
Adaptive Runtime Estimate of Task Execution
Times using Bayesian Modeling

Anna Friebe
Mälardalen University

Västerås, Sweden
anna.friebe@mdh.se

Filip Marković
Mälardalen University

Västerås, Sweden
filip.markovic@mdh.se

Alessandro V. Papadopoulos
Mälardalen University

Västerås, Sweden
alessandro.papadopoulos@mdh.se

Thomas Nolte
Mälardalen University

Västerås, Sweden
thomas.nolte@mdh.se

Abstract—In the recent works that analyzed execution-time
variation of real-time tasks, it was shown that such variation
may conform to regular behavior. This regularity may arise
from multiple sources, e.g., due to periodic changes in hardware
or program state, program structure, inter-task dependence or
inter-task interference. Such complexity can be better captured
by a Markov Model, compared to the common approach of
assuming independent and identically distributed random vari-
ables. However, despite the regularity that may be described
with a Markov model, over time, the execution times may
change, due to irregular changes in input, hardware state, or
program state. In this paper, we propose a Bayesian approach
to adapt the emission distributions of the Markov Model at
runtime, in order to account for such irregular variation. A
preprocessing step determines the number of states and the
transition matrix of the Markov Model from a portion of the
execution time sequence. In the preprocessing step, segments of
the execution time trace with similar properties are identified and
combined into clusters. At runtime, the proposed method switches
between these clusters based on a Generalized Likelihood Ratio
(GLR). Using a Bayesian approach, clusters are updated and
emission distributions estimated. New clusters can be identified
and clusters can be merged at runtime. The time complexity
of the online step is O(Nˆ2 + NC) where N is the number of
states in the Hidden Markov Model (HMM) that is fixed after
the preprocessing step, and C is the number of clusters.

Index Terms—Real-time systems, Hidden Markov Model,
Bayesian Analysis, Probabilistic Timing Analysis

I. INTRODUCTION

The characterization of the execution time of a real-time task
is an important step towards analyzing the schedulability of a
real-time system. The execution-time characterization usually
focuses on the Worst-Case Execution Time (WCET), allowing
for the analysis of hard real-time guarantees (for more details
see [1], [2]). On the other hand, hardware acceleration features,
multi-core systems [3] and complex, interacting tasks, e.g.,
in mixed criticality systems [4], [5], pose several challenges
in achieving tight bounds on the WCET and Worst-Case
Response-Time (WCRT) [2].

In the recent decades, probabilistic approaches have been
proposed in relation to execution time estimates. The main
purpose of the probabilistic approaches is to derive a more
realistic distribution of the execution-time values, lowering

This work was supported by the Swedish Research Council (VR) via
the project “Practical Probabilistic Timing Analysis of Real-Time Systems
(PARIS)”, and by the Knowledge Foundation (KKS) via the project FIESTA.

upon the over-provisioning when one considers the worst-case
values, while still considering Quality of Service (QoS) [6]
or Quality of Control (QoC) [7]. The majority of this work
considers estimating the probabilistic WCET (pWCET) distri-
bution, that upper-bounds the execution time distributions of
all valid scenarios and feasible sequences of repeated program
execution [8]–[10]. Measurement-based techniques based on
Extreme Value Theory (EVT) [11]–[13] require that extreme
values of the execution time distribution are independent and
that the measurements contain samples from the worst case
distribution [14], [15]. As an upper bound, the pWCET may
still be very pessimistic compared to the average execution
time, and compared to the upper bound of the execution time
distributions of scenarios that are valid in a more limited
context of task execution that involves hardware and software
state as well as input.

In some cases the entire distribution may be relevant, and
not only the upper bound based on the distribution’s tail. One
such case is where QoS/ QoC adaptation can be utilized. Tasks
can allow for different QoS/ QoC levels as proposed by Lu
et al. [16]. In a robotic application, the robot’s speed can be
adjusted to allow for a lower frequency control loop. In these
cases, the deadline miss probability can be kept sufficiently
low with task adaptation. This can also relax the requirement
to capture samples from the most extreme conditions in the
analysis stage, provided the adaptation options are satisfactory.

In this paper, we address the problem of runtime estimation
of execution-time distribution, analyzing the execution trace
of a task at runtime. More specifically, in a preprocessing
step, the number of states and the transition matrix of the
Hidden Markov Model (HMM) are derived from a portion of
the execution time sequence. Segments within this sequence
that are similar are identified. Here we use the Generalized
Likelihood Ratio (GLR), a measure for the likelihood that
the segments are generated from the same HMM. Similar
segments are combined into clusters, to form HMMs with
differing emission distributions. At runtime, the algorithm
switches between these HMMs depending on similarity with
the current segment of the execution time trace. New HMMs
can be created and the emission distributions updated. The
complexity of the proposed runtime adaptive algorithm for
the estimation of task distributions is O(N2 + NC) where
N is the number of states in the HMM that is fixed after

1

the preprocessing step, and C is the number of clusters. The
proposed approach has the potential for being used for the
assessment of several real-time system properties, but such an
investigation is beyond the scope of this work.

The remainder of this paper is organized as follows. Related
work is outlined in Section II. In Section III, we describe the
system-model assumptions, along with definitions and mathe-
matical background used in the paper. Then, in Section IV we
describe the derivation of the initial HMM in the preprocessing
step, which is followed by Section V, the description of the
method for online model-parameter adaptation. The evaluation
is described in Section VI, and the paper is concluded in
Section VII.

II. RELATED WORK

Two major surveys on the Probabilistic Timing Analysis [8]
and the Probabilistic Schedulability Analysis [17] of real-time
systems have been conducted by Davis and Cucu-Grosjean,
while a taxonomy and survey on pWCET analysis and associ-
ated methods was provided by Cazorla et al. [10]. We further
describe the state-of the art in measurement-based methods,
where the contributions of this paper fall into.

