
LLM-shark – A Tool for Automatic
Resource-boundness Analysis and Cache

Partitioning Setup
Jakob Danielsson1, Tiberiu Seceleanu1, Marcus Jägemar1,2, Moris Behnam1, Mikael Sjödin1

1 Mälardalen University, Västerås, Sweden
2 Ericsson AB, Stockholm, Sweden

jakob.danielsson@mdh.se

Abstract—We present LLM-shark, a tool for automatic hard-
ware resource-boundness detection and cache-partitioning. Our
tool has three primary objectives: First, it determines the
hardware resource-boundness of a given application. Secondly, it
estimates the initial cache partition size to ensure that the applica-
tion performance is conserved and not affected by other processes
competing for cache utilization. Thirdly, it continuously monitors
that the application performance is maintained over time and, if
necessary, change the cache partition size. We demonstrate LLM-
shark’s functionality through a series of tests using six different
applications, including a set of feature detection algorithms and
two synthetic applications. Our tests reveal that it is possible to
determine an application’s resource-boundness using a Pearson-
correlation scheme implemented in LLM-shark. We propose a
scheme to size cache partitions based on the correlation coefficient
applications depending on their resource boundness.

I. INTRODUCTION

The internal memory subsystem of a processor is often
limited, cache memories for instance, often host a memory
area that ranges from two digit KB’s to single digit MB.
The small memory space means it is improbable that an
application’s entire memory footprint can fit within one of
the caches. As such, the caches will, at some point during
application execution, become full. When new memory is re-
quested, and when the necessary memory block is not present
within the cache, it is instead fetched from the main memory
and brought into the cache, replacing old data. Fetching the
DRAM data produces a significant delay and will produce
processor pipeline stalls while waiting for the memory block
to become available.

Modern computers often utilize multi-core processors to
increase throughput. The multi-core processors typically im-
plement a shared cache policy, where at least one cache is
shared between all cores. When multiple applications execute
on different cores while sharing the same cache, there is a
high risk that one application’s memory requests will repeat-
edly replace another application’s data, causing a resource
contention scenario called cache contention. Cache contention
causes execution-time jitters and performance degradation [7].

We can also find contention in other resources such as the
Translation Lookaside Buffer (TLB) [15], the memory bus [23]
and even the DRAM [24], but in this paper we focus on the
cache related issues. Several mitigation techniques for cache
contention exist, including page coloring [22] (a memory

allocation scheme implemented in the memory management
unit), cache way-partitioning (provided by the hardware man-
ufacturer), and cache locking schemes [21]. The mitigation
techniques improve the execution-time jitters, at the cost of
implementation complexity and/or execution-time overhead.
Due to the disadvantages, it is desirable to only use mitigation
techniques when necessary, i.e., when there is a risk for cache
contention that would degrade the performance of the system.

Determining the necessity of a mitigation technique is not
a straight-forward process, since engineers have to carefully
investigate the run-time behavior of each individual application
and may also have to inspect the application code. Due to the
code complexity of many modern applications this can quickly
turn into a time-consuming procedure.

This paper describes our tool, LLM-shark, that determines
partitioning techniques and partitioning sizes. LLM-shark
monitors the run-time behavior of applications using hardware
performance counters and creates a characteristics profile of
an application. We use the characteristics profile to determine
how much the performance of an application depends on a
certain resource. We make a resource-boundness estimations
using the Pearson-correlation coefficient and then suggest
the usage of specific mitigation techniques. We, furthermore,
utilize the correlation coefficient to determine how much
memory the selected mitigation technique must assign to the
application. The main contributions in this paper are:

• A method to quantify resource-boundness automatically.
• An evaluation of how applications perform in a cache

restricted environment and how the results are in line
with our resource-boundness estimation.

• Automatic calculation of the amount of needed cache
memory based on the above estimation.

• An implementation of the above aspects in the tool
LLM-shark, and a proof of concept study showing the
feasibility of the tool.

II. BACKGROUND

A. Performance counters

Many architectures implement a performance monitoring
unit (PMU) [1] to monitor hardware resource usage. The
PMU follows a large set of events, including CPU pipeline
resources, various internal memory events such as cache/TLB

events, and also off-core events such as DRAM accesses
and interrupts [25]. The PMU utilizes hardware-implemented
performance monitor counters (PMC) that increments each
time a specific event occurs. Modern processors typically
contain several PMC’s to simultaneously measure a set of
different events. Our test environment processor is an Arm
Cortex-a53 CPU, with capabilities for six simultaneous PMCs
measuring six different hardware events simultaneously. In
this paper, we utilize the Performance API (PAPI) [14] which
is a front-end framework for the standard Linux API for
performance counters - Perf [9]. PAPI has extensive default
support for the branch unit and the last-level cache.

B. Resource-boundness
In the context of our paper, we define the performance of an

application as the number of instructions completed per unit
of time. In Eq. 1, P denotes the performance metric, It the
number of instructions retired of an application and t as the
time interval.

P =
It
t

(1)

We use the definition from Eq. 1 to trace an application’s
performance through a PMU event called instructions retired,
which increments each time an instruction leaves the final
write-back stage of the processor pipeline. Thus, we define
the application performance as the number of instructions
retired at a specific sampling frequency, a higher number
meaning higher performance. This definition is not suitable
for all types of applications, such as network applications
that heavily utilize tight and small busy-wait loops, causing
a high instructions retired rate with no perceived system-level
performance. The performance metric for such applications
instead is packets per second or similar [11] system-level
metrics. In this paper, we target non-I/O-bound applications,
for which the above performance definition is applicable.

