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Abstract— Industrial mobile robots are increasingly intro-
duced in factories and warehouses. These environments are be-
coming more dynamic with human co-workers and other uncer-
tainties that may interfere with the robot’s actions. To uphold
efficient operation, the robots should be able to autonomously
plan and replan the order of their tasks. On the other hand, the
robot’s actions should be predictable in an industrial process.
We believe the deployment and operation of robots become
more robust if the experts of the industrial processes are able
to understand and modify the robot’s behaviour. To this end, we
present an intuitive novel task modelling formalism, Robot Task
Scheduling Graph (RTSG). RTSG provides building blocks for
the explicit definition of alternative task sequences in a compact
graph format. We present how such a graph is automatically
converted to a task planning problem in two different forms,
i.e., a Mixed Integer Linear Program (MILP) and a Planning
Domain Definition Language specification (PDDL). Converted
RTSG models of a mobile kitting application are used to
experimentally compare the performance of one MILP planner
and two PDDL planners. Besides providing this comparison, the
experiments confirm the equivalence of the converted MILP and
PDDL problem formulations. Finally, a simulation experiment
verifies the assumed correlation between a cost model, based
on path lengths, and the makespan.

I. INTRODUCTION

To support human labour with repetitive, non-ergonomic
and simple tasks, the need is ever increasing for having
mobile robots able to perform versatile industrial robot tasks
like kitting and machine tending.

For efficient operation in a dynamic, collaborative working
space where unexpected situations are expected to occur, the
ability to plan and replan tasks autonomously in a robust way
becomes a key success factor. The maturity of AI Planning
has seen tremendous progress over the last decades and
several modelling formalisms with high expressiveness have
been demonstrated successfully in industrial robot applica-
tions and other domains [1], [2]. However, these modelling
formalisms are often complex and do not take advantage
of the domain expert’s intuition and skills in understanding
what is a valid task sequence. We consider a domain expert
as someone who has expert knowledge in the tasks that
the robot shall perform in a certain industrial context—not
an expert in robot programming. We strongly believe that
enabling the competence of domain experts is crucial to
reduce the threshold for the successful commissioning of
competitive industrial robot applications on a larger scale.
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In industrial robot applications, it is important to avoid
unexpected action sequences that reach a defined goal state,
at the price of potentially unexpected and undesired side
effects. Finding a feasible plan is often easy since working
procedures typically are well organized. The challenge often
lies in finding an efficient plan.

In this paper, we present a novel modelling formalism,
Robot Task Scheduling Graph (RTSG), that addresses these
problems while leveraging AI planning. One goal with RTSG
is to combine the knowledge and experience of domain
experts with the efficiency of automated planning/schedul-
ing. The modelling formalism provides building blocks for
describing variable sequences of robot actions to reach high-
level goals. As RTSG is graph-based, it enables an intuitive
visual overview.

We do not claim RTSG to be the most expressive mod-
elling approach but we argue it is sufficiently expressive
for a semi-structured industrial mobile robot application. We
present how an RTSG model can be automatically converted
to a task scheduling problem in two different forms: Mixed
Integer Linear Programming (MILP) and Planning Domain
Definition Language (PDDL) [3]. This enables RTSG to be
used with MILP solvers as well as PDDL-based planners.
Improving the efficiency of these planners is a relevant
problem, but it is beyond the scope of this paper that focuses
on the capabilities of the modelling formalism.

An experimental comparison of the performance for two
PDDL-based planners and one MILP solver is presented.
These experiments are applied to modelled use cases for a
mobile kitting application, measuring the planning time and
the efficiency of generated task sequences. Additionally, the
results indicate an equivalence of the MILP and the PDDL
representations of the RTSG scheduling problem. Finally, in
a simulation study, we show that a transition cost model
based on path lengths is a valid approach to minimize the
resulting makespan.

The rest of the paper is organized as follows. Section II
presents the related work. Section III gives an intuitive
description of the RTSG modelling formalism. Section IV
describes a conversion from RTSG to MILP. Section V
describes a conversion from RTSG to PDDL. Section VI
presents the experimental results, while Section VII con-
cludes the paper.

