
sensors

Article

A Model-Checking-Based Framework for Analyzing
Ambient Assisted Living Solutions †

Ashalatha Kunnappilly 1,* , Raluca Marinescu 2 and Cristina Seceleanu 1

1 School of Innovation, Design and Technology, Mälardalen University, 72220 Västerås, Sweden;
cristina.seceleanu@mdh.se

2 Bombardier Transportation, 72223 Västerås, Sweden; raluca.marinescu@rail.bombardier.com
* Correspondence: ashalatha.kunnappilly@mdh.se
† This paper is an extended version of our paper published in Kunnappilly, A.; Marinescu, R.; Seceleanu, C.

Assuring Intelligent Ambient Assisted Living Solutions by Statistical Model Checking. In Proceedings of the
2018 International Symposium on Leveraging Applications of Formal Methods (ISoLA 2018), Limassol,
Cyprus, 5–9 November 2018.

Received: 30 September 2019; Accepted: 10 November 2019; Published: 19 November 2019 ����������
�������

Abstract: Since modern ambient assisted living solutions integrate a multitude of assisted-living
functionalities, out of which some are safety critical, it is desirable that these systems are analyzed
at their design stage to detect possible errors. To achieve this, one needs suitable architectures that
support the seamless design of the integrated assisted-living functions, as well as capabilities for
the formal modeling and analysis of the architecture. In this paper, we attempt to address this need,
by proposing a generic integrated ambient assisted living system architecture, consisting of sensors,
data collection, local and cloud processing schemes, and an intelligent decision support system,
which can be easily extended to suit specific architecture categories. Our solution is customizable,
therefore, we show three instantiations of the generic model, as simple, intermediate, and complex
configurations, respectively, and show how to analyze the first and third categories by model checking.
Our approach starts by specifying the architecture, using an architecture description language, in our
case, the Architecture Analysis and Design Language, which can also account for the probabilistic
behavior of such systems, and captures the possibility of component failure. To enable formal
analysis, we describe the semantics of the simple and complex architectures within the framework of
timed automata. We show that the simple architecture is amenable to exhaustive model checking
by employing the UPPAAL tool, whereas for the complex architecture we resort to statistical model
checking for scalability reasons. In this case, we apply the statistical extension of UPPAAL, namely
UPPAAL SMC. Our work paves the way for the development of formally assured future ambient
assisted living solutions.

Keywords: ambient assisted living; Architecture Analysis and Design Language; statistical model
checking; UPPAAL SMC

1. Introduction

Elderly people across the world are offered enhanced care via the Ambient Assisted Living (AAL)
solutions that support their independent and low-risk living. In order to facilitate the elderly efficiently
and safely, it is often required that these solutions integrate various assisted-living functionalities like
health monitoring, home monitoring, fall detection, robotic platform support, communication support,
etc. Such integration is extremely beneficial in safety-critical situations, as in the following cases:

• A fall event occurring due to low pulse: In this case, if the fall sensor and the pulse monitoring
sensor work independently of each other, no connection can be established between the two

Sensors 2019, 19, 5057; doi:10.3390/s19225057 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4619-2493
http://dx.doi.org/10.3390/s19225057
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/22/5057?type=check_update&version=2

Sensors 2019, 19, 5057 2 of 31

events, only an integrated solution would be able to indicate that the potential reason for the fall
is in fact the person’s low pulse, which in turn may be critical for diagnosis (especially in case of
patients having cardiac diseases).

• A high pulse detected during an exercise session: In case of such a scenario, the high pulse is
absolutely normal, and hence no alarm should be raised. However, if the activity detection (in this
case detecting an ’exercise session’) is not combined with pulse monitoring device, a false alarm
will be triggered in the scenario.

• Simultaneous occurrence of fire and fall events: When both these events occur together, a safe
mitigation of the scenario is achieved only when both these events are communicated to caregivers
and firefighters, which is not guaranteed by independent systems working side by side. Assuming
that the fire alarm communicated to the firefighters is verified for confirmation by a phone call
to the user’s home, due to the inability of the elderly person to answer, the fire alarm may be
deemed false and discarded, triggering a potential catastrophe [1,2].

Justified by the above, a timely integration of various assisted living functionalities is
veridical. However, in literature, there are only few architectures, that address the concern of
multiple-functionality integration in a timely and robust manner [1,2]. Due to their critical nature, it is
beneficial that such behaviors (especially those emerging due to multiple functionality integration) are
analyzed at early stages of development, for instance, at the design stage, using formal techniques,
to provide some formal guarantees of meeting requirements. There has been some work in this
direction, however, the existing frameworks [3,4] are still in infancy and cannot be used to specify the
complete AAL system architecture including its artificial intelligent algorithms, timeliness, reliability,
and fault-tolerance attributes.

In this paper, we address these shortcomings and propose an integrated architecture framework
for describing AAL systems and a formal analysis framework that can be employed at the design stages
of development. The integrated AAL architecture that we propose supports a range of assisted-living
functionalities, like health monitoring, fall detection, reminder services, home monitoring, robotic
platform support, etc., and follows the design of common AAL frameworks, with a variety of
sensors, data collector unit, user interfaces, intelligent decision support system (DSS), local and cloud
processing, etc. Our architecture gives due importance to intelligent decision making by proposing
a DSS that employs a mix of artificial intelligent (AI) techniques, like fuzzy reasoning, rule-based
reasoning (RBR) and case-based reasoning (CBR) for effectively modeling the context space and
taking the respective actions based on the current context. The system architecture and its DSS are
designed as a generic model that can be customized to fit various categories of architectures of different
complexities. In this work, we show three such instantiations of our generic model, that is, (i) a minimal
configuration that contains two sensors (pulse and fall), one user interface (a mobile phone), and a cloud
controller with a simple DSS system to handle the events from both the sensors; (ii) an intermediate
one with added sensors for blood pressure monitoring, motion detection and exercise monitoring and
an enhanced cloud DSS; and (iii) a complex one comprising wider categories of health monitoring
and home monitoring sensors, multiple user interfaces inclusive of robotic telepresence and vocal
interactions, and a complex DSS system for handling multiple events simultaneously, and possessing
both local and cloud copies for ensuring fault-tolerance via redundancy [5]. The system architecture,
its DSS, and instance models are explained in detail in Section 4.

Our contributions also include a modeling and analysis framework proposed for the design-time
analysis of complex AAL systems as described earlier. The architecture design relies on the Architecture
Analysis and Design language (AADL) in which we show the structure and communication between
the components of our proposed solution. In AADL, we are able to design the architecture together
with the functional and error behavior of the constituting components (Section 2.1). Once described,
the architecture needs to be analyzed formally to check if there are any functional errors and violations
of quality-of-service attributes (end-to-end deadlines, fault tolerance, consistency, etc.). To enable this,
we transform the architecture specifications into a formal model, in our case, the stochastic timed

Sensors 2019, 19, 5057 3 of 31

automata (STA) model, which can effectively capture the probabilistic behaviour of AAL components
such as random component failures. We demonstrate our formal analysis via two techniques: (a)
exhaustive model-checking using the state of the art model checker, UPPAAL [6], in the case of
the minimal architecture configuration (for which exhaustive verification scales) and (b) statistical
model-checking with UPPAAL SMC for analyzing the complex model instance [7]. The analysis
results are described in Section 7 and also compared with the results obtained with another formal
analysis tool, PRISM [8]. Our approach shows promising results of formally modeling and analyzing
complex AAL system specifications, including fault-tolerant and AI-based decisions. A part of this
work involving the complex instance of the architecture, its modeling and analysis are presented in the
conference paper [5].)

The rest of the paper is organized as follows. In Section 2, we overview the basics of AADL,
UPPAAL and UPPAAL SMC. Section 3 describes our proposed methodology. In Section 4, we describe
our generic AAL system architecture and its instantiations. We present the AADL modeling constructs
and the Agent Annex extension in Section 5. Section 6 describes the formal encoding of the AADL
model, and in Section 7, we present the verification results applying the UPPAAL and UPPAAL SMC
model checking on AAL system architectures; we also compare the results with those obtained with
the PRISM model-checker. Related work is described in Section 9, and conclusions and future work
are in Section 10.

2. Preliminaries

In this section, we briefly overview AADL, and the other formal notations and tools used for
architecture analysis, that is, timed automata and stochastic timed automata, as well as UPPAAL and
UPPAAL SMC.

2.1. The Architecture Analysis and Design Language

AADL [9] is a textual and graphical language in which one can model and analyze a real-time
system’s hardware and software architecture as hierarchies of components at various levels of
abstraction. AADL component categories like Application Software (Process, Data, Subprogram,
Thread, Thread Group, etc.), Execution Platform (Device, Bus, Processor, Memory, etc.) and System are
used to represent the run-time architecture of the system, however a more generalized representation
is possible by specifying a component type as abstract.

AADL allows possible component interactions via ports/features, shared data, subprograms, and
parameter connections. In AADL, the input/output ports can be defined as: event ports, data ports, and
event-data ports. Based on the component interactions, explicit control flows, and data flows can be
defined across the interfaces of AADL components by specifying the components as flow source, flow
path, or flow sink. The components can also be associated with various properties, like the period and
execution time and the dispatch protocol. The dispatch protocol specifies if the component trigger is periodic
or aperiodic.

A component in AADL can be defined by its type and implementation. The component type
declaration defines the interface of the component (defining the component category and its interaction
points with other components) and its externally observable attributes, whereas the component
implementation defines its internal structure in terms of its subcomponents and connections between
them. In this paper, we distinguish the subcomponents that are composed within a component in port
interfaces in terms of their port interfaces. For instance, a data component, has no interfaces defined
in terms of input-output ports, however it can be defined as a subcomponent of another component.
We refer to such components as Atomic Components. However, if a component is composed of another
component with port interfaces (like device, thread, abstract, etc.), then a well-defined component
hierarchy is identified and we call such components as Composite Components.

The functional and error behavior of a component are described by the Behavior Annex (BA) [10]
and the Error Annex (EA) [11] respectively, which model behaviors as transition systems. The BA

Sensors 2019, 19, 5057 4 of 31

state machine interacts with the component interface and represents the system behavior. Given finite
sets of states and state variables, the behavior of a component is defined by a set of state transitions

of the form s
guard, actions−−−−−−−→ s′, where s, s′ are states, guard is a boolean condition on the values of state

variables or presence of events/data in the component’s input ports, and actions are performed over
the transition and may update state variables, or generate new outputs. Similarly, the EA models the
error behavior of a component as transitions between states triggered by error events. It is also possible
to represent the different types of errors, recovery paradigms, probability distribution associated with
the error states and events, and also specify error flows and propagations within the component, and
between various components.

In this paper, we focus on abstract components that allow us to defer from the run-time architecture
of the system. The need for this generic model stems from the fact that in real-world applications like
AAL, it is difficult to assign run-time semantics to components before the design matures. These generic
component categories can be parametrized, and can be refined later in the design process through
the “extends” capability of AADL. AADL allows us to archive these components and reuse them.
For this, we partition them into two public packages in AADL, namely component library and reference
architecture [12]. A component library creates a repository of component types and implementations with
simple hierarchy. It can be established via two packages: (i) the Interfaces Library comprising generic
components like sensors, actuators, and user-interfaces (UI); and (ii) the Controller Library that includes
the control logic. The reference architecture creates a repository of components of complex hierarchy,
e.g., the top-level system architecture.

2.2. Formal Notations and Tools

The formal analysis technique employed in this paper is model checking. We employ two different
types of model checking in this paper: (1) exhaustive model checking using the state-of-the-art model
checker UPPAAL [13]; and (2) statistical model-checking, using the statistical extension of UPPAAL
model checker, UPPAAL SMC [7]. In the following, we overview the semantics of the input models
and the mentioned tools.

2.2.1. Timed Automata and Stochastic Timed Automata

A timed automaton (TA) as used in the model checker UPPAAL is a formal notation for describing
real-time systems [14], and is defined by the following tuple:

TA = 〈L, l0, A, V, C, E, I〉 (1)

where L is a finite set of locations, l0 ∈ L is the initial location, A = Σ ∪ τ is a set of actions, where
Σ is a finite set of synchronizing actions (c! denotes the send action, and c? the receiving action)
partitioned into inputs and outputs, Σ = Σi ∪ Σo, and τ /∈ Σ denotes internal or empty actions
without synchronization, V is a set of data variables, C is a set of clocks, E ⊆ L× B(C, V)× A× 2C × L
is the set of edges, where B(C, V) is the set of guards over C and V, that is, conjunctive formulas of
clock constraints (B(C)), of the form x ./ n or x− y ./ n, where x, y ∈ C, n ∈ N, ./∈ {<,≤,=,≥,>},
and non-clock constraints over V (B(V)), and I : L −→ Bdc(C) is a function that assigns invariants to
locations, where Bdc(C) ⊆ B(C) is the set of downward-closed clock constraints with ./∈ {<,≤,=}.
The invariants bound the time that can be spent in locations, hence ensuring progress of TA’s execution.

An edge from location l to location l′ is denoted by l
g,a,r−−→ l, where g is the guard of the edge, a is

an update action, and r is the clock reset set, that is, the clocks that are set to 0 over the edge. A location
can be marked as urgent (marked with an U) or committed (marked with a C) indicating that time
cannot progress in such locations. The latter is more restrictive, indicating that the next edge to be
transversed needs to start from a committed location.