An application is typically built of millions of instructions
where each instruction takes at least one clock cycle to
complete, assuming an in-order, non-super-scalar processor. In
ideal conditions, the processor executes an instruction without
any delays, which means a one-cycle instruction will take
one cycle to finish, a two-cycle instruction will take two
cycles to finish, etc. An application running on a 1.2GHz
processor, without any external disturbances will thus execute
instructions equivalent to 1.2 billion cycles per second.

It is however unrealistic for an application to execute
instructions close to the processor clock frequency, due to
cycle-disturbances, such as branch mis-predictions, structural
data hazards, memory wait operations and also operating
system overheads. All cycle-disturbances causes result in stall
penalties within the processor pipeline and means that an
application’s instruction is not allowed to execute for a certain
number of clock ticks. One common source for disturbance
is the register memory itself, which is typically very small
and can therefore not host the complete application data set.
When the register memory does not contain requested data,
the data needs to be fetched from L1D-cache and a one cycle
penalty stall will be inserted into the processor pipeline, which

halts the processor from executing the instruction. This cycle
stall penalty, thus, halts the application from executing an
instruction, which means that the application will suffer a
performance degradation.

The cycle stall penalty varies depending on the hardware
unit. Application data that is not present within L1D-cache
enforces an even greater pipeline stall penalty (e.g., 10 cycles)
and needs to be fetched from the L2-cache, etc,. Similar
stall penalties are also present in other various computer
components such as the branch predictor unit (BPU) and the
Translation Lookaside Buffer (TLB). An application with a
high stall cycle penalty count is able to execute less instruc-
tions per time interval than an application which contains few
stall cycle penalties. Thus, an application’s performance builds
a dependency towards the stalls, where more stalls infer a
decrease in performance.

The resource that causes the most cycle stalls to an applica-
tion causes the greatest effect on the applications’ performance
and therefore presents the strongest resource-boundness. Iden-
tifying an applications’ resource-boundness becomes of great
importance in multi-core systems, since some resources are
physically shared across different cores. Two applications
that display noticeable resource-boundness towards the same
shared resource such as the Last-level cache can lead to
cache contention, causing both applications to suffer from
(potentially severe) performance degradation.

C. Cache partitioning
Page-coloring is a software approach to partition a cache

for mitigating cache contention. Page-coloring creates an al-
location scheme for free pages and assigns the pages to a
fixed position within the cache. Page coloring, thus, alters
an application’s data positioning within the cache. Fig. 1
demonstrates how page coloring maps the pages of three
applications (B, G, R) to different positions in the cache
memory.

Fig. 1. Cache coloring

Applications executing within a page-colored environment
will not suffer from shared cache contention since page color-
ing provides a clear border in the cache between where appli-
cations are allowed to position data. Page-coloring utilizes a
cache’s set-associative and presents an additional overhead to
memory allocations due to algorithm complexity. The trade-off
with cache partitioning, therefore, stands between performance
and isolation.

2

D. Analyzing resource-boundness

We discuss here a statistical approach to quantify the
resource-boundness using the Pearson correlation coefficient.

The Pearson-correlation coefficient has three types of out-
comes, 1 - which means a complete positive correlation be-
tween two datasets; 0, which means no correlation between the
datasets; and -1, which means complete negative correlation.
We exemplify the three types of correlation in Figure 2.

Fig. 2. Example of positive- (left) zero- (middle) and negative (right)
correlation

We analyze resource-boundness by investigating negative
relationships between the number of instructions completed
and a resource event. Negative relationships mean either the
number of instructions completed increase while the number
of resource events decrease, or vice-versa. We utilize the
PMU - that consists of several performance monitor counters
(PMCs) - to monitor an applications’ performance. We monitor
the Instructions retired event, which counts the number of
instructions that went through all processor pipeline stages, as
a quantifiable performance metric. The second metric defines
the kind of resource-boundness the user is interested in (e.g.
if interested in cache related boundness we count the cache
misses - via counters such as L1D-cache-misses, etc).

In this paper, we utilize the analysis part of LLM-shark to
determine the necessity of placing an application into a Last-
Level Cache partition container [22]. Here, we mainly focus
on the L2-cache misses as performance counter-event.

The resource-boundness analysis further covers three ac-
tions:

• Determine the event set. To determine the resource-
boundness, we first need to determine which counter
events to sample. The complete counter set (perf+PAPI)
lists a total of 116 events. For this paper, we chose to use
only the 11 PAPI preset events.

• Sample performance counters. We sample selected per-
formance counters during application execution at a fixed
rate and save the data for resource-boundness analysis.

• Assessment of the resource-boundness. We utilize the
performance counter samples from the previous step to
calculate the Pearson-correlation coefficient. We quantify
the magnitude of the resource-boundness according to
the approach proposed by Mindrila and Balentyne [13]:
the coefficients are compared using positive and negative
values where 0-0.3 is considered none or weak, 0.3-0.5
weak, 0.5-0.7 moderate and greater than 0.7 is considered
strong. Since the L2-cache-misses provide a negative im-
pact on the application, we are only interested in negative
correlations. We therefore only consider applications for
cache partitions if they present a correlation less than -
0.25

III. METHODOLOGY

In previous work, we discussed the definition of resource-
boundness [6] and also the consequences of running resource-
bound loads simultaneously on different cores [3] [5]. The
main take-away point is that resource-boundness is an im-
portant factor to consider when partitioning a system since
the resource-boundness is an indicator of what resource an
applications’ performance depends on.