II. RELATED WORK

RTSG fills a gap between existing modelling formalisms
of robot action sequences by combining a desirable set of
properties:
• Intuitive modelling approach for a domain expert.



TABLE I: Properties of modelling formalisms for industrial
robot applications

Modelling
formalism

Intuitive for
domain expert

Task sequence
variability guided
by domain expert

Automated
planning/
scheduling

PDDL – – X
HTN – X X
CRAM – X –
RTSG X X X
Robot Skills X – X
State Machine (X) X –
Petri Net (X) X –
Behavior Trees (X) X –
Block-based
Programming X – –

• Intended for use with an automated planner/scheduler
to generate efficient task sequences.

• Leverages domain experts intuition, skills and knowl-
edge on a suitable variability of task sequences.

A recent literature review investigated different approaches
for representations of action sequences used for robot task
planning and execution in a dynamic environment [4]. A
selection of these representation approaches is given in
Table I. The selection covers all representations available in
ROS that have been used with industrial robot applications.
Additionally, robot skills, block-based programming and Be-
haviour Trees have been added. The first column, indicating
the intuitiveness of the formalism, is subjective and not
backed with empirical evidence. The indicated existence of
properties for the second and the third column is indicated
by the referenced works.

PDDL [5] is an expressive modelling formalism to set up
general planning problems (see Section V-A). Modelling a
planning problem is focused on creating objects in the world
and give facts about them and their mutual relations while
providing operators that may change these facts to reach a
goal condition. However, the representation is not intuitive
for a domain expert, and there is no explicit way to indicate
preferences on action sequences.

Hierarchical Task Networks (HTN) is another general
modelling formalism [6]. In HTN, modelling is about spec-
ifying partial orders of tasks. It supports compound tasks
that can be decomposed by alternative methods into smaller
subtasks in a desired partial order. This provides a way
to indicate alternative task sequences. Primitive subtasks
correspond to operators in PDDL. The specification of
preconditions and variables for methods and operators, the
specification of operator effects and the flexible binding
of variables give great expressiveness. However, managing
these general concepts can be challenging for a domain
expert.

Similar to HTN, Cognitive Robotic Abstract Machine
(CRAM) [7] that is based on Reactive Plan Language [8]
has an action-centric modelling formalism. It is an expres-
sive programming language supporting a hierarchical task
structure. The general purpose of CRAM is to be a tool to
write robust robot control programs. However, it does not
provide support for automated planning and a programming
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Fig. 1: Robot Task Scheduling Graph.

language is not intuitive for a domain expert.
Robot skills build on the idea that the knowledge of

an expert of robot programming can be encoded into the
implementation of tasks in the form of reusable skills that can
be used as simple building blocks when modelling a robot ap-
plication. These skills can include preconditions and effects
to support runtime execution but also automated planning [9].
However, this concept does not explicitly support using a
domain expert’s intuition of the task sequence variability.

Block-based programming is primarily intended to sim-
plify programming by providing configurable building
blocks, e.g., CoBlox [10].

Other general modelling formalism’s can be used for mod-
elling complex robot behaviour and guiding the execution
e.g., State Machines [11], PetriNets [12], [13] and Behaviour
Trees [14]. These powerful modelling techniques are not
primarily intended for automated planning and the modelling
complexity can be challenging.

In some approaches, no apparent high-level modelling
formalism is used and the problem representation is purely
mathematical, typically in the form of an optimization prob-
lem, e.g., [15]. This can give good results but is less intuitive
and the problem formulation is harder to adapt to meet new
requirements.

In assembly applications, directed graphs, AND/OR-
graphs [16] (based on the assembly parts) or precedence
graphs [17] (based on assembly operations) can be used to
model the variability of assembly sequences that will fulfil
a specified assembly. ASML is a later approach [18]. These
techniques are used to search for a good design for manufac-
turability but also for finding an efficient assembly sequence.
They are not intended for runtime task planning/replanning.
RTSG presents an approach akin to assembly modelling
formalisms, to guide automated scheduling of tasks.