Measurement-Based Probabilistic Timing Analysis was in-
troduced by Cucu-Grosjean [18], based on previous work
related to the use of Extreme Value Theory (EVT) [11]–[13].
EVT is applied to find the pWCET, an upper bound on the
probability of exceeding each possible execution time value.
Methods based on EVT require that extreme values of the
execution time distribution are independent [14], [15]. EVT-
based techniques have also been applied in order to estimate
upper bounds on response time distributions [19]–[22].

Moving from extreme values, and focusing on estimates of
the full execution time distribution, the distribution of a visual
task in a robotic application has been modeled as a HMM
with discrete emission distributions by Frı́as et al. [23], [24].
HMMs can capture the regularity and dependability in the task
execution, that may arise from different sources, e.g., sensed
input, periodic nature of task interactions, or the algorithms
being used in the tasks.

Friebe et al. [25] proposed an approach to estimate the exe-
cution time distribution using HMMs with Gaussian emission
distributions, and proposed an automatic way of estimating
the number of states in HMM from the execution trace.
The methods from [25] are utilized for HMM fitting in the
preprocessing step.

In all these approaches, the structure of the HMM and the
emission distributions are learned in an offline phase, based
on existing logged data. However, although in the base case
the execution times may be characterized with a Markov
Model, throughout the task’s life cycle the model accuracy
may deteriorate due to different irregularities such as changes
in input, hardware, or program state. If the observations used
for fitting the HMM are not fully representative of the runtime
observations, the model may also be inaccurate. In Frı́as et
al. [24], two separate experiments are performed, for a clean
and a noisy track respectively, and these give rise to two

different Markov Models, with notably different bandwidth
requirements. In order to apply these methods for tasks where
the context affecting the execution time distribution may
change, an adaptive approach is necessary. In this work, we
assume that a preprocessing phase is conducted where the
HMM fitting is performed as in previous work [25], but we
propose a runtime Bayesian adaptation method to continuously
refine the execution time model based on the new observations.

Lu et al. [16] propose a Feedback Control Real-Time
Scheduling (FCS) architecture, including a Monitor, a Con-
troller and a QoS Actuator. An adaptive estimate of the
execution time distribution could allow for the Monitor to
predict the deadline miss probability rather than measuring
the past deadline miss ratio. To the best of our knowledge,
no adaptive runtime estimates of execution time distributions
have previously been proposed.

In the proposed method, segments of the execution time
trace are considered, and the similarity measure is defined
considering the HMM as a whole. An alternative could have
been to consider each execution time sample separately, and
adapt and add states to a single HMM while updating the
transition matrix. This could be be achieved by considering
novelty detection such as in Gruhl et al. [26] in combination
with a HMM update mechanism. We hypothesize that the con-
text affecting a task’s execution time distribution can change
suddenly, and that the task can be affected in a similar way
in several segments during the execution. Therefore we have
chosen to consider execution time segments, and to enable
switching betweeen clusters. In the proposed Bayesian model,
the emission distributions are Gaussian with unknown mean
and precision. An alternative could have been to model the
emission distributions as Gaussian with unknown mean but
fix the precision estimates in the preprocessing step. Due to
the risk of underestimating the variance and thus the tail width,
this option was not chosen.

III. SYSTEM MODEL AND DEFINITIONS

In this section, a task model with irregular execution-time
variability is outlined. A Bayesian model for estimating the
execution-time distribution from observations is described. A
measure of similarity, Generalized Likelihood Ratio (GLR),
for the Bayesian models is presented. This measure is used in
the preprocessing and adaptive steps to determine points where
the execution-time distribution changes, and to find similar
segments of the execution-time trace.

Notation. We denote sequences with parentheses, (), and
sets with braces, {}. The estimate of a quantity x is indicated
in the following as x̂. Table I lists the main symbols used in
the paper.

A. Task model

We consider a periodic task, that generates a sequence of
jobs. The sequence of execution times of the jobs is cs =
(c1, c2, . . . , ct). We assume that the execution-time sequence
cs can be characterized by a Markov model, described by the
set {M,P, C}, where

2

Notation Description
cs = (c1, c2, . . . , ct) Execution-time sequence
N Number of states in the Markov Model
M = {m1,m2, . . . ,mN} Set of Markov states
P N ×N state transition matrix
C = {C1, C2, . . . , CN} Set of execution-time distributions
sj Contiguous segment of cs
{µnj , σ

2
nj} Mean and variance of state mn in segment sj

Sk = {sj , . . .} Cluster, set of segments
γni Occupancy probability of state mn in segment si

â[0]jn
Estimated number of observations in state mn

and segment sj

â[1]jn
Estimated sum of observations in state mn and
segment sj

â[2]jn
Estimated sum of squared observations in state
mn and segment sj

µ̂nk Estimated mean of state n and cluster Sk

ν̂nk Estimated variance of state n and cluster Sk

NG(µ, λ) Normal-Gamma distribution
µ0, κ0, α0, β0 Prior hyperparameters of NG
µL, κL, αL, βL Posterior hyperparameters of NG
D = (x1, . . . , xL) Observation sequence of length L

GLR(Sk, Sl)
Generalized Likelihood Ratio between clusters
Sk and Sl

`k Log-likelihood of cluster Sk

nPseudoObs
Number of pseudo observations in prior construc-
tion

GP(m(x), k(x, x′)) Gaussian process with mean m and kernel k

TABLE I: Important notation used in this work.

• M = {m1,m2, . . . ,mN} is the set of N states, with
mn, n ∈ N.

• P is the N×N state transition matrix, where the element
pa,b represents the conditional probability P(Xi+1 =
mb|Xi = ma) of being in state mb at round i+ 1, given
that at round i the state is ma.

• C = {C1, C2, . . . , CN} is the set of execution-time
distributions, or emission distributions related to respec-
tive state. In this paper, these are modeled as Gaussian
distributions with mean µn, and variance σ2

n, i.e., Cn ∼
N (µn, σ

2
n).