This section investigates the resource-boundness of six
different applications, four of them implementing feature
detection algorithms (SUSAN, Harris, SIFT, and FAST), and
two presenting synthetic workloads (Matrix multiplication and
Bubblesort). We illustrate the effects of resource contention on
the execution of the six applications and discuss the relation
to the respective correlation coefficient values.

A. System model

The relevant characteristics of the six mentioned applica-
tions are presented in Table I.

TABLE I
LLC-PC SPECIFICS

Application Data input type
Harris 2 MB bmp Corner detection

SUSAN 2 MB bmp Corner detection
FAST 12 MB bmp Corner detection
SIFT 256 KB pgm Object detection

Matmult 200x200 array Synthetic
Bubblesort 20000 elements array Synthetic

We use a variety of data input to showcase the usability
of LLM-shark. The purpose here is not to create a com-
parison study on which application executes best in certain
circumstances. Instead, our aim is to show that LLM-shark
works for a variety of applications, independently on the
applications memory footprint. Each application runs within
the execution context of the tool, which starts an application,
samples the desired performance events during the appli-
cation execution, calculates a resource-boundness estimation
and finally positions the application within a cache partition
container. Figure 3 depicts the respective core functionality

Fig. 3. LLM shark execution flow

and execution flow. It shows the seven major execution steps
of LLM-shark, which we describe in detail as follows:

3

1) Application identification phase - LLM-shark uses the
filepath to an application executable to run the applica-
tion within an LLM-shark context.

2) Initialization phase - initializes the instructions retired
performance counter together with the desired counters.

3) Fork phase - LLM-shark executes a fork operation and
runs the application within the context of child process.
During the child process’ execution, we monitor the
performance counters of the child process continuously
at a sampling frequency.

4) Synchronization phase - when the forked application has
stopped, we store all the performance counter data from
the child process and compute the correlation.

5) Data store phase - store the resource-boundness of the
application so that appropriate actions such as cache
partitions can be made.

6) L2-cache partition calculation phase - calculate the
L2-cache partition size for each application based on the
application correlation.

7) L2-cache partition actuation phase - execute the appli-
cations within their respective L2-cache partition con-
tainers.

LLM shark utilizes performance counters in a context of
PAPI, a framework that includes preset performance counter
events and the native counters that are specified by the Perf
API. In this paper, we use a Xilinx zynq zcu102 evaluation
kit which supports 13 preset PAPI counters and an additional
103 native performance counters. For the sake of readability,
we only include results containing the preset PAPI counters,
as data from 116 events are too much to present in one paper.
We list the PAPI preset counter events with a short description
in Table II.

TABLE II
PAPI PRESET COUNTER EVENTS

Event name Brief explanation
PAPI L1 DCM L1D-cache misses
PAPI L1 ICM L1I-cache misses
PAPI L2 DCM L2-cache misses
PAPI TLB DM DTLB misses
PAPI TLB IM ITLB misses
PAPI TOT INS Instructions retired
PAPI HW INT Hardware interrupts
PAPI LD INS Memory load instructions
PAPI SR INS Memory store instructions
PAPI BR INS Branch instructions
PAPI TOT CYC Processor cycles completed
PAPI L1 DCA L1D-cache accesses
PAPI L2 DCA L2-cache accesses

We limit this paper to only focus on non I/O-bound appli-
cations where the perceived performance of an application is
equal to the number of instructions retired per time interval. As
such, we omit the PAPI HW INT counter since that counter-
event defines an application type that we are not interested in.
PAPI TOT INS defines our performance metric and will be
used in all correlation calculations versus another hardware
resource. We, therefore, omit this counter from correlation
calculation since correlating a value against itself always is one

and will not be meaningful. We also omit PAPI TOT CYC
since it presents the number of active clock cycles for an
application and does not hold relevance to the internal memory
hierarchy.

IV. APPLICATION EXPERIMENTS

We have executed our experiment on two scenarios - base-
line and contended. The baseline scenario is defined by the
target application running without any deliberately disturbing
load. The contended scenario presents the application running
simultaneously with a leech application causing artificial
L2-cache contention. We list our test platform in Table III.

TABLE III
HARDWARE SPECIFICATIONS XILINX ZYNQ ULTRASCALE+ MPSOC

Feature Hardware Component
Core 4xArm Cortex A-53 @ 1.2GHz

L1I-cache 32 KB 2-way set assoc cache/core
L1D-cache 32 KB 4-way set assoc cache/core
L2-cache 1 MB 16-way set assoc. shared Last-level Cache
MMU L1ITLB: 10 entries

L1DTLB: 10 entries
L2TLB 512 entries, 4-way set assoc.

A. Baseline scenario

Table IV shows the median execution-time for each investi-
gated application, taken over 100 measurements. We illustrate
the instructions retired and the L2-cache misses of the Harris
algorithm in Figure 4 and the FAST algorithms in Figure 5
for demonstrative purposes.

