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Abstract
Container-based virtualization has gained a significant importance in a deployment of software
applications in cloud-based environments. The technology fully relies on operating system features
and does not require a virtualization layer (hypervisor) that introduces a performance degradation.
Container-based virtualization allows to co-locate multiple isolated containers on a single computation
node as well as to decompose an application into multiple containers distributed among several hosts
(e.g., in fog computing layer). Such a technology seems very promising in other domains as well, e.g.,
in industrial automation, automotive, and aviation industry where mixed criticality containerized
applications from various vendors can be co-located on shared resources.

However, such industrial domains often require real-time behavior (i.e, a capability to meet
predefined deadlines). These capabilities are not fully supported by the container-based virtualization
yet. In this work, we provide a systematic literature survey study that summarizes the effort of the
research community on bringing real-time properties in container-based virtualization. We categorize
existing work into main research areas and identify possible immature points of the technology.
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1 Introduction

Fog Computing as well as cloud computing relies extensively on resource virtualization. In this
area, the container-based virtualization is gaining its importance as a lightweight alternative
of hypervisor-based virtualization. The container technology allows to execute applications
and their software dependencies in a virtual environment independently on the software
ecosystem of their hosts. A host can accommodate multiple containers at a time, providing
means for container isolation and resource control for the containers. Container-based
virtualization (sometimes referred as an OS level virtualization) does not require a hypervisor
and therefore it provides near-native performance [13, 25], rapid deployment times and a low
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overhead while still retaining a certain level of resource isolation and resource control. The
containers are a de-facto standard for development of large scale web applications adopted
by a number of companies [7].

The benefits of the container-based virtualization are aligned with the strive of the
companies in other areas such as in industrial and robot control, automotive and aviation.
In these industrial domains, there are strong requirements to (i) consolidate computational
resources (Electronic Control Units, physical controllers) and (ii) provide a flexible environ-
ment for running (real-time) applications. Additionally, container-based virtualization can
enable interruption-free hardware and software maintenance, dynamic system redundancy
change and system redundancy healing [16]. However, in such fields stringent real-time
requirements are often needed. This means that the applications inside of a container should
meet predefined deadlines independently on other co-located containers.

In this survey, we summarize the research carried out in the area of real-time containers
since the introduction of containers in Linux (i.e. 2008 [1]).

The main contributions of this paper include:
Systematic literature survey of the real-time containers.
Overview of the approaches and technology enabling real-time behavior of containers.
Identification of pitfalls, challenges and future research directions for real-time containers.

2 The Review Process

The systematic literature survey is carried out with the guidance in [17]. The research
questions are defined together with search queries and sources of the studies and, subsequently,
we extract the data and answer to the questions. We apply the snowballing [28] method
to identify relevant papers outside the search query. Databases used: Scopus and IEEE.
Only full peer review papers published between 2008-2019 are considered. We search the
databases using the following search queries:

(Real-time OR RT) AND (Containers OR Container)

The search string extracts 1855 articles in Scopus and 609 articles in IEEE. Out of that,
we identify 38 and 23 potentially relevant articles by the title. As the number of articles
is low, we fully screen each potentially relevant paper (abstract and full text) to make the
decision for inclusion/exclusion into this survey. In total, we include 14 papers as seen in
Table 1.

2.1 Question Formalization
In this work, we elaborate the following questions:

RQ1: Why and in which context have real-time containers been used? Answering this
question will give an overview of the motivation behind the use of real-time containers,
expected benefits and areas where real-time containers are used.
RQ2: What approaches are used for enabling real-time behavior of containers? The
answer will give an overview of the approaches and technologies, their combinations and
their usages for the real-time container-based virtualization.
RQ3: What are the pitfalls and weak points of using real-time containers that prevent
full adoption of such technology in industry? The answer for this question will give a list
of research challenges and problems for real-time container computing.
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3 Container-based Virtualization

From the runtime perspective, a container is a set of resource-limited processes that are
isolated from the rest of the system and from other containers. This is achieved by utilizing
two Linux kernel features: (i) Namespaces and (ii) Control groups (cgroups). Namespaces
virtualize global resources (e.g., processes, network, inter-process communication) in the way
that a group of processes can see and use one set of resources while another group can use
different set of resources. Cgroups provide a mechanism for aggregating and partitioning sets
of tasks, and all their future children, into hierarchical groups with specialized behaviour [2].
It allows to organize processes hierarchically and distribute system resources along the
hierarchy.

