
Evaluating System-Level Test Generation for Industrial Software:
A Comparison between Manual, Combinatorial and Model-Based

Testing
Muhammad Nouman Zafar

muhammad.nouman.zafar@mdh.se
Mälardalen University

Sweden

Wasif Afzal
wasif.afzal@mdh.se
Mälardalen University

Sweden

Eduard Enoiu
eduard.enoiu@mdh.se
Mälardalen University

Sweden

ABSTRACT
Adequate testing of safety-critical systems is vital to ensure correct
functional and non-functional operations. Previous research has
shown that testing such systems requires a lot of effort, thus auto-
mated testing techniques have found a certain degree of success.
However, automated testing has not replaced the need for manual
testing, rather a common industrial practice exhibits a balance be-
tween automated and manual testing. In this respect, comparing
manual testing with automated testing techniques continues to be
an interesting topic to investigate. The need for this investigation is
most apparent at system-level testing of industrial systems, where
there is a lack of results on how different testing techniques per-
form concerning both structural and system-level metrics such as
Modified Condition/Decision Coverage (MC/DC) and requirement
coverage. In addition to the coverage, the cost of these techniques
will also determine their efficiency and thus practical viability. In
this paper, we have developed cost models for efficiency measure-
ment and performed an experimental evaluation of manual testing,
model-based testing (MBT), and combinatorial testing (CT) in terms
of MC/DC and requirement coverage. The evaluation is done in
an industrial context of a safety-critical system that controls sev-
eral functions on-board the passenger trains. We have reported the
dominant conditions of MC/DC affected by each technique while
generating MC/DC adequate test suites. Moreover, we investigated
differences and overlaps of test cases generated by each of the three
techniques. The results showed that all test suites achieved 100% re-
quirement coverage except the test suite generated by the pairwise
testing strategy. However, MBT-generated test suites were more
MC/DC adequate and provided a higher number of both similar
and unique test cases. Moreover, unique test cases generated by
MBT had an observable effect on MC/DC, which will complement
manual testing to increase MC/DC coverage. The least dominant
MC/DC condition fulfilled by the generated test cases by all three
techniques is the ‘independent effect of a condition on the out-
comes of a decision’. Lastly, the evaluation also showed CT as the
most efficient testing technique amongst the three in terms of time
required for test generation and execution, but with an added cost
parameter of manual identification of expected outcomes.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AST ’22, May 17–18, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9286-0/22/05.
https://doi.org/10.1145/3524481.3527235

CCS CONCEPTS
• Computer systems organization→ Embedded software; •
Software and its engineering → Software verification and
validation.

KEYWORDS
Test Generation, Test Coverage, System-level Tests, Safety Critical
Systems
ACM Reference Format:
Muhammad Nouman Zafar, Wasif Afzal, and Eduard Enoiu. 2022. Evaluat-
ing System-Level Test Generation for Industrial Software: A Comparison
between Manual, Combinatorial and Model-Based Testing. In IEEE/ACM 3rd
International Conference on Automation of Software Test (AST ’22), May
17–18, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3524481.3527235

1 INTRODUCTION
The testing of safety-critical systems help avoid abrupt behaviors
that can cause catastrophic events. To achieve efficiency and ef-
fectiveness in testing, automated testing tools have been proposed
in the late 1970s on-wards, with a surge after 2000s. They are
based on generation of tests using techniques such as combina-
torial testing (CT), equivalence partitioning (EP) etc. and help fulfill
coverage criteria such as requirement coverage and Modified Con-
dition/Decision Coverage (MC/DC).

The challenging part in testing is the generation of cost-efficient
and high-quality tests, which can provide better specification aswell
as code coverage, within respectable time. Some studies (e.g., [29],
[34], [35]) have also integrated multiple testing techniques and
coverage criteria for test suite optimization. For safety-critical ve-
hicles, ISO 262621 recommends the Modified Condition/Decision
Coverage (MC/DC) adequate test suites at all of the Safety Integrity
Levels where complex Boolean expressions are involved. There
is also some evidence to suggest the effectiveness of MC/DC in
terms of fault detection for complex systems [12] [46]. However,
the generation of MC/DC adequate tests is an expensive process as
well as requires a lot of effort [17].

