
DeepMaker: Customizing the
Architecture of Convolutional
Neural Networks for Resource-
Constrained Platforms

M
o

h
a

m
m

a
d

 Lo
n

i D
EEP

M
A

K
ER

: C
U

STO
M

IZIN
G

 TH
E A

R
C

H
ITEC

TU
R

E O
F C

O
N

V
O

LU
TIO

N
A

L N
EU

R
A

L N
ETW

O
R

K
S FO

R R
ESO

U
R

C
E-C

O
N

STR
A

IN
ED

 P
LA

TFO
R

M
S 2020

Mälardalen University Licentiate Thesis 299

ISBN 978-91-7485-490-9
ISSN 1651-9256

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

Convolutional Neural Networks (CNNs) suffer from energy-hungry
implementation due to requiring huge amounts of computations and
significant memory consumption. In this thesis, we focus on decreas-
ing the computational cost of CNNs to be appropriate for resource-
constrained platforms. The thesis work proposes two distinct methods
to tackle the challenges: optimizing CNN architecture and proposing
an optimized ternary quantization method. We evaluated the impact
of our solutions on different embedded platforms where the results
show considerable improvement in network accuracy and energy
efficiency.

-d 0 d

-d 0 d

3-point Q
uantization

Mohammad Loni

Sammanfattning

Convolutional Neural Networks (CNNs) lider av energihungriga implementa-
tioner på grund av att de kräver enorm beräkningskapacitet och har en bety-
dande minneskonsumtion. Detta problem kommer att framhävas mer när allt
fler CNN implementeras på resursbegränsade plattformar i inbyggda datorsys-
tem. I denna uppsats fokuserar vi på att minska resursåtgången för CNN, i ter-
mer av behövda beräkningar och behövt minne, för att vara lämplig för resurs-
begränsade plattformar. Vi föreslår två metoder för att hantera utmaningarna;
optimera CNN-arkitektur där man balanserar nätverksnoggrannhet och nätverk-
skomplexitet, och föreslår ett optimerat ternärt neuralt nätverk för att kom-
pensera noggrannhetsförluster som kan uppstå vid nätverkskvantiseringsme-
toder. Vi utvärderade effekterna av våra lösningar på kommersiellt använda
plattformar (COTS) där resultaten visar betydande förbättringar i nätverksnog-
grannhet och energieffektivitet.

i

Sammanfattning

Convolutional Neural Networks (CNNs) lider av energihungriga implementa-
tioner på grund av att de kräver enorm beräkningskapacitet och har en bety-
dande minneskonsumtion. Detta problem kommer att framhävas mer när allt
fler CNN implementeras på resursbegränsade plattformar i inbyggda datorsys-
tem. I denna uppsats fokuserar vi på att minska resursåtgången för CNN, i ter-
mer av behövda beräkningar och behövt minne, för att vara lämplig för resurs-
begränsade plattformar. Vi föreslår två metoder för att hantera utmaningarna;
optimera CNN-arkitektur där man balanserar nätverksnoggrannhet och nätverk-
skomplexitet, och föreslår ett optimerat ternärt neuralt nätverk för att kom-
pensera noggrannhetsförluster som kan uppstå vid nätverkskvantiseringsme-
toder. Vi utvärderade effekterna av våra lösningar på kommersiellt använda
plattformar (COTS) där resultaten visar betydande förbättringar i nätverksnog-
grannhet och energieffektivitet.

i

Abstract
Convolutional Neural Networks (CNNs) suffer from energy-hungry implemen-
tation due to requiring huge amounts of computations and significant mem-
ory consumption. This problem will be more highlighted by the proliferation
of CNNs on resource-constrained platforms in, e.g., embedded systems. In
this thesis, we focus on decreasing the computational cost of CNNs in order
to be appropriate for resource-constrained platforms. The thesis work pro-
poses two distinct methods to tackle the challenges: optimizing CNN architec-
ture while considering network accuracy and network complexity, and propos-
ing an optimized ternary neural network to compensate the accuracy loss of
network quantization methods. We evaluated the impact of our solutions on
Commercial-Off-The-Shelf (COTS) platforms where the results show consid-
erable improvement in network accuracy and energy efficiency.

iii

Abstract
Convolutional Neural Networks (CNNs) suffer from energy-hungry implemen-
tation due to requiring huge amounts of computations and significant mem-
ory consumption. This problem will be more highlighted by the proliferation
of CNNs on resource-constrained platforms in, e.g., embedded systems. In
this thesis, we focus on decreasing the computational cost of CNNs in order
to be appropriate for resource-constrained platforms. The thesis work pro-
poses two distinct methods to tackle the challenges: optimizing CNN architec-
ture while considering network accuracy and network complexity, and propos-
ing an optimized ternary neural network to compensate the accuracy loss of
network quantization methods. We evaluated the impact of our solutions on
Commercial-Off-The-Shelf (COTS) platforms where the results show consid-
erable improvement in network accuracy and energy efficiency.

iii

It is not the strongest of the species that survives,
nor the most intelligent that survives.

It is the one that is the most adaptable to change.
Charles Darwin

It is not the strongest of the species that survives,
nor the most intelligent that survives.

It is the one that is the most adaptable to change.
Charles Darwin

Acknowledgments

This ongoing journey, as a pleasant part of my life, has been full of unique
and memorable moments, and many people had supporting roles to play in dif-
ferent stages of the journey. First, my sincere thanks go to the great team of
my supervisors. I would like to thank very much my main supervisor Prof.
Mikael Sjödin for his big encouragement. I am deeply grateful to Prof. Ma-
soud Daneshtalab for his very thoughtful technical guidance, caring, the ex-
cellence of patience, continuous energizing support and his acts of kindness as
my co-supervisor. Thanks to both of you for believing in me and giving me the
opportunity to progress.

I am very grateful to my colleagues, Dr. Arash Ghareh Baghi, Dr. Amin
Majd, and Dr. Carl Ahlberg for their supports, discussions and feedbacks as
co-authors in my published papers. Special thanks to my dear friends Dr.
HamidReza Faragardi, and Mr. Masoud Ebrahimi for their advice and big
motivation during my Ph.D. life.

Above all, I would like to express my deep gratitude to my parents, my
brothers, my close friends, and Fateme Poursalim for all their supportive pres-
ence, understanding, and being patient with me. Without their support, I would
not have reached here. My study at Mälardalen university has provided me
with the opportunity of meeting new friends and working with great people. I
would also like to thank all of them.

This research has been supported by Swedish Knowledge Foundation (KKS)
via the DeepMaker and DPAC projects and the Swedish Research Council
(VR) via the FAST-ARTS project.

Mohammad Loni, Västerås, December 2020

vii

Acknowledgments

This ongoing journey, as a pleasant part of my life, has been full of unique
and memorable moments, and many people had supporting roles to play in dif-
ferent stages of the journey. First, my sincere thanks go to the great team of
my supervisors. I would like to thank very much my main supervisor Prof.
Mikael Sjödin for his big encouragement. I am deeply grateful to Prof. Ma-
soud Daneshtalab for his very thoughtful technical guidance, caring, the ex-
cellence of patience, continuous energizing support and his acts of kindness as
my co-supervisor. Thanks to both of you for believing in me and giving me the
opportunity to progress.

I am very grateful to my colleagues, Dr. Arash Ghareh Baghi, Dr. Amin
Majd, and Dr. Carl Ahlberg for their supports, discussions and feedbacks as
co-authors in my published papers. Special thanks to my dear friends Dr.
HamidReza Faragardi, and Mr. Masoud Ebrahimi for their advice and big
motivation during my Ph.D. life.

Above all, I would like to express my deep gratitude to my parents, my
brothers, my close friends, and Fateme Poursalim for all their supportive pres-
ence, understanding, and being patient with me. Without their support, I would
not have reached here. My study at Mälardalen university has provided me
with the opportunity of meeting new friends and working with great people. I
would also like to thank all of them.

This research has been supported by Swedish Knowledge Foundation (KKS)
via the DeepMaker and DPAC projects and the Swedish Research Council
(VR) via the FAST-ARTS project.

Mohammad Loni, Västerås, December 2020

vii

List of publications

Papers included in the thesis1

Paper A Designing Compact Convolutional Neural Network for Embedded
Stereo Vision Systems, Mohammad Loni, Amin Majd, Abdolah Loni,
Masoud Daneshtalab, Mikael Sjödin, Elena Troubitsyna. In the Proceed-
ings of the 12th IEEE International International Symposium on Embed-
ded Multicore/Many-core Systems-on-Chip (MCSoC). Hanoi, Vietnam,
September 2018. Winner of the Best Paper Award.

Paper B NeuroPower: Designing Energy Efficient Convolutional Neural Net-
work Architecture for Embedded Systems, Mohammad Loni, Ali Zoljodi,
Sima Sinaei, Masoud Daneshtalab, and Mikael Sjödin. In the Proceed-
ings of the 28st International Conference on Artificial Neural Networks
(ICANN). Munich, Germany, September 2019.

Paper C DeepMaker: A multi-objective optimization framework for deep neu-
ral networks in embedded systems, Mohammad Loni, Sima Sinaei, Ali
Zoljodi, Masoud Daneshtalab, Mikael Sjödin. In the Microprocessors
and Microsystems Journal (MICPRO), 2020, Elsevier.

Paper D TOT-Net: An Endeavour Toward Optimizing Ternary Neural Net-
works, Najmeh Nazari, Mohammad Loni, Mostafa E. Salehi, Masoud
Daneshtalab, Mikael Sjödin. In the Proceedings of IEEE International
Conference on Digital System Design (DSD 2019). Chalkidiki, Greece,
August 2019.

1The included articles have been reformatted to comply with the thesis layout.

ix

List of publications

Papers included in the thesis1

Paper A Designing Compact Convolutional Neural Network for Embedded
Stereo Vision Systems, Mohammad Loni, Amin Majd, Abdolah Loni,
Masoud Daneshtalab, Mikael Sjödin, Elena Troubitsyna. In the Proceed-
ings of the 12th IEEE International International Symposium on Embed-
ded Multicore/Many-core Systems-on-Chip (MCSoC). Hanoi, Vietnam,
September 2018. Winner of the Best Paper Award.

Paper B NeuroPower: Designing Energy Efficient Convolutional Neural Net-
work Architecture for Embedded Systems, Mohammad Loni, Ali Zoljodi,
Sima Sinaei, Masoud Daneshtalab, and Mikael Sjödin. In the Proceed-
ings of the 28st International Conference on Artificial Neural Networks
(ICANN). Munich, Germany, September 2019.

Paper C DeepMaker: A multi-objective optimization framework for deep neu-
ral networks in embedded systems, Mohammad Loni, Sima Sinaei, Ali
Zoljodi, Masoud Daneshtalab, Mikael Sjödin. In the Microprocessors
and Microsystems Journal (MICPRO), 2020, Elsevier.

Paper D TOT-Net: An Endeavour Toward Optimizing Ternary Neural Net-
works, Najmeh Nazari, Mohammad Loni, Mostafa E. Salehi, Masoud
Daneshtalab, Mikael Sjödin. In the Proceedings of IEEE International
Conference on Digital System Design (DSD 2019). Chalkidiki, Greece,
August 2019.

1The included articles have been reformatted to comply with the thesis layout.

ix

x

Paper E DenseDisp: Resource-Aware Disparity Map Estimation by Compress-
ing Siamese Neural Architecture, Mohammad Loni, Ali Zoljodi, Daniel
Maier, Amin Majd, Masoud Daneshtalab, Mikael Sjödin, Ben Juurlink
and Reza Akbari. In the Proceedings of the IEEE World Congress on
Computational Intelligence (WCCI). Glasgow (UK), July 2020.

Additional papers, not included in the thesis

1. ADONN: Adaptive Design of Optimized Deep Neural Networks for Em-
bedded Systems, Mohammad Loni, Masoud Daneshtalab, Mikael Sjödin.
In the proceeding of IEEE Conference on Digital System Design (DSD).
Prague, Czech, August 2018.

2. SoFA: A Spark-oriented Fog Architecture, Neda Maleki , Mohammad
Loni, Masoud Daneshtalab, Mauro Conti , Hossein Fotouhi. In the IEEE
45th Annual Conference of the Industrial Electronics Society (IECON).
Lisbon, Portugal, October 2019.

3. Embedded Acceleration of Image Classification Applications for Stereo
Vision Systems, Mohammad Loni, Carl Ahlberg, Masoud Daneshtalab,
Mikael Ekström, Mikael Sjödin. In the proceeding of IEEE Design, Au-
tomation Test in Europe Conference Exhibition (DATE). Dresden, Ger-
many, March 2018.

x

Paper E DenseDisp: Resource-Aware Disparity Map Estimation by Compress-
ing Siamese Neural Architecture, Mohammad Loni, Ali Zoljodi, Daniel
Maier, Amin Majd, Masoud Daneshtalab, Mikael Sjödin, Ben Juurlink
and Reza Akbari. In the Proceedings of the IEEE World Congress on
Computational Intelligence (WCCI). Glasgow (UK), July 2020.

Additional papers, not included in the thesis

1. ADONN: Adaptive Design of Optimized Deep Neural Networks for Em-
bedded Systems, Mohammad Loni, Masoud Daneshtalab, Mikael Sjödin.
In the proceeding of IEEE Conference on Digital System Design (DSD).
Prague, Czech, August 2018.

2. SoFA: A Spark-oriented Fog Architecture, Neda Maleki , Mohammad
Loni, Masoud Daneshtalab, Mauro Conti , Hossein Fotouhi. In the IEEE
45th Annual Conference of the Industrial Electronics Society (IECON).
Lisbon, Portugal, October 2019.

3. Embedded Acceleration of Image Classification Applications for Stereo
Vision Systems, Mohammad Loni, Carl Ahlberg, Masoud Daneshtalab,
Mikael Ekström, Mikael Sjödin. In the proceeding of IEEE Design, Au-
tomation Test in Europe Conference Exhibition (DATE). Dresden, Ger-
many, March 2018.

Contents

I Thesis 1

1 Introduction 3

1.1 Research Challenges . 5
1.2 Motivation . 13
1.3 Research Process . 15

1.3.1 Problem definition 16
1.3.2 Consolidate an idea 16
1.3.3 Implementation . 17
1.3.4 Evaluation . 17

1.4 Research Goals . 17
1.5 Thesis Outline . 18

2 Research Contribution 19

2.1 Contributions Addressing the Research Goals 19
2.1.1 Contribution of subgoal 1 19
2.1.2 Contribution of subgoal 2 19
2.1.3 Contribution of subgoal 3 20
2.1.4 Contribution of subgoal 4 20

2.2 Overview of the Included Papers 21
2.2.1 Paper A . 21
2.2.2 Paper B . 22
2.2.3 Paper C . 23
2.2.4 Paper D . 24
2.2.5 Paper E . 25
2.2.6 Mapping Contributions to Subgoals 25

xi

Contents

I Thesis 1

1 Introduction 3

1.1 Research Challenges . 5
1.2 Motivation . 13
1.3 Research Process . 15

1.3.1 Problem definition 16
1.3.2 Consolidate an idea 16
1.3.3 Implementation . 17
1.3.4 Evaluation . 17

1.4 Research Goals . 17
1.5 Thesis Outline . 18

2 Research Contribution 19

2.1 Contributions Addressing the Research Goals 19
2.1.1 Contribution of subgoal 1 19
2.1.2 Contribution of subgoal 2 19
2.1.3 Contribution of subgoal 3 20
2.1.4 Contribution of subgoal 4 20

2.2 Overview of the Included Papers 21
2.2.1 Paper A . 21
2.2.2 Paper B . 22
2.2.3 Paper C . 23
2.2.4 Paper D . 24
2.2.5 Paper E . 25
2.2.6 Mapping Contributions to Subgoals 25

xi

xii Contents

3 Background and Related Work 27

3.1 Deep Learning . 27
3.1.1 Theory behind Neural Networks 28

Transfer Function . 29
Neural Network Training 30
Performance Generalization 30

3.1.2 Convolutional Neural Network 31
3.2 Evolutionary Optimization 33

3.2.1 Genetic Algorithm 34
3.2.2 Simulated Annealing (SA) 35

3.3 Related Work . 37
3.3.1 Automatic Design of CNN Architecture 37
3.3.2 Neural Network Quantization 38

4 Discussion, Conclusion and Future Work 41

4.1 Discussion and Conclusion 41
4.2 Future Work . 45

Bibliography 47

II Included Papers 59

5 Paper A:

Designing Compact Convolutional Neural Network for Embedded

Stereo Vision Systems 61

5.1 Introduction . 63
5.2 Background . 65

5.2.1 DCNN . 65
5.2.2 Multi-Objective Cartesian Genetic Programming . . . 65
5.2.3 GIMME2 Architecture 67

5.3 Related Work . 68
5.3.1 Automatic Designing Deep Neural Network 68

5.4 Designing DCNN Using Multi-Objective CGP 70
5.5 Experimental Results . 73

5.5.1 Classification Results 74
5.5.2 Implementation Results 77

xii Contents

3 Background and Related Work 27

3.1 Deep Learning . 27
3.1.1 Theory behind Neural Networks 28

Transfer Function . 29
Neural Network Training 30
Performance Generalization 30

3.1.2 Convolutional Neural Network 31
3.2 Evolutionary Optimization 33

3.2.1 Genetic Algorithm 34
3.2.2 Simulated Annealing (SA) 35

3.3 Related Work . 37
3.3.1 Automatic Design of CNN Architecture 37
3.3.2 Neural Network Quantization 38

4 Discussion, Conclusion and Future Work 41

4.1 Discussion and Conclusion 41
4.2 Future Work . 45

Bibliography 47

II Included Papers 59

5 Paper A:

Designing Compact Convolutional Neural Network for Embedded

Stereo Vision Systems 61

5.1 Introduction . 63
5.2 Background . 65

5.2.1 DCNN . 65
5.2.2 Multi-Objective Cartesian Genetic Programming . . . 65
5.2.3 GIMME2 Architecture 67

5.3 Related Work . 68
5.3.1 Automatic Designing Deep Neural Network 68

5.4 Designing DCNN Using Multi-Objective CGP 70
5.5 Experimental Results . 73

5.5.1 Classification Results 74
5.5.2 Implementation Results 77

Contents xiii

5.5.3 Stereo Vision Application 79
5.6 Conclusion . 80
Bibliography . 81

6 Paper B:

NeuroPower: Designing Energy Efficient Convolutional Neural Net-

work Architecture for Embedded Systems 85

6.1 Introduction . 87
6.2 Related Work . 91
6.3 Background . 92

6.3.1 An Overview of CNNs 92
6.3.2 Strength Pareto Evolutionary Algorithm-II (SPEA-II) . 93

6.4 NeuroPower: The Proposed Framework 95
6.4.1 Design Space Exploration (DSE) Algorithm 95
6.4.2 Design Space Pruning Algorithm 96

6.5 Experimental Results . 96
6.5.1 Training Datasets . 97
6.5.2 Design Space Exploration Results 97
6.5.3 Pruning Results . 101

6.6 Conclusion . 102
6.7 Acknowledgment . 102
Bibliography . 103

7 Paper C:

Multi-Objective Design Space Exploration to Design Deep Neural

Networks for Embedded Systems 107

7.1 Introduction . 109
7.2 Related Work . 111

7.2.1 Automatic Design of Deep Neural Network Architecture111
Hyperparameter Optimization 111
Reinforcement Learning 112
Evolutionary-based approaches 112

7.2.2 Neural Network Pruning 113
7.2.3 Automatic Code Approximation Frameworks 113

7.3 Preliminaries . 114
7.3.1 Convolutional Neural Networks (CNNs) 114

Contents xiii

5.5.3 Stereo Vision Application 79
5.6 Conclusion . 80
Bibliography . 81

6 Paper B:

NeuroPower: Designing Energy Efficient Convolutional Neural Net-

work Architecture for Embedded Systems 85

6.1 Introduction . 87
6.2 Related Work . 91
6.3 Background . 92

6.3.1 An Overview of CNNs 92
6.3.2 Strength Pareto Evolutionary Algorithm-II (SPEA-II) . 93

6.4 NeuroPower: The Proposed Framework 95
6.4.1 Design Space Exploration (DSE) Algorithm 95
6.4.2 Design Space Pruning Algorithm 96

6.5 Experimental Results . 96
6.5.1 Training Datasets . 97
6.5.2 Design Space Exploration Results 97
6.5.3 Pruning Results . 101

6.6 Conclusion . 102
6.7 Acknowledgment . 102
Bibliography . 103

7 Paper C:

Multi-Objective Design Space Exploration to Design Deep Neural

Networks for Embedded Systems 107

7.1 Introduction . 109
7.2 Related Work . 111

7.2.1 Automatic Design of Deep Neural Network Architecture111
Hyperparameter Optimization 111
Reinforcement Learning 112
Evolutionary-based approaches 112

7.2.2 Neural Network Pruning 113
7.2.3 Automatic Code Approximation Frameworks 113

7.3 Preliminaries . 114
7.3.1 Convolutional Neural Networks (CNNs) 114

xiv Contents

7.3.2 Multi-Objective Optimization (MOO) 115
7.4 The proposed framework . 116

7.4.1 Design Space Exploration 117
7.4.2 Neural Network Pruning 122

7.5 Experimental results . 122
7.5.1 Training Datasets . 123
7.5.2 Design Space Exploration 123
7.5.3 Neural Network Pruning 127
7.5.4 Hardware Implementation 128

7.6 Conclusions . 134
7.7 Acknowledgment . 134
Bibliography . 135

8 Paper D:

TOT-Net: An Endeavour Toward Optimizing Ternary Neural Net-

works 141

8.1 Introduction . 143
8.2 Background . 145

8.2.1 Convolutional neural networks 145
8.2.2 Piece-wise activation functions 146
8.2.3 Ternary weight network 147

8.3 Related Work . 148
8.3.1 Network Quantization 148
8.3.2 Neural Network Optimization 149

8.4 Architecture . 150
8.4.1 Ternary Neural Networks 150
8.4.2 Ternary Neural Networks Optimization 155

8.5 Experimental Results . 157
8.5.1 The Results of Classification Accuracy 158
8.5.2 Activation Function 159
8.5.3 Learning Rate . 160

8.6 Conclusion and Future Work 163
Bibliography . 165

xiv Contents

7.3.2 Multi-Objective Optimization (MOO) 115
7.4 The proposed framework . 116

7.4.1 Design Space Exploration 117
7.4.2 Neural Network Pruning 122

7.5 Experimental results . 122
7.5.1 Training Datasets . 123
7.5.2 Design Space Exploration 123
7.5.3 Neural Network Pruning 127
7.5.4 Hardware Implementation 128

7.6 Conclusions . 134
7.7 Acknowledgment . 134
Bibliography . 135

8 Paper D:

TOT-Net: An Endeavour Toward Optimizing Ternary Neural Net-

works 141

8.1 Introduction . 143
8.2 Background . 145

8.2.1 Convolutional neural networks 145
8.2.2 Piece-wise activation functions 146
8.2.3 Ternary weight network 147

8.3 Related Work . 148
8.3.1 Network Quantization 148
8.3.2 Neural Network Optimization 149

8.4 Architecture . 150
8.4.1 Ternary Neural Networks 150
8.4.2 Ternary Neural Networks Optimization 155

8.5 Experimental Results . 157
8.5.1 The Results of Classification Accuracy 158
8.5.2 Activation Function 159
8.5.3 Learning Rate . 160

8.6 Conclusion and Future Work 163
Bibliography . 165

Contents xv

9 Paper E:

DenseDisp: Resource-Aware Disparity Map Estimation by Com-

pressing Siamese Neural Architecture 171

9.1 Introduction . 173
9.2 Related Work . 175

9.2.1 Reinforcement Learning Based Methods 175
9.2.2 Evolutionary Methods 176
9.2.3 Handcrafted Resource-Aware Models 177

9.3 Exploration Space . 177
9.3.1 Siamese Network Architecture 177
9.3.2 Representation of CNN Exploration Space 178

9.4 Exploration . 180
9.5 Experimental Setup . 184
9.6 Evaluation . 185

9.6.1 Disparity Estimation Performance 185
9.6.2 Analyzing Exploration Scenarios 186
9.6.3 Exploration Convergency 187
9.6.4 Analyzing Mutation Pattern of the Dominant Node Op-

erations . 187
9.6.5 Disparity Map Outputs 187

9.7 Conclusion . 192
9.8 Acknowledgement . 192
Bibliography . 193

Contents xv

9 Paper E:

DenseDisp: Resource-Aware Disparity Map Estimation by Com-

pressing Siamese Neural Architecture 171

9.1 Introduction . 173
9.2 Related Work . 175

9.2.1 Reinforcement Learning Based Methods 175
9.2.2 Evolutionary Methods 176
9.2.3 Handcrafted Resource-Aware Models 177

9.3 Exploration Space . 177
9.3.1 Siamese Network Architecture 177
9.3.2 Representation of CNN Exploration Space 178

9.4 Exploration . 180
9.5 Experimental Setup . 184
9.6 Evaluation . 185

9.6.1 Disparity Estimation Performance 185
9.6.2 Analyzing Exploration Scenarios 186
9.6.3 Exploration Convergency 187
9.6.4 Analyzing Mutation Pattern of the Dominant Node Op-

erations . 187
9.6.5 Disparity Map Outputs 187

9.7 Conclusion . 192
9.8 Acknowledgement . 192
Bibliography . 193

I

Thesis

1

I

Thesis

1

Chapter 1

Introduction

Deep Neural Networks (DNNs) are increasingly becoming favored over ma-
chine learning methods in a wide range of applications such as intelligent
transportation [1], natural language processing [2], medical diagnosis [3, 4],
and e-commerce [5]. The main reasons of DNNs superiority comes from their
high flexibility, more generalization proficiency for large-scale tasks and re-
quiring less human intervention. Convolutional Neural Networks (CNNs) are
a subset of DNN algorithms that their advantage in visual recognition and im-
age classification tasks is obvious to everyone.