3.1 Container Platforms
There are several container solutions, all of them rely on cgroups and namespaces. Thus,
all the platforms pose similar options and performance [23]. The philosophy of using the
two most commonly used container platforms LXC and Docker differs. Docker containers
are microservice-based (each container should contain a single application), whereas LXC,
similarly to Virtual Machines, allows to run a complex ecosystem of applications which is
beneficial for emulation of legacy systems.

3.2 Real-Time Containers
The term real-time implies that the correctness of the system depends not only on the results
of the computation but also on the time at which the results are produced [8]. Real-time
systems can be categorized into three groups: hard, firm and soft real-time. Missing a
deadline in a hard real-time system may cause catastrophic consequences, whereas missing
deadline in a firm real-time system leads to the complete loss of the utility of the result.
Missing deadline in a soft real-time system just degrades the utility of the result.

A real-time container is a container that provides resource isolation, resource control
and additionally provides time deterministic and predictable behavior for the containerized
application.

3.3 Real-time Support of Linux
To ensure the time predictable behavior of the containers, the operating systems must provide
such capability. Default (Vanilla) Linux does not give any time guarantees on execution of
tasks and therefore the predictability is low [24]. However, there are several approaches to
improve the predictability: the real-time patch that improves preemptability of the Linux
kernel and co-kernel approaches that run a real-time micro kernel in parallel to the Linux
kernel. Containerized applications are scheduled in the same way as native applications
using the host’s scheduler, the Default Linux kernel provides three schedulers: (i) Completely
Fair Scheduler (CFS): Aims to maximize CPU utilization while also maximizing interactive
performance. It does not give any time guarantees. (ii) Real-Time scheduler (RT): The
scheduler allows to schedule tasks in the fixed priority manner using First In First Out or
Round Robin policies. The tasks run till they yield or are preempted by higher priority
tasks. The Real-Time group scheduling [3] extension allows to divide and allocate CPU
time between real-time and non real-time tasks. (iii) Earliest Deadline First Scheduler
(EDF) Uses Constant Bandwidth Server [6] and allows to associate to each task a budget
and a period.
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4 Survey Results

In this section, we summarise relevant papers. There are four main directions for enabling real-
time behavior of containers: (i) real-time patch based, (ii) co-kernel based, (iii) hierarchical
scheduling based and (iv) custom approach. A short summary is provided in Table: 1.

4.1 Methods Based on PREEMPT_RT Patch

The real-time patch (PREEMPT_RT) improves the kernel’s locking primitives to maximize
preemptible sections. The advantage of the patch is that there is no need for special libraries
or API needed by the application developers.

Moga et al. [22] considers real-time containers in the context of industrial automation
systems that works with real-time data and have real-time deadlines on detection and
response to events. The paper emphasises the need for OS-level virtualization in an industrial
automation and gives examples of timing requirements of industrial applications (e.g. motor
drive typically requires cycle time between 1ms to 250µs) and a need for synchronization
between the containers. The evaluation of the effects of containers on performance of
industrial automation systems is provided in two cases: (i) Cyclic behavior of a containerized
application, (ii) Virtual networking performance for communications between containers.
Cyclic behavior test evaluates the ability to execute application logic at pre-defined intervals,
measures accuracy and jitter. Virtual networking test evaluates the ability to communicate
between co-located containers in a time-bounded manner. The researches see the real-time
container computing as a promising technology, however communication mechanisms between
containers are not clear.

The work in [16] (and previously [15]) addresses a container based architecture for real-
time controllers that allow a flexible function deployment and a support of legacy control
applications. Such architecture is needed to preserve a functionality of legacy control programs
and to reduce maintenance cost of legacy systems (in which the software is often bounded to
a specific hardware and software ecosystem). The researchers investigate the feasibility of
building a real-time capable system (for legacy systems) based on real-time containers, they
target PLCs and automation controllers with the cycle time between 100ms to 1s. They
perform a set of tests under various load scenarios (i) using containerized applications inside
of Docker and (ii) running complete operating system (PowerPC) inside LXC. They conclude
that a containerized execution of control applications can meet requirements of PLCs and
automation controllers.

From the latency point of view, Masek et al. [21] performed a literature review on
sandboxed real-time software on the example of self-driving vehicles. The researchers were
interested in the question: How does the execution environment influence the scheduling
precision and input/output performance of a given application? The result shows that docker
does not impose additional overhead (similarly to [19]) for scheduling and input/output
performance. However, selecting the correct kernel has a greater impact on the scheduling
precision and input/output performance of containers.