III. RTSG MODELLING FORMALISM

With the building blocks informally described below,
RTSG provides a modelling formalism for a domain expert
that guides the selection of a task sequence to be decided
by an automatic planner with respect to some optimization
objective.

An RTSG model, as exemplified in Figure 1, is a di-
rected acyclic graph having one start node (S) with a single
outgoing edge representing an initial state. At the other
end, there is one goal node (G) with a single incoming
edge representing a desired goal state. In between, a set



of robot tasks leading towards the goal are represented by
rectangular nodes having a single incoming edge and a
single outgoing edge. In addition, a collection of logical
nodes impose different scheduling dependencies between
tasks. Edges represent precedence constraints: If there is a
directed path between two tasks, e.g., T1 and T5, the first
task must precede the latter task in a plan where both tasks
are scheduled. AND-Pairs split the graph with an AND-Fork
node (&F) into parallel branches and rejoin them with an
AND-Join node (&J). Tasks in different AND-Fork branches,
e.g., T1, T2 and T3 may be scheduled in any mutual order
since there is no directed path between them. OR-Pairs split
and rejoin the graph in a similar way with an OR-Fork (||F)
and an OR-Join (||J). However, the resulting parallel branches
represent alternatives, i.e., only tasks in one of the branches,
e.g., T5 or T6, will be scheduled. Lock-Pairs encapsulate a
part of a single branch between an AddLock node (+L) and
a RemoveLock node (-L). The set of tasks between a Lock-
pair, e.g., {T3, T4} will be scheduled as a coherent sub-
array of the full task sequence, i.e., uninterrupted by other
tasks. Pairs may encapsulate other pairs in a hierarchy, e.g.,
an OR-Pair may contain other OR-pairs that split alternative
branches into sub-alternatives.

Complementing the graph, a task cost estimation should
be provided. Apart from specifying the cost of performing
different tasks, it should include transition costs between any
pair of tasks allowed by the RTSG model to be scheduled in
consecutive order.

IV. CONVERSION FROM RTSG TO MILP

Section IV-A presents how an RTSG model is converted
to a MILP scheduling problem with decision variables,
optimization objective and constraints. Section IV-B specifies
how the scheduling problem is modified in a replanning
scenario.

A. Conversion from RTSG to MILP

1) Notation: A is the set of all task nodes, S is the start
node and G is the goal node. The following notation is used
when combining them: AS = A ∪ S, AG = A ∪ G and
Ã = A ∪ S ∪ G. O ⊆ A denotes all tasks encapsulated by
OR-Pairs. j ≺ k indicates that j precedes k, where j, k ∈ Ã.

2) Variables and objective: Decision variables are given
by Xj,k ∈ {0, 1} j, k ∈ Ã.

Xj,k =

{
1, if task j is followed by task k.
0, otherwise.

Kj,k ∈ R≥0 represents the cost for performing task k after
task j:

Kj,k = τj,k + αk (1)

where τj,k is the transition cost and αk is the action cost.
The objective is to minimize the cost function J :

J =
∑
j∈AS

∑
k∈AG

Xj,kKj,k. (2)

3) General constraints:

Xj,j = 0 ∀j ∈ Ã (3)∑
k∈AG

Xj,k = 1 ∀j ∈ AS \O (4)∑
k∈AG

Xj,k ≤ 1 ∀j ∈ O (5)∑
j∈AS

Xj,k = 1 ∀k ∈ AG \O (6)

∑
j∈AS

Xj,k ≤ 1 ∀k ∈ O (7)

∑
k∈AG

Xj,k =
∑
k∈AS

Xk,j ∀j ∈ O (8)∑
j∈AG

Xj,S = 0 (9)

∑
k∈AS

XG,k = 0 (10)∑
j∈V

∑
k∈V

Xj,k ≤ |V | − 1 ∀V ⊆ A, V 6= ∅ (11)

There can be no transition between the same task (3).
Tasks outside OR-Pairs will occur once (4) and (6). Tasks
inside OR-Pairs will occur at most once (5), (7), and (8).
There is no transition to the start state (9) and there is no
transition from the goal state (10). There can be no cyclic
sub-tours between tasks (11).