The benefits of CNNs are predicated upon performance efficiency and en-
ergy consumption delivered from hardware platforms. Recently, CNNs are
becoming more complex models containing hundreds of deep layers and mil-
lions of floating-point operations to provide more accurate results. However,
the failure of traditional performance and energy scaling paradigm in affording
of computing requirements for modern applications leads CNN hardware im-
plementation towards inefficiency [6]. The problem is more pronounced in de-
ploying CNNs on resource-constrained platforms due to the limited processing
and/or power budget. Many prior works attempted to reduce the computational
complexity and frequent memory accesses of CNNs (see Section 3). Generally,
to enhance the efficiency of the CNN implementation, academia and industry
put forward four solutions:

1. Many CNN hardware accelerators are proposed to overcome the compu-

3

Chapter 1

Introduction

Deep Neural Networks (DNNs) are increasingly becoming favored over ma-
chine learning methods in a wide range of applications such as intelligent
transportation [1], natural language processing [2], medical diagnosis [3, 4],
and e-commerce [5]. The main reasons of DNNs superiority comes from their
high flexibility, more generalization proficiency for large-scale tasks and re-
quiring less human intervention. Convolutional Neural Networks (CNNs) are
a subset of DNN algorithms that their advantage in visual recognition and im-
age classification tasks is obvious to everyone.

The benefits of CNNs are predicated upon performance efficiency and en-
ergy consumption delivered from hardware platforms. Recently, CNNs are
becoming more complex models containing hundreds of deep layers and mil-
lions of floating-point operations to provide more accurate results. However,
the failure of traditional performance and energy scaling paradigm in affording
of computing requirements for modern applications leads CNN hardware im-
plementation towards inefficiency [6]. The problem is more pronounced in de-
ploying CNNs on resource-constrained platforms due to the limited processing
and/or power budget. Many prior works attempted to reduce the computational
complexity and frequent memory accesses of CNNs (see Section 3). Generally,
to enhance the efficiency of the CNN implementation, academia and industry
put forward four solutions:

1. Many CNN hardware accelerators are proposed to overcome the compu-

3

4 Chapter 1. Introduction

tational cost and huge memory-footprint of CNNs by parallel computing
and efficient data reuse [7, 8, 9].

2. Network pruning is a practical method to minimize the size of the net-
work and refine the network accuracy by removing the redundant net-
work connections and fine-tuning the weights [10, 11, 12].

3. Designing optimized CNN architecture for resource-constrained plat-
forms [13, 14, 15].

4. Neural network quantization techniques would also remarkably reduce
memory-footprint and hence improve the energy efficiency and the
model inference time [16, 17, 18, 19].

The main focus of this thesis is to propose a framework, named Deep-
Maker, to design the CNN architecture for resource-constrained platforms.
DeepMaker benefits from the third (Paper A [20], Paper B [21], Paper C [22],
and Paper E [23]) and the forth (Paper D [24]) approaches to make the hard-
ware implementation of a CNN on resource-constrained platforms possible.
Figure 1.1 shows the processing pipeline of the DeepMaker framework.

There exist a variety of customized CNN architectures for different tasks.
However, finding a cost-efficient architecture is still challenging due to the lack
of a general designing solution. In addition, many parameters have to be chosen
in advance, while manual decisions of each of these parameters is extremely
time-consuming and needs expertise. Neural Architecture Search (NAS) meth-
ods are proposed to build neural models without human intervention [25, 26].
NAS methods try to design the neural architecture with competitive or even
better accuracy against the best results designed by experts.

DeepMaker leverages multi-objective evolutionary-based NAS techniques
in the first processing stage to balance a trade-off between implementation ef-
ficiency and accuracy of CNNs. Paper A [20], Paper B [21], Paper C [22], and
Paper E [23] focus on the first stage.

Network quantization is an impressive network compression method trying
to reduce the memory-footprint of CNNs. The goal of network quantization is
to represent the floating-point weights and/or activation functions with fewer
bits. However, most of the network quantization techniques do not provide
acceptable accuracy level. Paper D [24] proposes an optimized ternarizing

4 Chapter 1. Introduction

tational cost and huge memory-footprint of CNNs by parallel computing
and efficient data reuse [7, 8, 9].

2. Network pruning is a practical method to minimize the size of the net-
work and refine the network accuracy by removing the redundant net-
work connections and fine-tuning the weights [10, 11, 12].

3. Designing optimized CNN architecture for resource-constrained plat-
forms [13, 14, 15].

4. Neural network quantization techniques would also remarkably reduce
memory-footprint and hence improve the energy efficiency and the
model inference time [16, 17, 18, 19].

The main focus of this thesis is to propose a framework, named Deep-
Maker, to design the CNN architecture for resource-constrained platforms.
DeepMaker benefits from the third (Paper A [20], Paper B [21], Paper C [22],
and Paper E [23]) and the forth (Paper D [24]) approaches to make the hard-
ware implementation of a CNN on resource-constrained platforms possible.
Figure 1.1 shows the processing pipeline of the DeepMaker framework.

There exist a variety of customized CNN architectures for different tasks.
However, finding a cost-efficient architecture is still challenging due to the lack
of a general designing solution. In addition, many parameters have to be chosen
in advance, while manual decisions of each of these parameters is extremely
time-consuming and needs expertise. Neural Architecture Search (NAS) meth-
ods are proposed to build neural models without human intervention [25, 26].
NAS methods try to design the neural architecture with competitive or even
better accuracy against the best results designed by experts.

DeepMaker leverages multi-objective evolutionary-based NAS techniques
in the first processing stage to balance a trade-off between implementation ef-
ficiency and accuracy of CNNs. Paper A [20], Paper B [21], Paper C [22], and
Paper E [23] focus on the first stage.

Network quantization is an impressive network compression method trying
to reduce the memory-footprint of CNNs. The goal of network quantization is
to represent the floating-point weights and/or activation functions with fewer
bits. However, most of the network quantization techniques do not provide
acceptable accuracy level. Paper D [24] proposes an optimized ternarizing

1.1 Research Challenges 5

method that amortize the quantization accuracy loss of CNNs, as a disadvan-
tages of quantization techniques (Stage 2).

The CNN training dynamic depends on properly selecting training param-
eters such as learning rate, momentum and weight initialization. DeepMaker
automatically tweaks to the learning rate parameter in Stage 3. Paper B [21],
Paper C [22], and Paper D [24] cover this contribution.

Finally, DeepMaker is able to deploy the optimized CNN architecture on
a wide range of hardware platforms including CPU (x86, AArch64), GPU,
embedded GPU, and FPGA (Stage 4).

Stage 1
Neural Architecture

Seaerch (NAS)

Input: Task Dataset
Output: Optimizaed DNN Architecture
Solution: Multi-objective Evolutionary

Papers: A, B, C, E

Stage 2
Quantization

Input: DNN Architecture
Output: Ternerizing Network Parametrers

Solution: Dynamic Ternerization
Papers: D

Stage 3
Tweaking Training

Parameters

Input: Ternerized DNN Architecture
Output: Fully Trained DNN with
Optimized Training Parameters

Solution: Genetic Algorithm
Paper: B, C, D

Input: Finilized DNN
Output: run file (*.bin)

Solution: Using Specific H.W Compiler
Paper: A, B, C, E

Stage 4
Hardware Deployment

-d 0 d

-d 0 d

3-point Q
uantization

Figure 1.1: The overview of the DeepMaker framework.

In Section 1.1 and Section 1.2, we discuss the research challenges and mo-
tivations of using evolutionary-based techniques with regard to the existing
issues of common techniques in optimizing CNN architecture.

1.1 Research Challenges

Figure 1.2 represents the overview of NAS structure. NAS starts with a set of
predefined operations in order to form the search space. NAS uses a search
strategy to explore among a large number of candidate architectures. All se-
lected candidate architectures are trained and ranked. To evaluate the network
architecture, we perform performance evaluation on the test set. Then, the
search strategy is updated according to the ranking information of the previous
candidates to obtain a set of new candidate architectures. The most promising
network architecture is delivered to user as the final optimal architecture after

1.1 Research Challenges 5

method that amortize the quantization accuracy loss of CNNs, as a disadvan-
tages of quantization techniques (Stage 2).

The CNN training dynamic depends on properly selecting training param-
eters such as learning rate, momentum and weight initialization. DeepMaker
automatically tweaks to the learning rate parameter in Stage 3. Paper B [21],
Paper C [22], and Paper D [24] cover this contribution.

Finally, DeepMaker is able to deploy the optimized CNN architecture on
a wide range of hardware platforms including CPU (x86, AArch64), GPU,
embedded GPU, and FPGA (Stage 4).

Stage 1
Neural Architecture

Seaerch (NAS)

Input: Task Dataset
Output: Optimizaed DNN Architecture
Solution: Multi-objective Evolutionary

Papers: A, B, C, E

Stage 2
Quantization

Input: DNN Architecture
Output: Ternerizing Network Parametrers

Solution: Dynamic Ternerization
Papers: D

Stage 3
Tweaking Training

Parameters

Input: Ternerized DNN Architecture
Output: Fully Trained DNN with
Optimized Training Parameters

Solution: Genetic Algorithm
Paper: B, C, D

Input: Finilized DNN
Output: run file (*.bin)

Solution: Using Specific H.W Compiler
Paper: A, B, C, E

Stage 4
Hardware Deployment

-d 0 d

-d 0 d

3-point Q
uantization

Figure 1.1: The overview of the DeepMaker framework.

In Section 1.1 and Section 1.2, we discuss the research challenges and mo-
tivations of using evolutionary-based techniques with regard to the existing
issues of common techniques in optimizing CNN architecture.

1.1 Research Challenges

Figure 1.2 represents the overview of NAS structure. NAS starts with a set of
predefined operations in order to form the search space. NAS uses a search
strategy to explore among a large number of candidate architectures. All se-
lected candidate architectures are trained and ranked. To evaluate the network
architecture, we perform performance evaluation on the test set. Then, the
search strategy is updated according to the ranking information of the previous
candidates to obtain a set of new candidate architectures. The most promising
network architecture is delivered to user as the final optimal architecture after

6 Chapter 1. Introduction

terminating the search process.

Search Space

Search
Strategy

Candidate
Architecture

Evaluation
Strategy

Optimal
Architecture

Training and Rank

Select
Performance
Evaluation

Figure 1.2: The overview of the NAS framework.

According to the NAS structure, designing the CNN architecture involves
four essential challenges. In the rest of this section, we address the main barri-
ers of designing CNN architecture and our proposed solutions that tackles this
issues. The main NAS challenges are:

1. Properly selecting search space and involved hyper-parameters. The
search space is defined by the predefined architectural hyper-parameters
and corresponding operation set. For example, architectural template,
kernel size and the number of channels of the convolutional layer, and
connectivity method of operations are among the most important search
space parameters. The influence of the search space on the final NAS
performance is critical since these parameters determine which architec-
tures can be searched by the NAS [25]. Therefore, the proper selecting
the search space is necessary. We classify the search spaces in two essen-
tial categories including discrete and continuous search spaces. Discrete
NAS search strategies are mainly categorized as macro NAS and micro
NAS [27].

• Macro NAS strategies directly search the entire neural network ar-
chitecture. In other words, NAS finds an optimal network archi-
tecture within a huge search space with the granularity of opera-
tions. Although the macro NAS strategies yield a flexible search
space, the larger the search space enforce the higher search cost.
Figure 1.3 illustrates examples of two common macro NAS search
spaces with a chain-based connection structure. Figure 1.3.a shows
a simple example of a chain-based architecture. Figure 1.3.b shows

6 Chapter 1. Introduction

terminating the search process.

Search Space

Search
Strategy

Candidate
Architecture

Evaluation
Strategy

Optimal
Architecture

Training and Rank

Select
Performance
Evaluation

Figure 1.2: The overview of the NAS framework.

According to the NAS structure, designing the CNN architecture involves
four essential challenges. In the rest of this section, we address the main barri-
ers of designing CNN architecture and our proposed solutions that tackles this
issues. The main NAS challenges are:

1. Properly selecting search space and involved hyper-parameters. The
search space is defined by the predefined architectural hyper-parameters
and corresponding operation set. For example, architectural template,
kernel size and the number of channels of the convolutional layer, and
connectivity method of operations are among the most important search
space parameters. The influence of the search space on the final NAS
performance is critical since these parameters determine which architec-
tures can be searched by the NAS [25]. Therefore, the proper selecting
the search space is necessary. We classify the search spaces in two essen-
tial categories including discrete and continuous search spaces. Discrete
NAS search strategies are mainly categorized as macro NAS and micro
NAS [27].

• Macro NAS strategies directly search the entire neural network ar-
chitecture. In other words, NAS finds an optimal network archi-
tecture within a huge search space with the granularity of opera-
tions. Although the macro NAS strategies yield a flexible search
space, the larger the search space enforce the higher search cost.
Figure 1.3 illustrates examples of two common macro NAS search
spaces with a chain-based connection structure. Figure 1.3.a shows
a simple example of a chain-based architecture. Figure 1.3.b shows

1.1 Research Challenges 7

a chain-based architecture with supporting skip connections to pro-
vide more diversity.

• Micro NAS strategies, so-called cell-based NAS, use pre-learned
neural cells, where each cell is usually well-optimized for compar-
atively proxy tasks. Figure 1.4 shows an example of NASNet [28]
as one of the first studies using this micro NAS idea. Micro NAS
strategies try to find the optimal interconnection among neural cells
by stacking many copies of the cells. Although micro NAS strate-
gies highly decrease the search time, they might not be optimal for
unseen tasks [23, 29].

Input

Output

Input

Output

O1

O2

On

O1

O2

O3

Softmax Softmax

Z(1)

Z(2)

Z(n)

Z(1)

Z(2)

Z(n)

Z(1)

Z(2)

(a) (b)

Figure 1.3: (a) A simple example of a chain-based architecture. Oi is an operation and
the ith operation in the architecture and z(i) is the oi output feature map. (b) Extending
the example by adding skip connections to provide more diversity. The input passes a
series of operations to obtain the final output.

Therefore, there is a trade-off between selecting macro NAS or micro
NAS search spaces since it has a high impact on search cost and quality
of results. On the other hand, we have continuous search spaces which
are almost optimized by gradient decent algorithm [25, 30]. DARTS [31]
as one of the earliest implementation of the continuous search space,
tries to continuously relax an originally discrete search space. DARTS
uses gradients to efficiently optimize the search space. DARTS utilize
the NASNet cell-based search space [28]. DARTS learns a neural cell
as the key building block of the final architecture. The learned cells are

1.1 Research Challenges 7

a chain-based architecture with supporting skip connections to pro-
vide more diversity.

• Micro NAS strategies, so-called cell-based NAS, use pre-learned
neural cells, where each cell is usually well-optimized for compar-
atively proxy tasks. Figure 1.4 shows an example of NASNet [28]
as one of the first studies using this micro NAS idea. Micro NAS
strategies try to find the optimal interconnection among neural cells
by stacking many copies of the cells. Although micro NAS strate-
gies highly decrease the search time, they might not be optimal for
unseen tasks [23, 29].

Input

Output

Input

Output

O1

O2

On

O1

O2

O3

Softmax Softmax

Z(1)

Z(2)

Z(n)

Z(1)

Z(2)

Z(n)

Z(1)

Z(2)

(a) (b)

Figure 1.3: (a) A simple example of a chain-based architecture. Oi is an operation and
the ith operation in the architecture and z(i) is the oi output feature map. (b) Extending
the example by adding skip connections to provide more diversity. The input passes a
series of operations to obtain the final output.

Therefore, there is a trade-off between selecting macro NAS or micro
NAS search spaces since it has a high impact on search cost and quality
of results. On the other hand, we have continuous search spaces which
are almost optimized by gradient decent algorithm [25, 30]. DARTS [31]
as one of the earliest implementation of the continuous search space,
tries to continuously relax an originally discrete search space. DARTS
uses gradients to efficiently optimize the search space. DARTS utilize
the NASNet cell-based search space [28]. DARTS learns a neural cell
as the key building block of the final architecture. The learned cells are

8 Chapter 1. Introduction

Input

Output

normal cell

reduction cell

normal cell xn

reduction cell

normal cell

xn

xn

add

identiySep
3x3

add

Sep
3x3

Sep
5x5

add

identiySep
5x5

add

Avg.
3x3

Avg.
3x3

Concatination

celli+1

celli-1

celli-2

add

Sep
3x3

Sep
5x5

celli

Figure 1.4: The structure of the search space leveraged in NASNet [28]. The search
space is based on two cells including normal cell and reduction cell. Normal cell ex-
tracts advanced features without changing the spatial resolution. Reduction cell reduces
the spatial resolution. In order to design the final architecture, multiple normal cells
followed by a reduction cell are repeated, and this structure is repeated multiple times.

stacked to form either a convolutional network or a recurrent network if
recursively be connected.

This cell is represented by a directed acyclic graph (DAG) constructed
by N sequentially connected nodes. DARTS assumes each cell has two
input nodes and one output node. To construct a convolutional cell, the
input nodes are the output of the cells in previous two layers. To con-
struct a recurrent cell, one input is from the current time step, and the
other input is feed-backed from the previous time step. The output of
cell is calculated by applying a concatenation operation to all interme-
diate nodes. For a discrete search space, each intermediate node can be
expressed as x(j) =

∑
i<j o

(i,j)(x(i)) where x(j) is a potential feature
representation in the cell, and x(i) is previous intermediate node x(i)

through a directed edge operation o(i,j).

Therefore, to learn the cell architecture, operations on the DAG edges
should be learned. DARTS makes the discrete search space continu-
ous by relaxing the selection of candidate operations to a softmax of all
possible operations. Figure 1.5 presents continuous relaxation and dis-

8 Chapter 1. Introduction

Input

Output

normal cell

reduction cell

normal cell xn

reduction cell

normal cell

xn

xn

add

identiySep
3x3

add

Sep
3x3

Sep
5x5

add

identiySep
5x5

add

Avg.
3x3

Avg.
3x3

Concatination

celli+1

celli-1

celli-2

add

Sep
3x3

Sep
5x5

celli

Figure 1.4: The structure of the search space leveraged in NASNet [28]. The search
space is based on two cells including normal cell and reduction cell. Normal cell ex-
tracts advanced features without changing the spatial resolution. Reduction cell reduces
the spatial resolution. In order to design the final architecture, multiple normal cells
followed by a reduction cell are repeated, and this structure is repeated multiple times.

stacked to form either a convolutional network or a recurrent network if
recursively be connected.

This cell is represented by a directed acyclic graph (DAG) constructed
by N sequentially connected nodes. DARTS assumes each cell has two
input nodes and one output node. To construct a convolutional cell, the
input nodes are the output of the cells in previous two layers. To con-
struct a recurrent cell, one input is from the current time step, and the
other input is feed-backed from the previous time step. The output of
cell is calculated by applying a concatenation operation to all interme-
diate nodes. For a discrete search space, each intermediate node can be
expressed as x(j) =

∑
i<j o

(i,j)(x(i)) where x(j) is a potential feature
representation in the cell, and x(i) is previous intermediate node x(i)

through a directed edge operation o(i,j).

Therefore, to learn the cell architecture, operations on the DAG edges
should be learned. DARTS makes the discrete search space continu-
ous by relaxing the selection of candidate operations to a softmax of all
possible operations. Figure 1.5 presents continuous relaxation and dis-

1.1 Research Challenges 9

cretization of search space in DARTS [31].

0

1

2

3

?

?

?

? ?

?

0

1

2

3

0

1

2

3

0

1

2

3

(a) Connection to
be determined

(b) Connection
relaxation

(c) Joint
optimization

(d) Final
Architecture

Figure 1.5: (a) The structure of a cell aiming to be learned. The operations on edges are
unknown. (b) Illustrating the continuous relaxation of the cell-based search space. Each
edge is a mixture of all candidate operations. (c) Joint optimizing the probability of
mixed operations and network weights with gradient descent method. (d) Final network
architecture.

2. Properly selecting the search strategy. The search strategy determines
how to explore the search space which is often large or even unbounded.
It is desirable to quickly find well-performing neural architectures, while
trying to avoid being converged to a region of sub-optimal solutions.
In other words, a suitable search strategy balances the exploration-
exploitation trade-off. Recently, different search strategies are proposed
to explore the space of neural architectures. Random search, Bayesian
optimization, neuro-evolutionary methods, reinforcement learning (RL),
and gradient-based methods are the most popular search strategies
in community. In the following, these search strategies are briefly
presented.