Multiple researchers have been exploring various techniques to
reduce the complexity and cost of test generation while achieving
higher MC/DC. One of such proposed techniques is symbolic ex-
ecution, which uses the constraint solving algorithm to generate
MC/DC adequate tests [6] [16] [36]. But symbolic execution has the
drawback of path explosion problem, due to which constraints solv-
ing and execution analysis require a lot of computational power to
generate test cases [2]. Another study by Li et al. [29] showed that
1https://www.iso.org/standard/68383.html

https://doi.org/10.1145/3524481.3527235
https://doi.org/10.1145/3524481.3527235
https://www.iso.org/standard/68383.html


AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Zafar et al.

higher MC/DC coverage can be achieved by increasing the strength
of combinatorial testing. Similarly, model-based testing (MBT) has
been used to generate MC/DC adequate test suites [13] [38]. In
addition to the above mentioned automated test techniques, man-
ual testing is still a prevalent technique in industry [41]. Manual
testing capitalizes on both technical and non-technical skills that
are required for effective testing [1] [39]. Hence, a comparison of
industrial manual testing with automated test techniques, in terms
of MC/DC coverage in the context of safety-critical systems, can
help industry invest resources in suitable techniques.

There exists several state-of-the-art studies on comparative anal-
ysis of automated testing techniques such as random testing [44],
combinatorial [29] and concolic testing [27] etc., such studies are
dependent on source code analysis and it is not evident if the results
would stand at higher levels of testing where source code access
is difficult or even not possible. Thus in this paper, we investigate
MC/DC adequacy of two automated testing techniques (CT and
MBT) and industrial manual testing at system-level, along with mea-
suring requirement coverage and performance efficiency in terms
of time. We also perform an assessment of the differences and over-
laps between the test suites generated by automated testing and
manual industrial testing to better demonstrate the potential gains
and trade-offs among them, with the goal that an optimal testing
strategy can be reached.The comparative evaluation is done on an
industrial safety-critical system on-board the passenger trains that
controls critical train functions. The system is called as the Train
Control Management System (TCMS) and is developed at Alstom
Transport AB in Sweden.

The results of this paper show that:
• The test suite generated by MBT provided higher MC/DC
coverage than the test suite generated by CT and written
manually.

• The test suite generated by the 2-ways strategy of CT pro-
vided only partial requirement coverage.

• MBT-generated test suite acted as a super set of test cases
by containing approximately 71% of similar test cases, on
average, produced by other selected techniques.

• MBT-generated unique test cases were highly relevant to
MC/DC coverage whereby they will complement manual
testing to increase MC/DC coverage.

• The overall cost of test suite generation and execution of
CT was significantly lower as compared to MBT and manual
testing, but with an additional cost parameter of manual
identification of expected outputs.

The rest of the paper is organised as follows: Section 2 deals with
background and related work, Section 3 provides an overview of
the experimental setup including a description of the System un-
der test (SUT), research questions, a description of the evaluation
metrics and assumptions, Section 4 describes the results, Section 5
discusses the results, Section 6 presents the validity threats whereas
conclusions and future work are presented in Section 7.

2 BACKGROUND AND RELATEDWORK
This section presents a background on test generation techniques
and coverage criteria used in this paper along with a summary of
related work.

2.1 Test Generation Techniques
A primary purpose of the test generation techniques is to develop
high-quality test suites containing finite and relevant test cases to
detect faults, efficiently. Anand et. al [2] specified and reviewed
various test generation techniques including specification-based,
goal-oriented, code-based, random and model-based testing. When
it comes to CT and MBT, multiple studies, e.g., [4], [5], [13], [18],
[21], [26] report their effectiveness and efficiency at industrial,
system level testing.

CT generates test suites based on input combinations and to
test functional and non-functional requriements of a SUT. The be-
haviour of a software system depends on multiple input parameters
but to validate a system using all combinations of these parame-
ters is an exhaustive and complicated process. CT generates test
suites containing minimum but relevant combinations of input pa-
rameters known as a covering array [9] based on t-ways strategy
where t is the interaction strength. t-ways strategy provides vari-
ous interaction possibilities based on heuristic search between the
input parameters and value of t. It generates unique sequences of
test data, which ensures that each combination based on t-ways
(2-ways, 3-ways, 4 ways and so on) parameter interaction is covered
at least once. For instance, in case of pairwise (2-ways) strategy,
the test cases contain combinations covering all the pairs of input
parameters at least once.