4) Precedence constraints: Assuming D ⊆ Ã is any
ordered subset with elements Di. Precedence constraints
must hold for these subsets in general and especially if they
become a sub-array of the task sequence:
|D|−1∑
j=1

XDj ,Dj+1
≤ |D| − 2 ∀D ⊆ Ã, |D| ≥ 2, D|D| ≺ D1.

(12)

5) Lock constraints: L ⊆ A are the set of all tasks
encapsulated by a Lock-Pair.

The first tasks in L are defined as LF = {a ∈ L | b ⊀
a ∀b ∈ L}. The last tasks in L are defined as LL = {a ∈
L | a ⊀ b ∀b ∈ L}.

Xj,k = 0 ∀L,∀j ∈ AS \ L,∀k ∈ L \ LF (13)

Xj,k = 0 ∀L,∀j ∈ L \ LL,∀k ∈ AG \ L (14)∑
j∈AS\L

∑
k∈LF

Xj,k ≤ 1 ∀L (15)

∑
j∈LL

∑
k∈AG\L

Xj,k ≤ 1 ∀L (16)

There can only be transitions to the first tasks from external
tasks (13) and there can at most be one such transition (15).
Similarly, there can only be transitions from the last tasks
to external tasks (14) and there can at most be one such
transition (16).

6) OR-Pair constraints: The constraints presented here
can handle a nested structure of OR-Pairs. However, a po-
tential simplification of such a structure, e.g., with algebraic



rules, is out of the scope for this work. If an OR-pair is
contained by an outer OR-Pair, it is denoted an internal
OR-Pair and at most one of its alternative branches will be
scheduled. The outermost OR-Pairs are denoted external OR-
Pairs and exactly one of their branches will be scheduled.
OR-Pairs contain OP nodes that can be of two types: tasks
and internal OR-Pairs.
O1, . . . , Ov are sets of OP nodes contained by

OR-Pair 1, . . . , v. Op1, . . . , Opm are the set of OP
nodes contained by branches 1, . . . ,m of OR-Pair p.
OT

pq = {a ∈ Opq | a is a task}. OOP
pq = {a ∈

Opq | a is an internal OR-Pair}
One primary OP node, Ppq ∈ Opq , is arbitrary selected

for each OR-Pair branch.
Three help operators (17), (18), and (19) are defined

to support the definition of OR-Pair constraints. Note that
operators F and H return a set while R returns a set of sets.

F (Opq) =

{
{a} if Ppq is task a.
F (Or1) ∪ . . . ∪ F (Orm) if Ppq is OR-pair Or

(17)
H(Op) = F (Op1) ∪ F (Op2) ∪ . . . ∪ F (Opm) (18)

R(Opq) = OT
pq \ Ppq ∪

⋃
i∈OOP

pq \Ppq

{H(i)} (19)

Given these definitions, the OR-Pair constraints can be
summarized:∑
j∈AG

m∑
q=1

∑
s∈F (Opq)

Xs,j = 1 ∀ external Op (20)

∑
j∈AS

m∑
q=1

∑
s∈F (Opq)

Xj,s = 1 ∀ external Op (21)

∑
j∈AG

∑
k∈r

Xk,j =
∑
j∈AG

∑
s∈F (Opq)

Xs,j ∀Opq,∀r ∈ R(Opq)

(22)∑
j∈AS

∑
k∈r

Xj,k =
∑
j∈AS

∑
s∈F (Opq)

Xj,s ∀Opq,∀r ∈ R(Opq)

(23)

One of the branches of external OR-Pairs will be sched-
uled (20), (21). If the primary OP node in an OR-Pair branch
is scheduled, so will the remaining OP Nodes in the same
branch (22), (23).