• Random Search. Random search selects specific number of candi-
date architectures (a sample size) randomly from the architectural
space. Random search evaluates the selected candidate architec-
tures (e.g., by calculating accuracy). Then, it identifies the best
architecture in the sample, stores it in the memory, and repeats
this process. If the new architecture is better than the previous
one, the previous architecture will be replaced by the new archi-
tecture. The search will be stopped after a pre-defined number of

1.1 Research Challenges 9

cretization of search space in DARTS [31].

0

1

2

3

?

?

?

? ?

?

0

1

2

3

0

1

2

3

0

1

2

3

(a) Connection to
be determined

(b) Connection
relaxation

(c) Joint
optimization

(d) Final
Architecture

Figure 1.5: (a) The structure of a cell aiming to be learned. The operations on edges are
unknown. (b) Illustrating the continuous relaxation of the cell-based search space. Each
edge is a mixture of all candidate operations. (c) Joint optimizing the probability of
mixed operations and network weights with gradient descent method. (d) Final network
architecture.

2. Properly selecting the search strategy. The search strategy determines
how to explore the search space which is often large or even unbounded.
It is desirable to quickly find well-performing neural architectures, while
trying to avoid being converged to a region of sub-optimal solutions.
In other words, a suitable search strategy balances the exploration-
exploitation trade-off. Recently, different search strategies are proposed
to explore the space of neural architectures. Random search, Bayesian
optimization, neuro-evolutionary methods, reinforcement learning (RL),
and gradient-based methods are the most popular search strategies
in community. In the following, these search strategies are briefly
presented.

• Random Search. Random search selects specific number of candi-
date architectures (a sample size) randomly from the architectural
space. Random search evaluates the selected candidate architec-
tures (e.g., by calculating accuracy). Then, it identifies the best
architecture in the sample, stores it in the memory, and repeats
this process. If the new architecture is better than the previous
one, the previous architecture will be replaced by the new archi-
tecture. The search will be stopped after a pre-defined number of

10 Chapter 1. Introduction

iterations. Random search is proven to be a strong baseline for
hyper-parameter optimization [32].

• Bayesian Optimization (BO). Bayesian Optimization is one of the
most popular methods for hyper-parameter optimization. However,
it has not been used by NAS experts since typical BO methods are
based on Gaussian processes focusing on low-dimensional contin-
uous problems.

• Reinforcement Learning (RL). RL methods are useful for model-
ing sequential Markov decision process where an agent interacts
with an environment with the goal of maximizing its future benefit.
To use RL for NAS problems, the design of a CNN architecture
can be considered as the agent’s action, with the action space iden-
tical to the search space. The agent’s reward is the estimate of the
performance of the trained architecture on test data.

• Neuro-Evolutionary Methods. Neuro-evolutionary methods are an
alternative to RL approaches by using evolutionary algorithms for
optimizing the neural architecture. Neuro-evolutionary algorithms
consist of the following key operators including initialization, ran-
dom parent selection, cross-over, mutation, and survivor selection.
In general, neuro-evolutionary methods are highly sensitive to the
choices for cross-over and mutation operators, and the fitness func-
tion that control the behavior of search process. Cross-over and
mutation operators guide the diversity trade-off in the population.
Similarly, the choice of fitness functions reflects the optimization
objective.

• Gradient-Based Methods. While the methods above employ a dis-
crete search space, Liu et al. [31] propose DARTS, a continuous
relaxation to enable direct gradient-based optimization. DARTS
optimizes both the network architecture and the network weights
by alternating gradient descent steps on training data for weights
and on validation data for architectural parameters.

3. Properly selecting the evaluation strategy. All the search strategies try
to find a neural architecture that maximizes some performance measure-
ments, such as accuracy. These strategies need to evaluate the perfor-

10 Chapter 1. Introduction

iterations. Random search is proven to be a strong baseline for
hyper-parameter optimization [32].

• Bayesian Optimization (BO). Bayesian Optimization is one of the
most popular methods for hyper-parameter optimization. However,
it has not been used by NAS experts since typical BO methods are
based on Gaussian processes focusing on low-dimensional contin-
uous problems.

• Reinforcement Learning (RL). RL methods are useful for model-
ing sequential Markov decision process where an agent interacts
with an environment with the goal of maximizing its future benefit.
To use RL for NAS problems, the design of a CNN architecture
can be considered as the agent’s action, with the action space iden-
tical to the search space. The agent’s reward is the estimate of the
performance of the trained architecture on test data.

• Neuro-Evolutionary Methods. Neuro-evolutionary methods are an
alternative to RL approaches by using evolutionary algorithms for
optimizing the neural architecture. Neuro-evolutionary algorithms
consist of the following key operators including initialization, ran-
dom parent selection, cross-over, mutation, and survivor selection.
In general, neuro-evolutionary methods are highly sensitive to the
choices for cross-over and mutation operators, and the fitness func-
tion that control the behavior of search process. Cross-over and
mutation operators guide the diversity trade-off in the population.
Similarly, the choice of fitness functions reflects the optimization
objective.

• Gradient-Based Methods. While the methods above employ a dis-
crete search space, Liu et al. [31] propose DARTS, a continuous
relaxation to enable direct gradient-based optimization. DARTS
optimizes both the network architecture and the network weights
by alternating gradient descent steps on training data for weights
and on validation data for architectural parameters.

3. Properly selecting the evaluation strategy. All the search strategies try
to find a neural architecture that maximizes some performance measure-
ments, such as accuracy. These strategies need to evaluate the perfor-

1.1 Research Challenges 11

mance of a candidate architecture. The simplest way is to train the candi-
date architecture on training data and evaluate its performance on valida-
tion data. However, training each architecture require extensive amount
of computing capacity, which is the main bottleneck of NAS methods.
For example, NASNet [28] used RL to spend 2000 GPU days to design
the best architecture in CIFAR-10 [33] and ImageNet [34]. Similarly,
AmoebaNet [35] needs 3150 GPU days using neuro-evolutionary. This
naturally raises the need of some methods for accelerating performance
evaluation. For NAS, however, it is enough to know whether an can-
didate architecture is better or worse than the previous candidate. In
general, there exist four techniques to reduce the evaluation cost during
search process including:

(a) Lower Fidelity Estimation: Reducing the training time is per-
formed by 1 training with fewer epochs, 2 training on a subset of
dataset, 3 down-scale models, and 4 down-scale data. Although
low-fidelity approximations remarkably reduce the computational
cost, they also introduce bias in the estimation by performance un-
derestimation. This may not be a problem if the search strategy
only relies on ranking different architectures and the relative rank-
ing remains stable and the difference between the approximations
and the full evaluation is not too big [36].

(b) Learning Curve Extrapolation: Reducing the training time by
performance extrapolation after just a few training epochs. Fig-
ure 1.6 shows an example of an early training termination in or-
der to predict the final accuracy from the premature learning curve
(solid line). This significantly reduces the number of required train-
ing iterations.

(c) Weight Inheritance/Network Morphisms: Initializing the
weights of new candidate architectures based on weights of other
architectures that have been trained before, e.g., a parent model, is
another approach to speed up performance estimation. This avoids
training from scratch.

(d) One-Shot Models/Weight Sharing: Treating all architectures as
different sub-graphs of a super-graph (the one-shot model) and
share the weights between architectures that have common edges

1.1 Research Challenges 11

mance of a candidate architecture. The simplest way is to train the candi-
date architecture on training data and evaluate its performance on valida-
tion data. However, training each architecture require extensive amount
of computing capacity, which is the main bottleneck of NAS methods.
For example, NASNet [28] used RL to spend 2000 GPU days to design
the best architecture in CIFAR-10 [33] and ImageNet [34]. Similarly,
AmoebaNet [35] needs 3150 GPU days using neuro-evolutionary. This
naturally raises the need of some methods for accelerating performance
evaluation. For NAS, however, it is enough to know whether an can-
didate architecture is better or worse than the previous candidate. In
general, there exist four techniques to reduce the evaluation cost during
search process including:

(a) Lower Fidelity Estimation: Reducing the training time is per-
formed by 1 training with fewer epochs, 2 training on a subset of
dataset, 3 down-scale models, and 4 down-scale data. Although
low-fidelity approximations remarkably reduce the computational
cost, they also introduce bias in the estimation by performance un-
derestimation. This may not be a problem if the search strategy
only relies on ranking different architectures and the relative rank-
ing remains stable and the difference between the approximations
and the full evaluation is not too big [36].

(b) Learning Curve Extrapolation: Reducing the training time by
performance extrapolation after just a few training epochs. Fig-
ure 1.6 shows an example of an early training termination in or-
der to predict the final accuracy from the premature learning curve
(solid line). This significantly reduces the number of required train-
ing iterations.

(c) Weight Inheritance/Network Morphisms: Initializing the
weights of new candidate architectures based on weights of other
architectures that have been trained before, e.g., a parent model, is
another approach to speed up performance estimation. This avoids
training from scratch.

(d) One-Shot Models/Weight Sharing: Treating all architectures as
different sub-graphs of a super-graph (the one-shot model) and
share the weights between architectures that have common edges

12 Chapter 1. Introduction

in the super-graph. This significantly improves performance esti-
mation of architectures, since no training is required and only the
evaluating performance on validation data is performed.

Figure 1.6: Example of early termination of training strategy to accelerate the perfor-
mance of evaluations.

4. Single/multi objective optimization. For some applications, e.g., de-
ploying a network on resource-constrained platforms, it is essential to
consider other objectives, even with conflict, besides searching for high
accurate networks. For example, the number of model parameters, the
number of floating-point operations, and device-specific statistics like
the inference time are among the popular objectives considered in some
studies [37, 21, 23, 38]. To consider the additional objectives, the neu-
ral search problem is considered as a multi-objective optimization prob-
lem. In general, multi-objective NAS separates the decision making into
two steps. First, a set of candidates is obtained without considering any
trade-offs between the different objectives, then the decision for a supe-
rior solution is made in the second step.

Here, an imminent question is - which NAS structure is superior? In gen-
eral, there is no clear answer to this question since it depends on the task,
size of dataset, user constraints, search objectives, available computing power,
etc. In our studies, we prefer to use neuro-evolutionary based method explor-
ing discrete macro NAS search spaces since neuro-evolutionary methods are
faster than RL and need less expertise and easily converge to near-optimal re-
sults if we tweak the hyper-parameters and fitness function of these methods.
According to our recent study [23], neuro-evolutionary methods also provide

12 Chapter 1. Introduction

in the super-graph. This significantly improves performance esti-
mation of architectures, since no training is required and only the
evaluating performance on validation data is performed.

Figure 1.6: Example of early termination of training strategy to accelerate the perfor-
mance of evaluations.

4. Single/multi objective optimization. For some applications, e.g., de-
ploying a network on resource-constrained platforms, it is essential to
consider other objectives, even with conflict, besides searching for high
accurate networks. For example, the number of model parameters, the
number of floating-point operations, and device-specific statistics like
the inference time are among the popular objectives considered in some
studies [37, 21, 23, 38]. To consider the additional objectives, the neu-
ral search problem is considered as a multi-objective optimization prob-
lem. In general, multi-objective NAS separates the decision making into
two steps. First, a set of candidates is obtained without considering any
trade-offs between the different objectives, then the decision for a supe-
rior solution is made in the second step.

Here, an imminent question is - which NAS structure is superior? In gen-
eral, there is no clear answer to this question since it depends on the task,
size of dataset, user constraints, search objectives, available computing power,
etc. In our studies, we prefer to use neuro-evolutionary based method explor-
ing discrete macro NAS search spaces since neuro-evolutionary methods are
faster than RL and need less expertise and easily converge to near-optimal re-
sults if we tweak the hyper-parameters and fitness function of these methods.
According to our recent study [23], neuro-evolutionary methods also provide

1.2 Motivation 13

comparable results in contrast to gradient-based methods since gradient-based
methods get stuck in local optima in most of the cases and need deep expertise
for dynamic learning rate tuning and proper initialization. Table 1.1 summa-
rizes our research contribution in this thesis according the specification of NAS
structure.

Table 1.1: Summerizing the contribution regarding the NAS structure.

Search Space Search Strategy Evaluation Strategy Optimization Objective

Paper A Discrete / macro NAS Cuckoo Optimizer Lower Fidelity Estimation Accuracy and FLOPS
Paper B Discrete / macro NAS SPEA-II Lower Fidelity Estimation Accuracy and Network Energy Consumption
Paper C Discrete / macro NAS NSGA-II Lower Fidelity Estimation Accuracy and Network Parameters
Paper D Discrete / macro NAS Genetic Algorithm Lower Fidelity Estimation Accuracy
Paper E Discrete / macro NAS Simulated Annealing Lower Fidelity Estimation Accuracy and FLOPS

1.2 Motivation

Starting with AlexNet’s win in the 2012 ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC), CNNs have changed the landscape by providing
superb capabilities in extracting high-dimensional structures from enormous
data volume. Meanwhile, mobile embedded platforms such as smartwatches
and medical tools are become ubiquitous. Therefore, there is a huge request
for on-device deep learning services such as health monitoring, object recog-
nition, and language translation [39, 40, 41]. Encouraged by the superb per-
formance of CNNs in these services, people naturally are motivated to deploy
deep learning on their mobile platform [42].

Although CNNs significantly increase the accuracy for image classifica-
tion, visual recognition, and many other tasks [3, 43, 44], state-of-the-art re-
sults are accompanied by increasing complexity of CNNs. Figure 1.7 illus-
trate the accuracy and complexity of best models winning ILSVRC from 2010
to 2015. There are up to hundreds of millions of floating-point operations
(FLOPS) in the advanced CNNs requiring considerable processing throughput
and memory resource.

The nature of mobile embedded platforms imposes the intrinsic capac-
ity bottleneck making resource-hungry applications banned. The large scale
CNNs exceed the limited on-chip memory of mobile embedded platforms.
Hence, they have to be deployed on the off-chip memory leading to con-
sume more energy [21, 7]. As shown in Figure 1.8, there is a strong cor-

1.2 Motivation 13

comparable results in contrast to gradient-based methods since gradient-based
methods get stuck in local optima in most of the cases and need deep expertise
for dynamic learning rate tuning and proper initialization. Table 1.1 summa-
rizes our research contribution in this thesis according the specification of NAS
structure.

Table 1.1: Summerizing the contribution regarding the NAS structure.

Search Space Search Strategy Evaluation Strategy Optimization Objective

Paper A Discrete / macro NAS Cuckoo Optimizer Lower Fidelity Estimation Accuracy and FLOPS
Paper B Discrete / macro NAS SPEA-II Lower Fidelity Estimation Accuracy and Network Energy Consumption
Paper C Discrete / macro NAS NSGA-II Lower Fidelity Estimation Accuracy and Network Parameters
Paper D Discrete / macro NAS Genetic Algorithm Lower Fidelity Estimation Accuracy
Paper E Discrete / macro NAS Simulated Annealing Lower Fidelity Estimation Accuracy and FLOPS

1.2 Motivation

Starting with AlexNet’s win in the 2012 ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC), CNNs have changed the landscape by providing
superb capabilities in extracting high-dimensional structures from enormous
data volume. Meanwhile, mobile embedded platforms such as smartwatches
and medical tools are become ubiquitous. Therefore, there is a huge request
for on-device deep learning services such as health monitoring, object recog-
nition, and language translation [39, 40, 41]. Encouraged by the superb per-
formance of CNNs in these services, people naturally are motivated to deploy
deep learning on their mobile platform [42].

Although CNNs significantly increase the accuracy for image classifica-
tion, visual recognition, and many other tasks [3, 43, 44], state-of-the-art re-
sults are accompanied by increasing complexity of CNNs. Figure 1.7 illus-
trate the accuracy and complexity of best models winning ILSVRC from 2010
to 2015. There are up to hundreds of millions of floating-point operations
(FLOPS) in the advanced CNNs requiring considerable processing throughput
and memory resource.

The nature of mobile embedded platforms imposes the intrinsic capac-
ity bottleneck making resource-hungry applications banned. The large scale
CNNs exceed the limited on-chip memory of mobile embedded platforms.
Hence, they have to be deployed on the off-chip memory leading to con-
sume more energy [21, 7]. As shown in Figure 1.8, there is a strong cor-

14 Chapter 1. Introduction

Year
2010

C
la

ss
ifi

ca
tio

n
Er

ro
r

8

20

32

2011 2012 2013 2015

Human Error

2014

28%
26%

16%

12%

7.3%
6.7%

3.6%

Shallow

Deep

AlexNet, 8 layers

ZFNet, 8 layers

VGG, 19 layers

GoogleNet, 22 layers

ResNet, 152 layers

Figure 1.7: The performance and size of the CNNs in ILSVRC’10-15.

relation between GPU energy consumption and complexity of CNNs (p −
value=0.000149, Pearson Correlation=0.942). Using cloud infrastructure
to overcome the huge energy consumption of cutting-edge CNNs is not feasible
since they are not intrinsically real-time solutions, there are privacy concerns
about cloud processing paradigm, and permanent access to high-bandwidth In-
ternet is not always guaranteed.

In this thesis, we aim to answer the following questions;

1. What is the best CNN architecture with the highest accuracy that is im-
plementable on a mobile resource-limited (battery and memory) hard-
ware platform?

2. How could we reduce the accuracy degradation of common quantization
methods?

3. How could we deal with significant search cost (e.g., [35] needs 3150
GPU-days) of common NAS approaches ?

To answer these questions, we conduct a research on NAS methods for
designing energy/performance aware CNN architectures. We leveraged multi-
objective neuro-evolutionary search methods within a discrete search space to
design both accurate and compact architectures in a short time. Plus, we ac-
complished a study on quantizing the weight and network activation functions

14 Chapter 1. Introduction

Year
2010

C
la

ss
ifi

ca
tio

n
Er

ro
r

8

20

32

2011 2012 2013 2015

Human Error

2014

28%
26%

16%

12%

7.3%
6.7%

3.6%

Shallow

Deep

AlexNet, 8 layers

ZFNet, 8 layers

VGG, 19 layers

GoogleNet, 22 layers

ResNet, 152 layers

Figure 1.7: The performance and size of the CNNs in ILSVRC’10-15.

relation between GPU energy consumption and complexity of CNNs (p −
value=0.000149, Pearson Correlation=0.942). Using cloud infrastructure
to overcome the huge energy consumption of cutting-edge CNNs is not feasible
since they are not intrinsically real-time solutions, there are privacy concerns
about cloud processing paradigm, and permanent access to high-bandwidth In-
ternet is not always guaranteed.

In this thesis, we aim to answer the following questions;

1. What is the best CNN architecture with the highest accuracy that is im-
plementable on a mobile resource-limited (battery and memory) hard-
ware platform?

2. How could we reduce the accuracy degradation of common quantization
methods?

3. How could we deal with significant search cost (e.g., [35] needs 3150
GPU-days) of common NAS approaches ?

To answer these questions, we conduct a research on NAS methods for
designing energy/performance aware CNN architectures. We leveraged multi-
objective neuro-evolutionary search methods within a discrete search space to
design both accurate and compact architectures in a short time. Plus, we ac-
complished a study on quantizing the weight and network activation functions

1.3 Research Process 15

to achieve a higher level of resource efficiency. The output of our studies are
published in five papers (see Section 2).

Figure 1.8: Reporting the accuracy vs. computational complexity represented by the
number of parameters in the network. Executing a CNN, especially on embedded mo-
bile platforms, can easily kill the whole system energy budget.

1.3 Research Process

For doing a scientific research and walking on the right path toward preparing
a concrete thesis, leveraging research methodology is critical. The scientific
method [45] provides how to facilitate with new questions and formulate the
problems. Holz et al. [46] discuss the four major steps including problem for-
mulation, propose solution, implementation and evaluation. Although, there
was not solid research methodology at the beginning period of the Ph.D. study,
we tried to follow a similar research methodology proposed by Holz in our
research. We start with literature review on similar methods aiming to tackle
the problem, then we continued with working on our idea to cover the weak-
nesses of the proposed solution. The implementation and evaluation phases
were the last step in our research journey. Figure 7.2 illustrates the research
methodology used in our research.

1.3 Research Process 15

to achieve a higher level of resource efficiency. The output of our studies are
published in five papers (see Section 2).

Figure 1.8: Reporting the accuracy vs. computational complexity represented by the
number of parameters in the network. Executing a CNN, especially on embedded mo-
bile platforms, can easily kill the whole system energy budget.

1.3 Research Process

For doing a scientific research and walking on the right path toward preparing
a concrete thesis, leveraging research methodology is critical. The scientific
method [45] provides how to facilitate with new questions and formulate the
problems. Holz et al. [46] discuss the four major steps including problem for-
mulation, propose solution, implementation and evaluation. Although, there
was not solid research methodology at the beginning period of the Ph.D. study,
we tried to follow a similar research methodology proposed by Holz in our
research. We start with literature review on similar methods aiming to tackle
the problem, then we continued with working on our idea to cover the weak-
nesses of the proposed solution. The implementation and evaluation phases
were the last step in our research journey. Figure 7.2 illustrates the research
methodology used in our research.

16 Chapter 1. Introduction

Research Outcomes

Research Methodology

Problem
Formulation

Evaluation

Consolidate
an Idea

Implementation

WiP Papers

Journal
Papers

WiP Papers

Conference
Papers

Figure 1.9: Research Methodology.

1.3.1 Problem definition

As the first step, we have done a review of both the state of the art and practice
including the reason/problem for initiation of our research. We first investi-
gate computer architecture conferences such as ISCA, DATE, DAC, MICRO,
FCCM, FPL, FPGA, ASPLOS, CVPR, ICCV and so on. The referenced pa-
pers in the collected papers are included in survey study as well. Then, We
discussed with other researchers with overlapping research filed. The research
goal(s) are formulated as an outcome of problem formulation step. Plus, we
found some ideas for the subsubgoals.

1.3.2 Consolidate an idea

After literature review, we focused on the key papers with remarkable results
to consolidate our ideas. Then, we summarized subgoals as a subgoal. In Paper
A, and B, we proposed our new method to improve the current state of the art
by considering the second optimization objective. In Papers C, we extended
the essential idea of paper B. In addition, Paper E extends the idea of paper A.
Finally, We have proposed the optimization techniques presented in Paper D to
improve the accuracy of quantized CNNs.

16 Chapter 1. Introduction

Research Outcomes

Research Methodology

Problem
Formulation

Evaluation

Consolidate
an Idea

Implementation

WiP Papers

Journal
Papers

WiP Papers

Conference
Papers

Figure 1.9: Research Methodology.

1.3.1 Problem definition

As the first step, we have done a review of both the state of the art and practice
including the reason/problem for initiation of our research. We first investi-
gate computer architecture conferences such as ISCA, DATE, DAC, MICRO,
FCCM, FPL, FPGA, ASPLOS, CVPR, ICCV and so on. The referenced pa-
pers in the collected papers are included in survey study as well. Then, We
discussed with other researchers with overlapping research filed. The research
goal(s) are formulated as an outcome of problem formulation step. Plus, we
found some ideas for the subsubgoals.

1.3.2 Consolidate an idea

After literature review, we focused on the key papers with remarkable results
to consolidate our ideas. Then, we summarized subgoals as a subgoal. In Paper
A, and B, we proposed our new method to improve the current state of the art
by considering the second optimization objective. In Papers C, we extended
the essential idea of paper B. In addition, Paper E extends the idea of paper A.
Finally, We have proposed the optimization techniques presented in Paper D to
improve the accuracy of quantized CNNs.