The semantics of TA is a labeled transition system. The states of the labeled transition system
are pairs (l, u), where l ∈ L is the current location, and u ∈ RC

≥0 is the clock valuation in location l.

Sensors 2019, 19, 5057 5 of 31

The initial state is denoted by (l0, u0), where ∀x ∈ C, u0(x) = 0. Let u � g denote the clock value u
that satisfies guard g. We use u + d to denote the time elapse where all the clock values have increased
by d, for d ∈ R≥0. There are two kinds of transitions:

(i) Delay transitions: < l, u >
d−→< l, u + d > if u � I(l) and (u + d′) � I(l), for 0 ≤ d′ ≤ d, and

(ii) Action transitions: < l, u >
a−→< l′, u′ > if l

g,a,r−−→ l′, a ∈ Σ, u � g, clock valuation u′ in the target
state (l′, u′) is derived from u by resetting all clocks in the reset set r of the edge, such that u′ � I(l′).

A stochastic timed automaton (STA) refines TA as follows: (i) probabilistic choices between
multiple enabled transitions, where the output probability function γ may be defined by the user; and
(ii) probability distributions for non-deterministic time delays, where the delay density function µ is
a uniform distribution for time-bounded delays or an exponential distribution with user-defined rates
for cases of unbounded delays. Formally, an STA is defined by the tuple:

STA = 〈TA, µ, γ〉. (2)

The delay density function (µ) over delays in R≥0 is either a uniform or an exponential distribution
depending on whether the time in location l is bounded by an invariant, or is unbounded, respectively.

With El we denote the disjunction of guards g such that l
g,o,-−−→ - ∈ E for some output o. Then d(l, v)

denotes the infimum delay before the output is enabled, d(l, v) = inf {d ∈ R≥0 : v + d � E(l)},
whereas D(l, v) =sup {d ∈ R≥0 : v + d � I(l)} is the supremum delay. If the supremum delay
D(l, v) < ∞, then the delay density function µ in a given state s is the same is a uniform distribution
over the interval [d(l, v); D(l, v)]. Otherwise, when the upper bound on the delays out of s does not
exist, µs is an exponential distribution with a rate P(l), where P : L→ R≥0 is an additional distribution
rate specified for the automaton. The output probability function γs for every state s = (l, v) ∈ S is the
uniform distribution over the set {o : (l, g, o, -, -) ∈ E ∧ v � g}.

In this paper, we use STA to model our AAL system architecture.

2.2.2. UPPAAL and UPPAAL SMC

The UPPAAL model checker provides exhaustive model-checking of timed-automata models like
the ones overviewed in Section 2.2. A real-time system can be modeled as a network of TA (NTA)
composed via the parallel composition operator (“||”), which allows an individual automaton to carry
out internal actions, while pairs of automata can perform handshake synchronization. The locations
of all automata, together with the clock valuations, define the state of an NTA. The properties to
be verified by model checking on the resulting NTA are specified in a decidable subset of (Timed)
Computation Tree Logic ((T)CTL) [15], and checked by the UPPAAL model checker. UPPAAL supports
verification of liveness and safety properties [13]. The queries that we verify in this paper are of the
form: (i) Reachability: E♦p means that there exists a path where p is satisfied by at least one state of
the path; and (ii) Time bounded leads to: p ≤t q, which means that whenever p holds, q must hold
within at most t time units thereafter.

UPPAAL SMC [7], the extension of UPPAAL for statistical model checking, provides the means to
formally analyze stochastic models. A model in UPPAAL SMC consists of a network of interacting STA
(NSTA) that communicate via broadcast channels and shared variables. In a broadcast synchronization
one sender c! can synchronize with an arbitrary number of receivers c?. In the network, the automata
repeatedly race against each other, that is, they independently and stochastically decide how much
to delay before delivering the output, and what output to broadcast at that moment, with the
“winner” being the component that chooses the minimum delay. In addition to the classical queries
supported by UPPAAL, UPPAAL SMC also uses an extension of weighted metric temporal logic
(WMTL) [16] to provide probability evaluation Pr(∗x≤Cφ), where ∗ stands for ♦ (eventually) or �
(always), which calculates the probability that φ is satisfied within cost x ≤ C, but also hypothesis
testing and probability comparison. In this paper, we will analyze only properties of the type
“probability evaluation”.

Sensors 2019, 19, 5057 6 of 31

3. A Framework for Formal Analysis of AAL Systems: Proposed Methodology

In this section, we present in detail the framework that we propose for modeling and verification
of the AAL system architectures. We consider a generic architecture category for AAL systems that
supports a variety of assisted living functionalities including health monitoring, home monitoring,
fall detection, user interactions, and communication with family and caregivers.

Accordingly, the architecture supports a variety of components like sensors, a data collector unit
to collect the sensor data, local and cloud processing, and intelligent decision support. The system
architecture and its requirements are explained in detail in Section 4. This architecture design and the
requirements in natural language form the input to our analysis framework. As depicted in Figure 1,
the framework is composed of the following steps:

Figure 1. Methodology overview. Ambient Assisted Living (AAL), Architecture Analysis and Design
language (AADL), stochastic timed automaton (STA), network of interacting STA (NSTA).

Step 1. Create an abstract component-based model of the proposed architecture in AADL.

This step focuses on specifying the architecture using an architecture description language. In our
case, we have chosen AADL [17] due to its rich semantics and suitability to model real-time embedded
systems. In our approach, we demonstrate the modeling of AAL systems as abstract components
and show how it can be extended to suit the specific instantiations (from simpler to more complex
configurations, as shown in Section 4. The system modeling in AADL is presented in Section 5.

Step 2. Define a semantic encoding of AADL model as an NSTA model.

Following the AADL modeling, in Step 2, we define the semantic anchoring of the AADL
model as NSTA (Section 6). We present the semantic anchoring of the generic model and also show
the above-mentioned instantiations of the latter to various configurations of increasing complexity.
The NSTA model so formulated can be further analyzed via exhaustive model checking or statistical
model-checking, depending upon the technique’s ability to cope with the model’s complexity. For the
simple architecture configuration, we use exhaustive verification with UPPAAL and for the complex
configuration, we use statistical model checking, using the tool UPPPAAL SMC. In the subsequent
step, the functional and non- functional requirements of the architecture, which are initially specified
in natural language are formalized as Timed Computation Tree Logic (TCTL) or Weighted Metric
Temporal Logic (WMTL) queries to enable analysis in the NSTA model, using UPPAAL or UPPPAAL
SMC. Consequently, Step 3 is formulated as follows:

Step 3. Formalize the system requirements as queries expressed in the input language of the chosen
model-checker.

Sensors 2019, 19, 5057 7 of 31

As the final step, we verify the queries against the NSTA model of the architecture and gather the
results (exact for UPPAAL and statistical for UPPAAL SMC) leading to Step 4 formulated as below:

Step 4. Verify the queries in the model checker and gather verification results.

If the verification results show that requirements are not met, we feedback information from the
verification (counter example or statistical information) to our design, which we modify and iterate
steps 1, 2, 3, and 4.

4. A Generic AAL System Architecture

In this section, we detail the generic AAL system architecture that we propose. In addition, we also
present the design of a novel decision support system for our system architecture that supports the
integration of multiple functionalities and provides efficient decision making by combining multiple
artificial-intelligent (AI) techniques as detailed later in this section. Finally, we present three specific
instantiantions of the generic architecture model that follow the same modeling paradigms, yet which
vary in their degree of complexity with respect to integrated functionalities.

The generic AAL system architecture is presented in Figure 2, and follows the architecture of
many commercial AAL systems with various sensors, a data collector, DSS, security and privacy,
database (DB) systems, user interfaces (UI), and cloud computing support. This architecture can act as
a base for the development of many integrated AAL system architectures. We classify the sensors in
the AAL environment as follows:

• Wearable sensors that send information as data (W_data), e.g., sensors measuring health
parameters like pulse, ECG, etc. They are represented by the Sensor_A category in Figure 2;

• Non-wearable sensors measuring ambient parameters and health parameters (NW_data), e.g.,
camera sensors, motion sensors, etc., represented by the Sensor_B category;

• Wearable sensors that detect events (W_event), e.g., fall sensors, marked as the Sensor_C category;
• Non-wearable sensors detecting events (NW_event), e.g., fire sensors, denoted by the

Sensor_D category.

Sensor_A
(W_data)

Sensor_B
(NW_data)

Sensor_C
(W_event)

Sensor_D
(NW_event)

Data
Preprocessing

UI

Cloud DB

Decision Support System

C
o
m
m
u
n
I
c
a
t
I
o
n

Data
Collector

User Message Queue

 Decision
 Support System

Security &
 Privacy module

 Local DB

Cloud

C
o
m
m
u
n
I
c
a
t
I
o
n

C
o
m
m
u
n
I
c
a
t
I
o
n

Local Controller Third-party UI
(Care givers, firefighter, family)

Health platforms and services

Figure 2. The generic Ambient Assisted Living system architecture.

A particular instantiation of the generic architecture can contain n sensors of each category,
respectively, n ∈ N. As depicted in Figure 2, the data from the sensors are collected by the Data
Collector unit, which processes the data by assigning labels and priorities. The Data Collector sends
the data to the message queue in the Local Controller, where it gets sorted according to its priority
such that when the DSS processes the first element in the queue, it processes the message with
the highest priority. Our architecture has both local and cloud-based processing in order to ensure

Sensors 2019, 19, 5057 8 of 31

fault tolerance with respect to the DSS. The components of the architecture can interact via various
communication protocols.

The crux of our AAL system is the intelligent context-aware DSS, shown in Figure 3. The novelty
of our architecture stems from the combination of various AI algorithms, like rule-based reasoning
(RBR), fuzzy logic, and case-based reasoning (CBR) with context reasoning for efficient decision-making,
as detailed below.

Figure 3. The decision support system (DSS) architecture. Rule-based reasoning (RBR) and case-based
reasoning (CBR).

Our DSS architecture is inspired by the work of Zhou et al. [18], where the authors have proposed
a context-aware, CBR-based ambient-intelligence system for AAL applications. CBR reasoning works
very well in scenarios that are not specific and need to adapt accordingly to inputs. For instance,
CBR reasoning is suited in a clinical decision support system that prescribes medicines/treatment,
where the treatment, prescription, and medicine dosage vary for each patient, individually. CBR
is an attractive choice due to its reasoning technique resembling more of human problem-solving
competence, (i.e., trying to reason about a new scenario by looking at the similar solved cases in the
past and adapting them according to the current needs) and less of knowledge engineering, however
there are many scenarios that are specific and involve domain expertise, where RBR can be employed
with more efficiency and ease.

For instance, if a fire occurs at home, the action to be taken by the system is to notify the firefighters,
which can be easily implemented using “if-then-else” rules rather than via a CBR system that needs
to compare across all cases using a case-matching algorithm to retrieve a matching case and act
accordingly. Moreover, RBR systems using fuzzy logic are very efficient to determine sensor data
deviations, if compared to crisp logic. For instance, the normal pulse range of a person is between
60–100 beats per minute, and a crisp rule-based-reasoning system (Boolean logic) classifies a pulse
value of 59.5 or 100.5 beats per minute as an abnormal range (which in reality is not), consequently
raising a pulse-deviation alarm to the caregiver. Using fuzzy logic, a degree of membership can be
associated to each value, i.e., a pulse value of 59.5 or 100.5 is strictly not within abnormal or normal
boundaries, rather it is considered 97% within normal range and 3% within abnormal range. Thus,
by replacing the crisp boolean logic with fuzzy logic, a multitude of false pulse deviation alarms
can be avoided. However, RBR (even fuzzy based) cannot work efficiently in many other ill-defined
scenarios that require adaptability, like that of a clinical decision support system or a system that sends
personalized recommendations to its users.

The DSS triggers the various AI algorithms based on a change in context [18]. The context-modeling
(CM) and the usage of different AI algorithms are depicted in Figure 4.

Sensors 2019, 19, 5057 9 of 31

Figure 4. Internals of the DSS architecture (List of Artificial Intelligent techniques).

As indicated, the CM module identifies the context space based on: (i) the personal profile of the
user, e.g., gender, age, disease history, etc.; (ii) the activity of daily living (DA) performed by the user,
e.g., exercising, sleeping, etc.; (iii) spatio-temporal properties, like time, location of the user, etc.; (iv)
environmental, e.g., temperature, pressure, fire, etc.; and (v) health parameters, for instance, blood
pressure (BP), pulse, blood glucose (BG), etc. Each of these context-space components can be associated
with one of the three properties, sensed, profiled, or predicted. Sensed contexts are those directly derived
from sensor values. Predicted contexts correspond to the output resulting from further analysis of
sensed inputs, e.g., activity-recognition. Profiled values are usually descriptive and remain unchanged.