TABLE IV
APPLICATION BASELINE EXECUTION-TIME

Application Median execution-time (ms)
Harris 306
SIFT 750

SUSAN 189
Matmult 224

FAST 133.8
Sort 797

Fig. 4. Harris execution characteristics

4

Fig. 5. FAST execution characteristics

Fig. 4 and Fig. 5 illustrates the Harris and FAST applica-
tions’ execution profiles running within the context of LLM-
shark at a 200Hz sampling frequency, denoted by the x-axis.
The left y-axis denotes the number of instructions retired with
blue crosses, and the right y-axis denotes the number of
L2-cache misses with red diamonds. The execution profiles of
these two applications are visibly different.The trend for the
Harris application is that the number of instructions retired
decreases while at the same time the L2-cache misses in-
creases. This trend is most notable at the last four measurement
values; a similar, weaker trend can also be detected in the
rest of the measurements. The FAST application do not have
the same trend since the instructions retired continuously
increases while the L2-cache misses remaining the same at
a count of 5000 for most of the application. There are small
trends between sampling points 4 and 6. The majority of the
application is, however, unaffected by L2-cache misses. We
list the correlation coefficients for all different counters for
our six applications in Table V.

TABLE V
CORRELATION BETWEEN INSTRUCTIONS RETIRED AND PAPI PRESET

COUNTERS

Counter Harr SUS FAST Matm SIFT Sort
BR INS 0.69 0.48 0.82 0.19 0.63 0.98
BR MSP 0.77 0.36 0.71 0.28 0.63 0.04
L1 DCA 0.76 0.65 0.83 -0.89 0.85 0.86
L1 DCM -0.03 0.26 0.26 -0.80 0.75 0.23
L1 ICM -0.39 -0.29 0.68 0.49 -0.3 -0.06
L2 DCA -0.25 0.28 0.1 -0.83 0.49 0.15
L2 DCM -0.49 0.2 0.12 -0.84 -0.26 -0.08
LD INS 0.71 0.61 0.83 -0.99 0.87 0.91
SR INS 0.79 0.43 0.16 -0.06 -0.36 0.79
TLB DM -0.56 -0.13 -0.05* 0.27 -0.01 -0.02
TLB IM -0.53 -0.13 0.23 0.31 -0.06 0.02

The table shows the correlation between the preset PAPI
counters and the number of instructions retired for each appli-
cation. Our theory is that applications that negatively correlate
to a performance counter that implies pipeline stalls, such as
the L2-cache misses or DTLB misses will be sensitive in terms
of execution-time when other applications utilize the same
resources. The sensitivity depends on the correlation value
magnitude; a higher correlation means the application will be

more prone to performance implications if other applications
are using that same resource. We summarize the negative
correlation coefficients for each application in Table VI since
these counters show an indication for resource-boundness.

TABLE VI
CORRELATION SUMMARY

Application Resource-boundness

Harris

L1I-cache misses (Weak)
L2I-cache accesses (Weak)
L2-cache misses (Moderate)
DTLB misses (Moderate)
ITLB misses (Moderate)

SUSAN L1I-cache misses (Weak)
FAST No resource-boundness

Matmult

L1D-cache misses (Strong)
L2-cache accesses (Strong)
L2-cache misses (Strong)
L2-cache misses (Strong)

Bubblesort No resource-boundness

SIFT L1I-cache (Weak)
L2-cache misses (Weak)

Out of the six applications, three - SIFT, Harris and the
Matrix multiplication - display weak, moderate and strong neg-
ative boundness to the L2-cache misses counter, respectively.
Harris furthermore displays a moderate relationship versus
both TLBs.

B. Resource contention

In this section, we empirically show the relationship be-
tween the correlation coefficient and how our test applica-
tions’ execution-time is affected by simultaneously executing
artificial loads that utilize the shared cache. We define our
hypothesis as follows.
Hypothesis The magnitude of the correlation coefficient indi-
cates how closely tied an applications’ performance is with
a resource. Reducing this resource’s size or capacity will
affect the performance of applications with a high correlation
towards this resource to a greater extent than applications with
a low correlation towards this resource.

We chose to reduce the capacity of the L2-cache through the
execution of a memory-intensive program called leech [10].
The leech executes simultaneously as our our benchmark
applications and is positioned on other non-occupied cores
to enforce shared cache contention. The leech is built as a
memory specific load and executes a read-then-write access
pattern on an integer array of variable size. We run the
leech using a specific stride pattern in the array to force as
many cache line evictions from our benchmark applications as
possible. To generate maximum L2-cache contention, we run
three separate instances of the leech on different cores (2,3,4)
while the application runs on core 1. Table VII summarizes
the leech specifics.

Fig. 6 depicts the execution characteristics of the Harris ap-
plication running on core 1 in a leech contented environment.
The red diamonds plot the L2-cache misses on the right-hand
side y-axis, and the blue crosses plot the instructions retired
on the right-hand side y-axis.

5

TABLE VII
LEECH SPECIFICS

Property Value
Iteration sleep 0
Array size 2 MB
Core affinity Core 2,3,4
Stride Length 64 Byte
Access method read-then-write

Fig. 6. The Harris application running together with leeches

There are two significant differences between the baseline
Harris of Fig. 4 and the leech loaded Harris of Fig. 6. Firstly,
the number of instructions retired in the leech loaded version is
significantly less per 50 µs than in the baseline case. Since the
number of instructions retired is considerably less, on average
23.7% less per measurement point, the performance becomes
significantly worse. The graph also shows an apparent increase
in the number of caches misses per time interval compared to
the baseline Matrix multiplication with an average of 28%
increased cache misses per measurement point.

For comparative purposes, we depict the execution charac-
teristics for the non-L2-cache-bound application FAST running
in a leech setting in Fig 7.