1.4 Research Goals 17

1.3.3 Implementation

The practical implementation results on embedded platforms are presented
based on either hardware implementation (Paper A, B, C, E) or software im-
plementation (Paper D). Measurements based on practical experience helped
us to understand the real impact of our proposed solutions.

1.3.4 Evaluation

Comparison studies using the introduced metrics are considered in the evalua-
tion step. Depending on the results of evaluation step, the problem formulation
and proposed solution could be revised and continued with the later steps. This
process is iterated until the results are acceptable. The results/outcomes of
each step could be presented as papers, reports and presentations in work-in-
progress sessions, workshops, conferences and journals.

1.4 Research Goals

The main challenge of the thesis is to accelerate CNNs on the COTS embed-
ded platforms such as Field Programmable Gate Arrays (FPGAs), Graphics
Procesisng Unit (GPU), and ARM processor. Due to limited time for Ph.D.
study, we focus on the computing performance and energy efficiency aspects
of embedded platforms. The overall goal of the thesis is formulated as follows:
Overall goal: Design and implementation of a optimization framework that
accelerate CNN inference on COTS embedded devices while maintaining
network validation accuracy. For more clarification, the overall goal is divided
into the four following subgoals:

• Subgoal 1: Analyzing the characteristics of CNNs focusing on comput-
ing potential and power consumption in order to identify the bottlenecks
of CNNs.

• Subgoal 2: Proposing a NAS method to optimize the network archi-
tecture at design time in order to improve the energy efficiency and
memory-footprint of CNNs.

1.4 Research Goals 17

1.3.3 Implementation

The practical implementation results on embedded platforms are presented
based on either hardware implementation (Paper A, B, C, E) or software im-
plementation (Paper D). Measurements based on practical experience helped
us to understand the real impact of our proposed solutions.

1.3.4 Evaluation

Comparison studies using the introduced metrics are considered in the evalua-
tion step. Depending on the results of evaluation step, the problem formulation
and proposed solution could be revised and continued with the later steps. This
process is iterated until the results are acceptable. The results/outcomes of
each step could be presented as papers, reports and presentations in work-in-
progress sessions, workshops, conferences and journals.

1.4 Research Goals

The main challenge of the thesis is to accelerate CNNs on the COTS embed-
ded platforms such as Field Programmable Gate Arrays (FPGAs), Graphics
Procesisng Unit (GPU), and ARM processor. Due to limited time for Ph.D.
study, we focus on the computing performance and energy efficiency aspects
of embedded platforms. The overall goal of the thesis is formulated as follows:
Overall goal: Design and implementation of a optimization framework that
accelerate CNN inference on COTS embedded devices while maintaining
network validation accuracy. For more clarification, the overall goal is divided
into the four following subgoals:

• Subgoal 1: Analyzing the characteristics of CNNs focusing on comput-
ing potential and power consumption in order to identify the bottlenecks
of CNNs.

• Subgoal 2: Proposing a NAS method to optimize the network archi-
tecture at design time in order to improve the energy efficiency and
memory-footprint of CNNs.

18 Chapter 1. Introduction

• Subgoal 3: Decreasing the computational cost of CNNs by leverag-
ing network quantization techniques while considering to provide higher
level of accuracy and simpler computation units.

• Subgoal 4: Evaluating how the proposed solutions save the validation
accuracy while decreasing high energy consumption and huge memory-
footprint of CNNs.

1.5 Thesis Outline

This thesis is divided into two parts. The first part is a summary of the thesis
and is organized in four chapters, which are as follows: Chapter 1 gives an
overview of the preliminaries, research challenges, research goals, motivations,
and the research process which directed our research. In Chapter 2, we describe
the contributions of the thesis to realization of the research goals. Chapter 3
presents an overview of the related work and background concepts. Finally,
in Chapter 4, we conclude the first part of the thesis with a discussion on our
results as well as possible directions for the future work. The second part of
the thesis is given as a collection of the included publications which present
the technical contributions of the thesis in detail.

18 Chapter 1. Introduction

• Subgoal 3: Decreasing the computational cost of CNNs by leverag-
ing network quantization techniques while considering to provide higher
level of accuracy and simpler computation units.

• Subgoal 4: Evaluating how the proposed solutions save the validation
accuracy while decreasing high energy consumption and huge memory-
footprint of CNNs.

1.5 Thesis Outline

This thesis is divided into two parts. The first part is a summary of the thesis
and is organized in four chapters, which are as follows: Chapter 1 gives an
overview of the preliminaries, research challenges, research goals, motivations,
and the research process which directed our research. In Chapter 2, we describe
the contributions of the thesis to realization of the research goals. Chapter 3
presents an overview of the related work and background concepts. Finally,
in Chapter 4, we conclude the first part of the thesis with a discussion on our
results as well as possible directions for the future work. The second part of
the thesis is given as a collection of the included publications which present
the technical contributions of the thesis in detail.

Chapter 2

Research Contribution

In this section, we present our contributions (Paper A-E) in order to achieve
the research goals as mentioned in Section 1.4.

2.1 Contributions Addressing the Research Goals

2.1.1 Contribution of subgoal 1

In order to find the processing bottlenecks, we analyzed the characteristics
of CNNs. As a result, we figured out CNNs are complex models with huge
memory-footprint where the convolutional layers are mainly computational
intensive and fully-connected layers are memory intensive. In addition, the
results represented in Paper B and Paper C indicate that the total number of
network floating-point operations and neural network parameters have strong
correlation with network energy consumption and network inference time.
CIFAR-10 and CIFAR-100 [47] are the most popular datasets which have been
considered in Paper B and Paper C.

2.1.2 Contribution of subgoal 2

Different optimization techniques have been proposed to design the architec-
ture of CNNs such as reinforcement learning, random search, Bayesian opti-
mization, and evolutionary methods. However, the time-consuming search of

19

Chapter 2

Research Contribution

In this section, we present our contributions (Paper A-E) in order to achieve
the research goals as mentioned in Section 1.4.

2.1 Contributions Addressing the Research Goals

2.1.1 Contribution of subgoal 1

In order to find the processing bottlenecks, we analyzed the characteristics
of CNNs. As a result, we figured out CNNs are complex models with huge
memory-footprint where the convolutional layers are mainly computational
intensive and fully-connected layers are memory intensive. In addition, the
results represented in Paper B and Paper C indicate that the total number of
network floating-point operations and neural network parameters have strong
correlation with network energy consumption and network inference time.
CIFAR-10 and CIFAR-100 [47] are the most popular datasets which have been
considered in Paper B and Paper C.

2.1.2 Contribution of subgoal 2

Different optimization techniques have been proposed to design the architec-
ture of CNNs such as reinforcement learning, random search, Bayesian opti-
mization, and evolutionary methods. However, the time-consuming search of

19

20 Chapter 2. Research Contribution

design space is main challenge of related studies. Plus, most of the related
studies aim to increase the validation accuracy.

Based on the achievements of the subgoal 1 and literature review, we first
proposed a multi-objective neuro-evolutionary method to design CNN archi-
tecture considering improving validation accuracy and less network complex-
ity as design objectives. The evolutionary-based optimization methods are pre-
ferred compared to other methods due to providing a guided search scheme.
Next, we tweak the search hyper-parameters and fitness function in order to
maximize the search efficiency. Paper A, B, C, and E cover the subgoal 2.

2.1.3 Contribution of subgoal 3

Based on the achievements of the subgoal 1 and literature review, we proposed
a novel network quantization method as a potential method for decreasing com-
putation and memory-footprint of CNNs. Recently, many proposed methods
(see Section 3) try to address these issues. Although they have significantly
decreased computational load of CNNs, they have suffered from accuracy loss
especially for large datasets. We propose a ternarized neural network with [-1,
0, 1] values for both weights and activation functions that has simultaneously
achieved a higher level of accuracy and less computational load. Moreover, we
propose a simple bitwise logic for convolution computations to reduce the cost
of multiply operations. As the second contribution, we propose a novel piece-
wise activation function, and optimized learning rate for different datasets to
improve the accuracy of ternarized neural network. Paper D covers the subgoal
3.

2.1.4 Contribution of subgoal 4

Once we figured out the fundamental behavior of CNNs and proposed opti-
mization solutions which are based on network architecture optimization and
network quantization, the evaluation between the state-of-the-art and the pro-
posed solutions is conducted. In this subgoal, we consider three essential met-
rics for comparisons including network compression rate, energy efficiency and
computing performance (inference time). All the evaluations are conducted on
the COTS embedded platforms including Xilinx Zynq FPGA, Nvidia GPU, and
ARM Processor. As a result, we confirm that notable decrease in network com-

20 Chapter 2. Research Contribution

design space is main challenge of related studies. Plus, most of the related
studies aim to increase the validation accuracy.

Based on the achievements of the subgoal 1 and literature review, we first
proposed a multi-objective neuro-evolutionary method to design CNN archi-
tecture considering improving validation accuracy and less network complex-
ity as design objectives. The evolutionary-based optimization methods are pre-
ferred compared to other methods due to providing a guided search scheme.
Next, we tweak the search hyper-parameters and fitness function in order to
maximize the search efficiency. Paper A, B, C, and E cover the subgoal 2.

2.1.3 Contribution of subgoal 3

Based on the achievements of the subgoal 1 and literature review, we proposed
a novel network quantization method as a potential method for decreasing com-
putation and memory-footprint of CNNs. Recently, many proposed methods
(see Section 3) try to address these issues. Although they have significantly
decreased computational load of CNNs, they have suffered from accuracy loss
especially for large datasets. We propose a ternarized neural network with [-1,
0, 1] values for both weights and activation functions that has simultaneously
achieved a higher level of accuracy and less computational load. Moreover, we
propose a simple bitwise logic for convolution computations to reduce the cost
of multiply operations. As the second contribution, we propose a novel piece-
wise activation function, and optimized learning rate for different datasets to
improve the accuracy of ternarized neural network. Paper D covers the subgoal
3.

2.1.4 Contribution of subgoal 4

Once we figured out the fundamental behavior of CNNs and proposed opti-
mization solutions which are based on network architecture optimization and
network quantization, the evaluation between the state-of-the-art and the pro-
posed solutions is conducted. In this subgoal, we consider three essential met-
rics for comparisons including network compression rate, energy efficiency and
computing performance (inference time). All the evaluations are conducted on
the COTS embedded platforms including Xilinx Zynq FPGA, Nvidia GPU, and
ARM Processor. As a result, we confirm that notable decrease in network com-

2.2 Overview of the Included Papers 21

putational complexity by using our proposed methods in Papers A, B, C, D and
E. In addition, this subgoal shows a trade-off between the network validation
accuracy and network complexity.

2.2 Overview of the Included Papers

The main contributions of the thesis are organized and presented as a set of
papers which have been included in the thesis. Other papers that have been just
listed at the beginning of the thesis and are not included, also strengthen the
contributions of the thesis. A summary of the included papers is as follows:

2.2.1 Paper A

Designing Compact Convolutional Neural Network for Embedded Stereo
Vision Systems [20].

Abstract. Autonomous systems are used in a wide range of domains
from indoor utensils to autonomous robot surgeries and self-driving cars.
Stereo vision cameras probably are the most flexible sensing way in these
systems since they can extract depth, luminance, color, and shape information.
However, stereo vision based applications suffer from huge image sizes and
computational complexity leading system to higher power consumption. To
tackle these challenges, in the first step, GIMME2 stereo vision system [48]
is employed. GIMME2 is a high-throughput and cost efficient FPGA-based
stereo vision embedded system. In the next step, we present a framework
for designing an optimized Deep Convolutional Neural Network (DCNN) for
time constraint applications and/or limited resource budget platforms. Our
framework tries to automatically generate a highly robust DCNN architecture
for image data receiving from stereo vision cameras. Our proposed framework
takes advantage of a multi-objective evolutionary optimization approach
to design a near-optimal network architecture for both the accuracy and
network size objectives. Unlike recent works aiming to generate a highly
accurate network, we also considered the network size parameters to build a
highly compact architecture. After designing a robust network, our proposed
framework maps generated network on a multi/many core heterogeneous
System-on-Chip (SoC). In addition, we have integrated our framework to the

2.2 Overview of the Included Papers 21

putational complexity by using our proposed methods in Papers A, B, C, D and
E. In addition, this subgoal shows a trade-off between the network validation
accuracy and network complexity.

2.2 Overview of the Included Papers

The main contributions of the thesis are organized and presented as a set of
papers which have been included in the thesis. Other papers that have been just
listed at the beginning of the thesis and are not included, also strengthen the
contributions of the thesis. A summary of the included papers is as follows:

2.2.1 Paper A

Designing Compact Convolutional Neural Network for Embedded Stereo
Vision Systems [20].

Abstract. Autonomous systems are used in a wide range of domains
from indoor utensils to autonomous robot surgeries and self-driving cars.
Stereo vision cameras probably are the most flexible sensing way in these
systems since they can extract depth, luminance, color, and shape information.
However, stereo vision based applications suffer from huge image sizes and
computational complexity leading system to higher power consumption. To
tackle these challenges, in the first step, GIMME2 stereo vision system [48]
is employed. GIMME2 is a high-throughput and cost efficient FPGA-based
stereo vision embedded system. In the next step, we present a framework
for designing an optimized Deep Convolutional Neural Network (DCNN) for
time constraint applications and/or limited resource budget platforms. Our
framework tries to automatically generate a highly robust DCNN architecture
for image data receiving from stereo vision cameras. Our proposed framework
takes advantage of a multi-objective evolutionary optimization approach
to design a near-optimal network architecture for both the accuracy and
network size objectives. Unlike recent works aiming to generate a highly
accurate network, we also considered the network size parameters to build a
highly compact architecture. After designing a robust network, our proposed
framework maps generated network on a multi/many core heterogeneous
System-on-Chip (SoC). In addition, we have integrated our framework to the

22 Chapter 2. Research Contribution

GIMME2 processing pipeline such that it can also estimate the distance of
detected objects. The generated network by our framework offers up to 24x
compression rate while losing only 5% accuracy compare to the best result on
the CIFAR-10 dataset.

Personal Contribution. I am the initiator, the main driver and the author
of all parts in this paper. Mr. Amin Majd helped us in designing optimization
fitness function and the other co-authors have contributed with valuable
reviews.

2.2.2 Paper B

NeuroPower: Designing Energy Efficient Convolutional Neural Network
Architecture for Embedded Systems [21].

Abstract. Convolutional Neural Networks (CNNs) suffer from energy-
hungry implementation due to their computation and memory intensive
processing patterns. This problem is even more significant by the proliferation
of CNNs on embedded platforms. To overcome this problem, we offer
NeuroPower as an automatic framework that designs a highly optimized
and energy efficient set of CNN architectures for embedded systems. Neu-
roPower explores and prunes the design space to find improved set of neural
architectures. Toward this aim, a multi-objective optimization strategy is in-
tegrated to solve Neural Architecture Search (NAS) problem by near-optimal
tuning network hyperparameters. The main objectives of the optimization
algorithm are network accuracy and number of parameters in the network.
The evaluation results show the effectiveness of NeuroPower on energy con-
sumption, compacting rate and inference time compared to other cutting-edge
approaches. In comparison with the best results on CIFAR-10/CIFAR-100
datasets, a generated network by NeuroPower presents up to 2.1x/1.56x
compression rate, 1.59x/3.46x speedup and 1.52x/1.82x power saving while
loses 2.4%/-0.6% accuracy, respectively.

Personal Contribution. I am the initiator, the main driver and the author
of all parts in this paper. Mr. Ali Zoljodi helped me in preparing the results

22 Chapter 2. Research Contribution

GIMME2 processing pipeline such that it can also estimate the distance of
detected objects. The generated network by our framework offers up to 24x
compression rate while losing only 5% accuracy compare to the best result on
the CIFAR-10 dataset.

Personal Contribution. I am the initiator, the main driver and the author
of all parts in this paper. Mr. Amin Majd helped us in designing optimization
fitness function and the other co-authors have contributed with valuable
reviews.

2.2.2 Paper B

NeuroPower: Designing Energy Efficient Convolutional Neural Network
Architecture for Embedded Systems [21].

Abstract. Convolutional Neural Networks (CNNs) suffer from energy-
hungry implementation due to their computation and memory intensive
processing patterns. This problem is even more significant by the proliferation
of CNNs on embedded platforms. To overcome this problem, we offer
NeuroPower as an automatic framework that designs a highly optimized
and energy efficient set of CNN architectures for embedded systems. Neu-
roPower explores and prunes the design space to find improved set of neural
architectures. Toward this aim, a multi-objective optimization strategy is in-
tegrated to solve Neural Architecture Search (NAS) problem by near-optimal
tuning network hyperparameters. The main objectives of the optimization
algorithm are network accuracy and number of parameters in the network.
The evaluation results show the effectiveness of NeuroPower on energy con-
sumption, compacting rate and inference time compared to other cutting-edge
approaches. In comparison with the best results on CIFAR-10/CIFAR-100
datasets, a generated network by NeuroPower presents up to 2.1x/1.56x
compression rate, 1.59x/3.46x speedup and 1.52x/1.82x power saving while
loses 2.4%/-0.6% accuracy, respectively.

Personal Contribution. I am the initiator, the main driver and the author
of all parts in this paper. Mr. Ali Zoljodi helped me in preparing the results

2.2 Overview of the Included Papers 23

of network pruning algorithm and the other co-authors have contributed with
valuable discussion and reviews.

2.2.3 Paper C

DeepMaker: A multi-objective optimization framework for deep neural
networks in embedded systems [22].

Abstract. Deep Neural Networks (DNNs) are compute-intensive learning
models with growing applicability in a wide range of domains. Due to their
computational complexity, DNNs demand implementations that utilize custom
hardware accelerators to meet performance and response time as well as
classification accuracy constraints. In this paper, DeepMaker framework is
proposed, which aims to automatically design a highly robust DNN archi-
tecture for embedded devices as the closest processing unit to the sensors.
DeepMaker explores and prunes the design space to find improved neural
architectures. Our proposed framework takes advantage of a multi-objective
evolutionary approach, which exploits a pruned design space inspired by a
dense architecture. Unlike recent works that mainly have tried to generate
highly accurate networks, DeepMaker also considers the network size factor
as the second objective to build a highly optimized network fitting with limited
computational resource budgets while delivers comparable accuracy level.
In comparison with the best result on CIFAR-10 and CIFAR-100 dataset,
a generated network by DeepMaker presents up to 26.4 compression rate
while loses only 4% accuracy. In addition, DeepMaker maps the generated
CNN on the commodity programmable devices including ARM Processor,
High-Performance CPU, GPU, and FPGA.

Personal contribution: I am the initiator, the main driver and the author
of all parts in this paper. Mr. Ali Zoljodi helped me in preparing the results
of network pruning algorithm. Ms. Sima Sinaei helped me with a nice review
and reorganizing the presentation structure of the paper.

2.2 Overview of the Included Papers 23

of network pruning algorithm and the other co-authors have contributed with
valuable discussion and reviews.

2.2.3 Paper C

DeepMaker: A multi-objective optimization framework for deep neural
networks in embedded systems [22].

Abstract. Deep Neural Networks (DNNs) are compute-intensive learning
models with growing applicability in a wide range of domains. Due to their
computational complexity, DNNs demand implementations that utilize custom
hardware accelerators to meet performance and response time as well as
classification accuracy constraints. In this paper, DeepMaker framework is
proposed, which aims to automatically design a highly robust DNN archi-
tecture for embedded devices as the closest processing unit to the sensors.
DeepMaker explores and prunes the design space to find improved neural
architectures. Our proposed framework takes advantage of a multi-objective
evolutionary approach, which exploits a pruned design space inspired by a
dense architecture. Unlike recent works that mainly have tried to generate
highly accurate networks, DeepMaker also considers the network size factor
as the second objective to build a highly optimized network fitting with limited
computational resource budgets while delivers comparable accuracy level.
In comparison with the best result on CIFAR-10 and CIFAR-100 dataset,
a generated network by DeepMaker presents up to 26.4 compression rate
while loses only 4% accuracy. In addition, DeepMaker maps the generated
CNN on the commodity programmable devices including ARM Processor,
High-Performance CPU, GPU, and FPGA.

Personal contribution: I am the initiator, the main driver and the author
of all parts in this paper. Mr. Ali Zoljodi helped me in preparing the results
of network pruning algorithm. Ms. Sima Sinaei helped me with a nice review
and reorganizing the presentation structure of the paper.

24 Chapter 2. Research Contribution

2.2.4 Paper D

TOT-Net: An Endeavour Toward Optimizing Ternary Neural Net-

works [24].

Abstract. High computation demands and big memory resources are the
major implementation challenges of Convolutional Neural Networks (CNNs)
especially for low-power and resource-limited embedded devices. Many bina-
rized neural networks are recently proposed to address these issues. Although
they have significantly decreased computation and memory-footprint, they
have suffered from accuracy loss especially for large datasets. In this paper,
we propose TOT-Net, a ternarized neural network with [-1, 0, 1] values for
both weights and activation functions that has simultaneously achieved a
higher level of accuracy and less computational load. In fact, first, TOT-Net
introduces a simple bitwise logic for convolution computations to reduce
the cost of multiply operations. To improve the accuracy, selecting proper
activation function and learning rate are influential, but also difficult. As the
second contribution, we propose a novel piece-wise activation function, and
optimized learning rate for different datasets. Our findings first reveal that
0.01 is a preferable learning rate for the studied datasets. Third, by using an
evolutionary optimization approach, we found novel piece-wise activation
functions customized for TOT-Net. According to the experimental results,
TOT-Net achieves 2.15%, 8.77%, and 5.7/5.52% better accuracy compared to
XNOR-Net on CIFAR-10, CIFAR-100, and ImageNet top-5/top-1 datasets,
respectively.

Personal Contribution. Ms. Najme Nazari is the initiator and the main
driver in this paper. I have done the optimization part with neuro-evolutionary
method, obtaining the experiments, and also I was responsible for writing
the paper. Other co-authors have contributed with valuable discussion and
reviews.

24 Chapter 2. Research Contribution

2.2.4 Paper D

TOT-Net: An Endeavour Toward Optimizing Ternary Neural Net-

works [24].

Abstract. High computation demands and big memory resources are the
major implementation challenges of Convolutional Neural Networks (CNNs)
especially for low-power and resource-limited embedded devices. Many bina-
rized neural networks are recently proposed to address these issues. Although
they have significantly decreased computation and memory-footprint, they
have suffered from accuracy loss especially for large datasets. In this paper,
we propose TOT-Net, a ternarized neural network with [-1, 0, 1] values for
both weights and activation functions that has simultaneously achieved a
higher level of accuracy and less computational load. In fact, first, TOT-Net
introduces a simple bitwise logic for convolution computations to reduce
the cost of multiply operations. To improve the accuracy, selecting proper
activation function and learning rate are influential, but also difficult. As the
second contribution, we propose a novel piece-wise activation function, and
optimized learning rate for different datasets. Our findings first reveal that
0.01 is a preferable learning rate for the studied datasets. Third, by using an
evolutionary optimization approach, we found novel piece-wise activation
functions customized for TOT-Net. According to the experimental results,
TOT-Net achieves 2.15%, 8.77%, and 5.7/5.52% better accuracy compared to
XNOR-Net on CIFAR-10, CIFAR-100, and ImageNet top-5/top-1 datasets,
respectively.