B. Replanning

At a point of replanning, the ordered set C =
{C1, . . . , Cl} represents completed tasks. Additional con-
straints for completed transitions (24) (25):

XS,C1
= 1 (24)

XCi,Ci+1
= 1 ∀i = 1, . . . , l − 1 (25)

Furthermore, the cost matrix, Kj,k j ∈ AS \C, k ∈ AG\
C, is updated to consider a new starting location and an
updated world state. Finally, the cost matrix is updated to

consider completed tasks:

KS,C1
= 0

KCi,Ci+1
= 0 ∀i = 1, . . . , l − 1

KCl,j = KS,j ∀j ∈ AG \ C

V. CONVERSION FROM RTSG TO PDDL

A. PDDL

PDDL is a modelling formalism originating from
STRIPS [19] that has evolved from the planning competi-
tions held by The International Conference on Autonomous
Planning and Scheduling since 1998. In PDDL, a planning
problem is described in terms of objects in the world (e.g.,
robot, gripper, box and location), an initial state and the
desired goal state. The initial state and the goal state are
specified as a list of facts. A fact is related to a set of objects
and it is defined with a binary predicate (e.g., gripper is
holding box). Actions (e.g., place box on location) can be
applied to change facts. Actions have parameters (e.g., robot,
gripper, box, location). They also have preconditions as a
binary function of predicates (e.g., gripper is holding box and
robot is at location). If the preconditions hold for some set of
parameters, an action can be performed that will change the
facts according to the action’s list of effect predicates applied
to the parameters (e.g., gripper is not holding box, the box
is on location). Finding a plan is about finding a sequence of
actions applied to the objects that step-by-step will change
the facts from the initial state to the goal state. A simple
objective for finding an optimal plan is to minimize the
number of actions. The PDDL2.1 specification [5] introduced
syntax for temporal and numerical planning. It also includes
metrics that allows for specifying an objective. With these
language extensions, it is possible to convert an RTSG model
into a PDDL scheduling problem.

B. Conversion from RTSG to PDDL

With respect to RTSG, we identify the natural PDDL
objects as the RTSG nodes. The reason for converting nodes
to PDDL objects is that nodes have several relations and
properties that can be defined as predicates or numerical
functions, e.g., the edges that connect them or the transition
cost between them. Two types of actions are needed. The first
type is to run a task and the second type is to fire a transition
for a logical node. Running a task has a duration while firing
a transition is instant. The purpose of transition actions is to
guide the scheduling of tasks according to the constraints
imposed by the RTSG. The occurrences of transition actions
in a planned action sequence do not correspond to real
robot actions. However, they can be used to improve the
visualization of a runtime execution state and progress:

In Figure 3, the active task is orange, completed tasks are
green while non-started tasks are grey. Completed logical
nodes are light green while the remaining are white. This
illustrates the execution progress as a gradual green propa-
gation of the graph that will follow the outgoing edges of
completed tasks/transitions.



Listing 1: PDDL domain
(define (domain RTSG)

(:types
node - object
task logical andjoin2 - node
startcond goalcond robtask - task
andfork orfork orjoin - logical
nofork - orfork)

(:predicates
(edge ?n1 ?n2 - node)
(fired ?n - node)
(latest-completed ?t - task)
(andjoin2-inputs ?n1 ?n2 - node)
(orfork-branch ?orf - orfork ?to - node)
(branch-not-selected ?orf - orfork)
(not-locked ?from ?to - task))

(:functions
(cost ?from ?to - task))

(:durative-action RUN-TASK
:parameters (?this ?prev - task ?input - node ?orf -

orfork)
:duration (= ?duration (cost ?prev ?this))
:condition (and

(at start (latest-completed ?prev))
(at start (edge ?input ?this))
(at start (fired ?input))
(at start (orfork-branch ?orf ?this))
(at start (branch-not-selected ?orf))
(at start (not-locked ?prev ?this)))

:effect (and
(at start (not(latest-completed ?prev)))
(at start (not(branch-not-selected ?orf)))
(at end (latest-completed ?this))
(at end (fired ?this))))