In the sequence cs, we assume that N and P remain
unchanged, but at a finite number of points in the sequence,
referred to as points of cluster change, the parameters {µn, σ2

n}
may take new (different) values. For this purpose we introduce
another index, j, to explicitly indicate the dependency on time.
The parts of the sequence where {µn, σ2

n} remain constant
are referred to as segments sj . In each segment sj , the mean
and variance are denoted {µnj , σ2

nj}. A set Sk = {sj , . . .} of
non-adjacent segments with the same values of {µnj , σ2

nj} are
referred to as a cluster. An illustration is shown in Fig. 1.

B. Estimating sufficient statistics

The Markov Model {M,P, C} can be estimated by the use
of the Forward-Backward algorithm [27] in combination with
the Expectation Maximization algorithm [28]. The number
of states N can be determined as described in Section IV.
Given this information and an execution time sequence or
segment, the state occupancy probabilities γni can be obtained
for each state mn and execution time observation csi using the
Forward-Backward algorithm. The occupancy probabilities are
used to calculate sufficient statistics (presented in [25], [29])
for each segment sj and state n. Sufficient statistics are a

compact way of storing the information needed to estimate
the Gaussian emission distribution of each state within the
segment, and are also used when updating the Bayesian model.
The sufficient statistics for a Gaussian distribution are: (i) â[0],
an estimate of the number of observations in the state, (ii) â[1],
an estimate of the sum of the observations in the state, and
(iii) â[2], an estimate of the sum of the squared observations
in the state.

â[0]jn =
∑
i,ci∈sj

γni, (1)

â[1]jn =
∑
i,ci∈sj

ciγni, (2)

â[2]jn =
∑
i,ci∈sj

c2i γni. (3)

C. Bayesian model

In a Bayesian approach, a conjugate distribution is a
distribution where the posterior probability p(Θ|D) of the
parameter Θ given observations D, takes the same functional
form as the prior distribution p(Θ) [30]. For a Gaussian
probability distribution with unknown mean µ and precision
λ = 1/σ2, the conjugate distribution is a Normal-Gamma
distribution [31], denoted as NG(µ, λ). When we have a prior
distribution of µ and λ as given by

p(µ, λ) = NG(µ, λ|µ0, κ0, α0, β0) ,

N (µ|µ0, (κ0λ)−1)Ga(λ|α0, rate = β0),
(4)

and observations D = (x1, . . . , xL), the posterior probability
distribution can be computed as:

p(µ, λ|D) = NG(µ, λ|µL, κL, αL, βL), (5)

µL =
κ0µ0 +

∑L
i=1 xi

κ0 + L
, (6)

κL = κ0 + L, (7)
αL = α0 + L/2, (8)

βL = β0 +
1

2

(
L∑
i=1

(xi − x̄)2 +
κ0L(x̄− µ0)2

(κ0 + L)

)
. (9)

Given that we are not certain of which state each observation
ci belongs to, we rewrite Eqs. (6) to (9), using the sufficient
statistics in Eqs. (1) to (3), yielding:

µL =
κ0µ0 + â[1]

κ0 + â[0]
, (10)

κL = κ0 + â[0], (11)
αL = α0 + â[0]/2, (12)

βL = β0 +
1

2

â[2]− â[1]2

â[0]
+
κ0â[0](â[1]

â[0] − µ0)2

(κ0 + â[0])

 , (13)

where we excluded the indices j, n for readability, and we
used â[0]jn to estimate L, â[1]jn to estimate Lx̄ and â[2]jn
to estimate Lx̄2. Eqs. (10) to (13) describe the Normal Gamma
parameters for a state and segment.

3

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
0

50

100

150

200
s1 s2 s3 s4 s5 s6

job index

ex
ec

ut
io

n
tim

e

Fig. 1: An execution time sequence separated into six segments (s1, s2, s3, s4, s5, s6) and four clusters (S1, S2, S3, S4), where
S1 = {s1, s3}, S2 = {s2, s5}, S3 = {s4}, and S4 = {s6}.

The initial hyperparameters can be conceptualized as de-
rived from a number of pseudo-observations, with the mean
µ0 derived from κ0 observations and the precision λ0 derived
from 2α0 observations with mean µ0 and sum of squared
deviations 2β0.

Since the Normal-Gamma distribution is the conjugate
distribution, segments can be added and the posterior hyper-
parameters updated incrementally by substituting the existing
posterior hyperparameters with the prior hyperparameters. In
this way the posterior Normal-Gamma distribution for a cluster
is constructed by incrementally updating the hyperparameters
for each segment in the cluster. Similarly, segments can be
removed from the estimate by updating the hyperparameters
according to:

µL =
κ0µ0 − â[1]

κ0 − â[0]
, (14)

κL = κ0 − â[0], (15)
αL = α0 − â[0]/2, (16)

βL = β0 −
1

2

â[2]− â[1]2

â[0]
+
κ0â[0](â[1]

â[0] − µ0)2

(κ0 − â[0])

 . (17)

Note that the posterior predictive distribution for a single
point prediction is the Student’s t-distribution as described by
Murphy [31]:

p(x|D) = t2αL

(
βL(κl + 1)

αLκL

)
. (18)

D. GLR between sets of segments

The GLR of two sets of observations can be used to
determine whether the sets are likely to belong to a joint
distribution or if it is more likely that they belong to distinct
distributions. This is done by calculating the ratio of the
probability of the observations under the joint model and the
product of the probabilities of the observations under distinct
models. The GLR measure is central to the proposed approach
and used in the preprocessing as well as the adaptive step.