Fig. 7. FAST execution characteristics with leech

The baseline FAST version executes an average of 4.4%
more instructions on average per 50 µs than the leech-loaded
version. The difference in L2-cache is also not overwhelming,
(on average 1.1% more) in our leech version versus the
baseline version. The small increase in execution-time, small

decrease in instructions retired and small decrease in L2-cache
misses means FAST did not suffer notably from heavy
L2-cache contention. This goes in line with our assertion of
the previous section that FAST, in fact, is not L2-cache-bound.
Harris, on the other hand, displays notably different behavior;
the instructions retired are now jittery, especially in the middle
sections of the execution. The L2-cache misses are also more
jittery and counts significantly more than the baseline version.
Table VIII summarizes the results from our leech tests and
shows the application execution-time from our leech loaded
version (column 2) and the percentage difference in execution-
time compared to the baseline execution (column 3). The table
also shows the percentage difference in instructions retired per
50 µs (column 4) and L2-cache misses (column 5) between
the leech loaded version and the baseline execution of the
applications.

TABLE VIII
SUMMARY OF PERFORMANCE LOSS DUE TO L2 -CACHE CONTENTION

Application Ex. [ms] Diff.[%] Instr.[%] L2.[%]
Harris 328 -7.41% -5.76% +64.14%
SUSAN 209 -7.3% -0.75% -16.62%
FAST 137.8 -3.02% -4.4% +1.1%
Matmult 381 -41.2% -31.7% +36.5%
SIFT 799.5 -6.6% -10.6% +6.3%
Sort 800.1 -0.38% -0.93% +7600%

The matrix multiplication suffered the worst execution-time
losses due to resource contention, with a 42.1% increase
in total execution-time, which is a drastic performance de-
crease. The FAST application suffered a 2.96% increase in
execution-time, which is also in line with the low L2-cache
correlation listed in the previous subsection. Another stand-
out measurement is the number of increased cache misses for
the sort application of 7600%. This measurement is not an
error but rather a natural consequence of the few misses in
the baseline case (1 L2-cache-miss on average) compared to
the leech case (7600L2-cache-misses on average). The increase
is drastic, but the count is not enough to significantly reduce
the performance.

The second worst is the Harris application (moderate cor-
relation), which presents a 7.41% execution-time decrease.
The third worst application is SUSAN (no correlation), which
also presents an interesting case - the application displays no
L2-cache-boundness according to the correlation calculation.
However, it still shows a notable performance decrease, while
displaying a less L2-cache misses average per 50 µs than the
baseline case. Since SUSAN shows a performance degradation
while simultaneously showing a decrease in L2-cache misses,
it cannot be L2-cache-bound.

V. PARTITIONING EXPERIMENTS

In previous subsections, we show how we use the Pearson-
correlation coefficient to determine the resource-boundness of
an application and how L2-cache-cache contention affects the
application’s performance. Here, we apply the knowledge of
an applications’ resource-boundness for assigning L2-cache-
partition sizes.

6

A. Cache partitioning performance impacts

In this section, we present experiments on the effects of
executing our different applications within a cache partitioned
environment. LLM-shark relies on the Palloc framework to
implement page-coloring, which replaces the default buddy
allocator algorithm in the Linux kernel. The page coloring
algorithm utilizes the cache set-associative addressing bit for
determining the memory location of new data. We list the
L2-cache specifications in detail in Table IX.

TABLE IX
L2 -CACHE SPECIFICATION OF ARM CORTEX-A53

Property Size
Cache size 1 MB
Line length 64 Byte
Set-associativity 16
Set size 1024 Byte
Number of sets 1024
Replacement policy Pseduo-random

The number of available cache partitions (colors) on a
platform depends on the cache size, number of sets and the
page size (4 KB), see Eq 2.

Nr. of Colors =
Cache size

Cache ways ∗ page size
(2)

Our platform provides 16 colors according to the formula
and each color provides a 64 KB memory area. We showcase
the effects of cache partitioning through a set of experiments
where we measure our applications’ execution-times under
different color assignments, using 2-, 4-, 7-, 10-, 13-, and
16- assigned slices for the application. We assign one color
for LLM-shark so that it can operate. We list the median
execution-times of 100 measurements for each application
using different cache partition sizes in Table X with the slices
translated into the actual L2-cache partition size.

TABLE X
APPLICATION EXECUTION-TIMES IN MILLISECONDS OF APPLICATIONS

USING DIFFERENT L2 -CACHE PARTITION SIZES

Partition size (KB)
Application 128 256 448 640 832 1024
Harris 320 312 312 309 307 306
SIFT 780 778 777 775 774 771
Matmult 1214 1162 979 876 451 288
FAST 138 138 138 138 138 138
Sort 798 797 797 797 797 797
SUSAN 202 199 198 196 196 196

The table shows the difference in execution-time for each
respective application, using different cache partitions where
Matmult displays the most execution-time difference due to
change in L2-cache partition size. We further plot the number
of instructions retired and the number of L2-cache misses
using different L2-cache partition sizes in Fig. 8 and Fig. 9
respectively.

Fig. 8 plots the percentage difference in the number of
instructions retired on the y-axis when scaling up the cache

Fig. 8. Difference in L2-cache misses using different L2-cache partition sizes.

Fig. 9. Difference in instructions retired misses using different L2-cache
partition sizes.

partition size. A high percentage means more instructions re-
tired per 50 milliseconds and is preferable to a low percentage
difference. Fig. 9 plots the percentage change in the number
of L2-cache misses on the y-axis when increasing the cache
partition size. The plots show an inverted scale, which means a
positive percentage difference points to a decrease in L2-cache
misses compared to our reference measurement. Since Fig. 9
only plots the difference in L2-cache misses, it is not possible
to conclude that higher percentages are preferable to low
percentages. Instead, the cache misses must be interpreted in
an instructions retired context, where a decrease in the number
of cache misses leads to an increased amount of instructions
retired.