Personal Contribution. Ms. Najme Nazari is the initiator and the main
driver in this paper. I have done the optimization part with neuro-evolutionary
method, obtaining the experiments, and also I was responsible for writing
the paper. Other co-authors have contributed with valuable discussion and
reviews.

2.2 Overview of the Included Papers 25

2.2.5 Paper E

DenseDisp: Resource-Aware Disparity Map Estimation by Compressing

Siamese Neural Architecture [23].

Abstract. Stereo vision cameras are flexible sensors due to providing
heterogeneous information such as color, luminance, disparity map (depth),
and shape of the objects. Today, Convolutional Neural Networks (CNNs)
present the highest accuracy for the disparity map estimation [49]. How-
ever, CNNs require considerable computing capacity to process billions of
floating-point operations in a real-time fashion. Besides, commercial stereo
cameras produce huge size images (e.g., 10 Megapixels [20]), which impose
a new computational cost to the system. The problem will be pronounced if
we target resource-limited hardware for the implementation. In this paper, we
propose DenseDisp, an automatic framework that designs a Siamese neural
architecture for disparity map estimation in a reasonable time. DenseDisp
leverages a meta-heuristic multi-objective exploration to discover hardware-
friendly architectures by considering accuracy and network FLOPS as the
optimization objectives. We explore the design space with four different fitness
functions to improve the accuracy-FLOPS trade-off and convergency time of
the DenseDisp. According to the experimental results, DenseDisp provides up
to 39.1x compression rate while losing around 5% accuracy compared to the
state-of-the-art results.

Personal Contribution. I am the initiator, the main driver and the author
of all parts in this paper. I also did the experiments. Dr. Amin Majd helped
me in designing optimization fitness function and the other co-authors have
contributed with valuable reviews.

2.2.6 Mapping Contributions to Subgoals

Mapping of the research subgoals to the contributed papers are shown in Ta-
ble 2.1.

2.2 Overview of the Included Papers 25

2.2.5 Paper E

DenseDisp: Resource-Aware Disparity Map Estimation by Compressing

Siamese Neural Architecture [23].

Abstract. Stereo vision cameras are flexible sensors due to providing
heterogeneous information such as color, luminance, disparity map (depth),
and shape of the objects. Today, Convolutional Neural Networks (CNNs)
present the highest accuracy for the disparity map estimation [49]. How-
ever, CNNs require considerable computing capacity to process billions of
floating-point operations in a real-time fashion. Besides, commercial stereo
cameras produce huge size images (e.g., 10 Megapixels [20]), which impose
a new computational cost to the system. The problem will be pronounced if
we target resource-limited hardware for the implementation. In this paper, we
propose DenseDisp, an automatic framework that designs a Siamese neural
architecture for disparity map estimation in a reasonable time. DenseDisp
leverages a meta-heuristic multi-objective exploration to discover hardware-
friendly architectures by considering accuracy and network FLOPS as the
optimization objectives. We explore the design space with four different fitness
functions to improve the accuracy-FLOPS trade-off and convergency time of
the DenseDisp. According to the experimental results, DenseDisp provides up
to 39.1x compression rate while losing around 5% accuracy compared to the
state-of-the-art results.

Personal Contribution. I am the initiator, the main driver and the author
of all parts in this paper. I also did the experiments. Dr. Amin Majd helped
me in designing optimization fitness function and the other co-authors have
contributed with valuable reviews.

2.2.6 Mapping Contributions to Subgoals

Mapping of the research subgoals to the contributed papers are shown in Ta-
ble 2.1.

26 Chapter 2. Research Contribution

Table 2.1: Mapping of the research goals to the contributions.

subgoal 1 subgoal 2 subgoal 3 subgoal 4

Paper A � �
Paper B � � �
Paper C � � �
Paper D � �
Paper E � �

26 Chapter 2. Research Contribution

Table 2.1: Mapping of the research goals to the contributions.

subgoal 1 subgoal 2 subgoal 3 subgoal 4

Paper A � �
Paper B � � �
Paper C � � �
Paper D � �
Paper E � �

Chapter 3

Background and Related

Work

In this chapter, we first discuss Deep Learning, in particular Convolutional
Neural Networks (CNNs) and the role of them in different applications. Next,
we present the fundamental of evolutionary optimization. Finally, we review
the related work relevant to the contributions of the thesis.

3.1 Deep Learning

Learning is a task that humans are able to perform very well in most of the
circumstances, but is difficult for computers to accomplish. Machine learn-
ing is the field devoted to the study how computers can learn and/or improve
their performance that is of gaining knowledge, making predictions, making
intelligent decisions or recognizing complex patterns from a set of data.

Deep Neural Networks (DNNs), aka Deep Learning, are a subset of ma-
chine learning algorithms which are proposed to classify multilevel input data.
Recently, DNNs spurred interest in many learning tasks such as pattern recog-
nition [50], image processing [51], image classification [52], speech processing
[53], Natural language processing [54], and signal processing [55]. Advantages
of DNNs against traditional machine learning techniques include that they re-
quire less domain knowledge for the problem they are trying to solve. In addi-

27

Chapter 3

Background and Related

Work

In this chapter, we first discuss Deep Learning, in particular Convolutional
Neural Networks (CNNs) and the role of them in different applications. Next,
we present the fundamental of evolutionary optimization. Finally, we review
the related work relevant to the contributions of the thesis.

3.1 Deep Learning

Learning is a task that humans are able to perform very well in most of the
circumstances, but is difficult for computers to accomplish. Machine learn-
ing is the field devoted to the study how computers can learn and/or improve
their performance that is of gaining knowledge, making predictions, making
intelligent decisions or recognizing complex patterns from a set of data.

Deep Neural Networks (DNNs), aka Deep Learning, are a subset of ma-
chine learning algorithms which are proposed to classify multilevel input data.
Recently, DNNs spurred interest in many learning tasks such as pattern recog-
nition [50], image processing [51], image classification [52], speech processing
[53], Natural language processing [54], and signal processing [55]. Advantages
of DNNs against traditional machine learning techniques include that they re-
quire less domain knowledge for the problem they are trying to solve. In addi-

27

28 Chapter 3. Background and Related Work

tion, DNNs easily scale because accuracy improvement usually is achievable
either by augmenting the training dataset and/or the complexity of the network
architecture. Shallow learning models such as decision trees and Support Vec-
tor Machines (SVMs) are inefficient for many modern applications; meaning
that they require a large number of computations during training/inference,
large number of observations for achieving generalizability, and imposing sig-
nificant human labour to specify prior knowledge in the model [52].

In the rest of this section, we briefly present the theory behind neural net-
works. Afterwards, we introduce convolutional neural network as the target
optimization task in this thesis.

3.1.1 Theory behind Neural Networks

Neural Network (NN), so-called Multi-layer Perceptron (MLP), is constructed
by artificial neuron(s) grouped in one or more layers. Figure 3.1 pictures the
functionality of an artificial neuron. An artificial neuron consists of input val-
ues, weights, a bias, and activation function. Each layer is either a input layer,
hidden layer or output layer, where the hidden layer(s) extracts features of in-
put data in order to produce the final output (see Figure 3.2.a). In general, the
different layers of a MLP have different number of neurons. Regarding the
functionality of artificial neurons, the input is multiplied to the weight, then
added with the bias, which produces the the activation function input. To-
gether the summation and activation function represent the transfer function
defining the neuron output. Hence the characteristics of the NN are defined by
the transfer function [56].

F

b

Input Outputw

Transfer Function

NI

Figure 3.1: Structure of an artificial neuron, where w represents the weight, b the bias,
NI the activation function input, and F the activation function.

28 Chapter 3. Background and Related Work

tion, DNNs easily scale because accuracy improvement usually is achievable
either by augmenting the training dataset and/or the complexity of the network
architecture. Shallow learning models such as decision trees and Support Vec-
tor Machines (SVMs) are inefficient for many modern applications; meaning
that they require a large number of computations during training/inference,
large number of observations for achieving generalizability, and imposing sig-
nificant human labour to specify prior knowledge in the model [52].

In the rest of this section, we briefly present the theory behind neural net-
works. Afterwards, we introduce convolutional neural network as the target
optimization task in this thesis.

3.1.1 Theory behind Neural Networks

Neural Network (NN), so-called Multi-layer Perceptron (MLP), is constructed
by artificial neuron(s) grouped in one or more layers. Figure 3.1 pictures the
functionality of an artificial neuron. An artificial neuron consists of input val-
ues, weights, a bias, and activation function. Each layer is either a input layer,
hidden layer or output layer, where the hidden layer(s) extracts features of in-
put data in order to produce the final output (see Figure 3.2.a). In general, the
different layers of a MLP have different number of neurons. Regarding the
functionality of artificial neurons, the input is multiplied to the weight, then
added with the bias, which produces the the activation function input. To-
gether the summation and activation function represent the transfer function
defining the neuron output. Hence the characteristics of the NN are defined by
the transfer function [56].

F

b

Input Outputw

Transfer Function

NI

Figure 3.1: Structure of an artificial neuron, where w represents the weight, b the bias,
NI the activation function input, and F the activation function.

3.1 Deep Learning 29

Transfer Function

As we mentioned in Section 3.1.1, the summation and activation function com-
poses the transfer function. According to [57], the activation functions are cate-
gorized in three classes, activation by inner product, distance, or a combination
of both. Activation by inner product, also known as weighted activation, is
commonly used technique that establishes the base of sigmoidal transfer func-
tions. The base of Gaussian transfer functions is activation by distance defined
as the euclidean distance between the input vectors and a reference. The neural
network layers or artificial neurons are not required to utilize the same activa-
tion functions [58].

With that said, the proper selection of network activation functions signifi-
cantly influences on the performance of NNs. There are some frequently used
activation functions which concepts are presented in following [24, 59].

Sigmoidal activation function. It is a non-linear function which are re-
peatedly used in subsequent layers, affecting the output according to Equa-
tion 3.1. The function transforms the input to a value between zero and one,
with the hard indications tendency. In other words, output is more likely to be
a high value or a low value rather than a middle value.

F (n) =
1

1 + e−n
(3.1)

However, the main disadvantage of this approach is not responding to input
values close to the function endpoints causing the vanishing gradients problem.
The problem determines whether the neuron activates or not leading to slow
down the learning process [56, 60].

Tanh activation function. Tanh is a scaled version of the sigmoidal activa-
tion functions. Therefore it inherits sigmoidal properties such as non-linearity.
Tanh transforms the input value between minus one to one by using Equa-
tion 3.2.

F (n) =
2

1 + e−2n
− 1 (3.2)

Tanh suffers from the vanishing gradients problem due to the same reason
as sigmoid. The main distinction between the two is their sensitivity to the
input data. Tanh is more sensitive than sigmoid since it has sharper derivative
[60].

Relu. [61] It is a popular non-linear activation function. The output of
Relu produces i as output if i is positive and zero as output if i is negative

3.1 Deep Learning 29

Transfer Function

As we mentioned in Section 3.1.1, the summation and activation function com-
poses the transfer function. According to [57], the activation functions are cate-
gorized in three classes, activation by inner product, distance, or a combination
of both. Activation by inner product, also known as weighted activation, is
commonly used technique that establishes the base of sigmoidal transfer func-
tions. The base of Gaussian transfer functions is activation by distance defined
as the euclidean distance between the input vectors and a reference. The neural
network layers or artificial neurons are not required to utilize the same activa-
tion functions [58].

With that said, the proper selection of network activation functions signifi-
cantly influences on the performance of NNs. There are some frequently used
activation functions which concepts are presented in following [24, 59].

Sigmoidal activation function. It is a non-linear function which are re-
peatedly used in subsequent layers, affecting the output according to Equa-
tion 3.1. The function transforms the input to a value between zero and one,
with the hard indications tendency. In other words, output is more likely to be
a high value or a low value rather than a middle value.

F (n) =
1

1 + e−n
(3.1)

However, the main disadvantage of this approach is not responding to input
values close to the function endpoints causing the vanishing gradients problem.
The problem determines whether the neuron activates or not leading to slow
down the learning process [56, 60].

Tanh activation function. Tanh is a scaled version of the sigmoidal activa-
tion functions. Therefore it inherits sigmoidal properties such as non-linearity.
Tanh transforms the input value between minus one to one by using Equa-
tion 3.2.

F (n) =
2

1 + e−2n
− 1 (3.2)

Tanh suffers from the vanishing gradients problem due to the same reason
as sigmoid. The main distinction between the two is their sensitivity to the
input data. Tanh is more sensitive than sigmoid since it has sharper derivative
[60].

Relu. [61] It is a popular non-linear activation function. The output of
Relu produces i as output if i is positive and zero as output if i is negative

30 Chapter 3. Background and Related Work

(Equation 3.3). Opposed to Tanh, the output of Relu is not shielded by the
function which allows the output to be in the range of zero to infinity.

F (n) = max(0, n) (3.3)

Due to not activating neurons when the input value is negative has with
both benefits and drawbacks. Although less activated neurons are Superior for
increasing efficiency in deep networks, it gives birth to a negative phenomenon
named dying Relu. This phenomenon is the result of a zero gradient, which
happens when the input of neuron is repeatedly a negative value causing the
neuron to stop learning. leaky Relu [62] is a variation of Relu that attempts to
avoid a zero gradient by multiplying the 0.01 value to the Relu negative inputs
for minimizing sensitivity to the dying ReLU problem [60].

Neural Network Training

A dataset represents the prospective environment as well as required objects of
interest to train the NN. The dataset is initially divided into two sets, train and
test. The train data is divided into sets of training and validation. In general,
it is optional how to divide the dataset to these three sets. Hagan et al. [56]
propose to consider 70% for training, 15% for validation, and the remaining
15% for test. In some scenarios when we deal with huge datasets, we can
consider 90% for training, 5% for validation, and the remaining 5% for test.
NNs update initial weights which are usually selected at random based on the
error made from the training dataset. The backpropagation algorithm alters
the network weights in every epoch in order to recognize the optimal weights.
Epoch is one iteration of the entire training dataset. For most of the time, the
dataset is too large to be able to be processed by the hardware platforms at once.
Thus one epoch is divided into batches or mini-batches [63]. The training will
performed repeatedly until the model is deemed sufficient, or the learning is
stopped [64, 65].

Performance Generalization

The performance of the NN is the model’s ability to generalize, which is evalu-
ated by measuring how the model performs on unseen data. To provide a robust
model, increasing the generalization performance is critical. However, the gen-
eralization performance is affected by presence of errors, such as interpolation

30 Chapter 3. Background and Related Work

(Equation 3.3). Opposed to Tanh, the output of Relu is not shielded by the
function which allows the output to be in the range of zero to infinity.

F (n) = max(0, n) (3.3)

Due to not activating neurons when the input value is negative has with
both benefits and drawbacks. Although less activated neurons are Superior for
increasing efficiency in deep networks, it gives birth to a negative phenomenon
named dying Relu. This phenomenon is the result of a zero gradient, which
happens when the input of neuron is repeatedly a negative value causing the
neuron to stop learning. leaky Relu [62] is a variation of Relu that attempts to
avoid a zero gradient by multiplying the 0.01 value to the Relu negative inputs
for minimizing sensitivity to the dying ReLU problem [60].

Neural Network Training

A dataset represents the prospective environment as well as required objects of
interest to train the NN. The dataset is initially divided into two sets, train and
test. The train data is divided into sets of training and validation. In general,
it is optional how to divide the dataset to these three sets. Hagan et al. [56]
propose to consider 70% for training, 15% for validation, and the remaining
15% for test. In some scenarios when we deal with huge datasets, we can
consider 90% for training, 5% for validation, and the remaining 5% for test.
NNs update initial weights which are usually selected at random based on the
error made from the training dataset. The backpropagation algorithm alters
the network weights in every epoch in order to recognize the optimal weights.
Epoch is one iteration of the entire training dataset. For most of the time, the
dataset is too large to be able to be processed by the hardware platforms at once.
Thus one epoch is divided into batches or mini-batches [63]. The training will
performed repeatedly until the model is deemed sufficient, or the learning is
stopped [64, 65].

Performance Generalization

The performance of the NN is the model’s ability to generalize, which is evalu-
ated by measuring how the model performs on unseen data. To provide a robust
model, increasing the generalization performance is critical. However, the gen-
eralization performance is affected by presence of errors, such as interpolation

3.1 Deep Learning 31

and extrapolation errors [56]. Interpolation errors, known as overfitting, occurs
when the prediction accuracy is high for the training dataset, and arbitrary ex-
posed to a new dataset [66, 67, 56]. Extrapolation error, known as underfitting,
happens due to a lack of variations in the training dataset. Underfitting causes
low prediction accuracy [67, 56]. The concept of methods that can be directly
applied to prevent the overfitting and underfitting problems are described be-
low.

Dropout regularization. Dropout is a technique used during the NN train-
ing to prevent the over-fitting problem. Dropout removes neurons randomly
during training to take samples from different narrowed down architectures.
Figure 3.2 shows the difference between a network leveraging dropout at train-
ing time and a network that does not. The amount of neurons to drop is deter-
mined by the retain probability p. It is recommended to select a high p value for
input layers and convolutional layers, while others get a standard probability
of 0.5 [68, 69].

Batch normalization. Normalization is applied for each mini-batch in
order to address the internal co-variance shift problem. This technique nor-
malize the input to decrease the required training time that results in producing
a non-deterministic output. Therefore, the effect or necessity of applying the
dropout regularization technique may decrease when applying batch normal-
ization [70].

Transfer learning. The main aim of transfer learning is to reduce the time
of finding the optimal NN weights. Transfer learning reuses knowledge from
a pre-trained model on a new task. The method may decrease the number of
required training epochs [71].

Pre-training. In order to decrease the training error, we train a network on
a dataset before re-training and fine-tuning the same NN on another dataset.
This technique improves the generalization performance for smaller datasets,
while large datasets reap more generalization benefits [72].

3.1.2 Convolutional Neural Network

In recent years, several deep learning models have been proposed to improve
the accuracy of different learning tasks. Convolutional Neural Network (CNN)
is one of the most popular deep learning architectures attained the state-of-the-
art results in many application domains, especially in computer vision tasks

3.1 Deep Learning 31

and extrapolation errors [56]. Interpolation errors, known as overfitting, occurs
when the prediction accuracy is high for the training dataset, and arbitrary ex-
posed to a new dataset [66, 67, 56]. Extrapolation error, known as underfitting,
happens due to a lack of variations in the training dataset. Underfitting causes
low prediction accuracy [67, 56]. The concept of methods that can be directly
applied to prevent the overfitting and underfitting problems are described be-
low.

Dropout regularization. Dropout is a technique used during the NN train-
ing to prevent the over-fitting problem. Dropout removes neurons randomly
during training to take samples from different narrowed down architectures.
Figure 3.2 shows the difference between a network leveraging dropout at train-
ing time and a network that does not. The amount of neurons to drop is deter-
mined by the retain probability p. It is recommended to select a high p value for
input layers and convolutional layers, while others get a standard probability
of 0.5 [68, 69].

Batch normalization. Normalization is applied for each mini-batch in
order to address the internal co-variance shift problem. This technique nor-
malize the input to decrease the required training time that results in producing
a non-deterministic output. Therefore, the effect or necessity of applying the
dropout regularization technique may decrease when applying batch normal-
ization [70].

Transfer learning. The main aim of transfer learning is to reduce the time
of finding the optimal NN weights. Transfer learning reuses knowledge from
a pre-trained model on a new task. The method may decrease the number of
required training epochs [71].

Pre-training. In order to decrease the training error, we train a network on
a dataset before re-training and fine-tuning the same NN on another dataset.
This technique improves the generalization performance for smaller datasets,
while large datasets reap more generalization benefits [72].

3.1.2 Convolutional Neural Network

In recent years, several deep learning models have been proposed to improve
the accuracy of different learning tasks. Convolutional Neural Network (CNN)
is one of the most popular deep learning architectures attained the state-of-the-
art results in many application domains, especially in computer vision tasks

32 Chapter 3. Background and Related Work

(a)

(b)

Figure 3.2: Illustrating a) an example of a NN architecture, and b) the same NN archi-
tecture during one mini-batch of the dropout regularization.

such as image and video classification, object recognition, and image segmen-
tation [52]. Thus, CNNs have been used in a wide spectrum of platforms from
high-performance workstations to mobile embedded devices.

In general, a CNN consists of multiple back-to-back layers connected in a
feed-forward manner. The main layers are including: convolutional layer, nor-
malization layer, pooling layer, and fully-connected layer. The convolutional
layer is the principal layer of CNNs which extracts high-level abstraction of its
inputs called feature map by using various filters. Equation 8.1 demonstrates

32 Chapter 3. Background and Related Work

(a)

(b)

Figure 3.2: Illustrating a) an example of a NN architecture, and b) the same NN archi-
tecture during one mini-batch of the dropout regularization.

such as image and video classification, object recognition, and image segmen-
tation [52]. Thus, CNNs have been used in a wide spectrum of platforms from
high-performance workstations to mobile embedded devices.

In general, a CNN consists of multiple back-to-back layers connected in a
feed-forward manner. The main layers are including: convolutional layer, nor-
malization layer, pooling layer, and fully-connected layer. The convolutional
layer is the principal layer of CNNs which extracts high-level abstraction of its
inputs called feature map by using various filters. Equation 8.1 demonstrates

3.2 Evolutionary Optimization 33

the operation of a 3D convolutional layer that convolves the inputs via a filter
W ∈ RC×X×Y for each feature map where C, X and Y are the number of
input channels and spatial dimensions of the filter, respectively. It is obvious
that a lot of multiply and accumulate (MAC) operations are required to just
obtain one point of the output feature map.

conv3D = fact(

C−1∑
k=0

X−1∑
i=0

Y−1∑
j=0

I [k] [X − i] [Y − j]×W [k] [i] [j]) (3.4)

Where conv3D, I and W are the output feature maps, input feature maps,
and k×k weight filters, respectively. Pooling layers perform down-sampling on
data to decrease the amount of computation. Usually, in CNNs, pooling layers
such as max pooling and average pooling are used after some convolutional
layers. As demonstrated by their names, max pooling selects the maximum
feature map and mean pooling computes the average of feature maps in the
pooling window. Mostly, after distinguishing high-level abstraction features,
fully-connected layers are applied to the CNN to classify images. A significant
portion of computations, over 90%, are performed in the convolutional layers
where fully-connected layers are mainly memory-bound [37]. In Fig. 3.3, a
general architecture of the convolutional neural network is illustrated.

Input
Fully connected layers

Output Layer

Cat

Dog

Figure 3.3: The general architecture of CNN.

3.2 Evolutionary Optimization

Optimization algorithms can be divided into 2 categories: heuristic and meta-
heuristic methods. Heuristic algorithms are problem dependent and are often

3.2 Evolutionary Optimization 33

the operation of a 3D convolutional layer that convolves the inputs via a filter
W ∈ RC×X×Y for each feature map where C, X and Y are the number of
input channels and spatial dimensions of the filter, respectively. It is obvious
that a lot of multiply and accumulate (MAC) operations are required to just
obtain one point of the output feature map.

conv3D = fact(

C−1∑
k=0

X−1∑
i=0

Y−1∑
j=0

I [k] [X − i] [Y − j]×W [k] [i] [j]) (3.4)

Where conv3D, I and W are the output feature maps, input feature maps,
and k×k weight filters, respectively. Pooling layers perform down-sampling on
data to decrease the amount of computation. Usually, in CNNs, pooling layers
such as max pooling and average pooling are used after some convolutional
layers. As demonstrated by their names, max pooling selects the maximum
feature map and mean pooling computes the average of feature maps in the
pooling window. Mostly, after distinguishing high-level abstraction features,
fully-connected layers are applied to the CNN to classify images. A significant
portion of computations, over 90%, are performed in the convolutional layers
where fully-connected layers are mainly memory-bound [37]. In Fig. 3.3, a
general architecture of the convolutional neural network is illustrated.