The GLR between two execution time segment sets Sk
and Sl, and the union of the sets given as Sk∪l, using log-
likelihoods (indicated with `), is [32]:

GLR(Sk, Sl) = `k∪l − (`k + `l). (19)

The posterior predictive distribution for m new observations
given the Normal-Gamma prior is given in Murphy [31] as

p(Dnew|D) =
Γ(αn+m)

Γ(αn)

βαn
n

β
αn+m

n+m

√
κn

κn+m
(2π)m/2. (20)

were Γ represents the gamma function.
We use the same prior distribution for the two segment

sets and for the union of the sets. Evaluating the posterior
probability of the observations in a state of a segment set
Sk under the posterior predictive distribution calculated from
the same observations gives the log-likelihood using estimates
from Eqs. (11) to (13) as:

`k = log Γ(α2k)− log Γ(αk) + αk log βk−

α2k log β2k +
1

2
(κk − κ2k) +

â[0]k
2

2π.
(21)

The last terms cancel out in the GLR, and the resulting
equation for two segment sets and a state is:

GLR(Sk, Sl) = log Γ(α2(k∪l))− log Γ(α(k∪l) + αk∪l log βk∪l

− α2(k∪l) log β2(k∪l) +
1

2
(κk∪l − κ2(k∪l))

− log Γ(α2k) + log Γ(αk)− αk log βk

+ α2k log β2k −
1

2
(κk − κ2k)

− log Γ(α2l) + log Γ(αl)− αl log βl

+ α2l log β2l −
1

2
(κl − κ2l)

(22)
The GLR of two segment sets is estimated as the sum of the

GLRs over the states. We use GLRs based on log-likelihoods,
so this is equivalent to multiplication of the GLR measure as
described by Liu and Kubala [32].

IV. PREPROCESSING STEP

The preprocessing step is performed on an execution time
sequence where we expect to capture the regular variation of
execution times. The preprocessing step identifies:

1) The number of states N and transition matrix P of the
cluster HMMs.

2) The segments and clusters within this execution time
sequence.

4

3) The sufficient statistics for the HMM states of each
cluster.

A HMM is fitted to the execution time sequence, using the
tree-based cross validation approach described in [25]. This
fitting process provides the number of states and transision
matrix.

The normal distribution parameters µ, σ in the HMM from
the preprocessing step are used in combination with a number
of pseudo observations, nPseudoObs, to create initial prior
Normal-Gamma distributions as:

µ0 = µ, (23)
κ0 = nPseudoObs, (24)

α0 =
nPseudoObs

2
, (25)

β0 = α0 · σ2. (26)

The number nPseudoObs is chosen for each state in relation
to the stationary probability of the state.

A. Finding points of cluster change

For a sequence of execution time observations, we want to
find the set of points where the model parameters change.

1) Finding one point of model change: Initially, we con-
sider the simpler problem of finding one point of model change
in a sequence. Given a starting index xstart and a stopping
index xstop within the sequence, we aim to find the index
xsplit that minimizes the GLR(x), defined as

GLR(x) = GLR({sx−}, {sx+}) (27)
sx− = (cxstart

, cxstart+1, . . . , cx) (28)
sx+ = (cx+1, cxsplit+1, . . . , cxstop

) (29)
xsplit = arg min

x
GLR(x) (30)

where the segments sx− and sx+ indicate the segments before
and after x. The optimization is performed Bayesian Opti-
mization as implemented in the Python library GpyOpt1, where
BayesianOptimization is configured with a Radial Basis Func-
tion kernel and Expected Improvement as acquisition function.
Posterior predictive Student’s t-distributions are derived for
sx−, sx− and for their union. The log-likelihoods for these
segments are calculated by applying the Forward-Backward
algorithm. The transition matrix P in taken from the fitted
HMM, but the posterior predictive distributions are used as
emission distributions.

If the resulting GLR(xsplit) is lower than a given GLRlimit,
xsplit is considered to be a point of model change.

2) Finding several points of model change: In order to
find several points of model change within an execution time
sequence cs, we apply the method described in Section IV-A1
for the entire sequence, xstart = 1, xstop = t. Recursively,
the method is applied for the sequences with xstart = 1,
xstop = xsplit and xstart = xsplit + 1, xstop = t, and
further, similarly to a binary search approach, until one of
the following stopping criteria are met:

1https://sheffieldml.github.io/GPyOpt/

Initialize current
cluster, sliding window.

Do observations
in sliding window

match current cluster?

Find point of cluster
change in sliding window.

Find matching cluster/
create new cluster.

Matching same as current?

Change cluster.

Update previous
and current cluster.

Update sliding window.

Step sliding window.

Update current cluster.

Check for cluster merge.

no

yes

no

yes

Fig. 2: Simplified flowchart of the adaptive process. The
process continues until the task is terminated and there are
no more observations to process.

1) The resulting GLR(xsplit) is above the given GLRlimit;
2) The length of the subsequence is below a minimum

length between splitting points.

B. Segment clustering

The segments are clustered into sets using an approach
similar to the Leader-Follower Clustering described by Duda
et al. [33]. The longest segment is added as the first cluster.
For each segment, in order of decreasing segment length, the
cluster that gives the maximum GLR is found as outlined in
Section III-D. If the GLR between the segment and the closest
cluster is large enough, the segment is merged into the cluster,
otherwise a new cluster is created. The threshold has been set
to 10 times the threshold used in finding the points of model
change.

V. ONLINE MODEL ADAPTATION

In the runtime process, a sliding window is considered. A
simplified flowchart of the algorithm is available in Fig. 2.

The sliding window has a length of T = a · step. Here,
a and step are integers, and step is the size of the sliding
window movement at each step. We assume that a start-
ing cluster at the beginning of the window is known. The
sliding window hyperparameters are estimated by calculating
the posterior distribution using Eqs. (10) to (13) with the
initial prior distribution. Sufficient statistics â[0], â[1] and â[2]

5

Threshold Purpose Factor

slidingLimit Check if cluster change
in slidingwindow 1

newClusterLimit Create new cluster 2
changePreLimit Change to a preprocessing cluster 1

mergeClusterPreLimit Merge current with
preprocessing cluster 1.5

mergeClusterLimit Merge current with closest cluster 1

TABLE II: Thresholds used in the adaptive process and the
multiplicative factor to the threshold used in finding points of
model change in the preprocessing step.

are derived using the Forward-Backward algorithm [27]. The
emission distributions for the states are generalized Student’s
t-distributions, the posterior predictive distributions of the
cluster at the start of the window as given in Eq. (18). The
prior distribution is chosen as outlined in Section IV, Eqs. (23)
to (26).