In this study, we have selected CAgen2 as a combinatorial test-
ing tool due to its comparatively high performance than other
state-of-the-art combinatorial testing tools [45]. Moreover, it is an
open-source tool and offers three different heuristic algorithms (i.e.
FIPOG, FIPOG-F, FIPOG-F2) to generate t-ways test cases. It has
flexible availability in two versions, an online web GUI version and
an offline command line version. In this study, we have used the
online version of CAgen for test case generation with FIPOG heuris-
tic algorithm, test case redundancy value ’1’ and randomization of
don’t care values.

MBT [42] is one of the advanced techniques for automated
test generation. In MBT, test artefacts are generated using an ex-
plicit model representing the environmental, functional and non-
functional behaviour of the SUT based on a certain modelling lan-
guage and notation such as Unified Modelling Language (UML),
finite state machine (FSM), Finite Automata etc. For example, a FSM
model of a SUT contains nodes representing states of the system,
edges representing the transitions between multiple states based on
specified actions and guard conditions. The guard conditions can
be the Boolean constraints depicting the expected behavior of the
SUT. After the creation of the FSM model, abstract test cases can be
derived using multiple MBT defined coverage criteria (edge, node
and requirement etc.) and generator algorithms (random, quick ran-
dom and A-star etc.). The abstract test cases are then transformed
into concrete or executable test cases to produce test verdicts.

Multiple MBT tools are available [30] for the generation of
test artefacts based on different modelling languages/notations,
coverage criteria and generator algorithms. However, in this pa-
per, we have used TIGER (Model-Based Test scrIpt GenEration
fRamework) [49], developed using the open-source FSM-based

2https://matris.sba-research.org/tools/cagen/#/about

https://matris.sba-research.org/tools/cagen/#/about


Evaluating System-Level Test Generation for Industrial Software AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

MBT tool, GraphWalker3 (GW). TIGER is capable of generating
system-level test scripts, which contain all the implementation de-
tails about test execution framework used at Alstom Transport
AB, Sweden. It takes the FSM model as an input and traverses
through its nodes and edges based on a given coverage criterion
(e.g. egde_coverage, node_coverage etc.) and generator algorithm
(e.g. random, quick_random etc.) to generate test sequences.

2.2 Test Coverage
The test coverage criterion measures the number of items (e.g.,
requirements, code elements) covered by a test suite. There exist
multiple coverage criteria at design and implementation levels such
as requirement coverage, statement coverage, decision coverage,
condition coverage etc. However, requirement and MC/DC ade-
quate test suites have been recommended by various standards
i.e. EN 50128, EN 50657 [7] and ISO26262 to verify and validate
a safety critical system. Moreover, Arefin et al.. [21] showed that,
for a safety critical system, MC/DC can be used at system-level to
evaluate the effectiveness of a testing technique.

Requirement coverage is one of the basic and well-known black
box testing coverage criterion, which is used to measure the extent
of critical and domain requirements covered by a test suite at least
once. It is also used to discover the existence of documented and
undocumented requirements in the implementation of a system
software and to determine the number of test cases required to
cover all the system requirements [23].

Modified Condition/Decision Coverage (MC/DC) [8] is one of
the strongest coverage criterion to measure the structural coverage
of a system, which subsumes branch coverage as well as statement
coverage. It ensures the coverage of every logical predicate in the
code along with the coverage of each condition in a decision. More-
over, it also ensures that every condition has an independent effect
on the outcome of a decision. Hence, a test suite is said to beMC/DC
adequate if it fulfills each of the following conditions [20]:

• Every entry and exit point of a program must be invoked at
least once.

• All possible outcomes of a condition should be taken at least
once.

• All possible outcomes of a decision should be taken at least
once.

• Each condition must have an independent effect on the out-
come of a decision.

2.3 Related Work
Manual testing is still considered as an equally prevalent testing
technique in industrial settings and has been used in different do-
mains [32]. There are several state-of-the-art studies (e.g. [3], [4],
[10], [14], [15], [21], [29], [31], [34], [35], [40]), which have explored,
compared and evaluated CT, MBT and manual testing techniques.
We have summarized these studies in three categories as given
below.