In our DSS, fuzzy reasoning is used for detecting DA [19], and also for determining sensor-data
deviations (In order to reduce the complexity of our analysis, we have not explicitly modeled the DA
detection using fuzzy logic and have often assumed that the user’s DA is known in various scenarios.).
To take decisions in various situations, we employ RBR first, and CBR as second paradigm, i.e., upon
a change in context, the RBR triggers first and checks if there exists a rule to handle that particular
context, if not, it allows the CBR system to tackle the context based on its learning from previous
scenarios. Developing an efficient case base, case matching and formulating the adaptation rules are
the most complex aspects of a CBR system. In our system, each time an RBR outputs a rule, we save
it as a case in the CBR system with the case-id represented by the DA of the user, the context space
represented by the case features, and the triggered rule represented by the solution for a particular
case. The Knowledge Base (KB) stores the context, rules, and cases. The internal structure of the DSS is
represented in Figure 4. An example scenario of the DSS reasoning employing different AI techniques
is presented in detail in Listing 1 of Section 6.2.

The generic architecture, and its DSS can be instantiated to create a family of AAL architectures
that follows similar design principles. In this paper, we present three such architectures and their
DSS instantiations.

• Category 1: A minimal configuration—The minimum configuration architecture consists of the
following modules: Two sensors (a fall sensor and a pulse monitoring sensor), a mobile phone
UI, and cloud controller with a third-party UI and DSS system with a minimum context-space
information including the health data (pulse and fall) and DA. The simplified DSS employs only
RBR with fuzzy logic as AI techniques. The minimal configuration is shown in Figure 5.

• Category 2: An intermediate configuration—This instantiation (see Figure 6) is more complex
than the previous one and it contains sensors belonging to all four types of the generic architecture
(health monitoring sensors that detect pulse and blood pressure, smart home sensors that detect
user movements, a wearable fall sensor, and a set of physical exercise monitoring sensors),

Sensors 2019, 19, 5057 10 of 31

as well as a local controller with inbuilt data collection functionality, which forwards the data to
the cloud controller. The cloud controller has a DSS with context modeling, fuzzy logic, and RBR.

Pulse
monitoring

sensor

Fall sensor

M
o
b
i
l
e

Cloud DB

Decision Support
 System

GPRS/
GSM

User
Cloud Controller

Internet
protocols

Data
collector

Bluetooth

Bluetooth

Third-party UI

(caregiver)

Figure 5. Category 1: A minimal configuration.

Phone
 Linkwatch
 Data
Collection

PC

Tablet / Laptop

Smart Home
Sensors

Physical Exercise
Sensor

Sensor Unit

Health Sensors

Fall Sensors

CAMI Gateway

Robotic Telepresence

Multimodal User Interface

Voice, Gesture and Touch comands

Message Queue

Health Channel

Home Monitoring Channel

User Notification Channel

Decision System Support

Communication to 3rd Party

Fall Detection + Alerts

Reminder + Dynamic Program Management

Intelligent Health Analysis

MySQL DB

 Cloud

3rd Party
Health Platforms

Linkwatch

User Account Setup Security & Privacy

System Configuration Service

B
L

E

Physical Exercise
Analysis Service

OpenHab
Server

Z
-W

a
ve

OpenTele

Figure 6. Category 2: An intermediate configuration.

• Category 3: A complex configuration—In this category, we present the most complex version,
the CAMI AAL architecture [2] derived from our generic model, and represented in Figure 7.
The latter supports various sensors (e.g., a multitude of health and home monitoring sensors
like the A&D UA-651 BLE blood pressure sensor [20], Fibaro temperature and motion sensor
FGMS-001 [21], Fitbit bracelet [22], Vibby fall detection sensor [23], etc.), data collector, local
controller (EXYS9200-SNG [24] referred as CAMI gateway), the CAMI cloud, and third party
health platforms like Open Tele [25,26]. There is a set of user interfaces (UI) in CAMI, including
robotic platforms (TIAGo [27] and Pepper [28]), mobile phone and vocal interface to facilitate
the interaction with the elderly user. There is also a local backup of DSS in the CAMI gateway
apart from the cloud. The communication between various modules can employ a variety
of communication protocols, for instance, Bluetooth, Zigbee, Wifi, etc. The local processor is
called the CAMI gateway and is responsible for all critical functionalities. The Message Queue
is implemented by Rabbit MQ Message Broker [29]. The DSS is complex and employs context
modeling, fuzzy logic, RBR and CBR. There are also redundant copies of DSS in the local controller
and cloud controller.

Sensors 2019, 19, 5057 11 of 31

Figure 7. Category 3: A complex configuration: The CAMI AAL System Architecture [2].

In the following, we present the modeling and analysis of the simplest architecture (Category 1),
by exhaustive model-checking as well as of the most complex one, the CAMI architecture (Category 3)
by statistical model checking. We start by describing the use-case scenarios and system requirements
of the two architecture instantiations, in the following section.

4.1. Use Case Scenarios and System Requirements

AAL systems should assist elderly users with a variety of health and home-related functions,
as well as social inclusion ones. Let us assume the following critical scenarios where we can employ
systems whose architectures conform to the ones of Categories 1 and 3 described above, respectively.

Overall Scenario: Jim is an elderly user living alone in his home. Jim suffers from chronic cardiac disease,
slight memory loss, and falls frequently.

If Jim uses the AAL system architecture of Category 1, the latter should assist in fulfilling the
scenarios below:

• Scenario 1—Assistance for detecting health parameter deviations: Jim has sudden pulse variations
detected by the pulse monitoring sensor, which is critical for cardiac patients. If the pulse is low,
the DSS alerts the caregiver of a low pulse. If the pulse is high and the user is currently exercising,
this is considered as normal, and if not, it sends an alert to the caregiver.

• Scenario 2—Fall detection: Jim falls heavily while exercising, the fall sensors detect the fall and the
system immediately notifies the caregiver of the fall event.

However, if Jim needs additional functionality support, then he needs to acquire the CAMI AAL
system (Category 3), which can handle additional scenarios to the already mentioned ones. The fall
detection in CAMI is complex, as it employs a combination of wearable fall sensor (Vibby) and camera
sensor for detecting the fall event.

• Scenario 3—Home-monitoring functionalities: Jim forgets to switch off the cooker after cooking his
dinner, which results in a fire in the house. The fire detection sensor of CAMI detects the fire and
the system alerts the firefighters of the fire incident in Jim’s house.

• Scenario 4—Combining various functionalities in case of multiple events occurring together: Jim
is cooking his breakfast. He suddenly feels dizzy and falls. The gas-based cooker is still
on, and eventually starts a fire in Jim’s house. In this case, the CAMI system detects the
simultaneously occurring events, and alerts the firefighter and caregiver of both the events.
As a result, the firefighters and caregivers can immediately start the rescue without waiting for
alarm confirmations, avoiding potentially dangerous consequences [1]. Further, if there are any
health parameter variations detected for Jim along with the fall (for instance, a low pulse), the fall

Sensors 2019, 19, 5057 12 of 31

event can be associated with the low pulse, and the caregiver notified accordingly, which can help
in further diagnosis.

All these scenarios are safety critical and have to be processed in real time. For architecture 1,
we consider verifying the following requirements:

4.2. Requirements of the Minimal Architecture Model (Category 1):

• R1Arch1: If a high pulse is detected by the pulse sensor and the elderly user’s DA is not exercising,
then the DSS sends a notification to caregiver within 20 s. This requirement relates to Scenario 1

• R2Arch1: If a fall is detected by the fall sensor, then the DSS sends a notification to caregiver within
20 s. It is associated with Scenario 2.

4.3. Requirements of the CAMI Architecture (Category 3):

For the CAMI architecture, we consider verifying the following functional and quality-of-service
(QoS) attributes, like fault tolerance and data consistency. Such verification is beneficial, as the system
needs to be prototyped and the analysis offers some assessment of the system’s dependability.

• R1CAMI: If the fire sensor detects a fire, then the DSS sends a notification to the firefighters, within
20 s. This requirement corresponds to Scenario 3.

• R2CAMI: If a fall is detected by the wearable or the camera sensor, then the DSS sends a notification
to the caregiver, within 20 s. This requirement relates to Scenario 2.

• R3CAMI: If fire and fall are detected simultaneously by the respective sensors, then the DSS should
detect the presence of the simultaneous events and send notifications to both the firefighters and
the caregiver indicating the presence of both events, within 20 s. This relates to Scenario 4.

• R4CAMI: If there is a pulse data deviation indicating high pulse, the DA is “not exercising”, and
the user has a disease history of a cardiac patient, then the DSS sends a notification to the caregiver,
within 20 s. This relates to Scenario 1.

• R5CAMI: The decisions taken by the local DSS are updated in the cloud DSS such that they are
eventually synchronized. This requirement relates to the data-consistency requirement of CAMI.

• R6CAMI: If the local DSS fails, then the cloud DSS eventually becomes active. It corresponds to
the fault-tolerance aspect of the CAMI system.

The overall goal is to analyze the satisfaction of the above requirements by the respective
architectures. We achieve this by first specifying the architectures in AADL, and then by semantically
mapping the specification into a (network of) STA (N(STA)) that we model-check with UPPAAL (for
architecture category 1) or statistically model-check with UPPAAL SMC (for CAMI).

5. System Modeling in AADL

The generic architecture, depicted in Figure 2 can be modeled in AADL as a set of interacting
components. All the components are modeled as abstract, and can be easily extended to suit particular
run-time representations appropriate for specific requirements.

In order to develop the AADL model, we classify the AADL components as:

1. Atomic Components (AC): Components that do not have hierarchy in terms of sub-components
with port interfaces, but might contain sub-components without port interfaces.

2. Composite Components (CC): Hierarchical components that contain sub-components with and
without interfaces. For example, data is a sub-component without interface and it can be part of
an AC or CC hierarchy.

The system architecture itself can be considered a CC with other AC or CC as its sub-components.
In order to encode the complex modeling aspects and facilitate the reasoning with functional behavior
and errors, we propose a modeling format for both AC and CC as defined below.

Sensors 2019, 19, 5057 13 of 31

5.1. AAL Atomic Components

An AC is defined by its component type, implementation, behaviour annex (BA), and error
annex (EA). The component type definition specifies its name, category (i.e., “abstract”) and interfaces.
We can also specify particular component properties and flows in the type definitions (While defining
the component properties, we chose to include thread-related properties like the Dispatch Protocol,
Component Execution Time etc., which later aid us in reasoning. All these thread-related properties
need to be instantiated by a value and hence we chose it to be instantiated with some values specific
to our architecture chosen. If the reader wishes to use the AADL model for a specific architecture
of choice, we recommend to extend the abstract models and manually update the property values
under consideration or add/delete properties.). The implementation of an AC defines the data
sub-components. The AC’s BA has two states, Waiting and Operational. Waiting represents the
initial state where the component waits for an input, and Operational represents the state to which
a component switches upon receiving the input (if it has not failed). The AC’s EA uses four states
to represent failure: Failed Transient, LReset, Failed Permanent, and Failed ep. The state Failed Transient
models transient failures, from which a recovery is possible via a reset event. Since a reset is modeled
as an internal event that occurs with respect to a probabilistic distribution, we model an additional
location LReset to encode a component’s reset action upon the successful generation of the reset event.
Failed Permanent models a permanent failure of the RBR, from which the component cannot recover.
Failed ep models a failure due to error propagation from its predecessor components.

An example of an AC in the architecture is the RBR component of the CAMI DSS. In this paper,
we illustrate the RBR for R3CAMI (Scenario 1), described in Section 2.1. The RBR component type,
implementation, BA, and EA are shown in Listing 1. The component type definition specifies its name,
category (i.e., “abstract”) and interfaces (Lines 2–15). The RBR component type describes that the
component gets activated aperiodically, has an execution time of 1 s, and illustrates the data flows
between the respective input and output ports. The implementation definition of RBR (Lines 17–20)
defines the data sub-components like the fuzzy data output, personal information and daily activity of
the user, which forms the context-space of Scenario 1.

In the BA (Lines 21–28), Waiting represents the initial state where the component waits for an
input from the pulse sensor. In the Operational state, the system monitors the fuzzy logic output
to identify any pulse variations. The fuzzy reasoning is not shown in Listing 1 as it is part of the
context-reasoning module and not RBR, however we present the underlying reasoning in a nutshell.
First of all, fuzzy data memberships are assigned to the range of pulse data values: Low [40–70],
Normal [55–135], and High [110–300], where the numbers represent heart beats per minute. The pulse
data inputs from the sensor are classified as Low, Normal, or High. If a high pulse is detected by the
RBR, then the user context is tracked by checking the elderly’s activity of daily living and disease
history. If the activity is “not exercising” and the user has a cardiac disease history, a notification
alert is raised and sent to the caregiver. The information is encoded as a rule in the BA depicted in
Listing 1. Upon triggering a particular rule, the RBR output is stored in the DB as a case input for CBR,
where the case-id is represented by daily activity (DA), case features are the context space and the
case solution is the RBR output (refer to Figure 4 to see the behavior of the various AI algorithms).
The RBR output is also synchronized with Cloud DSS such that the data consistency is maintained.
In the EA (Lines 30–49), we show the states - Waiting and Failed Transient, Failed Permanent, LReset and
Failed ep plus their transitions based on a TF event (event that causes transient failures), PF (event
that causes permanent failure) and resetevent. If a TF or PF event occurs when the component starts,
the latter moves to the Failed Transient state or Failed Permanent state respectively. From Failed Transient,
the system can generate a reset event with occurrence probability of 0.9 and moves to LReset. If the
recovery is successful with the reset event, the system moves to Waiting state with probability 0.8,
else it moves to Failed Permanent with probability 0.2. In this work, we have considered the Waiting
state in the EA and BA to be similar.