A number of GLR thresholds are used in the process, to
determine whether a cluster change shall be made, if a new
cluster shall be created, or if the current cluster shall be
merged with another. In addition we use different thresholds
for preprocessing clusters compared to newly created clusters,
where we require a closer match with newly created clusters.
One reason for this is that new clusters can be dominated by
the prior distribution, and for this reason are more likely to
have a high GLR when compared to each other. We base all
thresholds on the threshold used for finding points of model
change in the preprocessing step. Different multiplicative
factors are applied, according to Table II.

A. Determining if there is a cluster change in the window

The GLR is estimated of the sliding window and the
starting cluster distributions. If this is below a threshold
slidingLimit, we move into the right column of Fig. 2. A
segment clusterF indSegment of length T around the end-
point of the sliding window is considered. A Normal-Gamma
distribution for this segment is calculated using Eqs. (10)
to (13) and the initial prior distribution. Sufficient statistics
are derived with the Forward-Backward algorithm using the
generalized Student’s t-distribution as the posterior predictive
of the initial prior distribution. The point of cluster change and
the cluster at the end of the sliding window are determined as
outlined in Algorithm 1.

Determining the point of cluster change: The sliding win-
dow is divided into chunks that are considered from the
endpoints of the sliding window. The GLR of the starting
cluster with the first chunk is compared to the GLR of
closestClusterAll with the last chunk. Iteratively, the chunk
with the highest GLR is added to the start or end sections of
the sliding window, and the next chunk from the appropriate
side is considered, until all chunks are added to either side.

B. Updating the sliding window and clusters

If a cluster change has taken place, we continue downwards
in the right column of Fig. 2. A new sliding window is created
from the endpoint of the current, using posterior student

distributions of the new cluster to calculate the sufficient
statistics. Posterior distributions and sufficient statistics for the
previous and new clusters are updated with the sliding window
segments prior and after the cluster changing point.

If there is no need for cluster change, we proceed in the
left column of Fig. 2. The sliding window is advanced with
the step size. The distributions are updated by removing the
sufficient statistics for the step no longer in the sliding window,
and adding those for the new step, according to Eqs. (10)
to (13) and Eqs. (14) to (17). The updated cluster is compared
with the other existing clusters. If the GLR of the current
cluster and the closest cluster is large enough the clusters are
merged.

C. Complexity analysis

The computation of sufficient statistics with the Forward-
Backward method has a time complexity of O(N2L), where
N is the number of states and L is the length of the
considered section. For each window, L is bounded by 2T ,
as we may need to calculate sufficient statistics for the
clusterF indSegment when a cluster change is considered
and for a new sliding window in the event of cluster change.

The GLR calculations are summed over the states, and we
find the maximum GLR among all clusters, resulting in a total
time complexity of O(NC), where N is the number of states
and C is the number of clusters.

The total time complexity of the adaptive step is O(N2 +
NC), where N is the number of states in the HMM, fixed
after the preprocessing step, and C is the number of clusters.

VI. EVALUATION

A. Goal of the evaluation

In the following experiments2, we first generated the execu-
tion samples according to the predefined ground truth model,
and then we performed the proposed method on the execution
samples in order to estimate the posterior distribution. The
goal of the experiments was to investigate the accuracy of the
estimated posterior distribution having the ground truth model
as the reference. By using synthetic data in the evaluations
we can make comparisons to the ground truth distributions.
Comparisons are made by calculating the Kullback-Leibler
(KL) divergence, as will be further outlined below.

In the experiments, we distinguish the two main steps,
the preprocessing step of the method – where the initial
execution sample is analyzed in an offline manner – and the
adaptive process—where the estimated parameters, from the
preprocessing step, are adaptively modified online in order to
account for the changes in the ground truth model over time.
For the preprocessing step, we compared the estimated pos-
terior distributions after the clustering process to the ground
truth distributions. For the adaptive process, we compared the
estimated posterior distributions during the adaptive process
to the known generative distributions. Three versions of the
adaptive process are evaluated.

2Code and data are available online https://github.com/annafriebe/
AdaptiveETBayes.

6

https://github.com/annafriebe/AdaptiveETBayes
https://github.com/annafriebe/AdaptiveETBayes

Algorithm 1 Pseudocode describing the process of finding the potential point of change and the new cluster.
Input Current cluster at the beginning of the sliding window, preprocessing and adaptive clusters, sliding window and cluster finding segment with

Normal-Gamma distributions.
Output Point of cluster change and current cluster at end of sliding window.

1: function CLUSTERCHANGE(clusters, preClusters, clusterFindSegment,slidingWindow, currentCluster)
2: closestClusterAll ← argmaxc∈clusters GLR(c, clusterFindSegment)
3: potentialChangePoint ← FINDCHANGEPOINT(slidingWindow, currentCluster, closestClusterAll)
4: testEndSegment ← slidingWindow[potentialChangePoint:end]
5: testNGAll ← POSTERIORNG(closestClusterAll, testEndSegmentNG)
6: testGLRAll ← GLR(closestClusterAll, testNGAll)
7: if testGLRAll < newClusterLimit then
8: newCluster ← CREATECLUSTER(testEndSegment)
9: return potentialChangePoint, newCluster

10: end if
11: closestClusterPre ← argmaxc∈preClusters GLR(c, clusterFindSegment)
12: testNGPre ← POSTERIORNG(closestClusterPre, testEndSegmentNG)
13: testGLRPre ← GLR(closestClusterPre, testNGPre)
14: if testGLRPre > changePreLimit then
15: return potentialChangePoint, closestClusterPre
16: end if
17: return potentialChangePoint, closestClusterAll
18: end function

1) The full algorithm with clusters created, adapted and
merged. We refer to this version as EST FP.