B. Initial cache partitions

Previously [4], we used a methodology called LLC-PC
which tries to find the best Last-level cache partition size
for an application. The methodology is an iterative process
that continuously increases the Last-level cache partition for
the application until a desired performance has been met. The
method utilizes a run-time comparison scheme and measures
an application’s performance while increasing the cache par-
tition size – if an increase in cache partition size positively
affects the application’s performance, LLC-PC continues in-
creasing the partition size; if not, then then stop increasing the
cache partition size. LLC-PC uses the smallest possible cache

7

TABLE XI
L2 -CACHE INITIAL CACHE PARTITION SUGGESTIONS COMPARISON

LLM-shark C50µs Ctot Execution-times
Application Corr. Norm.% Size Median % Size Number % Size LLM C50µs Ctot

Harris -0.49 30.97% 5 11274 15.36% 2 8.7 ∗ 105 15.36% 2 309.2 313.9 313.9
Matmult -0.84 52.69% 8 23871 33.95% 5 2.2 ∗ 106 40.37% 6 897.5 1137.4 1075.3

SIFT -0.26 16.34% 2 15401 21.9% 3 1.3 ∗ 106 23.86% 3 780 779 779
SUSAN —Omitted— 1* 2786 3.96% 1** 4.5 ∗ 105 7.95% 1 212 210 205
FAST —Omitted— 1* 16972 24.14% 4 7.0 ∗ 105 12.37% 2 145.1 138.9 138.8
SORT —Omitted— 1* 6 0.01% 1** 4 ∗ 103 % 0.08% 1** 813.7 807.4 797.9

*Executing simulatenously on different cores using the same cache partition
**Percentage not sufficient to justify a standalone partition, instead use a shared container

partition size (which in our case is 64 KB) for starting point
to avoid over-saturation. LLC-PC then increases the cache
partition size by one (64 KB) for every iteration. Thus, it may
take several iterations before reaching the desired performance,
since the starting point is set at the smallest cache partition
size possible.

Our optimization proposal is to have a “reasonable” start-
ing point, i.e., an initial L2-cache partition size from where
to start scaling the partition sizes. Here, we illustrate the
usage of the correlation coefficient to determine the size of
an initial cache partition: applications with high correlations
should receive more spacious partitions while low correlation
applications should receive less space. In our methodology,
we normalize all the correlation coefficient values with a
magnitude ≥ to weak and partition assign partitions according
to the percentage value of our 15 available colors. The initial
correlation approach for determining resource-boundness was
presented in [6], in here we apply that methodology to assign
cache partitions. The normalized values gives a percentage
and is used to calculate the cache partition sizes. Since the
cache partition space only provides 15 colors, we also need to
round-off decimal values to the closest integer values find an
appropriate cache partition. E.g., an application that displays a
normalization percentage of 30% (15∗0.3 = 4.5) will result in
a cache partition size of 4.5 – we round-off 4.5 to the closest
integer value, 5, since it is not possible to use fraction numbers
as a cache partition.

We discard applications with a lower than weak correlation
since additional cache partitions since our assessment is that
these application will receive little to no performance benefits
from increased cache partition size. We instead execute these
applications within a ”Junk” container - a partition with space
of (64 KB) that holds all low correlation applications, and as
such, we do not waste L2-cache space on these applications.
We argue our L2-cache partition distribution methodology is
preferable to other methodologies, such as assigning L2-cache
partitions based on L2-cache misses or L2-cache accesses [22]
since our methodology includes the resource-boundness factor.
We compare our correlation methodology versus two L2-cache
misses distribution policies (C50µs and Ctot). The table con-
tains results using three methodologies, specified as follows:

1) LLM-shark (column 2-4) – distributes L2-cache parti-
tions based on correlation.

2) C50µs (column 5-7) – distributes L2-cache partition size
based on the median number of L2-cache misses per
50µs.

3) Ctot (column 8-10) – distributes L2-cache partitions
based on the total number of L2-cache misses per given
application.

The table shows the execution-time results and cache
partition sizes of the three different methodologies, LLM-
shark, C50µs and Ctot. The most significant difference is seen
from the Matrix multiplication perspective, which receives the
most spacious L2-cache partition size, followed by Harris.
SUSAN, SORT and FAST are all assigned to share “Junk”
L2-cache partition container. An application must utilize the
locality of reference [20] principle to benefit from the L2-cache
and as such be L2-cache-bound. Through code inspection
of FAST [17], we conclude that FAST cannot be L2-cache-
bound due to a lack of locality utilization – even though
the performance counters show a high count (relative to the
other applications) of L2-cache misses. Due to FAST’s high
L2-cache count, it receives L2-cache using the cache miss-
based policies, and can be seen as a waste of L2-cache partition
space since it’s performance is not affected notably. Due to
FAST’s low correlation, it does not receive any individual
L2-cache partition space but is instead assigned to the Junk
container. We summarize the comparison between the different
methodologies in Table XII. The columns marks the best
solution and specifies to performance degradation for each
application compared to the best results. A higher value
means an increase in execution time and is therefore a more
significant performance degradation than a low value.

