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Abstract—Traditionally, industrial robots have been deployed
in fairly static environments, to perform highly dedicated tasks.
These robots perform with very high precision and throughput.
However, nowadays there is an increasing demand for utilizing
robots in more dynamic environments, also performing more
flexible and less specialized operations — high mix/low volume.
Both traditional industrial robots and force-limited robots are
used in collaborative, dynamic environments. Such robot appli-
cations introduce new challenges when it comes to efficiency and
robustness. In this paper, we propose an architecture for reactive
multi-robot applications in the context of dynamic environments,
and we analyze the main research challenges that must be
tackled for its realization. A logistics use case, with robots picking
customer orders from the shelves of a warehouse, is used as a
running example to support the description of the key challenges.

I. INTRODUCTION

Industrial robots are commonly used in fairly static environ-
ments where they perform specialized tasks with excellent pre-
cision and high throughput. However, deployment of industrial
robots continues to expand to new scenarios and applications,
and there is an increasing demand for utilizing robots in
more dynamic environments, also performing more flexible
and less specialized operations [1]. Industry is undergoing a
transition from traditional caged robots capable of handling
all payloads, fast and precise, to newer collaborative robots
that can safely work alongside humans, and that can be
fully integrated into workbenches [2]. The combination of a
continuously expanding market for robotics, and new emerging
robotics applications introduce new challenges when it comes
to efficiency and robustness.

In such a context, collaborative robots are playing a sig-
nificant role [1], thanks to the lower installation cost and
their ease-of-use. Safety requirements are handled in new
ways, e.g., by replacing fences with safety sensors. The safety
aspects of collaborative robots have been addressed by recent
standardization efforts [3]. The reduced footprint and increased
flexibility of these robots have also changed the way robots
are deployed by traditional customers categories, e.g., the
automotive industry. For example, collaborative robots are
performing assembly or inspection on car bodies side by side
with human workers doing other tasks in parallel [4].

Improving the ability of industrial robots to cope with a
more dynamic and less structured environment is therefore
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becoming the main challenge, especially for collaborative
robots. In particular, the robots should be able to complete
assigned tasks in a safe manner while also maintaining a high
productivity and quality, when exposed to disturbances and
unexpected events.

In this paper we analyze the main challenges encountered
by industrial robot applications in dynamic environments.

A logistics use case inspired by the Amazon picking chal-
lenge1 is presented and discussed in relation to the presented
challenges. To overcome the problems with improved effi-
ciency and robustness, we conclude that this type of system
needs to be reactive by design. We propose an architecture
for reactive multi-robot systems and we analyze the research
challenges for its realization.

II. PROBLEM STATEMENT

Industrial robots are typically deployed in a structured
environment behind protective fences. The actions from other
actors, e.g., other robots, that affect the environment are there-
fore considered to be predictable. As a consequence, the robot
motion is actuated in a “blind” way, typically with no visual
feedback. In some applications, additional specialized sensor
data can be used to fine adjust the robot path in real-time, to
compensate for predictable deviations of the application task,
e.g., deviations of a work piece that shall be processed.

When the protective fences are removed, and the human
operator is introduced within the workspace of the robot,
such an approach falls short due to the dynamic and semi-
structure environment where the robots operate. Humans can
be monitored with safety certified sensors and reactive actions
can be taken to maintain safety, e.g., by lowering the speed or
stopping the robot [3]. However, reducing the speed or stop-
ping the robot reduces productivity. New reactive strategies
capable of maintaining a high level of productivity and safety
at the same time, while operating in shared working space, are
needed.

Robots need a degree of autonomous behavior where the
detailed plan of motion and process operations are generated
from a more general job description that is aided by perception
of the environment. For example, high-level programming
can be made on the skill level [5], that in turn is compiled
to motion and process primitives from object and gripper

1https://amazonpickingchallenge.org/



characteristics and process strategies, e.g., derived from heuris-
tics [6]. However, as pointed out in [7], a robot must be able
to combine high level planning with reactiveness for robust
handling of tasks in a dynamic environment.