2) The online algorithm with cluster adaptation, but without
creation and merging of clusters. We refer to this version
as EST NCM.

3) The online algorithm without creating, adapting or
merging clusters, only switching between the clusters
resulting from the preprocessing stage. We refer to this
version as EST SP.

To evaluate the similarity between the posterior estimates and
the ground truth distributions, the KL divergence is calculated.
The KL divergence is an asymmetric measure of the difference
from a distribution Q to another reference distribution P ,
with continuous probability density functions q(x) and p(x)
respectively, defined as

DKL(P ||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx. (31)

The KL divergence was chosen as it quantifies the informa-
tion lost when moving from the ground truth distribution to
the estimated distribution. The GLR is not suitable for this
evaluation because it is based on likelihoods of observations.

The KL divergence is numerically approximated from the
estimated posterior distribution to the ground truth distribution
in the range [0, 150]. The posterior distribution is constructed
by weighting the generalized student’s t distributions of each
state with the stationary probabilities of the states in the fitted
HMM. The ground truth normal distributions are similarly
weighted with the known stationary probabilities of states.

B. Generation of sequences from the ground truth model

Execution sequences are generated from the ground truth
model defined as a three state Markov model, where transition
probabilities between states are in the range 0.1-0.8. Each
sequence is constructed from five clusters, and each cluster
is constructed from the segments of length within interval
[50, 300]. One of the clusters does not appear until after the

Sequence 1 2 3 4
Cluster 1 0.111 0.054 0.158 0.109
Cluster 2 0.149 1.663 0.045 0.036
Cluster 3 0.051 0.323 0.081 0.580
Cluster 4 0.151 0.067 0.116 0.174

All clusters 0.107 0.156 0.085 0.107

TABLE III: KL divergence measures for the preprocessing
process.

first 1000 job indices, which means it is not in the prepro-
cessing section. The execution time samples for each cluster
and its respective segments, are generated according to a three
state Markov Model, such that each state is characterized
by a Gaussian emission distribution with a mean randomly
generated from one of the three following uniform ranges
[25, 50], [65, 80] and [95, 120] respectively and standard devia-
tions within the range [2, 6]. The cluster means are ordered, so
that if the mean of a state in cluster A is lower than the mean
of the same state in cluster B, µnA < µnB , then the same
relation applies to the other states’ means in these clusters.
The reason for this is that points of model change are not as
accurately found when the state means of two clusters move
in opposite directions. This is likely due to the construction
of the GLR of segments as the sum over the states.

C. Results

1) Preprocessing step: In Fig. 3 we show means and
standard deviation of the estimate, i.e. the posterior generalized
student’s t distributions of the resulting clusters as black lines.
We also show the means and standard deviations of the ground
truth clusters as red lines. For sequence 2, four states are
identified, and the state with the lowest stationary probability
is displayed in cyan. In Fig. 3, points of model change are
also visible. KL divergence measures along the sequences are
displayed, in black for the preprocessing section. Mean KL
divergence measures for each cluster and for the preprocessing
section are displayed in Table III.

7

2) Online adaptive process: The means and standard de-
viations of the posterior generalized student’s t distributions
during the adaptive process are displayed in blue in Fig. 3
for four sequences. These are shown in relation to the known
means and standard deviations of the normal distributions in
the true clusters in red. For sequence 2, the HMM identifica-
tion finds four states, and the state with the lowest stationary
probability is displayed in cyan. In Fig. 3 the points of model
change are also visible.

The left column displays the result when applying EST FP,
the full process, to four test sequences. Creation of new
clusters is indicated with black vertical lines, and merging
of clusters is marked with red vertical lines. The middle
column shows the result when applying EST NCM, without
creation and merging of clusters, but with adaptive cluster
updates for the same sequences. The right column displays the
result when applying EST SP, with only switching between
the preprocessing clusters.

The KL divergence from the distribution constructed from
the posterior generalized student’s t distributions to the distri-
bution constructed from ground truth Gaussian distributions is
calculated. When constructing the distributions, the emission
distributions are weighted with the estimated and known
stationary probabilities respectively. The KL divergence is
calculated for each job index in each sequence for the three
versions of the adaptive process. Results are displayed in
Fig. 3. Means are calculated for each ground truth cluster and
for the entire adaptive part of the sequence, and presented in
Table IV. In sequences 1, 3 and 4, EST SP has a better average
fit (lower average KL divergence measure), as can be seen in
the ”All clusters” row of the tables. We also look at the average
KL divergence of clusters not appearing in the preprocessing
portion, that is Cluster 5 for all sequences, and for sequence
2 additionally Cluster 2. Here we see that EST FP has lower
KL divergence measures than EST SP in four out of the five
new clusters. For the EST NCM, the KL divergence is lower
for all five new clusters. EST FP and EST NCM appear to
be roughly equivalent for new clusters, with the EST NCM
having lower KL divergence scores in three out of five new
clusters.

D. Discussion

The KL divergence in the adaptive section is in the range
of 2-10 times larger than in the preprocessing section in our
experiments, for all three versions of the adaptive process. A
larger KL divergence is expected from a less computationally
expensive approach.

The fact that EST SP performs better than the versions
with cluster updates for clusters available at the preprocessing
step indicates that there is some deterioration of the estimates,
possibly due to erroneous estimates of the points of cluster
change.