2.3.1 Manual Vs MBT. Enoiu et. al [14] have provided a compara-
tive analysis between manual industrial practices and automated
model-based testing technique using TCMS as an industrial case

3http://graphwalker.github.io/

study in terms of decision coverage, fault detection effectiveness
and test generation efficiency. The results showed that the MBT
is efficient for test suite generation and generated test suites are
equally prevalent as a manually created test suite for decision cov-
erage. However, the manually created test suites provided better
mutation scores, consequently proved to be more effective in terms
of fault detection. Christoph et. al [40] also performed a similar
empirical comparative analysis between manual and model-based
testing technique using a web-based system. The analysis showed
MBT as an efficient technique in terms of test suite generation
and the generated test suite proved to be more effective in terms
of fault detection by providing a 60% higher severity score than
manual created test suite. Another comparative analysis between
model based and traditional testing strategies has been performed
by Arthur et. al [31]. They have done an empirical evaluation to
analyse the performance between the tests developed using man-
ual ad hoc testing tool and MBT tool in terms of time, precision,
relative recall and effectiveness. The results showed that manual
tests are more effective for detecting system logic defects whereas
MBT generated tests are effective for detecting specification level
defects of a complex system.

2.3.2 Manual Vs CT. CT has been introduced as a technique to
measure the quality of test suite in [25] and Miraldi et. al [15] have
measured the combinatorial coverage of manual test suite using an
industrial case study. They showed that the combinatorial cover-
age of a manual test suite decreases with increase in interaction
strength of CT. Moreover, missing combinations of CT can provide
useful information to improve the manually created test cases. The
effectiveness of CT interaction strengths has also been evaluated
using model-based mutation testing in [10]. The experimental eval-
uation illustrated that higher interaction strength of CT is more
likely to have a high fault detection rate. Josip et. al [4] have pro-
posed a novel approach based on combinatorial and model-based
testing for the generation of test suites and compared the proposed
approach with a state-of-the-art manual testing tool in terms of
fault exploitation. The results depict that the automated tool has
provided better fault detection rate than manual testing tool.

2.3.3 Proposed Approaches with CT and MBT. In addition to com-
paring the manual testing with MBT and CT, there also exist multi-
ple studies which has proposed hybrid approaches combining the
aforementioned techniques to increase the test generation efficiency
and fault detection effectiveness of test suites.

A hybrid test suite generation approach based on CT and MBT
to validate event-based systems has been proposed in [3]. The
authors have used an FSM model represented by automata and
generated the combinatorial test sequences based on constraints.
They have also compared the generated test suite with test suite
generated by t-ways covering arrays to evaluate the performance
of the approach and showed its effectiveness in terms of valid test
sequence generation and coverage. Another approach to generate
an effective test suite with a combination of CT and MBT has been
proposed in [34]. They also provided an empirical evaluation of the
generated test suite based on number of test cases, code coverage
and fault detection effectiveness. The proposed approach found to
be effective in terms of fault detection and code coverage. A tool
chain using pairwise and model-based testing techniques has been

http://graphwalker.github.io/


AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Zafar et al.

presented and evaluated in [35]. The proposed tool chain generated
a reduced amount of test sequences and reusable test artefacts.

2.3.4 Research Gap. It is important to mention that the aforemen-
tioned studies have performed the comparison and evaluation in
terms of fault detection effectiveness, efficiency and structural cov-
erage such as decision coverage and statement coverage. There also
exist various studies which have generated MC/DC adequate test
suites by proposing multiple techniques (e.g. [21], [29]). However,
comparison between the test suites developed by MBT, CT and
manual testing practices in terms of differences and overlaps has
not been found to the best of our knowledge. Moreover, it is also
interesting to investigate and evaluate these techniques in terms of
MC/DC and requirement coverage at higher testing levels where
the source code is difficult to access or inaccessible.

3 METHODOLOGY
Figure 1 represents an overview of the methodology that we de-
signed and followed for our study. The sequence of steps in our
methodology are represented with numbers in Figure 1 and de-
scribed below:

• (1.1) & (1.2) the analysis of requirements specification and
test specification using an industrial case study of TCMS

• (2.1) & (2.2) identifying the parameters involved in defining
the behaviour of the SUT and creating a model of the system
in JSON format using GW

• (3.1), (3.2) & (3.3) generation of manual test suite by testers
at Alstom Transport AB and automated test suites by CAgen
and TIGER (Section 3.3)

• (4) evaluating the test suites based on requirement andMC/DC
coverage metrics (Section 3.4)

• (5) measuring the efficiency of test suites based on a cost
model (Section 3.5)

• (6) assessing the differences and overlapping between the
test suites (Section 3.6).

