL - The Standard Handbook.
MacGraw-Hill International, 1993.

[4] J. Huang, J. Stankovic, K. Ramamritham, and D. Towsley.
Experimental Evaluation of Real-Time Optimistic Concur-
rency Control Schemes. In G. M. Lohman, A. Sernadas,
and R. Camps, editors, Proceedings of the 17th International
Conference on Very Large Data Bases, pages 35–46. Mor-
gan Kaufmann, September 1991.

[5] T.-W. Kuo, Y.-T. Kao, and L. Shu. A Two-Version Approach
for Real-Time Concurrency Control and Recovery. In Pro-
ceedings of the Third IEEE International High Assurance
Systems Engieering Symposium. IEEE Computer Society,
November 1998.

[6] T.-W. Kuo and A. K. Mok. SSP: a Semantics-Based Pro-
tocol for Real-Time Data Access. In Proceedings of 14th
IEEE Real-Time Systems Symposium, pages 76–86. IEEE
Computer Society, December 1993.

[7] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nut-
shell. International Journal on Software Tools for Technol-
ogy Transfer, 1(1-2):134–152, 1997.

[8] D. Nyström, A. Tešanović, C. Norström, and J. Hansson.
Database Pointers: a Predictable Way of Manipulating Hot
Data in Hard Real-Time Systems. In Proceedings of the
9th International Conference on Real-Time and Embed-
ded Computing Systems and Applications, pages 623–634,
February 2003.

[9] D. Nyström, A. Tešanović, C. Norström, J. Hansson, and N.-
E. Bånkestad. Data Management Issues in Vehicle Control
Systems: a Case Study. In Proceedings of the 14th Euromi-
cro Conference on Real-Time Systems, pages 249–256. IEEE
Computer Society, June 2002.

[10] Polyhedra Plc. http://www.polyhedra.com.
[11] K. Ramamritham. Real-Time Databases. International Jour-

nal of distributed and Parallel Databases, 1(2):199–226,
1993.

[12] R. Rastogi, S. Seshadri, P. Bohannon, D. W. Leinbaugh,
A. Silberschatz, and S. Sudarshan. Logical and physical ver-
sioning in main memory databases. In The VLDB Journal,
pages 86–95, 1997.

[13] A. Tešanović, D. Nyström, J. Hansson, and C. Norström.
Embedded Databases for Embedded Real-Time Systems:
A Component-Based Approach. Technical Report MRTC
Report ISSN 1404-3041 ISRN MDH-MRTC-43/2002-1-SE,
Dept. of Computer Engineering, Mälardalen University, Jan-
uary 2002.

[14] H. Thane, A. Pettersson, and D. Sundmark. The Asterix
realtime kernel. In E. Tovar and C. Norström, editors, Pro-
ceedings of the Work-in-progress and Industrial Session of
the 13th Euromicro Conference on Real-Time Systems,Delft
Netherlands. http://citeseer.nj.nec.com/thane01asterix.html,
June 2001.

10