Sensors 2019, 19, 5057 14 of 31

Listing 1: An excerpt from the RBR component in AADL for CAMI.
1 −−−RBR (Component Type +Implementation)−−−
2 a b s t r a c t RBR
3 f e a t u r e s
4 input : in event data port ;
5 output : out event data port ;
6 flows
7 F1 : flow path input −> output ;
8 p r o p e r t i e s
9 Dispatch_Protocol => Aperiodic ;

10 property_eventgenerat ion : : AperiodicEventGeneration = >1.0 ;
11 property eventgenerat ion : : D i s t r i b u t i o n => Exponential ;
12 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : Fai lureRecoveryRate = >1.0 ;
13 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : D i s t r i b u t i o n => Exponential ;
14 Compute_Execution_Time =>1s . . 1 s ;
15 end RBR ;
16 a b s t r a c t implementation RBR . impl
17 fuzzy_out_pulse : data f u z z i f i e d _ d a t a _ p u l s e ;
18 DA: data ADL;
19 u _ p r o f i l e : data user ;
20 end RBR . impl
21 −−BA−−
22 s t a t e s
23 Waiting : i n i t i a l complete f i n a l s t a t e ;
24 Operat ional : s t a t e ;
25 t r a n s i t i o n s
26 Waiting −[on dispatch input]−>Operat ional
27 { i f (fuzzyo_pulse=high and DA!= e x e r c i s i n g and u_prof = c a r d i a c _ p a t i e n t)
28 { output := not_caregiver_highpulse }
29 −−EA−−
30 s t a t e s
31 Waiting : i n i t i a l s t a t e ;
32 F a i l e d _ T r a n s i e n t : s t a t e ;
33 Failed_Permanent : s t a t e ;
34 LReset : s t a t e ;
35 Fai led_ep : s t a t e ;
36 events
37 Reset : recover event ;
38 TF : e r r o r event ;
39 PF : e r r o r event ;
40 T r a n s i t i o n s
41 t1 : Waiting −[PF]−>Failed_Permanent
42 t2 : Waiting −[TF]−> F a i l e d _ T r a n s i e n t ;
43 t3 : F a i l e d _ T r a n s i e n t −[Reset]−> { LReset with 0 . 9 ,
44 Failed_Permanent with 0 . 1 } ;
45 t4 : LReset−[]−>{Waiting with 0 . 8 , Failed_Permanent with 0 . 2 }
46 p r o p e r t i e s
47 EMV2 : : Dura t ionDis t r ibut ion => [Duration => 1 s . . 2 s ; a p p l i e s to Reset ;
48 EMV2 : : OccurrenceDis t r ibut ion =>[Probabi l i tyValue => 0 . 9 ;
49 D i s t r i b u t i o n => Fixed ;] a p p l i e s to Reset ;

5.2. AAL Composite Components:

A CC is defined in a similar way as that of AC, except that its BA is not explicitly defined
(we assume that the behaviour of the CC is already encoded by its sub-components). Also, the EA
definition of CC shows the failure behaviour of its sub-components. In Listing 2, we present an excerpt
of the DSS component, as an example of CC. The component type definition (Lines 2–12) is similar
to that of an AC, except that we do not define explicitly properties like execution time of a CC (it is
considered based on the execution time of each component, respectively). However, component
implementation (Lines 13–26) shows the prototypes used to define sub-components and connections
between them. The EA (Lines 28–39) shows the composite error behavior of DSS and shows that
the DSS moves to Failed Transient or Failed Permanent, if each of its sub-components move to these
states, respectively. No BA is created for the DSS since the behavior is defined by the BA of the
sub-components.

Sensors 2019, 19, 5057 15 of 31

Listing 2: An excerpt from the DSS component in AADL for CAMI.
1 −−DSS Component Type + Implementation−−
2 a b s t r a c t DSS
3 f e a t u r e s
4 input : in event data port ;
5 dec is ion_out : out event data port ;
6 p r o p e r t i e s
7 Dispatch_Protocol => Aperiodic ;
8 property_eventgenerat ion : : AperiodicEventGeneration = >10.0 ;
9 property eventgenerat ion : : D i s t r i b u t i o n => Exponential ;

10 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : Fai lureRecoveryRate = >1.0 ;
11 p r o p e r t y _ f a i l u r e _ r e c o v e r y : : D i s t r i b u t i o n => Exponential ;
12 end DSS ;
13 a b s t r a c t implementation DSS . impl
14 prototypes
15 RBR_DSS : a b s t r a c t RBR ;
16 CBR_DSS : a b s t r a c t CBR ;
17 CM_DSS: a b s t r a c t context_model ;
18 subcomponents
19 RBR : a b s t r a c t RBR_DSS ;
20 CBR : a b s t r a c t CBR_DSS ;
21 CM: a b s t r a c t CM_DSS;
22 connect ions
23 C1 : port input −> CM. input ;
24 C2 : port CM. output−> RBR . input ;
25 C3 : port RBR . output−> CBR . input ;
26 C4 : port CBR . output−> dec is ion_out ;
27 −−DSS EA−−
28 annex EMV2{ * *
29 composite e r r o r behavior
30 [RBR . Failed_Permanent and CBR . Failed_Permanent and
31 CM. Failed_Permanent] −> Failed_Permanent ;
32 [RBR . F a i l e d _ T r a n s i e n t and CBR . F a i l e d _ T r a n s i e n t and
33 CM. F a i l e d _ T r a n s i e n t] −> F a i l e d _ T r a n s i e n t ;
34 [RBR . Operat ional or CBR . Operat ional or
35 CM. Operat ional]−> Wait ;
36 EMV2 : : OccurrenceDis t r ibut ion =>[Probabi l i tyValue => 1 0 ;
37 D i s t r i b u t i o n =>Exponential ;] a p p l i e s to Failed_Permanent ,
38 Fa i led_Trans ient , Wait ;
39 end composite ; * * } ;

The assumptions made in the AADL model are: (i) all the system components have a reliability of
99.98%; (ii) the sensors have a periodic activation; (iii) all the system components interact via ports
without any delay of communication; and (iv) the output is produced in the Operational state and there
is no loss of information during transmission.

6. Semantics of AAL-Relevant AADL Components

AADL is a “semi-formal” language and in order to formally verify our AAL systems specified
in AADL, we give formal semantics to AADL components (of the type used in this paper) in terms
of stochastic timed automata, to be able to encode annex behaviors also. First, we provide the tuple
definition of AADL components (Section 6.1), after which we perform a semantic anchoring of the
AADL component tuple via a mapping between the elements of the AADL and the elements of the
STA (Section 6.2).

6.1. Definition of AADL Components for AAL

An AADL component that we employ in this paper can be defined as a tuple:

AADLComp = 〈Comptype, Compimp, EA, BA〉, (3)

where Comptype represents the component type, and Compimp represents the component implementation,
BA the behavioral annex specification, and EA the error annex, as follows:

• Comptype is defined as a tuple: Comptype = 〈Features, Flowspec, Prop〉, where:

Sensors 2019, 19, 5057 16 of 31

– Features = INp ∪ OUTp, where INp, OUTp represent the sets of input ports and output ports
respectively, and INp, OUTp ∈ {data-ports, event-ports, event-data-ports};

– Flowspec = 〈Flowso, Flowp, Flowsi〉, where Flowso, Flowp, Flowsi represent flow sources, flow
paths and flow sinks respectively. Let Fs0 : Flowso → OUTp be a function that associates
certain OUTp to Flowso with Flowso ⊆ OUTp, Fp : Flowp → OUTp × INp be a function that
associates and an input and an output to a flow, and Fsi : Flowsi → INp be a function that
associates certain INp to Flowsi, with Flowsi ⊆ INp. For instance, in our AAL architecture, we
can define Flowspec for fall events by defining the output port of the fall sensor as Flowso, the
input port of the cloud DSS as Flowsi, and the input and output ports of all the intermediate
components defining the Flowp;

– Prop is the set of associated properties of the component, like Deployment, Communication,
Timing, Thread-related properties, etc. [12]. In this work, we only consider a subset
of Timing, Thread-related properties, and user-de f ined properties, that are represented as
follows: Prop = {Tp, Te, Dispatch protocol, event_gen_dist, f ailure_recovery_dist} where Tp

and Te represent the period and execution-time of the component, respectively, Tp, Te∈
Timing properties, Dispatch protocol ∈ {P, AP} (The dispatch protocol property of a thread
determines when the thread is executed. A periodic thread is activated at time intervals of
the specified period T; and an aperiodic thread is activated when an event arrives at a port of
the thread.), where P represents a Periodic and AP represents an Aperiodic protocol, and
P, AP ∈ Thread-related properties, and event_gen_dist, f ailure_recovery_dist ∈ user- de f ined
properties represent the set of user-defined properties used for specifying the occurrence
distribution of aperiodic events and failure recovery, respectively.

• Compimp is defined as Compimp = 〈SC, Pt, Con, MSM, Flowimp, ETF〉, where:

– SC represents the set of sub-components of the system with port interfaces (SCi) and without
port interfaces (SCData), i.e., SC = SCData ∪ SCi;

– Pt denotes the set of Prototypes used to define SC via Fp : Pt → SCi × SCData, a function that
associates SC to a Pt, respectively;

– Con represents the set of connections. Fcon : Con → Features is a function that assigns
Features to Con;

– MSM is the mode state machine that is modeled by a tuple, as follows: MSM = 〈Ms,→〉,
where Ms is the set of states, and→⊆ Ms × ev×Ms is the transition relation (with ev being
the set of events, such that Fe : event-ports→ ev, event-ports ∈ Features). We write s e−→ s′ as
short for (s, e, s′) ∈→, where s, s′ ∈ Ms, and e ∈ ev.The set of Con is defined with respect to
MSM, if present;

– Flowimp are the flow implementations, represented as Flowimp : SC → Flowspec;

– ETF represents the set of end-to-end flows as complete flow paths from a starting SCi to the
final SCi, respectively.

• The error annex EA is defined as the tuple: EA = 〈Eflows, Ebeh, Eprop〉, where:

– Eflows denotes the error flows, Eflows = 〈Epp, Errso, Errp, Errsi〉, where Epp describes error
propagations, and Errso, Errp, Errsi represents error sources, error paths, and error sinks,
respectively; Fe1 : Errso → OUTp is a function that associates certain output ports with error
sources, Fe2 : Errp → (INp, OUTp) is a function that associates input and output ports via
Errp, Fe3 : Errsi → INp is a function that assigns certain input ports as error sinks;

– Ebeh represents error behavior, Ebeh = 〈Es,→e, Ee, EMComp〉, where Es represents the set of
error states,→e denotes an error transition relation,→e⊆ Es× Ee× Es, with Ee, the set of
error events. For a CC, the error behavior is represented as EMComp (error-model for a CC)
with respect to the failure of its SCi. Let se and s′e be two error states, se, s′e ∈ Es, and→e the

Sensors 2019, 19, 5057 17 of 31

transition between them due to an error event ee ∈ Ee, then se
ee−→e s′e.We represent the initial

state as s0e ∈ Es. FEpp : Epp → (INp, OUTp) is a function that associates input and output
ports to error propagations;

– Eprop denotes the error properties. In our work, we focus only on two error properties:
Duration distribution (Durdist), and Occurrence distribution (Occurdist), which aid in our error
analysis, thus Eprop = {Durdist, Occurdist}.

• The Behaviour Annex, BA is defined as: BA = 〈Bv, Bs,→b〉, where Bv, Bs, represent the set of
variables, and the states of BA, respectively and→b is a BA transition relation. Let sb and s′b be
two states of BA, sb, s′b ∈ Bs, and→b the transition between them,→b⊆ Bs × Bv × SCData × Bs,
with SCData being the set of data subcomponents. We denote by s0b ∈ Bs the initial state of
a BA path.

Formally, we distinguish the Atomic Component from the Composite Component as follows:

• AC ∈ AADLComp, where CompImplAC= {SCData}, EAAC 6= ∅, where Ebeh ∈ EAAC = {Es,→e

, Ee}, BAAC 6= ∅,
• CC ∈ AADLComp, where CompImplCC= {Pt, SCi, SCData, Con, MSM,

Flowimp, ETF}, EACC 6= ∅, where Ebeh ∈ EACC = {EMComp}, BACC = ∅. A CC represents the
system-level view of the architecture.

Next, we present an instantiated example of an AC and a CC from the CAMI architecture. The RBR
component of DSS is an AC and it is defined by its type, implementation, BA, and EA (Listing 1).
In formal semantics, we define it as follows:

RBRAADL = 〈Comptype RBR, Compimp RBR, EARBR, BARBR, 〉 (4)

where the elements are defined as follows:

• Comptype RBR = 〈FeaturesRBR, Flowspec RBR, PropRBR〉, with:

– FeaturesRBR =INp ∪ OUTp, and INp, OUTp ∈ { event-data-ports},
– Flowspec RBR = 〈Flowp〉,
– PropRBR = {Te, AP}.

• Compimp RBR = 〈SCDataRBR〉
• EARBR ={Errp, Es,→e, Ee, Durdist, Occurdist}
• BARBR= {Bs,→b}.