It can be noted that in some segments, the estimated
means of the states with the highest and lowest means tend
to move towards the middle state in the three state HMM,
coinciding with a higher standard deviation. This is likely due

Sequence no. Cluster no. EST FP EST NCM EST SP

1

1 0.347 0.248 0.277
2 0.276 0.276 0.310
3 N/A N/A N/A
4 0.770 0.786 0.442
5 0.411 0.266 0.359

All clusters 0.459 0.401 0.346

2

1 0.173 0.173 0.217
2 0.263 0.261 0.681
3 0.493 0.493 0.539
4 0.340 0.342 0.110
5 0.355 0.362 0.400

All clusters 0.297 0.297 0.392

3

1 0.460 0.608 0.478
2 0.506 0.257 0.139
3 1.142 1.180 0.808
4 0.285 0.282 0.159
5 0.270 0.503 0.512

All clusters 0.688 0.739 0.536

4

1 0.241 0.242 0.215
2 0.347 0.281 0.046
3 0.498 0.502 0.620
4 0.414 0.417 0.171
5 0.631 0.627 0.760

All clusters 0.418 0.405 0.373

TABLE IV: KL divergence measures for different sequences
and clusters.

to samples generated by the middle state distribution resulting
in occupancy probabilities significantly higher than zero for
an additional state. When these samples are weighted into the
sufficient statistics of the lower or higher state, the posterior
distribution is affected in this manner.

The choice of prior distribution has a similar influence on
the posterior estimates. In the proposed method, the prior
distribution is based on the HMM fitted to the preprocessing
section. For portions of the execution time trace that deviate
significantly from the preprocessing section, the posterior
estimates will have a mean that is drawn towards the prior
mean, and a variance that is overestimated due to the prior
pseudo observations acting as outliers.

E. Limitations and future evaluation goals

The main limitation of the evaluation is that it has been
performed with synthetic data, where the execution time
samples are generated from ground-truth distributions with
instantaneous cluster changes at specified points in time. The
main reason for this choice was the controllable experiment
setup where the ground truth model is known. One of the
sensitive design choices of the experiment is evident in the
generation of the ordered means within the clusters, which
should be generalised in the future evaluations. Also, at the
moment we cannot be certain that the results are valid for more
realistic use cases and this will be addressed in the future work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method to adjust at runtime
an HMM aimed at characterizing the execution time of a task,
with a limited time complexity. The posterior execution-time
distributions obtained through the proposed approach could

8

500 1000 1500 2000 2500 3000
0

50

100

150
E

xe
cu

tio
n

tim
e

[µ
s]

EST FP (Full Process)

500 1000 1500 2000 2500 3000
0

50

100

150

EST NCM (No Create Merge)

500 1000 1500 2000 2500 3000
0

50

100

150

EST SP (Switch Preprocessing)

500 1000 1500 2000 2500 3000
0

2

4

K
L

di
ve

rg
en

ce

500 1000 1500 2000 2500 3000
0

2

4

500 1000 1500 2000 2500 3000
0

2

4

500 1000 1500 2000 2500 3000
0

50

100

150

E
xe

cu
tio

n
tim

e
[µ

s]

500 1000 1500 2000 2500 3000
0

50

100

150

500 1000 1500 2000 2500 3000
0

50

100

150

500 1000 1500 2000 2500 3000
0

2

4

K
L

di
ve

rg
en

ce

500 1000 1500 2000 2500 3000
0

2

4

500 1000 1500 2000 2500 3000
0

2

4

500 1000 1500 2000 2500 3000
0

50

100

150

E
xe

cu
tio

n
tim

e
[µ

s]

500 1000 1500 2000 2500 3000
0

50

100

150

500 1000 1500 2000 2500 3000
0

50

100

150

500 1000 1500 2000 2500 3000
0

2

4

K
L

di
ve

rg
en

ce

500 1000 1500 2000 2500 3000
0

2

4

500 1000 1500 2000 2500 3000
0

2

4

500 1000 1500 2000 2500 3000
0

50

100

150

E
xe

cu
tio

n
tim

e
[µ

s]

500 1000 1500 2000 2500 3000
0

50

100

150

500 1000 1500 2000 2500 3000
0

50

100

150

500 1000 1500 2000 2500 3000
0

2

4

job index

K
L

di
ve

rg
en

ce

500 1000 1500 2000 2500 3000
0

2

4

job index

Cluster created Clusters merged True distribution Estimated distribution (preprocessing) Estimated distribution (adaptive)

KL divergence (preprocessing) KL divergence (adaptive)

500 1000 1500 2000 2500 3000
0

2

4

job index

Se
qu

en
ce

1
Se

qu
en

ce
2

Se
qu

en
ce

3
Se

qu
en

ce
4

Fig. 3: True and predicted distributions for four sequences, with the three different versions of the process. KL divergence
measures along the sequences are displayed.

9

be used to assess several real-time properties of a system,
e.g., estimating the deadline miss probabilities, but further
investigations are needed, and devoted to future work.

The results from the evaluated synthetic test cases indicate
that the proposed method is capable of adapting the estimates
at runtime, such that the estimated distribution tracks the
ground truth distribution used to generate the execution time
samples. The similarity between the estimated and ground
truth distributions are evaluated by calculating the Kullback-
Leibler divergence. In some cases we can see biased means
and increasing standard deviations in the posterior distribution.
Future work will investigate the possibility of introducing
regularization to limit the increase in the standard deviation.
Furthermore, a more extensive evaluation will be performed
on real applications, e.g., computer vision, robotics, or control
use cases, to better assess the ability of the proposed approach
to provide meaningful information on the execution time
distributions of complex real-time applications.

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., “The
worst-case execution-time problem—overview of methods and survey
of tools,” ACM TECS, vol. 7, no. 3, p. 36, 2008.

[2] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[3] A. Löfwenmark and S. Nadjm-Tehrani, “Fault and timing analysis in
critical multi-core systems: A survey with an avionics perspective,”
Journal of Syst. Architecture, vol. 87, pp. 1–11, 2018.

[4] A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” ACM Comput. Surv., vol. 50, no. 6, 2017.

[5] R. Wilhelm, “Mixed Feelings About Mixed Criticality,” in Int. W. on
Worst-Case Exec. Time Analysis (WCET), vol. 63, 2018, pp. 1:1–1:9.

[6] D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time ap-
plications in an integrated services packet network: Architecture and
mechanism,” SIGCOMM Comput. Commun. Rev., vol. 22, no. 4, p.
14–26, 1992.