The motivation for selected CT and MBT tools (i.e. CAgen and
TIGER) has been presented in Section 2.1.

3.1 Research Questions
The aim of our study is to answer the following research questions:

• RQ1: How does the use of MBT, CT and manual testing
impact the requirement and MC/DC coverage?

• RQ2:What is the cost of generating and executing test cases
using MBT, CT and manual testing, while achieving MC/DC
coverage?

• RQ3: What are the differences and overlaps between the
test suites developed using MBT, CT and manual testing
techniques?

3.2 Description of SUT
We have selected a subsystem of the Train Control Managment
System (TCMS), from an on-going project MOVIA 4 family of ve-
hicle products developed at Alstom Transport AB as an industrial
case study. TCMS is the central part of a distributed control system,
which is used to control and manage all the functional operations
4https://www.railway-technology.com/projects/bombardier-movia-metro-cars/

of the train. It uses an open standard IP-technology to interact
and control different subsystems of a modern train such as doors,
ventilation and brakes. TCMS consists of multiple devices which
are connected via various networks such as Ethernet Consist Net-
work (ECN) and Multi-function Vehicle Bus (MVB) [48]. Some of
these devices are also connected to a Centralized Traffic Control
(CTC) which deals with the routing decision of a train. However,
Modular Input/Output-Safe (MIOS) and Central Control Unit-Safe
(CCUS) are the devices which deal with safety related functions of
a train. MIOS is responsible for handling the input/output analog
signals whereas CCUS contains the logical components to execute
the safety critical functions of a train. In discussion with Alstom
Transport AB, we have selected the requirements of a fire detection
subsystem. Figure 2 represents an architecture of the fire detection
system used by TCMS.The fire detection system of TCMS uses two
instances of Fire Detection Control Units (FDCUs) to detect fire
based on their current states i.e., Master or Slave. A FDCU is con-
sidered as ‘Master’ if two of its signals hold the value as true. Both
FDCUs communicate with smoke and fire sensors to receive signals
indicating two types of fire i.e., internal and external. The TCMS
MIOS device receives these signals from both FDCUs and commu-
nicates with CCUS via the MVB network. The CCUS computes the
logic based on system requirements and responds with an output
signal. The MIOS receives the corresponding output signal from
the CCUS and indicates the type of fire on the driver’s desk.

Figure 3 shows the model of the fire detection subsystem based
on a FSM. Figures 3(a) and 3(b) represent the FDCUs while diagram
(c) represents the TCMS as black box. The nodes depict the states of
the SUT and edges show the signal transitions between these states.
FDCU1 is the initial as well as shared state of the model, whereas
FDCU1Signal, FDCU2, TCMSisActive and FDCUsFireSignals rep-
resent the shared states. All shared states are used by GW to traverse
through different diagrams of the model. It also contains actions
and guard conditions according to the expected behaviour of the
SUT. For further details regarding this model, the interested reader
is referred to our earlier publications, [47], [48], [49].

3.3 Test Suite Creation
We took manual test suite created for the selected requirements by
the testers at Alstom Transport AB according to EN 50128 and EN
50657 safety standards and regulations. The test suite consists of a
set of test steps specifying test inputs, expected outputs and timing
constraints in natural language based on specification-based testing.
The design process of the test suite ensures that each requirement
of the system has been covered and executed. After the designing of
test cases, test scripts are created manually, executed on Software-
in-the-Loop (SiL) level by a testing framework and a test verdict is
generated.

For the generation of test suites for CT and MBT, we have uti-
lized CAgen and TIGER tools respectively. Particularly, we have
considered all the signals used by the SUT for communication be-
tween FDCUs, sensors, and TCMS as parameters and generated
2-ways, 3-ways, and 4-ways test suites, in the form of decision
tables, through the CAgen tool. Furthermore, TIGER generated the
test suite based on FSM model as shown in Figure 3 using 100%
edge coverage and through random algorithm. It is important to

https://www.railway-technology.com/projects/bombardier-movia-metro-cars/


Evaluating System-Level Test Generation for Industrial Software AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

Figure 1: An overview of the experimental methodology

Figure 2: Architecture illustration of fire detection subsystem
of TCMS

mention that test scripts are developed manually in case of CT
but are generated automatically in TIGER for MBT. The reason
behind limiting CT at 2, 3 and 4-ways interaction strength is the
combinatorial explosion of test cases generated for complex sys-
tems with higher strength [37]. Similarly, the random generation
algorithm and edge coverage criterion of GW provides adequate
model and requirement coverage, which is an important metric for
our industrial partners.