On the other hand, the DSS in our CAMI architecture is a CC, with multiple subcomponents and
hence it is defined by its type, implementation and EA (no BA) as shown in Listing 2. Formally, it can
be represented as follows:

DSSAADL = 〈Comptype DSS, Compimp DSS, EADSS〉 (5)

where the elements are defined as follows:

• Comptype DSS ={FeaturesDSS, Flowspec DSS, PropDSS}, where:

– FeaturesDSS =INp ∪ OUTp, and INp, OUTp ∈ {event-data-ports},
– Flowspec DSS = 〈Flowp〉,
– PropDSS = {AP}.

• Compimp DSS={SCDSS, PtDSS, ConDSS, Flowimp DSS}, where:

– SCDSS = {CM, RBR, CBR},

Sensors 2019, 19, 5057 18 of 31

– PtDSS ={CM, RBR, CBR},
– ConDSS ={INpDSS → INpCM, OUTpCM → INpRBR, OUTpRBR → INpCBR, OUTpCBR →

OUTpDSS},
– Flowimp DSS={CM→ Flowp, RBR→ Flowp, CBR→ Flowp}.

• EADSS = {EMComp}.

In the next sub-section, we present our semantic encoding of atomic and composite components,
in terms of NSTA.

6.2. Formal Encoding of AADL Components as NSTA

Using the definition of AADL components given in Section 6.1, the formal definition of STA
as STA = 〈L, l0, A, V, C, E, I, µ, γ〉, and of NSTA = ||iSTAi (see Section 2.2), we define a semantic
encoding of the AADL components, respectively, in terms of NSTA.

6.2.1. Formal Encoding of AC

Any atomic component in AADL, defined by: AC = 〈ComptypeAC, CompimplAC, EAAC, BAAC〉 is
encoded as an NSTA as follows: AC NSTAAC = ACiSTA||ACaSTA, where ACiSTA is the so-called
“Interface STA” of AC, which corresponds to ComptypeAC and CompimplAC, whereas ACaSTA is the
“Behavioral STA” that encodes the EA and BA of an AC.

• The ACiSTA is defined according to a template STA (see Figure 8) with L ∈
{Idle, Op, Fail, start, stop}, l0 = Idle, Op corresponds to the Operational state of the RBR, start,
stop represent the locations to initiate the synchronizations with ACaSTA and E = {Idle −→
start, start −→ Op, Op −→ stop, stop −→ Idle, Op −→ Fail, Fail −→ Idle}. This template is
annotated with the following information:

Declarations:
broadcast chan start_AC,
stop_AC, start_Aci, stop_ACi;
bool TF_AC=0, PF_AC=0;
int in, out, data1, data2;

Declarations
Clock x;

Declarations
Clock x;

STA1: Template TA STA2: STA1+Ports STA3: STA2+Trig.1+Exec.time

STA4: STA2+Trig.2+Exec.time

Figure 8. Step-by-step formulation of ACiSTA.

– V = out_port ∪ in_port ∪ {PF, TF} ∪ SCData , where out_port and in_port represent the set
of output and input ports ∈ {data-ports, event-ports, event-data-ports}, respectively, and the
Boolean variables, PF, TF, represent the error events associated with the transient failure and
permanent failure of AC, plus the variable associated with SCData ∈ Comp_imp;

– C = {x} is the set of clocks that models the period and execution time of AC;

– A = {start_ACi?, start_AC!, stop_AC!, stop_ACi!} ∪ {x = 0}, where A is the set
of synchronization channels associated with input-output ports ∈ {event-data-ports,
event-ports}, that is, channels start_AC!, stop_AC!, and the synchronization channels for the
interface of the corresponding CC, that is, start_ACi?, stop_ACi! and the reset actions on x;

Sensors 2019, 19, 5057 19 of 31

– E = {Idle
start_ACi?∧x==Tp−−−−−−−−−−−→ start, start start_AC!,x=0−−−−−−−−→ Op,

Op TF_AC==1∨PF_AC==1−−−−−−−−−−−−−−→ Fail, Op
x==Te,stop_AC!−−−−−−−−−→ stop,

stop
stop_ACi!,x=0−−−−−−−−→ Idle, Fail TF_AC==0∧PF_AC==0−−−−−−−−−−−−−−→ Idle,

Fail TF_AC==1∧PF_AC==1−−−−−−−−−−−−−−→ Fail}, where E is defined by the template populated with A and
guards that ensure the correctness of transitions.

– I(Idle)=(x ≤ Tp), if the dispatch protocol associated with AC is periodic, and I(Op) = x ≤
Te, where Tp and Te represent the period and execution-time of AC;

– P(Idle) = µ1, and P(Fail) = µ2, where P(Idle) = µ1 represents the occurrence distribution
of aperiodic event (if the dispatch protocol associated with AC is aperiodic), and P(Fail) = µ2

represents the probability of leaving location Fail;

• The ACaSTA is created in a similar way with:

– L = {Wait, Op, TrF, PrF, Fail_ep, LReset, L1, L2}, l0 = Wait, where L comprises the set of
states in EA and BA (Wait, Operational (Op), Transient Failure (TrF), Permanent Failure
(PrF), Failed due to error propagation (Fail_ep), and reset location (LReset), plus additional
committed locations (L1, L2) that ensure that receiving is deterministic in UPPAAL SMC;

– A = {start_AC?, stop_AC?}∪ {actionBA,EA(), TF = 0, TF_AC = 1, PF_AC = 1, reset_AC =

0, reset_AC = 1, err_pAC = 0, err_pAC = 1, err_p = 1, y = 0}, where A is composed of the
actions defined in BA and EA (actionBA,EA()), plus the synchronizations channels to concord
with ACiSTA (start_AC?, stop_AC?), and the reset of clock y;

– V = {PF_AC, TF_AC, reset_AC, err_pAC}, where V consists of the set of error events
defined in the EA, that is, PF_AC : Permanent Failure of AC, TF_AC: Transient Failure
of AC, reset_AC: Reset of AC, err_pAC: error propagation of AC;

– C = {y} is the clock that measures the time elapsed for reset action of a particular component;

– E = {Wait start_AC?−−−−−→ L1, L1
TF_AC=1,err_pAC=1−−−−−−−−−−−−→ TrF, L1

PF_AC=1,err_pAC=1−−−−−−−−−−−−→
PrF, L1 −→ L2, L2 −→ Op, Op

stop_AC?,actionBA()−−−−−−−−−−−→ Wait, TrF
reset_AC=1,y=0−−−−−−−−−→

LReset, TrF
PF_AC=1,err_pAC=1,reset_AC=0−−−−−−−−−−−−−−−−−−−→ PrF, LReset

TF_RBR=0,err_pAC=0,reset_AC=0−−−−−−−−−−−−−−−−−−−−→
Wait, LReset

PF_AC=1,err_pAC=1,reset_AC=0−−−−−−−−−−−−−−−−−−−→ PrF, Wait
err_p==1−−−−−→ Fail_ep}, where E consists of

the transitions in EA, BA and those between L1 and L2;

– I(LReset)= (y ≤ Durdist(Reset));

– P(Wait) = µ, that is the occurrence-distribution of Wait;

– L1
γ1−→ L2, L1

γ2−→ TrF, L1
γ3−→ PrF, where γ1, γ2, γ3, are defined according to the

occurrence-distribution of the error events.

6.2.2. Formal Encoding of CC

The formal encoding of a CC defined by the tuple: CC = 〈ComptypeCC, CompimplCC, EACC〉 is also
a network of two synchronized STA, CCNSTA = CCiSTA||CCaSTA, where CCiSTA is the “interface” STA
of the CC component, and CCaSTA is the “annex” STA that encodes the information from the error
annex in AADL.

• The CCiSTA is defined by formally encoding (ComptypeCC, CompimplCC), as follows:

– L = {Wait, Fail}
n⋃

i=1
{LiSync}

n⋃
i=1
{SCi}, where L contains one location for each

sub-component defined by SC, one additional location for each sub-component that ensures
the correct synchronization, location Fail to model the component failure, and Wait to model
the initial location;

Sensors 2019, 19, 5057 20 of 31

– E is defined according to Con. For each connection in Con, we define two edges, l −→ LiSync
and LiSync −→ l′, where l, l’∈ L are locations created based on the sub-components for
which the connections are defined, and LiSync ∈ L is a location created for synchronization;

– V = out_port ∪ in_port ∪ {PF, TF} ∪ SCData , where out_port and in_port represent the set
of output and input port variables ∈ {data-ports, event-ports, event-data-ports}, respectively,
and the Boolean variables, PF, TF, represent the error events associated with the transient
failure and permanent failure of CC, plus the variable associated with SCData ∈ Comp_imp;

– C = {x} if Tp 6= ∅;
– A is defined based on the updates defined by MSM, the updates defined by Flowimp,

the synchronizations defined by Con, the synchronization with CCaSTA, ACaSTA, and in
case C is not void, we add the clock reset of the clock(s) in C;

– I(Wait)=(x ≤ Tp) if Tp 6= ∅;
– P(l) = µ, where l ∈ L and µ is defined by Prop.

• CCaSTA is defined as follows:

– L = Es ∈ EA, l0 = s0e ∈ Es, where Es is the set of states of EA;
– E =→e;
– A = {TF_CC = 1, TF_CC = 0, PF_CC = 1};
– V is represented by the global variables defined in CCiSTA;
– C = ∅;
– P(l) = µ, where l ∈ L and µ is defined by Occurdist ∈ Eprop.

All the other CC elements are transformed based on the encoding EA of AC.

Next, we show the rules instantiated on our previously selected AADL components of CAMI,
that is, RBR and DSS, as examples of transforming AC and CC into corresponding STA. There are
also some additional transitions defined which are not the direct result of applying the rules, but are
needed due to the requirements of our modeling tool, UPPAAL SMC.

The RBRAADL defined by Equation (4), is mapped into an NSTA (RBRNSTA) as follows:
RBRNSTA=RBRiSTA||RBRaSTA (Figure 9), where RBRiSTA is the so-called “Interface STA” of RBR which
corresponds to Comptype RBR and Compimpl RBR, whereas RBRaSTA is the “Annex STA” of RBR that
encodes its EA and BA.

(a) (b)

Figure 9. The STA for the RBR. (a) Interface STA (RBRiSTA); (b) Annex STA (RBRaSTA).

• The RBRiSTA is formally represented as a tuple, where:

– L = {Idle, Start, Op, Fail}, l0 = {Idle}

Sensors 2019, 19, 5057 21 of 31

– A = {start_RBRi?, start_RBR!, stop_RBR?} ∪ {x = 1}
– V = {out_port, in_port, PF_RBR, TF_RBR}
– C = {x}
– E = {Idle start_RBRi?−−−−−−→ start, start start_RBR!,x=0−−−−−−−−→ Op,

Op TF_RBR==1∨PF_RBR==1−−−−−−−−−−−−−−−→ Fail, Op
x==1,stop_RBR!−−−−−−−−−→ Idle, Fail

TF_RBR==0∧PF_RBR==0−−−−−−−−−−−−−−−→ Idle, Fail TF_RBR==1∧PF_RBR==1−−−−−−−−−−−−−−−→ Fail}
– I(Op)=(x ≤ 1)

– P(Idle) = 1, P(Fail) = 1, given by γ

• RBRaSTA is defined in a similar way:

– L = {Wait, Op, TrF, PrF, Fail_ep, LReset, L1, L2, LSync}, {l0 = Wait}
– A = {start_RBR?, stop_RBR?, stop_RBRi!} ∪ {rules(), TF_RBR={0, 1},

PF_RBR={1}, reset_RBR={0, 1, }, err_pRBR={0, 1}, err_p={1}, y=0}
– V = {PF_RBR, TF_RBR, reset_RBR, err_pRBR, errp}
– C = {y}

– E = {Wait start_RBR?−−−−−−→ L1, L1
TF_RBR=1,err_pRBR=1−−−−−−−−−−−−−−→ TrF, L1

PF_RBR=1,err_pRBR=1−−−−−−−−−−−−−→ PrF, L1 −→ L2, L2 −→ Op, Op
stop_RBR?,rules()−−−−−−−−−−→ Lsync, Lsync

stop_RBRi!−−−−−−→
Wait, TrF

reset_RBR=1,y=0−−−−−−−−−−→ LReset,

TrF
PF_RBR=1,err_pRBR=1,reset_RBR=0−−−−−−−−−−−−−−−−−−−−−→ PrF,

LReset
TF_RBR=0,err_pRBR=0,reset_RBR=0−−−−−−−−−−−−−−−−−−−−−→Wait,

LReset
PF_RBR=1,err_pRBR=1,reset_RBR=0−−−−−−−−−−−−−−−−−−−−−→ PrF, Wait

err_p==1−−−−−→ Fail_ep}
– I(LReset) = y ≤ 2
– P(Wait) = 10, given by µ

– L1 0.9998−−−→ L2, L1 0.001−−→ TrF, L1 0.001−−→ PrF, assigned by γ

Similarly, the DSSAADL, shown in Listing 2, and represented by Equation (5), is mapped into an
NSTA: DSSAADL DSSNSTA=DSSiSTA||DSSaSTA (Figure 10), where DSSiSTA is the so-called “Interface
STA” of DSS, which corresponds to Comptype DSS and Compimpl DSS, whereas DSSaSTA is the “Annex
STA” that encodes the EA of CC.