A robot application in a dynamic environment will be more
be exposed to unexpected problems, e.g.:

• Failures caused by inaccurate knowledge or perception of
the environment.

• Failures caused by unexpected disturbances from humans
or other actors in the environment.

• Inefficiency caused by unexpected variation of conditions.
The current plan is still valid but has a significant
potential for improvements.

To steer towards the goal of efficient reactive strategies, we
plan to address the following research questions in this work:
Q1. How can the unstructured dynamic environment be mod-

eled?
Q2. How to design robotics solutions able to react in a timely

and efficient way to unforeseen events?
Q3. What are the strengths and limitations of existing reactive

strategies?

III. LOGISTIC USE CASE

Warehouses, workshops and other facilities require efficient
storage and retrieval of objects into/from storage locations.
Some of these systems can be fully automated, while others
still require human participation in the process. The use case
of picking mixed types of objects from warehouse shelves with
a robot arm into containers was addressed in the competition
Amazon Picking Challenge (APC) [8]. It is performed in a
semi-structured environment that requires autonomous robots
endowed with perception, motion-, grasp- and task planning
abilities. In the competition, the use case was somewhat
simplified compared to a real scenario, e.g., with a limited
number of object types that were placed side by side and
lightly packed in the central area of a stationary storage unit.
Some teams used a stationary robot arm while other teams
used a mobile platform to carry the arm. After the competition,
the teams were asked what they would change in their various
approaches to solve the problem. 8 of 22 responding teams
answered they wanted to include more reactive control, e.g.,
force feedback or visual servoing. 17 of 25 teams agreed
(strongly or somewhat) to the statement that "perception needs
to be better integrated with motion planning".

In a real picking scenario, the complexity is increased.
The picking robots need to handle high-mix low-volume with
an almost unlimited number of object types with variation
of shapes, sizes, friction, deformability and other properties.
Objects are packed more densely and their visibility may be
limited or occluded. On top of this, other uncertainties, e.g.,
intervention from humans or other autonomous actors, will
further increase the problems. To overcome these challenges,
a robot system needs to be reactive by design.

Grasping an object is a challenging task. A grasping plan
may fail due to unknown properties of the object, e.g., de-
formability and friction. Unknown properties of neighbouring

objects or the gripper may also have an influence. In a grasping
scenario, reactive strategies become critical capabilities to
mitigate the consequences of unstable grasps and increase
the efficiency [9]. Even when grasping an object succeeds
with a stable grip, the movement of the object in the gripper
while grasping can be hard to predict and compensate for.
In [10] and in [11] methods for underactuated grippers based
on constrained optimization and on machine learning are
proposed to compensate for in-hand object motions while
grasping. Unexpected movements of the object while grasping
may cause the grasped object to knock down neighboring
objects, e.g., while transferring the object after grasping.

While picking is ongoing, it is desirable that the picking
robot is reactive to the following events:

• Unexpected movements of the object being manipulated.
The object may start to slide in the gripper or in-hand
motion may cause an unexpected grasping location. As a
consequence, the object itself or neighboring objects may
drop from the shelf.

• Unexpected movements of neighboring objects. Neigh-
boring objects may become moved by influence of the
manipulated object or by the gripper in an unexpected
way.

• Unplanned speed changes of the mobile platform. Such
speed changes may require immediate adjustments of
the manipulation task to prevent a grasping failure or a
collision with the robot arm.

IV. ARCHITECTURE FOR REACTIVE REPLANNING

A reactive strategy consists of two system abilities: (i)
Reactiveness, i.e., an ability to decide when reactive plan-
ning is advantageous to avoid failures or improve efficiency.
Reactiveness requires an evaluation of the current plan that
considers the motion of objects and actors in the environment.
(ii) Reactive replanning, i.e., an ability to find and execute a
new and more efficient plan, that will replace the current plan.

A new plan may constitute a smaller or a bigger adjustment
of the current plan. The current plan may be adjusted on one
or more levels:

• The plan for the ongoing robot trajectory.
• The plan for the ongoing robot task. A robot task can

be seen as a limited action of the robot, e.g. pick up an
object from a location. The constituents of a robot task
are a sequence of path segments and process interactions
that needs to be completed to finish the task. A process in-
teraction is a planned interaction with process equipment,
e.g. open the gripper. Normally, a process interaction
needs to be coordinated with the robot trajectory, e.g.,
the gripper shall be opened at a specific place location.