TABLE XII
COMPARISON SUMMARY

Execution-time comparison (ms)
Application LLM-shark C50µs Ctot
Harris Best +4.7 +4.7
Matmult Best +239.9 +177.8
SIFT +1 Best Best
SUSAN +7 +5 Best
FAST +6.2 Best +0.1
SORT +15.8 +9.8 Best

Our correlation-based methodology achieved the best
execution-times for the matrix multiplication and the Harris

8

applications. SORT displays the most significant downgrade
using our approach, which is a fifteen milliseconds perfor-
mance degradation, comparatively the cache-based distribution
policies that display a 239.9ms (C50µs) and (+177.8 Ctot) for
our most cache heavy load, the matrix multiplication. The
cache misses distribution policies instead focuses on

C. Discussion

The comparison shows that our correlation-based methodol-
ogy assigns most cache partitions to the matrix multiplication
than the cache misses distribution policies due to its high
resource-boundness. The Harris application also receives most
cache partitions using our correlation-based approach due
to its resource-boundness, resulting in the best performance.
SIFT suffers a 1ms performance degradation using LLM-
shark. The junk cache partition displays a slight performance
degradation for FAST, SUSAN, and SORT, indicating that
cache contention occurs within this specific cache partition.
However, the performance degradation of these three appli-
cations is slight compared to the performance gains of the
matrix multiplication in LLM-shark compared to the cache-
misses-based distribution policies. The matrix multiplication
performance results display the main take-away point from this
paper; it is not how frequently an application utilizes the cache
that determines how the application responds to a change
in cache partition size, but rather how an application use
the cache. The matrix multiplication has a high data-reusage
and tries to access the same cache memory several times
during execution. If the cache space is reduced, the matrix
multiplication cannot re-use data to the same extent since
the cache is smaller and will suffer a significant performance
penalty. Comparatively, FAST does not show cache-boundness
due to low cache re-usage but still maintains a high cache-
miss count. FAST fetches data from the main memory, leading
to cache misses, but does not re-access the same data again;
therefore, FAST is not cache-bound and does not benefit from
increased cache partition space.

We argue that it is more beneficial to assign cache partitions
based on their resource boundness rather than the cache-miss
count since an increase in cache partition space provides more
significant performance benefits to the highly cache-bound
applications than non-cache bound applications.

VI. RELATED WORK

Related work includes papers directed towards investigating
the resource-boundness. Work such as Cache Pirating [7] and
Bandwidth Bandit [8] are tools for generating shared resource
contention and and can empirically pinpoint how much an
application suffers from shared resource contention, which is
similar to our leech methodology. Even though these works
provide a structured methodology for pinpointing resource
contention in one particular resource, the process can become
time consuming since a bandit, a pirate or even a leech has
to be designed specifically for each individual resource in
order to generate and measure contention. Our opinion is
that our correlation methodology can significantly decrease
the complexity of such tests.

Other works such as Scarphase [18] divides program execu-
tion into phases and proposes a method for identifying how the
resource usage changes over time in applications using the perf
interface for measuring the performance counters. Sembrant
et al. [19] expands on the same direction topic and explains
the differences in phase behavior between serial and parallel
applications.

The body of cache partitioning papers is relatively
large [12]. Coloris [22] is an excellent example, with an
approach that splits the cache partitions according to how
many cache misses one process is responsible for. As we show
in our paper, it is not necessary that the application with the
most cache misses benefits the most from cache partitioning,
instead we have to look at the significance of the cache misses
and take it into relationship on how it affects the performance.
Brock et al. [2] discusses how to optimally allocate cache
partitions to different processes through exhaustive searches.

Perarnau et al. [16] argue that the cache partition size is
best left to the user since it is the user that in the end
knows what performance the application requires. The last
level cache is, however, a very complex hardware resource due
to the contention factor and also due to the limited size. This
means the user needs expert knowledge on how the system
applications utilizes the cache. Our solution eliminates the
need for expert knowledge, through our partitioning scheme.

With LLM-shark, we cover all the aspects of performance
improvements based on cache usage: i) we analyze the be-
havior of an application; ii) we assert potential problems such
as resource contention; iii) we actuate mitigation strategies
to avoid resource contention before it happens. While all the
other similar approaches perform only one or two of these
actions, we even provide an automated solution.

VII. SUMMARY

We show that the LLM-shark tool can assign cache par-
titions automatically to applications based on their hardware
resource-boundness. We have conducted a series of tests to
assess the usability of the Pearson correlation coefficient as a
tool for determining resource-boundness. We then verify that
resource bound processes benefits to various extent depending
on cache partitioning sizes and the level of hardware resource-
boundness. Finally, we propose a normalization scheme to
assign initial cache partitions to a system, based on the
magnitude of the Pearson correlation coefficient. Our tool thus
answers the following questions:

1) Which hardware components are limiting factors to
application performance?

2) Which hardware resources are potential contention bot-
tlenecks to the application?

3) How spacious should initial cache partitions be?

We focus only on the L2-cache as a test subject. However,
we argue that the correlation methodology is generalizable
to all hardware events which imply a negative performance
impact, such as TLB-, L1D-cache-, L1I-cache-misses and
page-misses etc.

9

A. Future work
For future work, we plan to integrate our tool to different

architectures that provide a more sizeable cache memory.
Since our Last-Level Cache (the L2-cache) is relatively small,
the number of the available cache partitions is also small. More
spacious cache memory will leave more room for flexibility in
the cache partition assignments and, therefore, the execution-
times of our L2-cache-bound applications.