(:durative-action FIRE-LOGICAL
:parameters (?this - logical ?input - node ?orf -

orfork)
:duration (= ?duration 0)
:condition (and

(at start (edge ?input ?this))
(at start (fired ?input))
(at start (orfork-branch ?orf ?this))
(at start (branch-not-selected ?orf)))

:effect (and
(at start (not(branch-not-selected ?orf)))
(at end (fired ?this))))

(:durative-action FIRE-ANDJOIN2
:parameters (?this - andjoin2 ?input1 ?input2 - node

?orf - orfork)
:duration (= ?duration 0)
:condition (and

(at start (edge ?input1 ?this))
(at start (edge ?input2 ?this))
(at start (fired ?input1))
(at start (fired ?input2))
(at start (andjoin2-inputs ?input1 ?input2))
(at start (orfork-branch ?orf ?this))
(at start (branch-not-selected ?orf)))

:effect (and
(at start (not(branch-not-selected ?orf)))
(at end (fired ?this)))))

Converted domain and problem files for the RTSG model
in Figure 1 are shown in Listings 1 and 2. The syntax
used from PDDL2.1 has been reduced to enable the POPF2
planner [20] that is supported by ROSPlan [21] making it
an attractive choice for robotics research. POPF2 does not
support some of the PDDL2.1 requirements, among them
negative preconditions, disjunctive preconditions and condi-
tional effects. This adds some complexity to the conversion
by a need to use antonym predicates (e.g., “not-locked"
instead of “locked"), dummy objects, redundant facts and
redundant actions.

In the following, a walkthrough is made through the differ-

Listing 2: PDDL problem
(define (problem RTSG-config)
(:domain RTSG)

(:objects
s - startcond
g - goalcond
af1 - andfork
aj1 aj2 - andjoin2
of1 - orfork
oj1 - orjoin
t1 t2 t3 t4 t5 t6 - robtask
nfs nfg ... nft4 - nofork ; Dummy objects

)
(:init

(fired s)
(latest-completed s)
(edge s af1)
(edge af1 t1) ... (edge aj2 g)
(not-locked s t1) ... (not-locked t6 g)
(andjoin2-inputs t1 t2)
(andjoin2-inputs oj1 t4)
(orfork-branch of1 t5)
(orfork-branch of1 t6)
(branch-not-selected of1)
(orfork-branch nfs s) ; Dummy fact
... ; ...
(orfork-branch nfg g) ; Dummy fact
(branch-not-selected nfs) ; Dummy fact
... ; ...
(branch-not-selected nft4) ; Dummy fact
(= (cost s t1) 100) ... (= (cost t6 g) 100))

(:goal (fired g))
(:metric minimize total-time)

)

ent sections of the converted PDDL domain and problem files
in Listings 1 and 2. The contents of the domain sections are
mostly fixed and independent of the RTSG model with only
a few stated exceptions for AND-Join nodes. The problem
sections are populated from the RTSG model as specified in
the walkthrough. With this specification, the conversion from
a general RTSG model to PDDL2.1 can be fully automated.
Domain sections:

1) Types: RTSG node types are arranged as different
types in a hierarchy: A node is a PDDL object. A task is a
node that affects the cost of the plan. There are three types
of tasks: robottask, startcond and goalcond. The remaining
types are used to define logical nodes of different types. The
nofork type is used to create dummy objects that support the
handling of alternative task sequences. The andjoin2 type
is used to create AND-Joins having two incoming edges.
If the RTSG model has AND-Joins with more incoming
edges, additional types are needed to cover them as well,
e.g., andjoin3, andjoin4 etc.

2) Predicates: The edges between two RTSG nodes are
indicated with an edge predicate. A completed RTSG node
is indicated with a fired predicate. The latest-completed
predicate indicates if a task is the latest completed task.
A group of all X nodes having an outgoing edge to the
very same AND-Join are indicated with an andjoinX-inputs
predicate. Nodes having an incoming edge from a specific
OR-Fork are indicated with an orfork-branch predicate. The
same predicate is also used to indicate other nodes, but
these are created with a nofork in the problem sections. The
branch-not-selected predicate indicates that there has been no



selection of an alternative branch for an OR-Fork. Finally,
the not-locked predicate indicates that a transition is possible
between two tasks.