• The scheduling of different robot tasks. Tasks can often
be executed in different sequences or with allocation of
different resources needed for their completion (e.g., a
robot, a gripper, an inspection camera, a processing ma-
chine etc.). Multiple robots enable allocation of different
robots or parallel execution of tasks. The rescheduling
possibilities can depend on overall goals (e.g., fill a pallet
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Fig. 1. Architecture for reactive multi-robot applications.

with parts), resource availability (e.g. need a specific
processing machine) and dependencies between different
robot tasks (e.g., after picking up a part, it needs to be
placed).

To address Q1 and Q2, we propose an architecture for the
implementation of a reactive strategy for industrial multi-robot
applications that considers replanning on different levels. An
overview of the proposed architecture is shown in Fig. 1.
The light green cloud symbol represents the local physical
environment with multiple robots (white) and sensors (blue).
The dark green boxes represent software components for
controlling the robots. The grey boxes represent different
levels of the robot application plan. The arrows represent flows
of information. The dashed arrows represent optional flows of
information. The flash symbol represents an event that is fired
under certain conditions.

Robots are deployed to perform tasks in a Local Physical
Environment. An External Sensors component perceives areas
of the Local Physical Environment, e.g., using cameras.

A Local World Model component keeps data on parts, e.g.,
to be processed, obstacles (fixed objects, restricted zones), and
actors (humans, mobile robots) present in the Local Physical
Environment. Data may include non-observable properties,
e.g., weight and surface friction. Dynamic data are updated
continuously from processing of incoming sensor data. Dy-
namic objects are detected, located and classified. The Local
World Model can predict the near future movements of objects.

A Planner component plans the execution of incoming
recipes. A recipe is a high level job description specifying a
sequence of part processing needed to finalize a job. Examples
of jobs: Create an assembly or palletize a pallet pattern. The
Planner may handle multiple recipes in parallel. For each
recipe, the Planner generates a Task Sequence Plan. The
Planner also performs execution control of the task sequence
plans. It has a scheduling function that continuously selects
and assigns Tasks to be executed by the Robots. For each Task,
an allocation is made of Robots and other needed resources,
e.g., tools, parts, conveyors or processing machines. The Local
World Model provides data on available resources and their
spatial relationships. A Task Plan is generated for each Robot.
If a Task requires more than one robot, e.g., assemble two parts

using two Robots, a Task Plan is generated for each Robot and
the parallel execution of the Task Plans is coordinated.

The Task Plan is a sequence of path segments and related
process interactions. When a Task Plan is generated, the World
Model may provide data on location of parts, obstacles and ac-
tors. Optionally, if some of these data are continuously updated
by the External Sensors, e.g., arrived parts to be processed,
this can be regarded as a sense-plan-act step [12]. At the fine-
grained level, the Planner generates a Trajectory And Event
Plan for each Robot, consisting of trajectory references to be
executed by a Control component. It also generates process
signal events to be executed synchronized with the trajectory.

A Control component receives trajectory references and
controls the motions of a Robot. It receives feedback from
Internal sensors of the Robot, e.g., axis resolvers. Optionally,
it can receive dynamic location data of nearby objects from the
World Model. If the Control uses this data as control input e.g.
for collision avoidance, this can be regarded as local reactive
control [12].

A Supervisor component compares the current plan with
predictions of the World Model. The supervisor decides when
it is advantageous to perform a reactive planning in an effi-
ciency perspective. Whenever a conflict or opportunity (e.g.
a failure or inefficiency) is detected that may invalidate the
current plan, a Reactive Replanning event is generated. An
important factor that is beneficial for early conflict/opportunity
detection is the access of near future data for both the planned
action of the Robot and the predicted movements of parts and
actors in the Local Physical Environment.