In the paper, we mention several mitigation techniques such
as bandwidth reservation and TLB coloring which also can
benefit from correlation based resource-boundness estimation.
For future work, we intend to implement more mitigation tech-
niques for LLM-shark, utilizing the same correlation-based
scheme for determining parititon sizes. We furthermore plan to
integrate LLM-shark with LLC-PC [4] to enable the dynamic
adaptation of partition sizes once we have them assigned.
Other future work includes investigating other metrics for
formulating initial partition sizes. Our current strategy only
looks at the magnitude of the correlation, which serves as a
reasonable starting point. However, to provide an even more
accurate partition estimation, it could be possible to model
how much instructions retired can be gained from one single
cache partition.

REFERENCES

[1] ARM. Arm Cortex-A53 MPCore Processor Technical Refer-
ence Manual. URL https://developer.arm.com/documentation/
ddi0500/j/.

[2] J. Brock, C. Ye, C. Ding, Y. Li, X. Wang, and Y. Luo. Optimal
cache partition-sharing. In 2015 44th International Conference
on Parallel Processing, pages 749–758. IEEE, 2015.

[3] J. Danielsson, M. Jagemar, M. Behnam, M. Sjodin, and T. Se-
celeanu. Measurement-based evaluation of data-parallelism for
opencv feature-detection algorithms. In 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC),
pages 701–710. IEEE, 2018.

[4] J. Danielsson, M. Jägemar, M. Behnam, T. Seceleanu, and
M. Sjödin. Run-time cache-partition controller for multi-core
systems. In IECON 2019-45th Annual Conference of the IEEE
Industrial Electronics Society, volume 1, pages 4509–4515.
IEEE, 2019.

[5] J. Danielsson, T. Seceleanu, M. Jägemar, M. Behnam, and
M. Sjödin. Testing performance-isolation in multi-core systems.
In 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), volume 1, pages 604–609. IEEE,
2019.

[6] J. Danielsson, T. Seceleanu, M. Jägemar, M. Behnam, and
M. Sjödin. Resource depedency analysis in multi-core systems.
In 2020 IEEE 44th Annual Computers, Software, and Applica-
tions Conference (COMPSAC), pages 87–94. IEEE, 2020.

[7] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten.
Cache pirating: Measuring the curse of the shared cache. In
2011 International Conference on Parallel Processing, pages
165–175. IEEE, 2011.

[8] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten.
Bandwidth bandit: Quantitative characterization of memory
contention. In Proceedings of the 2013 IEEE/ACM International

[10] M. Jagemar, A. Ermedahl, S. Eldh, M. Behnam, and B. Lisper.
Enforcing quality of service through hardware resource aware

Symposium on Code Generation and Optimization (CGO),
pages 1–10. IEEE, 2013.

[9] T. Gleixner. Linux Performance Counter announcement, 2008.
URL http://lkml.org/lkml/2008/12/4/401.
process scheduling. In 2018 IEEE 23rd International Con-
ference on Emerging Technologies and Factory Automation
(ETFA), volume 1, pages 329–336. IEEE, 2018.

[11] R. Jain. The Art Of Computer Systems Performance Analysis:
Techniques For Experimental Measurement, Simulation, And
Modeling. john wiley & sons, 2008.

[12] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente,
and M. Bertogna. Deterministic memory hierarchy and virtu-
alization for modern multi-core embedded systems. In 2019
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 1–14. IEEE, 2019.

[13] D. Mindrila and P. Balentyne. Scatterplots and Correla-
tion. URL \url{https://www.westga.edu/academics/research/
vrc/assets/docs/scatterplots and correlation notes.pdf}.

[14] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable
interface to hardware performance counters. In Proceedings
of the department of defense HPCMP users group conference,
volume 710, 1999.

[15] S. A. Panchamukhi and F. Mueller. Providing task isolation via
tlb coloring. In 21st IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 3–13. IEEE, 2015.

[16] S. Perarnau, M. Tchiboukdjian, and G. Huard. Controlling
cache utilization of hpc applications. In Proceedings of the
international conference on Supercomputing, pages 295–304.
ACM, 2011.

[17] E. Rosten and T. Drummond. Fusing points and lines for high
performance tracking. In Tenth IEEE International Conference
on Computer Vision (ICCV’05) Volume 1, volume 2, pages
1508–1515. Ieee, 2005.

[18] A. Sembrant, D. Eklov, and E. Hagersten. Efficient software-
based online phase classification. In 2011 IEEE International
Symposium on Workload Characterization (IISWC), pages 104–
115. IEEE, 2011.

[19] A. Sembrant, D. Black-Schaffer, and E. Hagersten. Phase
behavior in serial and parallel applications. In 2012 IEEE In-
ternational Symposium on Workload Characterization (IISWC),
pages 47–58. IEEE, 2012.

[20] W. Stallings. Computer organization and architecture: design-
ing for performance. Pearson Education India, 2003.

[21] X. Vera, B. Lisper, and J. Xue. Data cache locking for
higher program predictability. ACM SIGMETRICS Performance
Evaluation Review, 31(1):272–282, 2003.

[22] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache
partitioning system using page coloring. In Parallel Architecture
and Compilation Techniques (PACT), 2014 23rd International
Conference on, pages 381–392. IEEE, 2014.

[23] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha.
Memguard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms. In Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2013 IEEE 19th, pages 55–64. IEEE, 2013.

[24] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. Palloc: Dram
bank-aware memory allocator for performance isolation on
multicore platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2014 IEEE 20th, pages
155–166. IEEE, 2014.

[25] G. Zellweger, D. Lin, and T. Roscoe. So many performance
events , so little time. APSys ’16, 2016. doi: 10.1145/2967360.
2967375.

10