Mao et al. [20] uses real-time containers to enable software-based RAN (Radio Access
Network) in order to avoid high capital and operating expenditures during deployment of
new standards. However, the software based RAN has strict deadlines to satisfy (1ms). The
researchers use real-time patch to decrease the latency, interestingly they improve the latency
13.9 times by applying the patch in comparison to the vanilla Kernel.
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Table 1 Summary of studies elaborating on real-time containers.

Study Main focus Approach & Technology Communication aspects
Cinque et al. [9, 10] Architecture defini-

tion
Faulty tasks monitor-
ing
Implementation de-
tails

RTAI
Docker
Fixed priority
scheduling

–

Cucinotta et al. [5, 11, 12] Temporal Inter-
ference between con-
tainers

Hierarchical Schedul-
ing

–

Tasci et al. [26] Architecture defini-
tion
Real-time communic-
ation between con-
tainers

Combination of
Real-Time patch and
Xenomai
Docker

Design of messaging
system based on
ZeroMQ.

Moga et al. [22] Feasability study
Communication
between containers
Communication over-
heads

Docker
Real-Time patch

Network performance
and overhead measure-
ments between contain-
ers using default Docker
Linux NAT Bridge.

Hofer et al. [18] Experimental com-
parison between
Real-Time patch,
Xenomai,
Vanilla Linux

Real-Time patch
Xenomai
Vanilla Linux

–

Goldschmidt et al. [15, 16] Architecture defini-
tion
Feasibility study

Real-Time patch
Legacy systems emu-
lation in real-time
containers

–

Telschig et al. [27] Model-based architec-
ture and analysis
Dependable real-time
container computing.

LXC –

Mao et al. [20] Minimizing latencies
in software-based Ra-
dio Access Networks

Docker
Real-Time patch

Application of fast packet
processing
using Intel Data Plane
Development Kit.

Masek et al. [21] Systematic evalu-
ation of sandboxed
software

Real-Time patch –

Wu et al. [29] Dynamic CPU
allocation for mixed-
criticality real-time
systems

Custom scheduling
mechanism
Docker

–
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4.2 Methods based on Real-time Co-Kernel
In this approach, a real-time micro-kernel runs in parallel to Linux kernel. The real-time
co-kernel handles time critical activities (e.g., handling interrupts and scheduling real-time
threads), standard Linux kernel runs only when the co-kernel is idle. In comparison to
the real-time patch, the co-kernel approach offers lower latencies and lower jitter. On the
other hand, it requires special APIs, tools and libraries for the application development.
Additionally, there are impediments with scaling co-kernel solutions on large platforms
(e.g., many cores platforms). There are two co-kernel alternatives: Real Time Application
Interface (RTAI) and Xenomai.

RTAI aims to minimize latencies to the lowest technically possible values. Real-time tasks
are compiled as kernel modules and ran in the kernel space. Xenomai [14] is a fork of RTAI.
Its mission is to enable real-time tasks in the user space. It consists of an emulation layer
that is capable of reusing code from other RTOSes.

Tasci et al. [26] elaborates on modularization of real-time control applications into real-
time containers. Such modular architecture needs two essential parts: (i) Computational
part, enabled by a real-time operating system (combination of Xenomai and real-time patch),
and (ii) Messaging part that allows passing messages between containers in a real-time
manner. Traditional monolithic architectures communicate through function calls and shared
memory, the containers do not make the assumption if they are running on the same host or
in a distributed environment (they communicate through standard OS networking stack),
therefore direct passing messages through shared memory is not directly supported. Hence,
the researchers provide a design and implementation of a custom made real-time messaging
system for containers based on ZeroMQ [4].

Hofer et al. [18] use the real-time containers in the context of control applications. The
paper presents comparison between type 1 hypervisor, Vanilla Linux, Xenomai co-kernel and
Linux with real-time patch for various idle and stress scenarios.

4.3 Method Based on Hierarchical Scheduling Of Containers
Inspired by a similar concept in the hypervisor-based virtualization where a global scheduler
assigns CPU time for the virtual machines, the second layer scheduler schedules the individual
tasks of the VM.