When the Planner receives a Reactive Replanning event,
it replaces the current plan with a new or modified plan. It
needs to decide on what level the plan shall be changed,
generate the new plan and prepare a reactive transition between
the old plan and the new plan. This event shall not be
mixed up with reactive planning [12] which is a strategy that
incorporates both global planning and local reactive control
but with continuous updates. Reactive Replanning is intended
to fill a gap between Sense-Plan-Act strategies where the
plan is setup and followed in a stepwise manner and Local
Reactive Control where the plan is updated continuously on a
trajectory level. Reactive Replanning follows the setup plan
with continuous supervision and will only update the plan
when needed. One advantage with this strategy is the ability
to make reactive replanning on different levels, not only on a
trajectory level. By being able to consider the robot’s overall
goal, the variability of replanning alternatives are increased
which enables a potential for higher productivity.

V. RESEARCH CHALLENGES

For the realization of the proposed architecture, require-
ments and research challenges are identified for the architec-
tural elements.

External Sensors. Reactive robot applications require the
sensors to be sampled fast with enough resolution and through-
put. The communication interface must be able to handle the
throughput with low latency. Vision sensors are often needed



to perceive movable parts and actors in the Local Environment,
e.g., shelves and objects on the shelves. Tactile sensors may be
used to measure contact surfaces and pressure between objects,
e.g., the gripper and a grasped part.

Local World Model. The Local World Model must be able
to give fast predictions of object movements. The processing
of sensor data must be fast and able to handle the sensor
throughput. It should be able to predict the near future motion
of objects and actors with some confidence. Motion prediction
may be based on extrapolation of the latest movement samples,
e.g., [13], or mined patterns of movements [14]. Human
intention detection/prediction can also potentially be used to
improve the efficiency of robots having collaborative tasks
with humans [15], [16]. For a picking application, detecting
slipping of a grasped object due to an unstable grip is valuable.
[9] presents a slipping detection method for a robotic finger.
In general, hardware computing capacity and the efficiency of
algorithms must be addressed.

Supervisor. The Supervisor must be able to predict the need
for replanning fast, accurately and with enough throughput
to consider recent changes in the Local Environment. One
particular challenge is to derive criteria that will make it
advantageous to perform a reactive replanning. Examples:

• Criteria for failure detection/prediction: The probability
of failure for the current plan has reached a certain level.

• Criteria for opportunity detection: The efficiency of the
current plan has been reduced to a certain level.

In general, hardware computing capacity and the efficiency of
algorithms must be addressed.

Reactive Replanning. The computation of a new/updated
plan needs to be fast [17]. One problem is to generate a new
plan that considers ongoing and unfinished process interactions
of the current plan. On the other hand, there is the problem
of performing the transition from the current plan to the
new plan, and to handle the needed planning time in this
transition. Preferably, the transition is made on-the-fly, i.e.,
without stopping the robot movement.

Replanning can be done on three levels, and one problem is
how to select the level of replanning: (i) Trajectory replanning,
i.e., changing the path or the speed of the robot to avoid
a collision with the robot gripper and an object. (ii) Task
replanning, i.e. make a new plan for an ongoing task and
possibly introducing new tasks to deal with what caused the
replan. (iii) Task rescheduling, i.e., changing the scheduled
execution sequence of tasks or changing task allocation among
the different robots and resources. Additionally, it may include
interruption and rescheduling of an ongoing task.

To enable replanning on the three levels, the Planning
component must be able to manage the planning from the
high-level job description to the fine grained planning. The
planning should be structured in a form that supports flexible
and reactive replanning on all three levels while still accom-
plishing the job description. In order to improve replanning
efficiency, it should also be able to leverage on the variability
of the task, process and motion sequence while maintaining
constraints [18].

VI. SUMMARY AND WORK-IN-PROGRESS

In this paper we have proposed an architecture to improve
the efficiency and robustness of industrial robot applications
in dynamic semi-structured environments. We have highlighted
the main challenges associated with such a problem and the
need for reactive approaches. Our ongoing work concerns
the implementation and verification of different parts of the
proposed architecture (Q1, Q2), and the comparison with alter-
native architectures and reactive approaches (Q3), e.g., [18]–
[21].
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