Input
Fully connected layers

Output Layer

Cat

Dog

Figure 3.3: The general architecture of CNN.

3.2 Evolutionary Optimization

Optimization algorithms can be divided into 2 categories: heuristic and meta-
heuristic methods. Heuristic algorithms are problem dependent and are often

34 Chapter 3. Background and Related Work

greedy and prone to get stuck in local optima, failing to obtain the global op-
timum or even a near-optimal solution. Metaheuristic methods such as tabu
search, simulated annealing, and genetic or memetic algorithms are problem-
independent techniques or frameworks that improve performance of a heuristic
search by allowing more thorough exploration of the search space and avoiding
local optimum traps [73].

Computability is a significant challenge especially in NP-hard problems;
there are no guarantees that such problems can be solved in a satisfactory man-
ner in a limited time. Several techniques have been proposed to improve solv-
ing of NP-hard problems. Among these, evolutionary computing (EC) methods
are the most prominent and popular. The EC methods are useful for solving
various kinds of problems. For instance, well-known genetic algorithms (GA)
are very suitable for discrete problems. They are population-based search
methods that mimic the process of natural selection and evolution, as some
characteristics of this process can be utilized in optimization problems. Sim-
ulated Annealing (SA) is another population-based evolutionary method that
mimics the flocking behavior of birds when they migrate from a place to an-
other [73].

In the rest of this section, we present two popular EC methods including
GA, multi-objective GA, and SA which are used as the main search methods
in this thesis.

3.2.1 Genetic Algorithm

GA is an iterative population-based exploration solution mimicking the process
of natural selection and evolution where the characteristics of the process can
be utilized in solving optimization problems. All GA-based methods have an
initial population where selection, crossover, mutation operators are applied
to initial population for producing improved population. The operations will
be repeated until satisfying user criteria (reaching suitable results) or stopping
after a predefined number of iterations. The following subsections explain the
basic components of GA.
Step 1. Generating Initial Population.

The initial population includes random solutions in the design space, where
each solution represented by chromosome is a solution for all the jobs. The size
of initial population depends on the size of design space. To check the validity

34 Chapter 3. Background and Related Work

greedy and prone to get stuck in local optima, failing to obtain the global op-
timum or even a near-optimal solution. Metaheuristic methods such as tabu
search, simulated annealing, and genetic or memetic algorithms are problem-
independent techniques or frameworks that improve performance of a heuristic
search by allowing more thorough exploration of the search space and avoiding
local optimum traps [73].

Computability is a significant challenge especially in NP-hard problems;
there are no guarantees that such problems can be solved in a satisfactory man-
ner in a limited time. Several techniques have been proposed to improve solv-
ing of NP-hard problems. Among these, evolutionary computing (EC) methods
are the most prominent and popular. The EC methods are useful for solving
various kinds of problems. For instance, well-known genetic algorithms (GA)
are very suitable for discrete problems. They are population-based search
methods that mimic the process of natural selection and evolution, as some
characteristics of this process can be utilized in optimization problems. Sim-
ulated Annealing (SA) is another population-based evolutionary method that
mimics the flocking behavior of birds when they migrate from a place to an-
other [73].

In the rest of this section, we present two popular EC methods including
GA, multi-objective GA, and SA which are used as the main search methods
in this thesis.

3.2.1 Genetic Algorithm

GA is an iterative population-based exploration solution mimicking the process
of natural selection and evolution where the characteristics of the process can
be utilized in solving optimization problems. All GA-based methods have an
initial population where selection, crossover, mutation operators are applied
to initial population for producing improved population. The operations will
be repeated until satisfying user criteria (reaching suitable results) or stopping
after a predefined number of iterations. The following subsections explain the
basic components of GA.
Step 1. Generating Initial Population.

The initial population includes random solutions in the design space, where
each solution represented by chromosome is a solution for all the jobs. The size
of initial population depends on the size of design space. To check the validity

3.2 Evolutionary Optimization 35

of solutions in the initial population, each solution is examined by using the
fitness function. Invalid solutions will be removed from the population.
Step 2. Fitness Evaluation. Objective function (fitness function) is a metric
for comparing different solutions that satisfy problem constraints.
Step 3. Selection. Obviously the solutions with better fitness function are
selected as the next generation and the others will be removed from population
set. The goal is to find a solution in design space with lowest or highest fitness
function.
Step 4. Crossover Operator. Is the most important operator of GA. GA
randomly selects two genomes from the population set based on a certain
crossover rate. Then two genome strings exchange parts of their corresponding
chromosomes to create two new genomes.
Step 5. Mutation Operator. The main goal of mutation operator is to increase
genetic diversity. Mutation alters one gene value (assigned processor to task) in
a chromosome string from its initial state. The solution may be better or even
worst solution by using mutation. Mutation forces GA to get rid of local op-
tima. For doing mutation, we need to randomly select one gene in chromosome
and modify its assigned value to a new valid number.

After each cycle of selection, crossover and mutation, the newly generated
set of solutions is called as new generation. All the generations are evalu-
ated based on the fitness function to determine if they represent a good enough
solution to satisfy the fitness function. This determines if the GA can stop
searching, or if otherwise, for the GA to continue searching until the prede-
fined stopping criteria is met. The stopping criteria could be the number of
generations, or evolution time, or fitness threshold, or fitness convergence, or
population convergence. Algorithm 1 represent the Pseudocode of the GA.

3.2.2 Simulated Annealing (SA)

SA iteratively explores for a solution with fewer exploration objective value.
Similar to the fitness function in genetic algorithm, exploration objective de-
scribes the optimality of a solution. If a reduction in exploration objective
is found, the current solution is replaced with the new generated neighbour,
otherwise the current solution is maintained. To avoid becoming trapped in a
local optimum, SA sometimes accepts a bad solution which increases the value
of exploration objective. The acceptance or rejection of a bad solution is de-

3.2 Evolutionary Optimization 35

of solutions in the initial population, each solution is examined by using the
fitness function. Invalid solutions will be removed from the population.
Step 2. Fitness Evaluation. Objective function (fitness function) is a metric
for comparing different solutions that satisfy problem constraints.
Step 3. Selection. Obviously the solutions with better fitness function are
selected as the next generation and the others will be removed from population
set. The goal is to find a solution in design space with lowest or highest fitness
function.
Step 4. Crossover Operator. Is the most important operator of GA. GA
randomly selects two genomes from the population set based on a certain
crossover rate. Then two genome strings exchange parts of their corresponding
chromosomes to create two new genomes.
Step 5. Mutation Operator. The main goal of mutation operator is to increase
genetic diversity. Mutation alters one gene value (assigned processor to task) in
a chromosome string from its initial state. The solution may be better or even
worst solution by using mutation. Mutation forces GA to get rid of local op-
tima. For doing mutation, we need to randomly select one gene in chromosome
and modify its assigned value to a new valid number.

After each cycle of selection, crossover and mutation, the newly generated
set of solutions is called as new generation. All the generations are evalu-
ated based on the fitness function to determine if they represent a good enough
solution to satisfy the fitness function. This determines if the GA can stop
searching, or if otherwise, for the GA to continue searching until the prede-
fined stopping criteria is met. The stopping criteria could be the number of
generations, or evolution time, or fitness threshold, or fitness convergence, or
population convergence. Algorithm 1 represent the Pseudocode of the GA.

3.2.2 Simulated Annealing (SA)

SA iteratively explores for a solution with fewer exploration objective value.
Similar to the fitness function in genetic algorithm, exploration objective de-
scribes the optimality of a solution. If a reduction in exploration objective
is found, the current solution is replaced with the new generated neighbour,
otherwise the current solution is maintained. To avoid becoming trapped in a
local optimum, SA sometimes accepts a bad solution which increases the value
of exploration objective. The acceptance or rejection of a bad solution is de-

36 Chapter 3. Background and Related Work

Algorithm 1 Pseudo-Code of the Genetic Algorithm (GA)

Input: Exploration space.
Result: Final set of optimized solutions.
GA Function (Input):

t := 0;
initialize (P (t = 0))
evaluate (P (t = 0))
while termination criterion is not satisfied do

Pchild(t) :=crossover (P (t))
Mutation (Pchild(t));
evaluate (Pchild(t))
P (t+ 1) := selection (Pchild(t), P (t))
t += 1;

end while

return solution with maximum fitness

pendent on a sequence of random numbers with a controlled probability. The
acceptance probability is set to exp(−Δ/(k × T)) where T is the controlling
parameter. T is the temperature inspired by the physical annealing process
which is decreased logarithmic based on the predefined maximum and mini-
mum temperatures (TMax and TMin). Thus, SA starts with a high value of T
(TMax) for preventing being prematurely trapped in a local optimum. Most up-
hill moves will be rejected by approaching T toward TMin. SA proceeds until
no further improvements can be found or it will be terminated after a certain
amount of iterations. Although SA theoretically may fail to find an optimal so-
lution for a given budget, the experimental results demonstrate that it succeeds
to find a near-optimal solution. Algorithm 2 represent the Pseudocode of the
SA.

36 Chapter 3. Background and Related Work

Algorithm 1 Pseudo-Code of the Genetic Algorithm (GA)

Input: Exploration space.
Result: Final set of optimized solutions.
GA Function (Input):

t := 0;
initialize (P (t = 0))
evaluate (P (t = 0))
while termination criterion is not satisfied do

Pchild(t) :=crossover (P (t))
Mutation (Pchild(t));
evaluate (Pchild(t))
P (t+ 1) := selection (Pchild(t), P (t))
t += 1;

end while

return solution with maximum fitness

pendent on a sequence of random numbers with a controlled probability. The
acceptance probability is set to exp(−Δ/(k × T)) where T is the controlling
parameter. T is the temperature inspired by the physical annealing process
which is decreased logarithmic based on the predefined maximum and mini-
mum temperatures (TMax and TMin). Thus, SA starts with a high value of T
(TMax) for preventing being prematurely trapped in a local optimum. Most up-
hill moves will be rejected by approaching T toward TMin. SA proceeds until
no further improvements can be found or it will be terminated after a certain
amount of iterations. Although SA theoretically may fail to find an optimal so-
lution for a given budget, the experimental results demonstrate that it succeeds
to find a near-optimal solution. Algorithm 2 represent the Pseudocode of the
SA.

3.3 Related Work 37

Algorithm 2 Pseudo-Code of the Simulated Annealing (SA)

Input: Exploration space.
Result: Final optimized solution.
SA Function (Input):

j := random initial solution;
Initialize Boltzmann’s constant k, reduction factor c, and temperature T

TFactor := −log(TMax/TMin);

Step := 0;
while termination criterion is not satisfied do

Step += 1;
j′ := Mutate(j);
if Energy(j′) < Energy(j) then

j := j′;
else

random r(0, 1)

Δ := Energy(j′)− Energy(j);

if r < exp(−Δ/(k × T)) then

j := j′;
end if

end if

T := TMax × exp(TFactor × (Step/StepTotal));

end while

return j

3.3 Related Work

In this section, we review the most significant recent related papers in the area
of automatic design of CNN architectures and CNN Quantization techniques,
respectively.

3.3.1 Automatic Design of CNN Architecture

To enable more accurate learning results, selecting the architectural parame-
ters of CNNs are crucial since the network architecture strongly affects the
inference time, memory-footprint, the accuracy level, and the network gener-

3.3 Related Work 37

Algorithm 2 Pseudo-Code of the Simulated Annealing (SA)

Input: Exploration space.
Result: Final optimized solution.
SA Function (Input):

j := random initial solution;
Initialize Boltzmann’s constant k, reduction factor c, and temperature T

TFactor := −log(TMax/TMin);

Step := 0;
while termination criterion is not satisfied do

Step += 1;
j′ := Mutate(j);
if Energy(j′) < Energy(j) then

j := j′;
else

random r(0, 1)

Δ := Energy(j′)− Energy(j);

if r < exp(−Δ/(k × T)) then

j := j′;
end if

end if

T := TMax × exp(TFactor × (Step/StepTotal));

end while

return j

3.3 Related Work

In this section, we review the most significant recent related papers in the area
of automatic design of CNN architectures and CNN Quantization techniques,
respectively.

3.3.1 Automatic Design of CNN Architecture

To enable more accurate learning results, selecting the architectural parame-
ters of CNNs are crucial since the network architecture strongly affects the
inference time, memory-footprint, the accuracy level, and the network gener-

38 Chapter 3. Background and Related Work

alization proficiency. However, the hand-crafted designing of CNN parameters
is overwhelming due to requiring a lot of trial-and-error and deep expertise
since the design space is huge. Therefore, an automatic method for design-
ing CNN architectures has emerged as a significant alternative for decreasing
efficiency risk and design cost. There are different automated neural optimiza-
tion approaches, including random search, Bayesian optimization, RL, neuro-
evolutionary methods. Using random search is challenging due to extremely
random sampling in the search space [26], while Bayesian-based methods suf-
fer from immense computational cost, suitable only for searching architectures
with a fixed-length space and focuses on low-dimensional continuous problems
[37]. RL-based methods are mainly slow and require considerable computa-
tional resources in both exploration and training steps [26, 37]. Evolutionary
algorithms are feasible solutions for optimizing the neural architecture due to
exploring improved design space without any prior assumptions. [74] proposed
two new activation functions, ELiSH and HardELiSH, for tiny-ImageNet by
leveraging an evolutionary method. In this paper, we use a similar strategy to
optimize the ternary activation functions.

3.3.2 Neural Network Quantization

Generally, binarized neural networks (BNNs) suffer from the accuracy loss, es-
pecially for large datasets. [75] tried to address this issue for BNNs by propos-
ing an efficient training strategy. Some works such as [76] and [77] applied
reduced precisions to reduce memory storage and computation. However, they
still require computation-intensive MAC operations to perform the convolu-
tional operations, hence, suffer from heavy operations. Bit Fusion [16] demon-
strated that 8 bits and less than it is enough for weights and activations in a wide
range of CNNs, especially for small datasets. [78] uses bit widths less than 6
bits for quantization and achieves good accuracy compared to the full precision
CNNs. LQ-Nets [17] applies proper quantization bits by a learnable quan-
tizer and ReLeQ [18] automates DNN quantization based on a Reinforcement
Learning (RL) algorithm, respectively. Ristretto [79] as a CNN approximation
framework allows experimental exploration to trade between the classification
accuracy and the bit-width of weights and activations. Ristretto also concludes
that 8-bit dynamic fixed-point operations are appropriate for large-scale image
classifications such as ImageNet.

38 Chapter 3. Background and Related Work

alization proficiency. However, the hand-crafted designing of CNN parameters
is overwhelming due to requiring a lot of trial-and-error and deep expertise
since the design space is huge. Therefore, an automatic method for design-
ing CNN architectures has emerged as a significant alternative for decreasing
efficiency risk and design cost. There are different automated neural optimiza-
tion approaches, including random search, Bayesian optimization, RL, neuro-
evolutionary methods. Using random search is challenging due to extremely
random sampling in the search space [26], while Bayesian-based methods suf-
fer from immense computational cost, suitable only for searching architectures
with a fixed-length space and focuses on low-dimensional continuous problems
[37]. RL-based methods are mainly slow and require considerable computa-
tional resources in both exploration and training steps [26, 37]. Evolutionary
algorithms are feasible solutions for optimizing the neural architecture due to
exploring improved design space without any prior assumptions. [74] proposed
two new activation functions, ELiSH and HardELiSH, for tiny-ImageNet by
leveraging an evolutionary method. In this paper, we use a similar strategy to
optimize the ternary activation functions.

3.3.2 Neural Network Quantization

Generally, binarized neural networks (BNNs) suffer from the accuracy loss, es-
pecially for large datasets. [75] tried to address this issue for BNNs by propos-
ing an efficient training strategy. Some works such as [76] and [77] applied
reduced precisions to reduce memory storage and computation. However, they
still require computation-intensive MAC operations to perform the convolu-
tional operations, hence, suffer from heavy operations. Bit Fusion [16] demon-
strated that 8 bits and less than it is enough for weights and activations in a wide
range of CNNs, especially for small datasets. [78] uses bit widths less than 6
bits for quantization and achieves good accuracy compared to the full precision
CNNs. LQ-Nets [17] applies proper quantization bits by a learnable quan-
tizer and ReLeQ [18] automates DNN quantization based on a Reinforcement
Learning (RL) algorithm, respectively. Ristretto [79] as a CNN approximation
framework allows experimental exploration to trade between the classification
accuracy and the bit-width of weights and activations. Ristretto also concludes
that 8-bit dynamic fixed-point operations are appropriate for large-scale image
classifications such as ImageNet.

3.3 Related Work 39

Some recent researches [80, 81, 82] surpass quantized neural networks and
have aggressively reduced precision even till 1 bit. BinaryConnect [82] elimi-
nates multiplication in the forward pass by substituting full precision weights
with -1 and 1 values. Ternary weight network [83] achieves more accuracy
by applying ternary weights -1, 0, 1. Also, it adds sparsity to network, hence,
it is more energy-efficient than binary connect. [84] presents Sparse Ternary
Connect (STC) which reduces computation complexity by raising sparsity, and
just leads less than 0.5% accuracy loss. Binarized neural network [80] bina-
rizes both activations and weights and substitutes computation-intensive MAC
operations with XNOR-bitcount operations. Therefore, the computations are
drastically reduced, and also memory-footprint has been intensely decreased.
XNOR-Net [81] achievesachieves more accuracy compared to BNN by using
scaling factors for both activations and weights. TBN [85] proposes using
ternary activations and binary weights, and hence, attains more accuracy for
the ImageNet dataset compared to XNOR-Net. Since binarized neural net-
works can meet the embedded device constraints, hardware implementation of
BNN has recently gotten more attention. XNOR Neural Engine [9] and BRein
[86] are two samples in this area.

3.3 Related Work 39

Some recent researches [80, 81, 82] surpass quantized neural networks and
have aggressively reduced precision even till 1 bit. BinaryConnect [82] elimi-
nates multiplication in the forward pass by substituting full precision weights
with -1 and 1 values. Ternary weight network [83] achieves more accuracy
by applying ternary weights -1, 0, 1. Also, it adds sparsity to network, hence,
it is more energy-efficient than binary connect. [84] presents Sparse Ternary
Connect (STC) which reduces computation complexity by raising sparsity, and
just leads less than 0.5% accuracy loss. Binarized neural network [80] bina-
rizes both activations and weights and substitutes computation-intensive MAC
operations with XNOR-bitcount operations. Therefore, the computations are
drastically reduced, and also memory-footprint has been intensely decreased.
XNOR-Net [81] achievesachieves more accuracy compared to BNN by using
scaling factors for both activations and weights. TBN [85] proposes using
ternary activations and binary weights, and hence, attains more accuracy for
the ImageNet dataset compared to XNOR-Net. Since binarized neural net-
works can meet the embedded device constraints, hardware implementation of
BNN has recently gotten more attention. XNOR Neural Engine [9] and BRein
[86] are two samples in this area.

Chapter 4

Discussion, Conclusion and

Future Work

In this chapter, we discuss our experimental results and conclude the thesis.
Finally, we present a list of potential future research directions.

4.1 Discussion and Conclusion

According to the literature review, we identified room for developing Neural
Architecture Search (NAS), in particular multi-objective NAS to help tackle the
challenges of deploying a large-scale CNN on embedded mobile platforms.

NAS is a powerful tool to accomplish the intended aims in this area.
Nonetheless, there is not a well-detailed solution which gives the maximum
accuracy for any unseen task. In other words, many NAS specifications such
as fitness function, design space operations, and termination condition depend
on the task under study and on the user’s constraints. In addition, most of the
NAS methods try to improve network accuracy, while they do not consider the
network complexity. Finally, the other artifacts such as system for running the
NAS algorithm, which usually is a high-performance system, might not be
accessible all the time. Network quantization, as the second utilized technique
in our studies, is a popular technique for reducing the computational cost and
memory footprint of CNNs. Despite providing remarkable computing cost

41

Chapter 4

Discussion, Conclusion and

Future Work

In this chapter, we discuss our experimental results and conclude the thesis.
Finally, we present a list of potential future research directions.

4.1 Discussion and Conclusion

According to the literature review, we identified room for developing Neural
Architecture Search (NAS), in particular multi-objective NAS to help tackle the
challenges of deploying a large-scale CNN on embedded mobile platforms.

NAS is a powerful tool to accomplish the intended aims in this area.
Nonetheless, there is not a well-detailed solution which gives the maximum
accuracy for any unseen task. In other words, many NAS specifications such
as fitness function, design space operations, and termination condition depend
on the task under study and on the user’s constraints. In addition, most of the
NAS methods try to improve network accuracy, while they do not consider the
network complexity. Finally, the other artifacts such as system for running the
NAS algorithm, which usually is a high-performance system, might not be
accessible all the time. Network quantization, as the second utilized technique
in our studies, is a popular technique for reducing the computational cost and
memory footprint of CNNs. Despite providing remarkable computing cost

41

42 Chapter 4. Discussion, Conclusion and Future Work

alleviation, quantization techniques suffer from huge accuracy loss.
Thesis Storyline. In this Section, we present the storyline of included pub-

lications.

• To our knowledge, ADONN [37] is the first framework aiming to reduce
network inference time by compressing the size of architecture at de-
sign time. ADONN considers network parameters as the second search
objective to balance accuracy and inference time trade-off.

• Next, we proposed NeuroPower framework [21] as the extension of
ADONN idea in Paper B. NeuroPower leverages PAES-II as the search
engine which finds more diverse architectures compared to NSGA-II
utilized in the ADONN. In addition, we consider accuracy and the en-
ergy consumption of the network as the search objectives. NeuroPower
provides superior results in comparison with ADONN.

• In Paper A, we decided to use a Matrix search space to improve the diver-
sity and flexibility of solutions by finding non-symmetric architectures.
We used Cuckoo algorithm as the search engine. Compared to two prior
studies, Paper A searches in a huge discrete macro search space with
more diverse solutions.

• DeepMaker is a template-based search engine that try to improve the
ADONN quality of results by extending the range of hyper-parameters
(Paper C). Furthermore, we utilized genetic algorithm in order to per-
form layer-wised activation tweaking. Finally, we compared the impact
of network pruning and on a dense architecture designed by DeepMaker
to check if we could achieve further compression rate.

• Paper D proposes TOT-Net framework which is a solution for ternariz-
ing CNNs with [-1, 0, 1] values for both weights and activation functions.
Then, TOT-Net introduces a simple bit-wise logic for convolutional lay-
ers to reduce the cost of multiply operations. To improve the accuracy,
TOT-Net proposes a novel piece-wise activation function, and optimized
learning rate for different datasets.