(a) (b)

Figure 10. The STA for the DSS. (a) Interface STA (DSSiSTA); (b) Annex STA (DSSaSTA).

• The tuple elements of DSSiSTA are as follows:

– L = {Wait, CM, RBR, CBR, Fail, L1Sync, L2Sync, L3Sync, L4Sync}, l0 = {Wait}

Sensors 2019, 19, 5057 22 of 31

– A = {start_DSSLC, start_CMi!, stop_CMi?, start_RBRi!, stop_RBRi?,
start_CBRi!, stop_CBRi?, stop_DSSLC!, start_DSSCC!}
∪{iCM_in = iDSSLC_in, iRBR_in = iCM_out, iCBR_in = iRBR_out, iDSSLC_out =

iCBR_out, iDSSCC_in = iDSSLC_out}
– V = {iDSSLC_in, iCM_in, iRBR_in, iCBR_in, iDSSCC_in, iDSSLC

_out, iCM_out, iRBR_out, iCBR_out, iDSSLC_out, PF_DSS, TF_DSS}

– E = {Wait start_DSSLC?−−−−−−−→ L1Sync, L1Sync start_CMi!,iCM_in=iDSSLC_in−−−−−−−−−−−−−−−−−→ CM, CM
stop_CMi?−−−−−−→

L2Sync, L2Sync start_RBRi!,iRBR_in=iCM_out−−−−−−−−−−−−−−−−−→ RBR,

RBR
stop_RBRi?−−−−−−→ L3Sync, L3Sync start_CBRi!,iCBR_in=iRBR_out−−−−−−−−−−−−−−−−−→ CBR,

CBR
stop_CBRi?−−−−−−→ L4Sync, L4Sync

stop_DSSLC!,iDSSLC_out=iCBR_out,iDSSCC_in=iDSSLC_out−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Wait, CM
(TF_DSS=1∨PF_DSS=1),start_DSSCC!−−−−−−−−−−−−−−−−−−−−−−→ Fail, RBR
(TF_DSS=1∨PF_DSS=1),start_DSSCC!−−−−−−−−−−−−−−−−−−−−−−→ Fail, CBR
(TF_DSS=1∨PF_DSS=1),start_DSSCC!−−−−−−−−−−−−−−−−−−−−−−→ Fail, Fail
(TF_DSS==1∨PF_DSS==1)−−−−−−−−−−−−−−−−→ Fail, Fail

(TF_DSS==0∧PF_DSS==0)−−−−−−−−−−−−−−−−→ Wait}
– P(Wait)=10, P(CM)=10, P(RBR)=10, P(CBR)=10, P(Fail)=1

EACC DSSaSTA

• DSSaSTA has the following syntactic elements:

– L = {Wait, TrF, PrF}, l0 = {Wait}
– A = {TF_DSS = {0, 1}, PF_DSS = {1}}
– V = {TF_DSS, TF_CM, TF_RBR, TF_CBR, PF_CM, PF_RBR,

PF_CBR, PF_DSS}
– E = {Wait TF_CM==1∧TF_RBR==1∧TF_CBR==1,TF_DSS=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ TrF,

Wait PF_CM==1∧PF_RBR==1∧PF_CBR==1,PF_DSS=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF, PrF
PF_DSS==1−−−−−−−→ PrF, TrF TF_CM==0∨TF_RBR==0∨TF_CBR==0,TF_DSS=0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Wait}

– P(Wait) = 10, P(TrF) = 10, P(PrF) = 10

It should be noted that in the CAMI architecture, the semantic encoding of its components are
restricted to the scope of the verification, and hence the components like the Database, UI, Security,
and Privacy are not encoded as STA. The semantic encoding produces a complex NSTA comprising
32 STA, out of which 18 STA are produced by encoding the 10 AC of CAMI (four sensors: one for
detecting pulse data deviation, two for fall detection and one for fire detection, data collector, Message
Queue, RBR, CBR, daily activity detection, fuzzy logic) and the remaining 12 by encoding six CC
(Local Processor, Cloud Processor, DSS (Local and Cloud), and Context modeling in DSS(Local and
Cloud) of the AADL model of CAMI. On the other hand, the NSTA model of the minimum architecture
configuration is comprised of only 18 STAs and is shown to be scalable with exhaustive analysis.

7. AAL Architecture Verification and Discussion

In this section, we verify if the minimum configuration architecture, and the most complex one,
the CAMI architecture introduced in Section 4, satisfy their requirements as described in the same
section, respectively. We apply exhaustive model checking for the first case and statistical model
checking in the second case.

7.1. Exhaustive Verification of the Minimum Configuration Using UPPAAL

The results of the exhaustive verification of the minimum configuration architecture using the
UPPAAL model checker are tabulated in Table 1. To check that our system meets its requirements,

Sensors 2019, 19, 5057 23 of 31

we employ a monitor STA that monitors the sensor values, the respective DSS output, and the
corresponding clock. The monitor automaton for R1Arch1 is shown in Figure 11. As described, we
start the monitoring clock s1 when the pulse sensor produces the data, marked by the transition to L2
triggered by the synchronization channel, and we stop the clock when a decision is produced by the
cloud DSS. Similar monitors have been employed for R2Arch1.

Table 1. UPPAAL analysis results for the minimum configuration architecture.

REquation Query Result

R1Arch1

(110 ≤ sd_w.data_val ≤ 300 and ADL = 1 and
M_pulse.FIS_out == 3 and op_DC == 1
and op_ f uzzy == 1 and op_RBR == 1)

→ M_pulse.pulse_not == 3 andM_pulse.s1 ≤ 20 Pass

E <> (110 ≤ sd_w.data_val ≤ 300 and and ADL = 1
M_pulse.FIS_out == 3 and op_DC == 1
and op_ f uzzy == 1 and op_RBR == 1) Pass

R2Arch1

(se_w. f all == 1 and op_DC == 1
and op_EU == 1 and op_RBR == 1)

→ M_ f all. f all_not == 7 andM_ f all.s1 ≤ 20 Pass

E <> (se_w. f all == 1 and op_DC == 1
and op_EU == 1 and op_RBR == 1) Pass

Figure 11. The monitor automaton for requirement R1Arch1.

We have used queries of the form A leads to B for our analysis and therefore a pre-check of
each corresponding “A”, being reachable is first carried out. Moreover, since our model is an STA
model where each component has associated failure probabilities and failure of a component does not
yield the intended results during exhaustive verification, we verify the properties considering all the
components are operational. R1Arch1 requires that if the pulse is high and the user is not exercising,
then an abnormal pulse alert is raised to the caregiver within 20 s. In R2Arch1, we verify that if the fall
sensor detects a fall event, then a fall alert is raised to the caregiver within 20 s. The aforementioned
requirements are safety requirements of the system and it is shown that these requirements are met
provided all the system components are operational. However, its equally important to mention that if
the real-time constraints are relaxed, for instance, if we check if these requirements are met within 10 s,
the model-checker obviously returns a fail for the corresponding query (shown in Table 2).

Table 2. UPPAAL analysis: A case where real-time constraints are not met.

REquation Query Result

R1Arch1

(110 ≤ sd_w.data_val ≤ 300 and ADL = 1 and
M_pulse.FIS_out == 3 and op_DC == 1
and op_ f uzzy == 1 and op_RBR == 1)

→ M_pulse.pulse_not == 3 andM_pulse.s1 ≤ 10 Fail

Sensors 2019, 19, 5057 24 of 31

7.2. Statistical Verification of the CAMI architecture Using UPPAAL SMC

In the case of CAMI architecture, which is the most complex instantiation of our proposed generic
architecture, exhaustive verification does not scale, and hence we chose to verify the CAMI system
requirements using UPPAAL SMC [7], the statistical extension of UPPAAL model checker to perform
probabilistic analysis. To verify the functional requirements, we employ monitor STA to monitor the
sensor values, the respective DSS output and the corresponding clock. For instance, an example of
monitor STA for R1CAMI is given in Figure 12. As shown, we start the monitoring clock s1 when the
fire sensor produces the data, marked by transition to L2 triggered by the synchronization channel and
we stop the clock when a decision is produced by local DSS or the cloud DSS. Similar monitors are
employed for R2CAMI, R3CAMI, R4CAMI, andR5CAMI.

Figure 12. The monitor automaton for requirement R1CAMI.

The verification results are tabulated in Table 3. The CAMI architecture model satisfies all the
requirements with probabilities close to 1 with a high confidence within four minutes until a result is
returned. As in the other case, since most queries contain terms of the form A imply B, we first check
the reachability of A. From the analysis, it follows that the probability of the cloud DSS to get activated
((R6CAMI) is [0.01, 0.04]. This is justified by the fact that it becomes active only when the local DSS has
failed and the failure probability of local DSS is between [0.01, 0.04] for a simulation over 1000 time
units, which is a safe value to assume for safety-critical systems.

Table 3. UPPAAL SMC analysis results of CAMI.

REquation Query Result Runs

R1CAMI

Pr[<= 1000]([]((M_ f ire. f ire_alarm == 1)
imply (se_nw. f ire == 1 and M_ f ire.s1 <= 20)))

Pr [0.99975,1]
confidence 0.998 3868

Pr[<= 1000](<> (M_ f ire. f ire_alarm == 1))
Pr [0.99975,1]

confidence 0.998 4901

R2CAMI

Pr[<= 1000]([]((M_ f all. f all_not == 7)
imply ((se_w. f all == 1 or sd_nw.data_val == 1)

and(M_ f all.s1 <= 20))))
Pr [0.99975,1]

confidence 0.998 3868

Pr[<= 1000](<> (M_ f ire. f ire_alarm == 1))
Pr [0.99975,1]

confidence 0.998 4901

R3CAMI

Pr[<= 1000]([](M_ f ire f all. f ire_not == 2 and
M_ f ire f all. f all_not == 2 imply

((se_w. f all == 1 or sd_nw.data_val == 1) and
se_nw. f ire == 1 and M_ f ire f all.s1 <= 20))

Pr [0.99975,1]
confidence 0.998 3868

Pr[<= 1000](<> (Pr[<= 100](<> (M_ f ire f all.
f all_not == 2 and M_ f ire f all. f ire_not == 2))

Pr [0.99975,1]
confidence 0.998 7905

R4CAMI

Pr[<= 1000]([]((M_pulse.pulse_not == 3)
imply (110 <= sd_w.data_val <= 300 and

M_pulse.FIS_out == 3 and ADL == 1 and
upro.disease_history == 3 and M_pulse.s1 <= 20))

Pr [0.99975,1]
confidence 0.998 3868

Pr[<= 1000](<> (M_pulse.pulse_not == 3))
Pr [0.99975,1]

confidence 0.998 3868

Sensors 2019, 19, 5057 25 of 31

Table 3. Cont.

REquation Query Result Runs

R5CAMI

Pr[<= 1000]([](M_consistency.stop imply
(RBR_om == iCBRCCm)))

Pr [0.99975,1]
confidence 0.998 3868

Pr[<= 1000](<> (M_consistency.stop))
Pr [0.99975,1]

confidence 0.998 5777

R6CAMI

Pr[<= 1000]([](INT_CC.DSSCC imply
PF_DSS == 1))

Pr [0.99975,1]
confidence 0.998 3868

Pr[<= 1000](<> (INT_CC.DSSCC))
Pr [0.01,0.04]

confidence 0.998 2885

7.3. Comparison of the Proposed Approach With the Model-Checker PRISM

In this section, we show a small-scale modeling of the CAMI architecture using the model checker,
PRISM [8] to compare the results that we have obtained with UPPAAL SMC. For details regarding
the transformation of AADL to PRISM, please refer our previous work [30]. To ensure scalability of
the analysis, we model only the scenarios of fire and fall where the rule-based reasoning takes the
action of forwarding the respective alerts to firefighter and caregivers, respectively (R1CAMI, R2CAMI

and R3CAMI).
In Listing 3, we show an excerpt of the RBR module modeled as a Probabilistic Timed Automaton

(PTA) in PRISM model checker. In line 3, we define the variable s representing the state of the system:
s = 0 (Idle), s = 1 (Op), s = 3 (TrF), s = 4 (PrF), and s = 5 (Fail_ep). In the following lines, we define
the event variables for transient failure (TF_RBR), permanent failure (PF_RBR), failure due to error
propagation (Fail_ep_RBR) and the reset event (reset_RBR). We also define a clock variable x to model
the RBR’s execution time (an invariant associated with state Op). In lines 13–22, we model the
functional and error behavior of the component as discussed in the previous sections. We show the
cases of a fire event and fall event generated separately, where subsequent alerts to firefighter and
caregiver informing of the respective events are sent. We also illustrate the case where fire and fall
events occur together, where both the events need to be sent to both caregiver and firefighter.