3) Functions: A cost function indicates the cost, as a
numerical value, required to perform a task after finishing
a previous task.

4) Durative actions for running tasks: There is one action
that runs tasks. The parameters indicate which task to run,
the previous task, the node that is connected to the incoming
edge and an associated orfork (a dummy or a real). The
action’s duration time is set to the cost to run the task after
the previous task. The preconditions require that an action
already has been run for the node connected to the incoming
edge. It also requires that a transition from the previous task
is allowed (not-locked). The primary effect of the action is
to indicate that the action for the task has run (fired). The
combination of preconditions and effects avoids concurrent
tasks and prevents the scheduling of tasks in more than one
alternative OR-Pair branch. Note that goalcond also is a task
and running it will reach the goal state, e.g., by moving to
a certain location.

5) Durative actions for firing transitions: The remaining
actions are used to fire transitions for logical nodes. The
parameters indicate for which logical node the transition will
occur, a node that is connected to an incoming edge and an
associated orfork. The action’s duration time is always zero.
The preconditions require that an action already has been run
for the node connected to the incoming edge. The primary
effect of the action is to indicate that the action for the logical
node has run. The combination of preconditions and effects
prevents the scheduling of tasks in more than one alternative
OR-Pair branch.

Similar but separate actions are used to fire transitions for
AND-Join nodes. One such action is needed for every used
number of incoming edges on AND-Join nodes in the RTSG
model. There is only one difference between these actions:
The preconditions require that actions have been run for all
nodes connected to the incoming edges.
Problem sections:

6) Objects: One node (of corresponding type) is created
for each node in the RTSG model except for AddLocks and
RemoveLocks. One dummy nofork object is created for each
of these nodes that do not have an incoming edge from an
OR-Fork node.

7) Init: The start node is indicated as fired and it is also
indicated to be the latest-completed task. Edge facts are
created between the nodes according to the RTSG model,
but where AddLock and RemoveLock nodes are bypassed.
No-lock facts are defined for all possible transitions between
tasks with respect to the precedence constraints and Lock-
Pair constraints imposed by the RTSG model. For all AND-
Joins in the RTSG model, an andjoinX-inputs fact is created
indicating all nodes that are connected to the incoming edges.
For all nodes having an incoming edge from an orfork, an
orfork-branch fact is created indicating this OR-Fork, and
for all remaining nodes, an orfork-branch fact is created
indicating the corresponding nofork. A branch-not-selected

fact is created for all OR-Forks, indicating if an outgoing
branch has not yet been selected. Finally, numerical cost
facts are created to specify the cost of all possible transitions
between tasks.

8) Goal and metric: The goal is to reach the condition
that the goal node has been fired. The metric indicates that
an optimal plan should minimize the total duration of the
plan (total-time).

C. Replanning

In a replanning scenario, some modifications are required
for the init section of the problem Listing 2. A fired predicate
is added for all completed tasks and for all logical nodes that
precede completed tasks. The latest-completed predicate is
removed for the start node and added for the latest completed
task. Transition costs from the latest completed task are
updated to account for a new start location of the robot.
Potential obstacles may affect some transition costs, e.g., if
the robot needs to move another way between two tasks. If
there are completed tasks in one OR-Fork branch, scheduling
of tasks in alternative branches are avoided by not creating a
branch-not-selected predicate for the corresponding orfork.

VI. RESULTS

A. Experimental setup

The targeted application is a mobile robot operating in a
warehouse for picking customer orders in the form of kits,
i.e., boxes filled with specified objects. The robot moves
around the warehouse shelves and performs robot tasks as
specified by an RTSG model. In the graph, a robot task
represents an action where a specific object is handled at
a specific location. The RTSG models for three different use
cases (A, B and C) are shown in Figures 2, 3 and 4. All use
cases start with the fetching of 2 empty kit boxes and allow
them to be filled in parallel. In use cases A and B, the kit
boxes are filled in two layers separated by an interlayer. Use
case B has more precedence constraints than A while use
case C has quite few precedence constraints.