Cucinotta, Abeni et al. [5, 11, 12] proposed the use of real-time containers on the field
of Network Function Virtualization (NFV), where the functionality of traditional physical
network devices (e.g., firewalls) is transformed into software components (in containers)
that are consolidated in a single computing device. NFV has critical latency requirements
inducted by the need of time critical per-packet processing. The researchers modified the
Linux scheduling mechanism to provide two levels hierarchical scheduling. First level Earliest
Deadline First scheduler selects the container to be scheduled on each CPU. Subsequently
the second level Fixed Priority scheduler selects a task in the container. CPU reservation
(runtime quota and period) is assigned to each of the containers.

4.4 Custom Methods
Wu et al. [29] proposed the Flexible Deferrable Scheduler for containerized mixed-criticality
real-time systems that consist of real-time and non real-time containers. The scheduler
guarantees the allocated CPU capacity to real-time containers and dynamically distributes
the unused capacity to non real-time containers. The work supplements Completely Fair
Scheduler with a Workload Adjustment Module that collects CPU utilization by containers
and Dynamic Adjustment Module that allocates CPU to the container.



V. Struhár, M. Behnam, M. Ashjaei, and A. V. Papadopoulos 7:7

Cinque et al. [10] (previously [9]) implemented real-time containers using Linux patched
with real-time co-kernel (RTAI) and utilizing custom made monitoring and policy enforcing
modules. Their solution allows to co-habit containers with different criticality levels and
to prevent fixed-priority hard real-time periodic tasks inside of the containers to affect
the temporal guarantees of other containers. The temporal guarantees are provided by
two mechanisms: (i) proper tasks priority assignments to tasks inside the containers and
(ii) monitoring and enforcing temporal protection policies. The former ensures that tasks
inside of the high-criticality containers are assigned higher priorities than tasks in the
lower-criticality containers and thus they are never preempted by tasks of lower criticality
containers. The latter monitors the tasks and, in case of overruns or overtimes, it enforces
one of the temporal protection policy (i.e., kill or suspend the faulty task, suspend the task
until the next period).

5 Challenges of Real-time Container-based Virtualization

In the reviewed papers, we identified shortcomings and immature aspects of real-time
container virtualization that prevents the expansion of the technology. Below, we listed them
categorized in three groups: (i) tools support, (ii) real-time communication support, and
(iii) miscellaneous.

Lack of tools for real-time container management. The reviewed papers emphasises a
need for supporting tools for real-time containers. Tools that enable deployment on containers
taking into account real-time requirements of containers and properties of computational
nodes.

The need for an orchestration tool that can schedule real-time containers based on
pre-configured capabilities [18].
Middleware that is aware of both communication needs as well as run-time and perform-
ance isolation needs [22].
Framework to expose the runtime requirements of real-time application running inside
containers and to enforce an optimal allocation of containers to resources [22].

Communication between real-time containers. Real-time communication between a con-
tainer and its environment has to be further researched. Currently, the reviewed papers
emphasize the following issues:

Need for a real-time communication among containers [22].
Further investigation on container security restricted container access and intra-container
communication [18].
A research on data management shared across containers [15].

Miscellaneous. In addition to generic issues that may harm the real-time behaviour (e.g.,
shared caches, memory and I/O), the studies reviewed highlight the following points and
questions:

Lack of safety, security analysis of real-time containers and vulnerability management for
the acceptance in industry [15,27].
Lack of latency and performance tests of recent releases of a patched Linux Kernel. As
well as a proper analysis of configuration of the Linux kernel parameters that may improve
overall task determinism. [18].

Fog- IoT 2020
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The measurements of memory overhead of the container solution and is it acceptable for
real world applications [15].
Processes in different containers may use the same resources in the same way because of
their independent views of the system (i.e., processes are not aware of a resource-limited
isolated environment co-located with other containers). This results in poor resource
utilization as well as a potential violation of the real-time execution assumptions [22].
Container approaches are a new technology. Will this create problems due to its possible
immaturity [15]?

6 Conclusion

Container-based virtualization has become popular as a lightweight alternative of hypervisor-
based virtualization. The technology has proven its viability in large cloud-based systems, it
has been adopted by a number of enterprise companies and it is supported by a large scale
of tools (e.g., container orchestration and monitoring tools).

However, in industrial domains where the real-time behavior is required, the container-
based virtualization seems not to be mature enough. In this paper, we summarize the
research carried out in the field of real-time containers. We show in what contexts, what
approaches and technologies are used, and what are the possible immaturity points of the
real-time container-based virtualization.
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