Listing 3: An excerpt of the PRISM model of an RBR
1 pta
2 module RBR
3 s : [0 . . 4] i n i t 0 ;
4 PF_RBR : [0 . . 1] i n i t 0 ;
5 TF_RBR : [0 . . 1] i n i t 0 ;
6 Fail_ep_RBR : [0 . . 1] i n i t 0 ;
7 reset_RBR : [0 . . 1] i n i t 0 ;
8 // s t a t e s 0 −Idle , 1−Op, 2−F a i l _ T r a n s i e n t , 3−Fail_Permanent , 4−Fai l_ep
9 x : c lock ;

10 i n v a r i a n t
11 (s=1 => x <=1)
12 endinvar iant
13 [1] s =0 & f i r e _ s =1 &f a l l _ s =0 & Fail_ep_RBR=0−> 0 . 9 9 8 : (s ’ = 1) & (x ’ = 0) +
14 0 . 0 0 1 : (s ’ = 2) &(x ’ = 0) +=.001(s ’ = 3) &(x ’ = 0) ;
15 s=2 −>TF_RBR ’ = 1 ; s=3 −> PF_RBR ’ = 1 ;
16 [2] s=1 & x=1 & f i r e _ s =1 &f a l l _ s =0 & Fail_ep_RBR=0 −> (s ’ = 0) & (f i r e _ a l e r t =1) & (x ’ = 0) ;
17 [3] s =0 & f i r e _ s =0 &f a l l _ s =1 & Fail_ep_RBR=0> 0 . 9 9 8 : (s ’ = 1) & (x ’ = 0) +
18 0 . 0 0 1 : (s ’ = 2) &(x ’ = 0) + 0 . 0 0 1 (s ’ = 3) &(x ’ = 0) ;
19 [4] s=1 & x=1 & f i r e _ s =0 &f a l l _ s =1 & Fail_ep_RBR=0 −> (s ’ = 0) & (f a l l _ a l e r t =1) & (x ’ = 0) ;
20 [5] s =0 & f i r e _ s =1 &f a l l _ s =1−> 0 . 9 9 8 : (s ’ = 1) & (x ’ = 0) +
21 0 . 0 0 1 : (s ’ = 2) &(x ’ = 0) +=.001(s ’ = 3) &(x ’ = 0) ;
22 [6] s=1 & x=1 & f i r e _ s =1 &f a l l _ s =1 & Fail_ep_RBR=0−> (s ’ = 0) & (f a l l _ a l e r t =2) & (f i r e _ a l e r t =2) (x ’ = 0) ;
23 endmodule

The analysis results are presented in Table 4. The CAMI requirements are formulated as Probabilistic
Computation Tree Logic (PCTL) queries. Moreover, since the PRISM model checker returns the result for
the initial state of the model by default, we employ filters to verify the properties over all states. R1CAMI

ensures that if a fall event is raised by fall sensor, then the fall alert is communicated to the caregiver

Sensors 2019, 19, 5057 26 of 31

within 20 time units, provided that none of the components has failed. Similarly, in R2CAMI, we show
the case of a fire event being communicated to a firefighter within 20 time units. In R3CAMI, we show
the case of fire and fall events simultaneously raised, where we need to communicate both events to
firefighter and caregiver within a real-time deadline of 20 time units.

Table 4. PRISM verification results.

REquation Query Result Time (s)

R1CAMI

f ilter(f orall, f all_s = 1& f ire_s = 0&PF_RBR = 0→ P ≥ 0.999
[F((f all_alert = 1)&(x ≤ 20)&(f all_ f ail = 0)&(DC_ f ail = 0)] satisfied 2001.7

R2CAMI

f ilter(f orall, f all_s = 0& f ire_s = 1&PF_RBR = 0→ P ≥ 0.999
[F((f ire_alert = 1)&(x ≤ 20)&(f ire_ f ail = 0)&(DC_ f ail = 0)] satisfied 2001.7

R3CAMI

f ilter(f orall, f all_s = 1& f ire_s = 1&PF_RBR = 0→ P ≥ 0.999
[F((f ire_ f all_alert = 2)&(x ≤ 20)&(f ire_ f ail = 0)&(f all_ f ail = 0)
&(DC_ f ail = 0)] satisfied 3500.13

We can start the comparison of UPPAAL, PRISM, and UPPAAL SMC verification with the
following known facts: (a) PRISM allows exhaustive model-checking of probabilistic systems (b) For
UPPAAL, although the results are exhaustive, the probabilistic view of the system is discarded and (c)
UPPAAL SMC allows us to analyze probabilistic systems, however the analysis is simulation-based,
that is, the guarantees are obtained by simulating the system for a finite number of runs and hence not
exhaustive or fully guaranteed. In our case, the major disadvantage we found with PRISM was that
it did not scale well and hence we had to limit the complexity of our CAMI architecture for analysis
purposes. Moreover, it lacks a graphical GUI, as compared to UPPAAL systems and do not provide
simulation-based analysis for PTA models, thereby limiting the diagnosis of the models.

8. Discussion

The approach presented in this paper paves the way for the development of formally assured
future intelligent AAL solutions that integrate multiple functionalities. Our approach can be applied
at earlier design stages to capture potential errors that can propagate across the development stages,
which may result in significant re-engineering costs. Our architecture description framework (AADL)
has a commercially available tool support, OSATE [31] for automated modeling, and provides some
preliminary architecture-level analysis. It also allows us to model the behavior of the architecture
components via a behavior annex and encode the probabilities of failure of various components, via the
error annex. However, AADL has its limitations of expressing complex behaviors of algorithms such
as CBR, which we have omitted in this work.

There are two analysis approaches presented in this paper: (1) involving exhaustive model
checking, with the UPPAAL tool (2) involving statistical model checking with UPPAAL SMC, and
(3) involving probabilistic model checking with PRISM. The analysis approaches are chosen based
on the system complexity. If the architecture model is scalable with exhaustive model checking,
then the latter can be applied. Although the exhaustive verification results obtained by UPPAAL
are accurate, one cannot take into account the probabilistic behavior of our systems. In comparison,
PRISM handles probabilistic systems and carries out an exhaustive analysis, however its scalability
is considerably reduced if compared to UPPAAL SMC. In the case of complex models that need to
be analyzed for stochastic behaviors, the user can opt for simulation-based approaches, although
it does not yield a 100% accuracy. The verification results shown in this paper are specific to our
architecture models, however one can use the approach to verify any set of requirements for various
architecture types created based on the generic architectural model defined in this work. In case of
exhaustive model-checking, the results are derived assuming that all components are operational
such that we devoid the system of its probabilistic failure behavior. For statistical model checking,
it is worth mentioning that the results are derived assuming high reliability of individual architecture

Sensors 2019, 19, 5057 27 of 31

components and considering specific values for the periods and execution times. Nevertheless, taking
into account the wide variety of available sensors and other components, we can easily adapt the
values to account for the requirements of any specific architecture.

In addition, the approach presented in this paper is generic and easily extensible. Our modeling
methodology based on AADL abstract components can be extended to suit particular run-time
representations of the system. The AADL semantics as networks of STA is also generic and can
be extended to accommodate other AADL properties that we have not accounted for in this work.
We expect that similar results can be reproduced if the approach followed in this paper is used in other
integrated AAL solutions.

9. Related Work

In recent years, there has been a lot of work in the area of AAL due to the need of supporting
an increased elderly population [32]. Moreover, many functionalities that need to be tackled by AAL
solutions are of a safety-critical nature, e.g., health emergencies like cardiac arrest, falls of the elderly,
and home emergencies like fires at home, etc. [33], therefore work on their modeling and analysis is
fully justified.

A study on existing AAL architectures shows that there are certain architecture types that address
the construction of integrative AAL applications, some of the common ones being: Multi-Agent
Systems (MAS) [34–36], and Cloud-based [37,38] and Internet-of-Things (IoT) centric solutions [39].

• Agent-based architectures: These are the most commonly used architectures for AAL
applications, based of their flexibility, autonomy, adaptability, better response, and service
continuity due to their distributed nature. Some examples of health-care frameworks that
rely on a distributed agent architecture are described in the literature [34,40]. However,
the agent-based architectures have some drawbacks: (i) restricted communication protocols for
agent communication and the delay overhead in taking a collective decision; and (ii) maintaining
the consistency.

• Cloud-based AAL solutions: This category includes AAL solutions that leverage the potential
of cloud computing for context modeling, intelligent decision making, and data-storage usage.
Our architecture follows the design paradigms of Cloud-based AAL solutions, where the cloud
is utilized for intelligent, context-aware decision making, also as a data store, and it is also
augmented with local processing schemes to guarantee real-time properties. In many situations,
cloud services cannot guarantee hard-real time properties, the cloud being a backup that gets
activated only when the primary one has failed.

The formal assurance of AAL systems has been the focus of some related research in the recent
years. Parente et al. provide a list of various formal methods that can be used for AAL systems [41].
In another interesting work, Rodrigues et al. [4] performed a dependability analysis of AAL
architectures using UML and PRISM. Other interesting research work uses temporal reasoning [3,42]
and Markov Decision Processes to formally verify the reliability of AAL systems [43]. Although these
approaches target the formal analysis of AAL systems, most of the above work addresses only simple
scenarios, and are not used to analyze complex behaviors resulting from integrating critical AAL
functions (e.g., fire and fall), as well as their decision making. In addition, these approaches do not
aim to develop an overall framework for the verification of AAL systems, starting from an integrated
architectural design followed by a verification strategy, as proposed in this paper.

The use of Architecture Description Languages (ADL) to specify AAL designs has not been
exercised previously, yet such languages are commonly employed in the design of automotive or
automation systems. There have also been approaches to formally verify AADL designs in other
domains. The transformation approach from AADL to TA or variants has been already addressed
by related work [44–46]. Although these approaches rely on automated verification techniques, there
is a lack of focus on abstract components/patterns with stochastic properties. In addition, these

Sensors 2019, 19, 5057 28 of 31

approaches also suffer from state-space explosion, therefore they might not scale well to complex
AAL designs. Nevertheless, there is interesting research that deals with stochastic properties and
statistical model checking for the analysis of extended AADL models. One such example is in the work
of Bruintjes et al. [47], where the authors have used the SMC approach for timed reachability analysis
of extended AADL designs. Although our approach also focuses on linear systems, it is different
from the mentioned work in the fact that we focus on abstract components, and also introduce BA
modeling for capturing the functional behavior of our modules, specifically for modeling the behavior
of intelligent DSS. In their work, Bruintjes et al. used the SLIM Language, which is strongly based
on AADL and is specific to avionics and the automotive industry, including the error behavior and
modes. However, we use the AADL core language with its standardized annex sets (EA and BA)
for the architecture specification, which enables us to represent the functional and error behaviors,
together with architecture model. The abstract component-based modeling also brings extensiblity
and reusability to our approach. Moreover, the authors only consider the event occurrences or
delay variations using uniform or exponential distributions, whereas by employing our user-defined
properties, we can also specify other distributions. Furthermore, the approach of Bruintjes et al. only
deals with evaluation of time-bounded queries, whereas we also evaluate properties like reliability,
data consistency, etc., along with timeliness. Another interesting work [48], possibly carried out in
parallel with our work, employed statistical model checking using UPPAAL SMC to evaluate the
performance of nonlinear hybrid models with uncertainty, modeled in extended AADL. Although
the approach is not specific to the AAL domain, it is promising with respect to specifying complex
cyber physical systems considering the uncertainties of the physical environment. Unlike our model,
the authors used Priced Timed Automata (PTA) models. In comparison, our approach considers only
linear models that evolve continuously (yet the analysis is carried out in discrete time due to sampling
of continuous data). In brief, the two approaches resemble each other, yet our approach is contained in
the core language of AADL (as different from the mentioned work where the authors resort to other
annexes integrated in OSATE), is tailored to systems that contain AI components, and assumes the
random failure of various components, which is not considered in the related work.

10. Conclusions and Future Work

In this paper, we have proposed a generic AAL architecture and its intelligent Decision Support
System that can tackle a multitude of functionalities by analyzing the interdependencies between
simultaneously occurring events. We have also presented three specific instantiantions of the generic
model, following an increasing order of complexity. In addition, we have also presented a framework
for modeling and verification of our specific integrated AAL system architectures. To provide formal
analysis for the AAL systems, we have semantically encoded the AADL model as networks of stochastic
timed automata.

We show that the resulting formal models are analyzable exhaustively with UPPAAL/PRISM
or statistically with UPPAAL SMC (chosen based on system complexity), to ensure that the required
functional behavior is met. Our contribution is generic and paves the way for the development of
formally-assured intelligent AAL system architectures.

The framework is intended to augment existing AAL solutions with formal analysis support
and provide analysis prior to implementation. Such an analysis is crucial in domains such as
AAL, which are real-time, safety-critical ones, and require high levels of dependability. Due to
the heterogeneity of components available in the AAL domain, the component failure probabilities,
periods and execution times are not chosen with respect to to any specific components, nevertheless
the results presented in the paper are promising because the abstract components that have been
proposed can be refined further.

In the future, we plan to enhance our DSS model with more rules for RBR and full functionality
support of CBR and activity recognition, thereby providing an extensive analysis of AAL systems
behaviors in possible critical scenarios. Another interesting direction to proceed with is providing

Sensors 2019, 19, 5057 29 of 31

automated tool support for the semantic mapping. We are also currently investigating formal modeling
and analysis of distributed versions of the integrated architectures for AAL.

Author Contributions: A.K. was the main driver of the paper. The other two authors provided ideas
Writing—review and editing the modeling and verification of the AAL system, as well as feedback for the paper.