[7] P. Martı́, J. M. Fuertes, G. Fohler, and K. Ramamritham, “Improving
quality-of-control using flexible timing constraints: metric and schedul-
ing,” in IEEE Real-Time Syst. Symp. (RTSS), 2002, pp. 91–100.

[8] R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic timing
analysis techniques for Real-Time systems,” Leibniz Trans. Emb. Syst.,
vol. 6, no. 1, pp. 03–1–03:60, May 2019.

[9] J. L. Diaz, J. M. Lopez, M. Garcia, A. M. Campos, K. Kim, and
L. L. Bello, “Pessimism in the stochastic analysis of real-time systems:
Concept and applications,” in IEEE Int. Real-Time Syst. Symp. (RTSS),
2004, pp. 197–207.

[10] F. J. Cazorla, L. Kosmidis, E. Mezzetti, C. Hernandez, J. Abella, and
T. Vardanega, “Probabilistic worst-case timing analysis: Taxonomy and
comprehensive survey,” ACM Comput. Surv., vol. 52, no. 1, 2019.

[11] A. Burns and S. Edgar, “Predicting computation time for advanced pro-
cessor architectures,” in Euromicro Conf. on Real-Time Syst. (ECRTS),
2000, pp. 89–96.

[12] S. Edgar and A. Burns, “Statistical analysis of wcet for scheduling,” in
IEEE Real-Time Syst. Symp. (RTSS), 2001, pp. 215–224.

[13] D. Griffin and A. Burns, “Realism in statistical analysis of worst case
execution times,” in Int. W. on Worst-Case Exec. Time Analysis (WCET),
2010.

[14] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart, “On the sustain-
ability of the extreme value theory for wcet estimation,” in Int. W. on
Worst-Case Exec. Time Analysis (WCET), 2014.

[15] M. Leadbetter, G. Lindgren, and H. Rootzén, “Conditions for the
convergence in distribution of maxima of stationary normal processes,”
Stochastic Proc. and their Appl., vol. 8, no. 2, pp. 131–139, 1978.

[16] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control
real-time scheduling: Framework, modeling, and algorithms,” Real-Time
Systems, vol. 23, no. 1, pp. 85–126, 2002.

[17] R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic schedula-
bility analysis techniques for Real-Time systems,” LITES: Leibniz Trans.
Emb. Syst., pp. 1–53, 2019.

[18] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quiñones, and F. J. Cazorla,
“Measurement-Based probabilistic timing analysis for multi-path pro-
grams,” in Euromicro Conf. on Real-Time Syst. (ECRTS), 2012, pp. 91–
101.

[19] Y. Lu, T. Nolte, J. Kraft, and C. Norstrom, “Statistical-based response-
time analysis of systems with execution dependencies between tasks,”
in IEEE Int. Conf. on Eng. of Complex Comp. Syst., 2010, pp. 169–179.

[20] ——, “A statistical approach to response-time analysis of complex
embedded real-time systems,” in IEEE Int. Conf. on embedded and real-
time computing systems and applications, 2010, pp. 153–160.

[21] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean, “A statistical response-
time analysis of complex real-time embedded systems by using timing
traces,” in IEEE Int. Symp. on Ind. and Emb. Syst., 2011, pp. 43–46.

[22] ——, “A statistical response-time analysis of real-time embedded sys-
tems,” in IEEE Real-Time Syst. Symp. (RTSS), 2012, pp. 351–362.

[23] L. Abeni, D. Fontanelli, L. Palopoli, and B. V. Frı́as, “A Markovian
model for the computation time of real-time applications,” in IEEE Int.
Instrumentation and Measurement Tech. Conf. (I2MTC), 2017, pp. 1–6.

[24] B. V. Frı́as, L. Palopoli, L. Abeni, and D. Fontanelli, “Probabilistic real-
time guarantees: There is life beyond the iid assumption,” in IEEE Real-
Time and Embedded Technology and Applications Symp. (RTAS), 2017,
pp. 175–186.

[25] A. Friebe, A. V. Papadopoulos, and T. Nolte, “Identification and val-
idation of markov models with continuous emission distributions for
execution times,” in IEEE Int. Conf. on Emb. and Real-Time Comp.
Syst. and Appl. (RTCSA), 2020, pp. 1–10.

[26] C. Gruhl, J. Schmeiβing, S. Tomforde, and B. Sick, “Normal-wishart
clustering for novelty detection,” in 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems Companion
(ACSOS-C). IEEE, 2020, pp. 64–69.

[27] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proc. the IEEE, vol. 77, no. 2, pp.
257–286, 1989.

[28] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal
processing magazine, vol. 13, no. 6, pp. 47–60, 1996.

[29] T. Shinozaki, “HMM state clustering based on efficient cross-validation,”
in IEEE Int. Conf. on Acoustics Speech and Signal Proc., vol. 1, 2006.

[30] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[31] K. P. Murphy, “Conjugate Bayesian analysis of the Gaussian
distribution,” University of British Columbia, Tech. Rep., 2007. [Online].
Available: https://www.cs.ubc.ca/∼murphyk/Papers/bayesGauss.pdf

[32] D. Liu and F. Kubala, “Online speaker clustering,” in IEEE Int. Conf.
on Acoustics, Speech, and Signal Processing, vol. 1, 2004, pp. 333–336.

[33] R. O. Duda, P. E. Hart et al., Pattern classification and scene analysis.
Wiley New York, 1973, vol. 3.

10

https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf

	Introduction
	Related work
	System Model and Definitions
	Task model
	Estimating sufficient statistics
	Bayesian model
	GLR between sets of segments

	Preprocessing step
	Finding points of cluster change
	Finding one point of model change
	Finding several points of model change

	Segment clustering

	Online model adaptation
	Determining if there is a cluster change in the window
	Updating the sliding window and clusters
	Complexity analysis

	Evaluation
	Goal of the evaluation
	Generation of sequences from the ground truth model
	Results
	Preprocessing step
	Online adaptive process

	Discussion
	Limitations and future evaluation goals

	Conclusion and Future work
	References