• Finally, DenseDisp tries to reduce huge neural search cost over complex
datasets by leveraging multi-objective Simulated Annealing (SA) to dis-

42 Chapter 4. Discussion, Conclusion and Future Work

alleviation, quantization techniques suffer from huge accuracy loss.
Thesis Storyline. In this Section, we present the storyline of included pub-

lications.

• To our knowledge, ADONN [37] is the first framework aiming to reduce
network inference time by compressing the size of architecture at de-
sign time. ADONN considers network parameters as the second search
objective to balance accuracy and inference time trade-off.

• Next, we proposed NeuroPower framework [21] as the extension of
ADONN idea in Paper B. NeuroPower leverages PAES-II as the search
engine which finds more diverse architectures compared to NSGA-II
utilized in the ADONN. In addition, we consider accuracy and the en-
ergy consumption of the network as the search objectives. NeuroPower
provides superior results in comparison with ADONN.

• In Paper A, we decided to use a Matrix search space to improve the diver-
sity and flexibility of solutions by finding non-symmetric architectures.
We used Cuckoo algorithm as the search engine. Compared to two prior
studies, Paper A searches in a huge discrete macro search space with
more diverse solutions.

• DeepMaker is a template-based search engine that try to improve the
ADONN quality of results by extending the range of hyper-parameters
(Paper C). Furthermore, we utilized genetic algorithm in order to per-
form layer-wised activation tweaking. Finally, we compared the impact
of network pruning and on a dense architecture designed by DeepMaker
to check if we could achieve further compression rate.

• Paper D proposes TOT-Net framework which is a solution for ternariz-
ing CNNs with [-1, 0, 1] values for both weights and activation functions.
Then, TOT-Net introduces a simple bit-wise logic for convolutional lay-
ers to reduce the cost of multiply operations. To improve the accuracy,
TOT-Net proposes a novel piece-wise activation function, and optimized
learning rate for different datasets.

• Finally, DenseDisp tries to reduce huge neural search cost over complex
datasets by leveraging multi-objective Simulated Annealing (SA) to dis-

4.1 Discussion and Conclusion 43

cover hardware-friendly architectures (Paper E). SA is a fast and cost-
efficient meta-heuristic search method. The main reason of DenseDisp’s
performance is the single solution based nature of SA. Although SA is
quick search engine, it is sensitive to annealing parameter and its fitness
function. The main contribution of DenseDisp is proposing an improved
SA fitness function.

Regarding the involved issues in deploying CNNs on embedded platforms
using NAS and quantization, a summary of the achievements is concluded as
follows:

Performance Evaluation. To evaluate our proposed methods, we consider
four popular classification datasets including MNIST [87], CIFAR-10 [33],
CIFAR-100 [33], and ImageNet [34]. Plus, we consider to optimize CNN
architecture for complex depth estimation task trained on KITTI 2015 [88].
We aim to present our top results compared to other cutting-edge architectures
on different datasets. Table 4.1 present the performance efficiency of our pro-
posed methods compared to other NAS approaches. According to the exper-
imental results, DeepMaker strikes better balance between network accuracy
and network complexity compare to RL and neuro-evolutionary strategies and
hand-crafted designs.

Ternary neural networks provide high compression rate which makes them
suitable for low-power embedded platforms. However, there is still a gap be-
tween the accuracy of state-of-the-art TNNs and the accuracy of full-precision
networks. TOT-Net (Paper D) proposes ternarization on both weights and ac-
tivation functions with significantly accuracy improvement [24]. In fact, we
propose a simple bitwise logic (XOR and AND gates) instead of computation-
intensive traditional multiplications with 16× memory efficiency compared to
full-precision networks. According to the results, TOT-Net provides 1.8%,
7.5%, and 5.7% more accuracy compared to XNOR-Net for AlexNet archi-
tecture on CIFAR-10, CIFAR-100, and ImageNet datasets, respectively (Ta-
ble 4.2).

4.1 Discussion and Conclusion 43

cover hardware-friendly architectures (Paper E). SA is a fast and cost-
efficient meta-heuristic search method. The main reason of DenseDisp’s
performance is the single solution based nature of SA. Although SA is
quick search engine, it is sensitive to annealing parameter and its fitness
function. The main contribution of DenseDisp is proposing an improved
SA fitness function.

Regarding the involved issues in deploying CNNs on embedded platforms
using NAS and quantization, a summary of the achievements is concluded as
follows:

Performance Evaluation. To evaluate our proposed methods, we consider
four popular classification datasets including MNIST [87], CIFAR-10 [33],
CIFAR-100 [33], and ImageNet [34]. Plus, we consider to optimize CNN
architecture for complex depth estimation task trained on KITTI 2015 [88].
We aim to present our top results compared to other cutting-edge architectures
on different datasets. Table 4.1 present the performance efficiency of our pro-
posed methods compared to other NAS approaches. According to the exper-
imental results, DeepMaker strikes better balance between network accuracy
and network complexity compare to RL and neuro-evolutionary strategies and
hand-crafted designs.

Ternary neural networks provide high compression rate which makes them
suitable for low-power embedded platforms. However, there is still a gap be-
tween the accuracy of state-of-the-art TNNs and the accuracy of full-precision
networks. TOT-Net (Paper D) proposes ternarization on both weights and ac-
tivation functions with significantly accuracy improvement [24]. In fact, we
propose a simple bitwise logic (XOR and AND gates) instead of computation-
intensive traditional multiplications with 16× memory efficiency compared to
full-precision networks. According to the results, TOT-Net provides 1.8%,
7.5%, and 5.7% more accuracy compared to XNOR-Net for AlexNet archi-
tecture on CIFAR-10, CIFAR-100, and ImageNet datasets, respectively (Ta-
ble 4.2).

44 Chapter 4. Discussion, Conclusion and Future Work

Table 4.1: Error rate and compression rate for different studied datasets.

Dataset Search Approach Solutions #Params Error Rate Compression

(×106) (%) Rate*‡
Hand-Crafted Wan et al. [89] - 0.21 -

RL MetaQNN [90] 5.59 0.35 0.023x
MNIST MO2-EC∓ * ADONN-Arch.3 [37] 0.13 0.41 1.0x

MO2-EC M Net 1 (NeuroPower) [21] 0.065 0.71 2x

Hand-Crafted * CondenseNetLight [91] 3.1 3.46 1.0
Hand-Crafted SimpleNet [92] 5.48 4.68 0.53x
Hand-Crafted DenseNet (k=12)-40 [93] 1.0 7.0 3.1x
Hand-Crafted ResNet-20 [94] 0.27 8.75 11.48x
Hand-Crafted ResNet-110 [94] 1.7 6.43 1.82x
Hand-Crafted Gastaldi et al. [95] 26.4 2.86 0.117x

RL Block-QNN-22L [96] 39.8 3.54 0.078x
CIFAR-10 RL MetaQNN [90] 6.92 11.18 0.45x

RL NAS-v1/v3 [97] 4.2/37.4 5.50/3.65 0.7x/0.083x
RL Block-QNN-S [96] 6.1 4.38 0.5x
EC Real et al. [98] 5.4 5.4 0.57x

MO2-EC NSGA-Net [38] 3.3 3.85 0.94x
MO2-EC ADONN-Arch.3 [37] 0.14 14.1 22.14x
MO2-EC Loni et al.[20] 0.56 13.8 5.5x
MO2-EC C10-Net.1 (NeuroPower) [21] 0.065 16.49 47.7x

MO2-EC C10-Net.2 (NeuroPower) [21] 0.21 11.05 14.7x

MO2-EC C10-Net.3 (NeuroPower) [21] 1.0 6.81 3.1x

RL MetaQNN [90] 11.18 27.14 0.28x
RL Block-QNN-S [96] 6.1 20.65 0.5x

Hand-Crafted * CondenseNetLight [91] 3.1 17.55 -
Hand-Crafted DenseNet (k=12)-40 [93] 1.0 27.55 3.1x

CIFAR-100 Hand-Crafted DenseNet (k=12)-100 [93] 7.0 23.79 0.44x
Hand-Crafted SimpleNet [92] 5.48 26.58 0.53x

MO2-EC NSGA-Net [38] 3.3 20.74 0.94x
MO2-EC C100-Net.1(NeuroPower) [21] 1.1 26.63 2.82x

MO2-EC C100-Net.2(NeuroPower) [21] 1.89 24.87 1.64x

RL AutoDispNet-BOHB-C± [99] 37 2.18 1.0x
KITTI 2015 Hand-Crafted Content-CNN [100] 7 4.54 5.28x

Hand-Crafted GA-Net-deep [101] - 1.81 -
MO2-SA DenseDisp [23] 1.03 7.99 35.9x

* The baseline for comparing the compressing rate.
‡ The values more than 1.0 indicate improvement. Best results are in bold.

∓ Multi-objective evolutionary computing (MO2-EC).
± The baseline for comparing the compressing rate.

44 Chapter 4. Discussion, Conclusion and Future Work

Table 4.1: Error rate and compression rate for different studied datasets.

Dataset Search Approach Solutions #Params Error Rate Compression

(×106) (%) Rate*‡
Hand-Crafted Wan et al. [89] - 0.21 -

RL MetaQNN [90] 5.59 0.35 0.023x
MNIST MO2-EC∓ * ADONN-Arch.3 [37] 0.13 0.41 1.0x

MO2-EC M Net 1 (NeuroPower) [21] 0.065 0.71 2x

Hand-Crafted * CondenseNetLight [91] 3.1 3.46 1.0
Hand-Crafted SimpleNet [92] 5.48 4.68 0.53x
Hand-Crafted DenseNet (k=12)-40 [93] 1.0 7.0 3.1x
Hand-Crafted ResNet-20 [94] 0.27 8.75 11.48x
Hand-Crafted ResNet-110 [94] 1.7 6.43 1.82x
Hand-Crafted Gastaldi et al. [95] 26.4 2.86 0.117x

RL Block-QNN-22L [96] 39.8 3.54 0.078x
CIFAR-10 RL MetaQNN [90] 6.92 11.18 0.45x

RL NAS-v1/v3 [97] 4.2/37.4 5.50/3.65 0.7x/0.083x
RL Block-QNN-S [96] 6.1 4.38 0.5x
EC Real et al. [98] 5.4 5.4 0.57x

MO2-EC NSGA-Net [38] 3.3 3.85 0.94x
MO2-EC ADONN-Arch.3 [37] 0.14 14.1 22.14x
MO2-EC Loni et al.[20] 0.56 13.8 5.5x
MO2-EC C10-Net.1 (NeuroPower) [21] 0.065 16.49 47.7x

MO2-EC C10-Net.2 (NeuroPower) [21] 0.21 11.05 14.7x

MO2-EC C10-Net.3 (NeuroPower) [21] 1.0 6.81 3.1x

RL MetaQNN [90] 11.18 27.14 0.28x
RL Block-QNN-S [96] 6.1 20.65 0.5x

Hand-Crafted * CondenseNetLight [91] 3.1 17.55 -
Hand-Crafted DenseNet (k=12)-40 [93] 1.0 27.55 3.1x

CIFAR-100 Hand-Crafted DenseNet (k=12)-100 [93] 7.0 23.79 0.44x
Hand-Crafted SimpleNet [92] 5.48 26.58 0.53x

MO2-EC NSGA-Net [38] 3.3 20.74 0.94x
MO2-EC C100-Net.1(NeuroPower) [21] 1.1 26.63 2.82x

MO2-EC C100-Net.2(NeuroPower) [21] 1.89 24.87 1.64x

RL AutoDispNet-BOHB-C± [99] 37 2.18 1.0x
KITTI 2015 Hand-Crafted Content-CNN [100] 7 4.54 5.28x

Hand-Crafted GA-Net-deep [101] - 1.81 -
MO2-SA DenseDisp [23] 1.03 7.99 35.9x

* The baseline for comparing the compressing rate.
‡ The values more than 1.0 indicate improvement. Best results are in bold.

∓ Multi-objective evolutionary computing (MO2-EC).
± The baseline for comparing the compressing rate.

4.2 Future Work 45

Table 4.2: TOT-Net classification results compared to state-of-the-art quantization
methods.

Method Accuracy %, (Neural Network Architecture)

CIFAR-10 CIFAR-100 ImageNet

Full-Precision [102] 89.67, (NIN) 64.32, (NIN) 80.2/56.6, (AlexNet)†
89.2/69.3, (ResNet-18)†

BC [103] 91.73, (VGG-Net) NA 66.3/43.1, (ResNet-18)†
61/35.4, (AlexNet)

TWN [104] 92.56, (VGG-Net) NA 84.2/61.8, (ResNet-18)†
BNN [105] 89.85, (ConvNet) NA 50.4/27.9, (AlexNet)†

XNOR-Net* [102] 85.74, (NIN) 54.10, (NIN) 62.52/37.47, (AlexNet)*†
73.2/51.2, (ResNet-18)

TNN [106] 87.89, (VGG like) 51.40, (VGG like) NA
TOT-Net [24] 87.53, (NIN) 61.61, (NIN) 68.20/42.99, (AlexNet) *†

* The experiments have been run by us (trained by 20 epochs).
† Presenting both top-5 and top-1 accuracy, respectively.

4.2 Future Work

In the rest of the research journey, we mainly aim to focus on continuous search
spaces due to providing cutting-edge results. In addition, decreasing the search
cost of neuro-evolutionary based search methods is one of our interest. We also
identifies room for some research directions on optimizing the architecture of
time-based classifiers such as Long Short-Term Memory (LSTM). Therefore,
we aim to extend the idea of DeepMaker to support designing optimal archi-
tecture for extracting temporal features. Language translation, speech recog-
nition, and market analysis are among the applications that can benefit from
DeepMaker LSTM optimization functionality.

4.2 Future Work 45

Table 4.2: TOT-Net classification results compared to state-of-the-art quantization
methods.

Method Accuracy %, (Neural Network Architecture)

CIFAR-10 CIFAR-100 ImageNet

Full-Precision [102] 89.67, (NIN) 64.32, (NIN) 80.2/56.6, (AlexNet)†
89.2/69.3, (ResNet-18)†

BC [103] 91.73, (VGG-Net) NA 66.3/43.1, (ResNet-18)†
61/35.4, (AlexNet)

TWN [104] 92.56, (VGG-Net) NA 84.2/61.8, (ResNet-18)†
BNN [105] 89.85, (ConvNet) NA 50.4/27.9, (AlexNet)†

XNOR-Net* [102] 85.74, (NIN) 54.10, (NIN) 62.52/37.47, (AlexNet)*†
73.2/51.2, (ResNet-18)

TNN [106] 87.89, (VGG like) 51.40, (VGG like) NA
TOT-Net [24] 87.53, (NIN) 61.61, (NIN) 68.20/42.99, (AlexNet) *†

* The experiments have been run by us (trained by 20 epochs).
† Presenting both top-5 and top-1 accuracy, respectively.

4.2 Future Work

In the rest of the research journey, we mainly aim to focus on continuous search
spaces due to providing cutting-edge results. In addition, decreasing the search
cost of neuro-evolutionary based search methods is one of our interest. We also
identifies room for some research directions on optimizing the architecture of
time-based classifiers such as Long Short-Term Memory (LSTM). Therefore,
we aim to extend the idea of DeepMaker to support designing optimal archi-
tecture for extracting temporal features. Language translation, speech recog-
nition, and market analysis are among the applications that can benefit from
DeepMaker LSTM optimization functionality.

Bibliography

[1] Hoang Nguyen, Le-Minh Kieu, Tao Wen, and Chen Cai. Deep learning
methods in transportation domain: a review. IET Intelligent Transport
Systems, 12(9):998–1004, 2018.

[2] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the
usages of deep learning for natural language processing. IEEE Transac-
tions on Neural Networks and Learning Systems, 2020.

[3] Zahra Ebrahimi, Mohammad Loni, Masoud Daneshtalab, and Arash
Gharehbaghi. A review on deep learning methods for ecg arrhythmia
classification. Expert Systems with Applications: X, page 100033, 2020.

[4] Mihalj Bakator and Dragica Radosav. Deep learning and medical diag-
nosis: A review of literature. Multimodal Technologies and Interaction,
2(3):47, 2018.

[5] Devashish Shankar, Sujay Narumanchi, HA Ananya, Pramod Kom-
palli, and Krishnendu Chaudhury. Deep learning based large scale
visual recommendation and search for e-commerce. arXiv preprint
arXiv:1703.02344, 2017.

[6] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. Power challenges may end the mul-
ticore era. volume 56, page 93, 2013.

[7] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh.
From high-level deep neural models to fpgas. In The 49th Annual

47

Bibliography

[1] Hoang Nguyen, Le-Minh Kieu, Tao Wen, and Chen Cai. Deep learning
methods in transportation domain: a review. IET Intelligent Transport
Systems, 12(9):998–1004, 2018.

[2] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the
usages of deep learning for natural language processing. IEEE Transac-
tions on Neural Networks and Learning Systems, 2020.

[3] Zahra Ebrahimi, Mohammad Loni, Masoud Daneshtalab, and Arash
Gharehbaghi. A review on deep learning methods for ecg arrhythmia
classification. Expert Systems with Applications: X, page 100033, 2020.

[4] Mihalj Bakator and Dragica Radosav. Deep learning and medical diag-
nosis: A review of literature. Multimodal Technologies and Interaction,
2(3):47, 2018.

[5] Devashish Shankar, Sujay Narumanchi, HA Ananya, Pramod Kom-
palli, and Krishnendu Chaudhury. Deep learning based large scale
visual recommendation and search for e-commerce. arXiv preprint
arXiv:1703.02344, 2017.

[6] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. Power challenges may end the mul-
ticore era. volume 56, page 93, 2013.

[7] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh.
From high-level deep neural models to fpgas. In The 49th Annual

47

48 Bibliography

IEEE/ACM International Symposium on Microarchitecture, page 17.
IEEE Press, 2016.

[8] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architec-
ture for energy-efficient dataflow for convolutional neural networks. In
ACM SIGARCH Computer Architecture News, volume 44, pages 367–
379. IEEE Press, 2016.

[9] Francesco Conti, Pasquale Davide Schiavone, and Luca Benini. Xnor
neural engine: A hardware accelerator ip for 21.6-fj/op binary neural
network inference. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2940–2951, 2018.

[10] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances in
neural information processing systems, pages 1135–1143, 2015.

[11] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[12] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-
efficient convolutional neural networks using energy-aware pruning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5687–5695, 2017.

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. Densely connected convolutional networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
4700–4708, 2017.

[14] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv
preprint arXiv:1312.4400, 2013.

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

48 Bibliography

IEEE/ACM International Symposium on Microarchitecture, page 17.
IEEE Press, 2016.

[8] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architec-
ture for energy-efficient dataflow for convolutional neural networks. In
ACM SIGARCH Computer Architecture News, volume 44, pages 367–
379. IEEE Press, 2016.

[9] Francesco Conti, Pasquale Davide Schiavone, and Luca Benini. Xnor
neural engine: A hardware accelerator ip for 21.6-fj/op binary neural
network inference. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2940–2951, 2018.

[10] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances in
neural information processing systems, pages 1135–1143, 2015.

[11] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[12] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-
efficient convolutional neural networks using energy-aware pruning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5687–5695, 2017.

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. Densely connected convolutional networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
4700–4708, 2017.

[14] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv
preprint arXiv:1312.4400, 2013.

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Bibliography 49

[16] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson
Chau, Vikas Chandra, and Hadi Esmaeilzadeh. Bit fusion: Bit-level
dynamically composable architecture for accelerating deep neural net-
works. In Proceedings of the 45th Annual International Symposium on
Computer Architecture, pages 764–775. IEEE Press, 2018.

[17] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-
nets: Learned quantization for highly accurate and compact deep neural
networks. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 365–382, 2018.

[18] Amir Yazdanbakhsh, Ahmed T Elthakeb, Prannoy Pilligundla, and Fate-
mehSadat Mireshghallah Hadi Esmaeilzadeh. Releq: An automatic re-
inforcement learning approach for deep quantization of neural networks.
arXiv preprint arXiv:1811.01704, 2018.

[19] Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. Gxnor-
net: Training deep neural networks with ternary weights and activations
without full-precision memory under a unified discretization framework.
Neural Networks, 100:49–58, 2018.

[20] Mohammad Loni, Amin Majd, Abdolah Loni, Masoud Daneshtalab,
Mikael Sjödin, and Elena Troubitsyna. Designing compact convolu-
tional neural network for embedded stereo vision systems. In 2018
IEEE 12th International Symposium on Embedded Multicore/Many-
core Systems-on-Chip (MCSoC), pages 244–251. IEEE, 2018.

[21] Mohammad Loni, Ali Zoljodi, Sima Sinaei, Masoud Daneshtalab, and
Mikael Sjödin. Neuropower: Designing energy efficient convolutional
neural network architecture for embedded systems. In International
Conference on Artificial Neural Networks, pages 208–222. Springer,
2019.

[22] Mohammad Loni, Sima Sinaei, Ali Zoljodi, Masoud Daneshtalab, and
Mikael Sjödin. Deepmaker: A multi-objective optimization framework
for deep neural networks in embedded systems. Microprocessors and
Microsystems, 73:102989, 2020.

Bibliography 49

[16] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson
Chau, Vikas Chandra, and Hadi Esmaeilzadeh. Bit fusion: Bit-level
dynamically composable architecture for accelerating deep neural net-
works. In Proceedings of the 45th Annual International Symposium on
Computer Architecture, pages 764–775. IEEE Press, 2018.

[17] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-
nets: Learned quantization for highly accurate and compact deep neural
networks. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 365–382, 2018.

[18] Amir Yazdanbakhsh, Ahmed T Elthakeb, Prannoy Pilligundla, and Fate-
mehSadat Mireshghallah Hadi Esmaeilzadeh. Releq: An automatic re-
inforcement learning approach for deep quantization of neural networks.
arXiv preprint arXiv:1811.01704, 2018.

[19] Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. Gxnor-
net: Training deep neural networks with ternary weights and activations
without full-precision memory under a unified discretization framework.
Neural Networks, 100:49–58, 2018.

[20] Mohammad Loni, Amin Majd, Abdolah Loni, Masoud Daneshtalab,
Mikael Sjödin, and Elena Troubitsyna. Designing compact convolu-
tional neural network for embedded stereo vision systems. In 2018
IEEE 12th International Symposium on Embedded Multicore/Many-
core Systems-on-Chip (MCSoC), pages 244–251. IEEE, 2018.

[21] Mohammad Loni, Ali Zoljodi, Sima Sinaei, Masoud Daneshtalab, and
Mikael Sjödin. Neuropower: Designing energy efficient convolutional
neural network architecture for embedded systems. In International
Conference on Artificial Neural Networks, pages 208–222. Springer,
2019.

[22] Mohammad Loni, Sima Sinaei, Ali Zoljodi, Masoud Daneshtalab, and
Mikael Sjödin. Deepmaker: A multi-objective optimization framework
for deep neural networks in embedded systems. Microprocessors and
Microsystems, 73:102989, 2020.

50 Bibliography

[23] Mohammad Loni, Ali Zoljodi, Daniel Maier, Amin Majd, Masoud
Daneshtalab, Mikael Sjödin, Ben Juurlink, and Reza Akbari. Densedisp:
Resource-aware disparity map estimation by compressing siamese neu-
ral architecture. In IEEE World Congress On Computational Intelli-
gence (WCCI) 2020, July 2020.