Funding: This research was funded by joint EU/Vinnova project grant CAMI, AAL-2014-1-087.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kunnappilly, A.; Seceleanu, C.; Lindén, M. Do We Need an Integrated Framework for Ambient Assisted
Living? In Proceedigns of the Ubiquitous Computing and Ambient Intelligence: 10th International
Conference, UCAmI 2016, San Bartolomé de Tirajana, Gran Canaria, Spain, 29 November–2 December
2016; Springer: Cham, Switzerland 2016; Part II 10, pp. 52–63.

2. Kunnappilly, A.; Sorici, A.; Awada, I.A.; Mocanu, I.; Seceleanu, C.; Florea, A.M. A Novel Integrated
Architecture for Ambient Assisted Living Systems. In Proceedigns of the 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), Turin, Italy, 4–8 July 2017; Volume 1, pp. 465–472.

3. Augusto, J.C.; Nugent, C.D. The use of temporal reasoning and management of complex events in smart
homes. In Proceedings of the 16th European Conference on Artificial Intelligence, Valencia, Spain, 22–27
August 2004; IOS Press: Amsterdam, The Netherlands, 2004; pp. 778–782.

4. Rodrigues, G.N.; Alves, V.; Silveira, R.; Laranjeira, L.A. Dependability analysis in the ambient assisted living
domain: An exploratory case study. J. Syst. Softw. 2012, 85, 112–131. [CrossRef]

5. Kunnappilly, A.; Marinescu, R.; Seceleanu, C. Assuring intelligent ambient assisted living solutions by
statistical model checking. In International Symposium on Leveraging Applications of Formal Methods; Springer:
Cham, Switzerland, 2018; pp. 457–476.

6. Bengtsson, J.; Larsen, K.; Larsson, F.; Pettersson, P.; Yi, W. UPPAAL—A tool suite for automatic verification
of real-time systems. In International Hybrid Systems Workshop; Springer: Berlin/Heidelberg, Germany, 1995;
pp. 232–243.

7. David, A.; Larsen, K.G.; Legay, A.; Mikučionis, M.; Poulsen, D.B. Uppaal SMC tutorial. Int. J. Softw. Tools
Technol. Transf. 2015, 17, 397–415. [CrossRef]

8. Kwiatkowska, M.; Norman, G.; Parker, D. PRISM: Probabilistic symbolic model checker. In International
Conference on Modelling Techniques and Tools for Computer Performance Evaluation, Springer: Berlin/Heidelberg,
Germany, 2002; pp. 200–204.

9. Feiler, P.H.; Lewis, B.; Vestal, S.; Colbert, E. An overview of the SAE architecture analysis & design
language (AADL) standard: A basis for model-based architecture-driven embedded systems engineering.
In Architecture Description Languages; Springer: Boston, MA, USA, 2005; pp. 3–15.

10. Frana, R.; Bodeveix, J.P.; Filali, M.; Rolland, J.F. The AADL behaviour annex–experiments and roadmap.
In Proceedings of the 12th IEEE International Conference on Engineering Complex Computer Systems,
Auckland, New Zealand, 11–14 July, 2007; pp. 377–382.

11. Delange, J.; Feiler, P. Architecture fault modeling with the AADL error-model annex. In Proceedings of the
2014 40th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA), Verona,
Italy, 27–29 August 2014; pp. 361–368.

12. Feiler, P.H.; Gluch, D.P. Model-Based Engineering with AADL: An Introduction to the SAE Architecture Analysis
& Design Language; Addison-Wesley: Boston, MA, USA, 2012.

13. Larsen, K.G.; Pettersson, P.; Yi, W. UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1997, 1, 134–152.
[CrossRef]

14. Alur, R.; Courcoubetis, C.; Dill, D. Model-checking in dense real-time. Inf. Comput. 1993, 104, 2–34.
[CrossRef]

15. Alur, R.; Courcoubetis, C.; Dill, D. Model-checking for real-time systems. In Proceedings of the 1990 Fifth
Annual IEEE Symposium on Logic in Computer Science, Philadelphia, PA, USA, 4–7 June 1990; pp. 414–425.

16. Bulychev, P.E.; David, A.; Larsen, K.G.; Legay, A.; Li, G.; Poulsen, D.B. Rewrite-Based Statistical Model
Checking of WMTL. RV 2012, 7687, 260–275.

http://dx.doi.org/10.1016/j.jss.2011.07.037
http://dx.doi.org/10.1007/s10009-014-0361-y
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1006/inco.1993.1024

Sensors 2019, 19, 5057 30 of 31

17. The Architecture Analysis & Design Language (AADL): An Introduction. Available online: https://people.
cs.clemson.edu/~johnmc/courses/cpsc875/resources/06tn011.pdf (accessed on 19 November 2019).

18. Zhou, F.; Jiao, J.R.; Chen, S.; Zhang, D. A case-driven ambient intelligence system for elderly in-home
assistance applications. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2011, 41, 179–189. [CrossRef]

19. Medjahed, H.; Istrate, D.; Boudy, J.; Dorizzi, B. Human activities of daily living recognition using fuzzy logic
for elderly home monitoring. In Proceedings of the 2009 IEEE International Conference on Fuzzy Systems,
Jeju Island, Korea, 20–24 August 2009; pp. 2001–2006.

20. UA651 BP Sensor. Available online: http://www.andmedical.com.au/products-service/value-ua-651
(accessed on 16 March 2019).

21. Fibaro motion sensor. Available online: https://manuals.fibaro.com/content/manuals/en/FGMS-001/
FGMS-001-EN-T-v2.0.pdf (accessed on 16 March 2019).

22. Fitbit. Available online: https://www.fitbit.com/se/home (accessed on 16 March 2019).
23. Vibby Fall Detection Sensors. Available online: http://www.vitalbase.co.uk (accessed on 16 March 2019).
24. CAMI Gateway. Available online: https://eclexys.com/wp-content/uploads/2019/01/Exys9200-SNG-

Brochure.pdf (accessed on 16 March 2019).
25. OpenTele. Available online: https://www.opentelehealth.com (accessed on 15 January 2018).
26. Linkwatch. Available online: https://www.linkwatch.se (accessed on 15 January 2018).
27. TIAGo Robotic Platform. Available online: http://tiago.pal-robotics.com (accessed on 16 March 2019).
28. Pepper Robot. Available online: https://www.softbankrobotics.com/emea/en/pepper (accessed on 16

March 2019).
29. Rabbit MQ Message Broker. Available online: https://www.rabbitmq.com (accessed on 16 March 2019).
30. Kunnappilly, A.; Cai, S.; Marinescu, R.; Seceleanu, C. Architecture Modelling and Formal Analysis of

Intelligent Multi-Agent Systems. In Proceedings of the 14th International Conference on Evaluation of Novel
Approaches to Software Engineering, Heraklion, Crete, Greece, 4–5 May 2019.

31. OSATE—Open Source AADL Test Environment. Available online: http://osate.github.io/ (accessed on 15
May 2018).

32. Li, R.; Lu, B.; McDonald-Maier, K.D. Cognitive assisted living ambient system: A survey. Digit. Commun.
Netw. 2015, 1, 229–252. [CrossRef]

33. Rashidi, P.; Mihailidis, A. A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health
Inform. 2013, 17, 579–590. [CrossRef] [PubMed]

34. De Paz, J.; Rodríguez, S.; Bajo, J.; Corchado, J.; Corchado, E. OVACARE: A multi-agent system for
assistance and health care. In Knowledge-Based and Intelligent Information and Engineering Systems; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 318–327.

35. Isern, D.; Sánchez, D.; Moreno, A. Agents applied in health care: A review. Int. J. Med Inform. 2010,
79, 145–166. [CrossRef] [PubMed]

36. Nealon, J.; Moreno, A. Agent-based applications in health care. In Applications of Software Agent Technology in
the Health Care Domain; Birkhäuser: Basel, Switzerland, 2003; pp. 3–18.

37. Ahmed, M.U.; Björkman, M.; Lindén, M. A generic system-level framework for self-serve health monitoring
system through internet of things (iot). Stud. Health Technol. Inform. 2015, 211, 305–307. [PubMed]

38. Forkan, A.; Khalil, I.; Tari, Z. CoCaMAAL: A cloud-oriented context-aware middleware in ambient assisted
living. Future Gener. Comput. Syst. 2014, 35, 114–127. [CrossRef]

39. Dohr, A.; Modre-Osprian, R.; Drobics, M.; Hayn, D.; Schreier, G. The Internet of Things for Ambient Assisted
Living. ITNG 2010, 10, 804–809.

40. Tapia, D.I.; Rodrıguez, S.; Corchado, J.M. A distributed ambient intelligence based multi-agent system for
Alzheimer health care. In Pervasive Computing; Springer, London, UK, 2009; pp. 181–199.

41. Parente, G.; Nugent, C.D.; Hong, X.; Donnelly, M.P.; Chen, L.; Vicario, E. Formal modeling techniques for
ambient assisted living. Ageing Int. 2011, 36, 192–216. [CrossRef]

42. Magherini, T.; Fantechi, A.; Nugent, C.D.; Vicario, E. Using temporal logic and model checking in automated
recognition of human activities for ambient-assisted living. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 509–521.
[CrossRef]

43. Liu, Y.; Gui, L.; Liu, Y. MDP-based reliability analysis of an ambient assisted living system. In International
Symposium on Formal Methods; Springer: Cham, Switzerland, 2014; pp. 688–702.

https://people.cs.clemson.edu/~johnmc/courses/cpsc875/resources/06tn011.pdf
https://people.cs.clemson.edu/~johnmc/courses/cpsc875/resources/06tn011.pdf
http://dx.doi.org/10.1109/TSMCC.2010.2052456
http://www.andmedical.com.au/products-service/value-ua-651
https://manuals.fibaro.com/content/manuals/en/FGMS-001/FGMS-001-EN-T-v2.0.pdf
https://manuals.fibaro.com/content/manuals/en/FGMS-001/FGMS-001-EN-T-v2.0.pdf
https://www.fitbit.com/se/home
http://www.vitalbase.co.uk
https://eclexys.com/wp-content/uploads/2019/01/Exys9200-SNG-Brochure.pdf
https://eclexys.com/wp-content/uploads/2019/01/Exys9200-SNG-Brochure.pdf
https://www.opentelehealth.com
https://www.linkwatch.se
http://tiago.pal-robotics.com
https://www.softbankrobotics.com/emea/en/pepper
https://www.rabbitmq.com
http://osate.github.io/
http://dx.doi.org/10.1016/j.dcan.2015.10.003
http://dx.doi.org/10.1109/JBHI.2012.2234129
http://www.ncbi.nlm.nih.gov/pubmed/24592460
http://dx.doi.org/10.1016/j.ijmedinf.2010.01.003
http://www.ncbi.nlm.nih.gov/pubmed/20129820
http://www.ncbi.nlm.nih.gov/pubmed/25980888
http://dx.doi.org/10.1016/j.future.2013.07.009
http://dx.doi.org/10.1007/s12126-010-9086-8
http://dx.doi.org/10.1109/TSMC.2013.2283661

Sensors 2019, 19, 5057 31 of 31

44. Besnard, L.; Gautier, T.; Le Guernic, P.; Guy, C.; Talpin, J.P.; Larson, B.; Borde, E. Formal semantics of behavior
specifications in the architecture analysis and design language standard. In Cyber-Physical System Design
from an Architecture Analysis Viewpoint; Springer: Cham, Switzerland, 2017; pp. 53–79.

45. Hamdane, M.E.; Chaoui, A.; Strecker, M. From AADL to timed automaton-A verification approach. Int. J.
Softw. Eng. Appl. 2013, 7.

46. Johnsen, A.; Lundqvist, K.; Pettersson, P.; Jaradat, O. Automated verification of AADL-specifications using
UPPAAL. In Proceedings of the 2012 IEEE 14th International Symposium on High-Assurance Systems
Engineering (HASE), Omaha, NE, USA, 25–27 October 2012; pp. 130–138.

47. Bruintjes, H.; Katoen, J.P.; Lesens, D. A statistical approach for timed reachability in AADL models.
In Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Rio de Janeiro, Brazil, 22–25 June 2015; pp. 81–88.

48. Bao, Y.; Chen, M.; Zhu, Q.; Wei, T.; Mallet, F.; Zhou, T. Quantitative performance evaluation of
uncertainty-aware hybrid AADL designs using statistical model checking. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 2017, 36, 1989–2002. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCAD.2017.2681076
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	The Architecture Analysis and Design Language
	Formal Notations and Tools
	Timed Automata and Stochastic Timed Automata
	UPPAAL and UPPAAL SMC

	A Framework for Formal Analysis of AAL Systems: Proposed Methodology
	A Generic AAL System Architecture
	Use Case Scenarios and System Requirements
	Requirements of the Minimal Architecture Model (Category 1):
	Requirements of the CAMI Architecture (Category 3):

	System Modeling in AADL
	AAL Atomic Components
	AAL Composite Components:

	 Semantics of AAL-Relevant AADL Components
	Definition of AADL Components for AAL
	Formal Encoding of AADL Components as NSTA
	Formal Encoding of AC
	Formal Encoding of CC

	AAL Architecture Verification and Discussion
	Exhaustive Verification of the Minimum Configuration Using UPPAAL
	Statistical Verification of the CAMI architecture Using UPPAAL SMC
	Comparison of the Proposed Approach With the Model-Checker PRISM

	Discussion
	Related Work
	Conclusions and Future Work
	References