Gazebo [22] was used to set up a simulated mobile robot in
a simple warehouse world having shelves of different shapes,
see Figure 5. Dijkstra’s algorithm was used to generate two-
dimensional collision-free paths between handling locations
at the different shelves. The path lengths were used to define
transition costs.

The experiments were run with Ubuntu 18.04.5 on an Intel
i5-4570 quad-core processor with 7.6 GB RAM.

B. Experimental results

The use cases were tested with three different planners in
a comparative study where all problem formulations were
automatically generated from the RTSG models. Gurobi
Optimizer [23], hereby referred to as MILP, was used with
the MILP problem formulation. POPF2 and Temporal Fast
Downward (TFD) [24] were used with the PDDL problem
formulation. Each use case was run 100 times. For each run,
the location of the objects to be handled by the robot tasks
was randomized among 52 fixed locations at the different
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Fig. 2: RTSG model for use case A.
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Fig. 3: RTSG model for use case B. The colouring of the
graph nodes is discussed in subsection V-B

shelves. The common start- and goal location, i.e., the
delivery station, was fixed. Comparisons of the planners’
achievements of objective values and planning times are
displayed in Figure 6. MILP and TFD indicated optimal
solutions and reached the same objective value for all runs
and the very same sequence for 89% of the runs. This
suggests an equivalence of the PDDL conversion and the
corresponding MILP problem formulation. MILP solved C
within a few seconds while needing several minutes for
A and B. The reason for this performance difference is
presumably a fast-growing amount of precedence and non-
cyclic constraints needed for A and B compared to the less
constrained C. On the other hand, TFD needed a minute to
solve use case C while solving A and B within a few seconds.
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Fig. 4: RTSG model for use case C.

Fig. 5: Simple warehouse world.

POPF2 found valid but non-optimal solutions within 200 ms
for A and B and within 2 seconds for C. The average cost
increase for POPF2 was 15%, 14% and 11% for A, B and
C respectively. The fast planning time for POPF2 can be
attractive if a less optimized plan is acceptable.

In these experiments, the transition costs are based on
path lengths but the optimization goal is often to minimize
the makespan. To verify the correlation of path lengths and
makespan an additional experiment was performed: To this
end, a selection of ten MILP generated task sequences for
use case B was made. The selection included the lowest and
the highest costs and intermediate cost values with a fairly
uniform distribution within this interval. These cycles were
simulated 20 times and the cost vs makespan is given in
Figure 7. ROS Navigation Stack [25] was used to navigate
the robot with Adaptive Monte Carlo Localization for local-
ization and Timed Elastic Bands for trajectory generation.
The experiment indicates a linear correlation between cost
and makespan. However, the non-monotonic part of the curve
occurring between the two highest costs also confirms that
there is an uncertainty imposed by a simplified cost model
when applied to a more realistic setting.

VII. CONCLUSION AND FUTURE WORK

We have presented Robot Task Scheduling Graph, a novel
task modelling formalism. Descriptions are provided on how
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Fig. 7: Sequence cost vs simulated makespan for use case
B. The grey area highlights the distribution of the obtained
makespans in simulation.

to automatically convert an RTSG model to a scheduling
problem for MILP solvers as well as for PDDL planners.
An experimental comparison of two PDDL planners and one
MILP solver suggests the converted problem formulations
for MILP and PDDL are equivalent. These experiments
also indicate that MILP solvers are more efficient than
PDDL planners for an RTSG model with fewer precedence
constraints while the opposite hold for an RTSG model with
more precedence constraints. Mobile robot simulations of
scheduled task sequences confirm the validity of estimating
transition costs from 2-dimensional path lengths.

Future work may cover an extension to modelling and
scheduling in the context of multi-robot applications and

continuous applications. Another line of work may cover
efficient modelling and handling of disturbance behaviours.
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