[24] Najmeh Nazari, Mohammad Loni, Mostafa E. Salehi, Masoud Danesh-
talab, and Mikael Sjödin. Tot-net: An endeavour toward optimizing
ternary neural networks. In 2019 22st Euromicro Conference on Digital
System Design (DSD). IEEE, 2019.

[25] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A survey on
neural architecture search. arXiv preprint arXiv:1905.01392, 2019.

[26] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural archi-
tecture search: A survey. arXiv preprint arXiv:1808.05377, 2018.

[27] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in
four gpu hours. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1761–1770, 2019.

[28] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learn-
ing transferable architectures for scalable image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 8697–8710, 2018.

[29] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neu-
ral architecture search on target task and hardware. arXiv preprint
arXiv:1812.00332, 2018.

[30] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural
architecture optimization. In Advances in neural information processing
systems, pages 7816–7827, 2018.

[31] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018.

[32] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Math-
ieu Salzmann. Evaluating the search phase of neural architecture search.
arXiv preprint arXiv:1902.08142, 2019.

50 Bibliography

[23] Mohammad Loni, Ali Zoljodi, Daniel Maier, Amin Majd, Masoud
Daneshtalab, Mikael Sjödin, Ben Juurlink, and Reza Akbari. Densedisp:
Resource-aware disparity map estimation by compressing siamese neu-
ral architecture. In IEEE World Congress On Computational Intelli-
gence (WCCI) 2020, July 2020.

[24] Najmeh Nazari, Mohammad Loni, Mostafa E. Salehi, Masoud Danesh-
talab, and Mikael Sjödin. Tot-net: An endeavour toward optimizing
ternary neural networks. In 2019 22st Euromicro Conference on Digital
System Design (DSD). IEEE, 2019.

[25] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A survey on
neural architecture search. arXiv preprint arXiv:1905.01392, 2019.

[26] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural archi-
tecture search: A survey. arXiv preprint arXiv:1808.05377, 2018.

[27] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in
four gpu hours. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1761–1770, 2019.

[28] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learn-
ing transferable architectures for scalable image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 8697–8710, 2018.

[29] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neu-
ral architecture search on target task and hardware. arXiv preprint
arXiv:1812.00332, 2018.

[30] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural
architecture optimization. In Advances in neural information processing
systems, pages 7816–7827, 2018.

[31] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018.

[32] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Math-
ieu Salzmann. Evaluating the search phase of neural architecture search.
arXiv preprint arXiv:1902.08142, 2019.

Bibliography 51

[33] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10
dataset. online: http://www. cs. toronto. edu/kriz/cifar. html, 55, 2014.

[34] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[35] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regu-
larized evolution for image classifier architecture search. In Proceedings
of the aaai conference on artificial intelligence, volume 33, pages 4780–
4789, 2019.

[36] Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards
automated deep learning: Efficient joint neural architecture and hyper-
parameter search. arXiv preprint arXiv:1807.06906, 2018.

[37] Mohammad Loni, Masoud Daneshtalab, and Mikael Sjödin. Adonn:
Adaptive design of optimized deep neural networks for embedded sys-
tems. In 2018 21st Euromicro Conference on Digital System Design
(DSD), pages 397–404. IEEE, 2018.

[38] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyan-
moy Deb, Erik Goodman, and Wolfgang Banzhaf. Nsga-net: a multi-
objective genetic algorithm for neural architecture search. arXiv preprint
arXiv:1810.03522, 2018.

[39] Bokai Cao, Lei Zheng, Chenwei Zhang, Philip S Yu, Andrea Piscitello,
John Zulueta, Olu Ajilore, Kelly Ryan, and Alex D Leow. Deepmood:
modeling mobile phone typing dynamics for mood detection. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 747–755, 2017.

[40] Lichao Sun, Yuqi Wang, Bokai Cao, S Yu Philip, Witawas Srisa-An, and
Alex D Leow. Sequential keystroke behavioral biometrics for mobile
user identification via multi-view deep learning. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases,
pages 228–240. Springer, 2017.

Bibliography 51

[33] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10
dataset. online: http://www. cs. toronto. edu/kriz/cifar. html, 55, 2014.

[34] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[35] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regu-
larized evolution for image classifier architecture search. In Proceedings
of the aaai conference on artificial intelligence, volume 33, pages 4780–
4789, 2019.

[36] Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards
automated deep learning: Efficient joint neural architecture and hyper-
parameter search. arXiv preprint arXiv:1807.06906, 2018.

[37] Mohammad Loni, Masoud Daneshtalab, and Mikael Sjödin. Adonn:
Adaptive design of optimized deep neural networks for embedded sys-
tems. In 2018 21st Euromicro Conference on Digital System Design
(DSD), pages 397–404. IEEE, 2018.

[38] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyan-
moy Deb, Erik Goodman, and Wolfgang Banzhaf. Nsga-net: a multi-
objective genetic algorithm for neural architecture search. arXiv preprint
arXiv:1810.03522, 2018.

[39] Bokai Cao, Lei Zheng, Chenwei Zhang, Philip S Yu, Andrea Piscitello,
John Zulueta, Olu Ajilore, Kelly Ryan, and Alex D Leow. Deepmood:
modeling mobile phone typing dynamics for mood detection. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 747–755, 2017.

[40] Lichao Sun, Yuqi Wang, Bokai Cao, S Yu Philip, Witawas Srisa-An, and
Alex D Leow. Sequential keystroke behavioral biometrics for mobile
user identification via multi-view deep learning. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases,
pages 228–240. Springer, 2017.

52 Bibliography

[41] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 2961–2969, 2017.

[42] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-
livesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. Deepx: A software
accelerator for low-power deep learning inference on mobile devices.
In 2016 15th ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks (IPSN), pages 1–12. IEEE, 2016.

[43] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori
Togashi. Convolutional neural networks: an overview and application
in radiology. Insights into imaging, 9(4):611–629, 2018.

[44] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
{GAZELLE}: A low latency framework for secure neural network in-
ference. In 27th {USENIX} Security Symposium ({USENIX} Security
18), pages 1651–1669, 2018.

[45] G Dodig-Crnkovic. Scientific methods in computer science:[]/gordana
dodig-crnkovic. In Conference for the Promotion of Research in IT at
New Universities and at University Colleges in Sweden, Skövde, 2002.

[46] Hilary J Holz, Anne Applin, Bruria Haberman, Donald Joyce, Helen
Purchase, and Catherine Reed. Research methods in computing: what
are they, and how should we teach them? ACM SIGCSE Bulletin,
38(4):96–114, 2006.

[47] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-
100 datasets. URl: https://www. cs. toronto. edu/kriz/cifar. html, 6, 2009.

[48] Carl Ahlberg, Fredrik Ekstrand, Mikael Ekstrom, Giacomo Spampinato,
and Lars Asplund. Gimme2-an embedded system for stereo vision and
processing of megapixel images with fpga-acceleration. In 2015 Inter-
national Conference on ReConFigurable Computing and FPGAs (Re-
ConFig), pages 1–8. IEEE, 2015.

[49] S Daniel, S Richard, and H Heiko. Middlebury stereo evaluation-version
3.

52 Bibliography

[41] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 2961–2969, 2017.

[42] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-
livesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. Deepx: A software
accelerator for low-power deep learning inference on mobile devices.
In 2016 15th ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks (IPSN), pages 1–12. IEEE, 2016.

[43] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori
Togashi. Convolutional neural networks: an overview and application
in radiology. Insights into imaging, 9(4):611–629, 2018.

[44] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
{GAZELLE}: A low latency framework for secure neural network in-
ference. In 27th {USENIX} Security Symposium ({USENIX} Security
18), pages 1651–1669, 2018.

[45] G Dodig-Crnkovic. Scientific methods in computer science:[]/gordana
dodig-crnkovic. In Conference for the Promotion of Research in IT at
New Universities and at University Colleges in Sweden, Skövde, 2002.

[46] Hilary J Holz, Anne Applin, Bruria Haberman, Donald Joyce, Helen
Purchase, and Catherine Reed. Research methods in computing: what
are they, and how should we teach them? ACM SIGCSE Bulletin,
38(4):96–114, 2006.

[47] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-
100 datasets. URl: https://www. cs. toronto. edu/kriz/cifar. html, 6, 2009.

[48] Carl Ahlberg, Fredrik Ekstrand, Mikael Ekstrom, Giacomo Spampinato,
and Lars Asplund. Gimme2-an embedded system for stereo vision and
processing of megapixel images with fpga-acceleration. In 2015 Inter-
national Conference on ReConFigurable Computing and FPGAs (Re-
ConFig), pages 1–8. IEEE, 2015.

[49] S Daniel, S Richard, and H Heiko. Middlebury stereo evaluation-version
3.

Bibliography 53

[50] Nasser M Nasrabadi. Pattern recognition and machine learning. Journal
of electronic imaging, 16(4):049901, 2007.

[51] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image processing, anal-
ysis, and machine vision. Cengage Learning, 2014.

[52] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[53] Dong Yu and Li Deng. AUTOMATIC SPEECH RECOGNITION.
Springer, 2016.

[54] Li Deng and Yang Liu. Deep Learning in Natural Language Processing.
Springer, 2018.

[55] Li Deng and Dong Yu. Deep learning for signal and information pro-
cessing. Microsoft Research Monograph, 2013.

[56] Howard B Demuth, Mark H Beale, Orlando De Jess, and Martin T Ha-
gan. Neural network design. Martin Hagan, 2014.

[57] Wlodzislaw Duch and Norbert Jankowski. Survey of neural transfer
functions. Neural Computing Surveys, 2(1):163–212, 1999.

[58] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall. Activation functions: Comparison of trends in practice and
research for deep learning. arXiv preprint arXiv:1811.03378, 2018.

[59] Mina Basirat and Peter M Roth. Learning task-specific activation func-
tions using genetic programming. In VISIGRAPP (5: VISAPP), pages
533–540, 2019.

[60] Avinash Sharma V. Understanding activation functions in neural net-
works, 2017. accessed: 20 May 2020.

[61] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

[62] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier non-
linearities improve neural network acoustic models. In Proc. icml, vol-
ume 30, page 3, 2013.

Bibliography 53

[50] Nasser M Nasrabadi. Pattern recognition and machine learning. Journal
of electronic imaging, 16(4):049901, 2007.

[51] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image processing, anal-
ysis, and machine vision. Cengage Learning, 2014.

[52] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[53] Dong Yu and Li Deng. AUTOMATIC SPEECH RECOGNITION.
Springer, 2016.

[54] Li Deng and Yang Liu. Deep Learning in Natural Language Processing.
Springer, 2018.

[55] Li Deng and Dong Yu. Deep learning for signal and information pro-
cessing. Microsoft Research Monograph, 2013.

[56] Howard B Demuth, Mark H Beale, Orlando De Jess, and Martin T Ha-
gan. Neural network design. Martin Hagan, 2014.

[57] Wlodzislaw Duch and Norbert Jankowski. Survey of neural transfer
functions. Neural Computing Surveys, 2(1):163–212, 1999.

[58] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall. Activation functions: Comparison of trends in practice and
research for deep learning. arXiv preprint arXiv:1811.03378, 2018.

[59] Mina Basirat and Peter M Roth. Learning task-specific activation func-
tions using genetic programming. In VISIGRAPP (5: VISAPP), pages
533–540, 2019.

[60] Avinash Sharma V. Understanding activation functions in neural net-
works, 2017. accessed: 20 May 2020.

[61] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

[62] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier non-
linearities improve neural network acoustic models. In Proc. icml, vol-
ume 30, page 3, 2013.

54 Bibliography

[63] Sagar Sharma. Epoch vs batch size vs iterations, 2017. accessed: 20
May 2020.

[64] J.Brownlee. A gentle introduction to the challenge of training deep
learning neural network models, 2019. accessed: 20 May 2020.

[65] J.Torres. Learning process of a neural network, 2018. accessed: 20 May
2020.

[66] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data
augmentation for deep learning. Journal of Big Data, 6(1):60, 2019.

[67] Haotian Zhang, Lin Zhang, and Yuan Jiang. Overfitting and underfitting
analysis for deep learning based end-to-end communication systems. In
2019 11th International Conference on Wireless Communications and
Signal Processing (WCSP), pages 1–6. IEEE, 2019.

[68] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[69] Sungheon Park and Nojun Kwak. Analysis on the dropout effect in
convolutional neural networks. In Asian conference on computer vision,
pages 189–204. Springer, 2016.

[70] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167, 2015.

[71] Lorien Y Pratt. Discriminability-based transfer between neural net-
works. In Advances in neural information processing systems, pages
204–211, 1993.

[72] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Man-
zagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-
training help deep learning? Journal of Machine Learning Research,
11(Feb):625–660, 2010.

54 Bibliography

[63] Sagar Sharma. Epoch vs batch size vs iterations, 2017. accessed: 20
May 2020.

[64] J.Brownlee. A gentle introduction to the challenge of training deep
learning neural network models, 2019. accessed: 20 May 2020.

[65] J.Torres. Learning process of a neural network, 2018. accessed: 20 May
2020.

[66] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data
augmentation for deep learning. Journal of Big Data, 6(1):60, 2019.

[67] Haotian Zhang, Lin Zhang, and Yuan Jiang. Overfitting and underfitting
analysis for deep learning based end-to-end communication systems. In
2019 11th International Conference on Wireless Communications and
Signal Processing (WCSP), pages 1–6. IEEE, 2019.

[68] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[69] Sungheon Park and Nojun Kwak. Analysis on the dropout effect in
convolutional neural networks. In Asian conference on computer vision,
pages 189–204. Springer, 2016.

[70] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167, 2015.

[71] Lorien Y Pratt. Discriminability-based transfer between neural net-
works. In Advances in neural information processing systems, pages
204–211, 1993.

[72] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Man-
zagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-
training help deep learning? Journal of Machine Learning Research,
11(Feb):625–660, 2010.

Bibliography 55

[73] Amin Majd, Golnaz Sahebi, Masoud Daneshtalab, Juha Plosila,
Shahriar Lotfi, and Hannu Tenhunen. Parallel imperialist competitive
algorithms. Concurrency and Computation: Practice and Experience,
30(7):e4393, 2018.

[74] Mina Basirat and Peter M Roth. The quest for the golden activation
function. arXiv preprint arXiv:1808.00783, 2018.

[75] Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary
neural network with high accuracy? In Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[76] Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, and Sarma Vrudhula.
Scalable and modularized rtl compilation of convolutional neural net-
works onto fpga. In 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 1–8. IEEE, 2016.

[77] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and
Andreas Moshovos. Stripes: Bit-serial deep neural network computing.
In 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–12. IEEE, 2016.

[78] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incre-
mental network quantization: Towards lossless cnns with low-precision
weights. arXiv preprint arXiv:1702.03044, 2017.

[79] Philipp Gysel, Jon Pimentel, Mohammad Motamedi, and Soheil Ghiasi.
Ristretto: A framework for empirical study of resource-efficient infer-
ence in convolutional neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 29(11):5784–5789, 2018.

[80] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. In Advances in neural in-
formation processing systems, pages 4107–4115, 2016.

[81] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In European Conference on Computer Vision, pages
525–542. Springer, 2016.

Bibliography 55

[73] Amin Majd, Golnaz Sahebi, Masoud Daneshtalab, Juha Plosila,
Shahriar Lotfi, and Hannu Tenhunen. Parallel imperialist competitive
algorithms. Concurrency and Computation: Practice and Experience,
30(7):e4393, 2018.

[74] Mina Basirat and Peter M Roth. The quest for the golden activation
function. arXiv preprint arXiv:1808.00783, 2018.

[75] Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary
neural network with high accuracy? In Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[76] Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, and Sarma Vrudhula.
Scalable and modularized rtl compilation of convolutional neural net-
works onto fpga. In 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 1–8. IEEE, 2016.

[77] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and
Andreas Moshovos. Stripes: Bit-serial deep neural network computing.
In 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–12. IEEE, 2016.

[78] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incre-
mental network quantization: Towards lossless cnns with low-precision
weights. arXiv preprint arXiv:1702.03044, 2017.

[79] Philipp Gysel, Jon Pimentel, Mohammad Motamedi, and Soheil Ghiasi.
Ristretto: A framework for empirical study of resource-efficient infer-
ence in convolutional neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 29(11):5784–5789, 2018.

[80] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. In Advances in neural in-
formation processing systems, pages 4107–4115, 2016.

[81] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In European Conference on Computer Vision, pages
525–542. Springer, 2016.

56 Bibliography

[82] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. In Advances in neural information processing systems,
pages 3123–3131, 2015.

[83] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv
preprint arXiv:1605.04711, 2016.

[84] Canran Jin, Heming Sun, and Shinji Kimura. Sparse ternary connect:
Convolutional neural networks using ternarized weights with enhanced
sparsity. In 2018 23rd Asia and South Pacific Design Automation Con-
ference (ASP-DAC), pages 190–195. IEEE, 2018.

[85] Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and
Heng Tao Shen. Tbn: Convolutional neural network with ternary inputs
and binary weights. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 315–332, 2018.

[86] Kota Ando, Kodai Ueyoshi, Kentaro Orimo, Haruyoshi Yonekawa,
Shimpei Sato, Hiroki Nakahara, Shinya Takamaeda-Yamazaki,
Masayuki Ikebe, Tetsuya Asai, Tadahiro Kuroda, et al. Brein mem-
ory: A single-chip binary/ternary reconfigurable in-memory deep neu-
ral network accelerator achieving 1.4 tops at 0.6 w. IEEE Journal of
Solid-State Circuits, 53(4):983–994, 2017.

[87] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist
database of handwritten digits, 1998. URL http://yann. lecun. com/exd-
b/mnist, 10(34):14, 1998.

[88] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint 3d estima-
tion of vehicles and scene flow. In ISPRS Workshop on Image Sequence
Analysis (ISA), 2015.

[89] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus.
Regularization of neural networks using dropconnect. In International
conference on machine learning, pages 1058–1066, 2013.

[90] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Design-
ing neural network architectures using reinforcement learning. arXiv
preprint arXiv:1611.02167, 2016.

56 Bibliography

[82] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. In Advances in neural information processing systems,
pages 3123–3131, 2015.

[83] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv
preprint arXiv:1605.04711, 2016.

[84] Canran Jin, Heming Sun, and Shinji Kimura. Sparse ternary connect:
Convolutional neural networks using ternarized weights with enhanced
sparsity. In 2018 23rd Asia and South Pacific Design Automation Con-
ference (ASP-DAC), pages 190–195. IEEE, 2018.

[85] Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and
Heng Tao Shen. Tbn: Convolutional neural network with ternary inputs
and binary weights. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 315–332, 2018.

[86] Kota Ando, Kodai Ueyoshi, Kentaro Orimo, Haruyoshi Yonekawa,
Shimpei Sato, Hiroki Nakahara, Shinya Takamaeda-Yamazaki,
Masayuki Ikebe, Tetsuya Asai, Tadahiro Kuroda, et al. Brein mem-
ory: A single-chip binary/ternary reconfigurable in-memory deep neu-
ral network accelerator achieving 1.4 tops at 0.6 w. IEEE Journal of
Solid-State Circuits, 53(4):983–994, 2017.

[87] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist
database of handwritten digits, 1998. URL http://yann. lecun. com/exd-
b/mnist, 10(34):14, 1998.

[88] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint 3d estima-
tion of vehicles and scene flow. In ISPRS Workshop on Image Sequence
Analysis (ISA), 2015.

[89] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus.
Regularization of neural networks using dropconnect. In International
conference on machine learning, pages 1058–1066, 2013.

[90] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Design-
ing neural network architectures using reinforcement learning. arXiv
preprint arXiv:1611.02167, 2016.

Bibliography 57

[91] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Wein-
berger. Condensenet: An efficient densenet using learned group con-
volutions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2752–2761, 2018.

[92] Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen Fayyaz, and
Mohammad Sabokrou. Lets keep it simple, using simple architectures
to outperform deeper and more complex architectures. arXiv preprint
arXiv:1608.06037, 2016.

[93] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Wein-
berger. Densely connected convolutional networks. In Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, 2017.

[94] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 770–778, 2016.

[95] Xavier Gastaldi. Shake-shake regularization. arXiv preprint
arXiv:1705.07485, 2017.

[96] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Prac-
tical block-wise neural network architecture generation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2423–2432, 2018.

[97] Barret Zoph and Quoc V Le. Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578, 2016.

[98] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yu-
taka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Kurakin. Large-
scale evolution of image classifiers. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 2902–2911.
JMLR. org, 2017.

[99] Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hutter, and
Thomas Brox. Autodispnet: Improving disparity estimation with au-
toml. arXiv preprint arXiv:1905.07443, 2019.

Bibliography 57

[91] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Wein-
berger. Condensenet: An efficient densenet using learned group con-
volutions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2752–2761, 2018.

[92] Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen Fayyaz, and
Mohammad Sabokrou. Lets keep it simple, using simple architectures
to outperform deeper and more complex architectures. arXiv preprint
arXiv:1608.06037, 2016.

[93] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Wein-
berger. Densely connected convolutional networks. In Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, 2017.

[94] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 770–778, 2016.

[95] Xavier Gastaldi. Shake-shake regularization. arXiv preprint
arXiv:1705.07485, 2017.

[96] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Prac-
tical block-wise neural network architecture generation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2423–2432, 2018.

[97] Barret Zoph and Quoc V Le. Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578, 2016.

[98] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yu-
taka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Kurakin. Large-
scale evolution of image classifiers. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 2902–2911.
JMLR. org, 2017.

[99] Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hutter, and
Thomas Brox. Autodispnet: Improving disparity estimation with au-
toml. arXiv preprint arXiv:1905.07443, 2019.

[100] Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. Efficient deep
learning for stereo matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5695–5703, 2016.

[101] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. Ga-
net: Guided aggregation net for end-to-end stereo matching. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 185–194, 2019.

[102] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In European conference on computer vision, pages
525–542. Springer, 2016.

[103] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. In Advances in neural information processing systems,
pages 3123–3131, 2015.

[104] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv
preprint arXiv:1605.04711, 2016.

[105] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. In Advances in neural in-
formation processing systems, pages 4107–4115, 2016.

[106] Adrien Prost-Boucle Hande Alemdar, Vincent Leroy and Frédéric
Pétrot. Ternary neural networks for resource-efficient ai applications. In
Proceedings of the International Joint Conference on Neural Networks
(IJCNN), pages 2547–2554. IEEE, 2017.

[100] Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. Efficient deep
learning for stereo matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5695–5703, 2016.

[101] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. Ga-
net: Guided aggregation net for end-to-end stereo matching. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 185–194, 2019.

[102] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In European conference on computer vision, pages
525–542. Springer, 2016.

[103] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. In Advances in neural information processing systems,
pages 3123–3131, 2015.

[104] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv
preprint arXiv:1605.04711, 2016.

[105] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. In Advances in neural in-
formation processing systems, pages 4107–4115, 2016.

[106] Adrien Prost-Boucle Hande Alemdar, Vincent Leroy and Frédéric
Pétrot. Ternary neural networks for resource-efficient ai applications. In
Proceedings of the International Joint Conference on Neural Networks
(IJCNN), pages 2547–2554. IEEE, 2017.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 26.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 26.3622
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 26.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 26.3622
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 26.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 26.3622
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 547.09 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309

 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 547.0866
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryList_V1
 qi2base