3.4 RQ1: Coverage Assessment
A coverage metric is used to analyse the quality of a test suite
and measures the degree to which the code has been exercised

by a test suite. The testing of safety-critical subsystems of TCMS
at Alstom Transport AB need to follow EN 50128 and EN 50657
standards. These standards require that the code related to each
requirement should be executed by the test suite. Hence, in this
study, we have defined two metrics, i.e., requirement coverage and
MC/DC to analyse the design and structural coverage provided by
a test suite.

The requirement coverage requires that requirements of a system
are exercised by test cases at least once [43]. Hence, we identified the
total number of requirements specified in requirement specification
and analysed the requirements covered by each test suite tomeasure
the requirement coverage using the following formula:

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑅𝐶)% = (𝑁𝑅𝐶/𝑇𝑁𝑅)𝑥100

Where NRC represents number of requirements covered by test
cases and TNR depicts total nnumber of requirements.

As the requirement coverage does not ensure the coverage of log-
ical conditions and decisions of a system from the implementation
perspective, we have also used MC/DC to examine the structural
coverage of the test suites. We have defined the MC/DC metric
according to the coverage points defined for a MC/DC analysis
tool in [20]. Moreover, we have also analysed each condition of
MC/DC metric to investigate the least dominant condition affected
by each technique to generate MC/DC adequate test suites. We
used the following formulas to determine the MC/DC of test suites
in percentage:

• Condition’s possible outcomes (C) % = (No. of conditions
having all possible outcomes/Total no. of conditions) x 100

• Decision’s possible outcomes (D) % = (No. of decision having
all possible outcomes/Total no. of decisions) x 100



AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Zafar et al.

Figure 3: An FSM model representing the fire detection subsystem of the TCMS

• Conditions affecting decisions independently (AC) % = (No.
of conditions affected the decisions / Total no. of indepen-
dently effecting conditions) x 100

• Entry and exit point invoked (E) % = (Sum of no. of entry
and exit points invoked/Sum of total no. of entry and exit
points) x 100

Hence, we have calculated the overall MC/DC of a test suite using
the formula below.

𝑀𝐶/𝐷𝐶% = (𝐶 + 𝐷 +𝐴𝐶 + 𝐸)/4

3.5 RQ2: Efficiency Evaluation Criteria
The efficiency of testing techniques can be measured by analysing
the cost/time benefit of each technique based on direct and indirect
costs [28]. The direct costs are the expenditures that are directly
associated with testing techniques such as time for test creation
and execution of test cases. The indirect costs are the expenditures
that are indirectly associated with the testing techniques such as
maintenance time, development of testing tools etc. Hence, to anal-
yse the efficiency of a testing technique, we have developed an
economic cost model based on direct costs and have neglected the
indirect costs as the effect of indirect costs diminishes over time, for
example, development of a tool is only an one-time effort. There-
fore, in this model, we have considered the following parameters
based on variable cost factors and time required to complete the
activities defined in [23] and [33] as well as the actual activities
adopted by testers at Alstom Transport AB.

The cost of testing activities that we have considered in our effi-
ciency evaluation metrics for automated and manual testing include
analysis of requirements specification (C𝑅 ), test suite development
(C𝑇𝑆 ) and test execution (C𝐸 ). The requirements analysis involves
understanding the behaviour of a system by thoroughly investi-
gating functional (C𝑅𝑓 ) and non-functional (C𝑅𝑛𝑓 ) requirements
as well as reviewing (C𝑅𝑟 ) these requirements to determine un-
feasible requirements before the start of the development process.
After requirements analysis, test cases are designed followed by
the development of test scripts and identifying concrete values (e.g.
technical signal names) (C𝑠 ). The test scripts containing test steps
(C𝐸𝑡𝑠 ) are then executed along with pre and post conditions (C𝐸𝑝𝑟𝑒 ,
C𝐸𝑝𝑜𝑠𝑡 ) to generate test verdicts. However, in case of MBT in our
context, a model is created (C𝑀 ) by identifying the states, transi-
tions (C𝑀𝑐𝑠𝑡 ), guard conditions (C𝑀𝑐𝑔) and test scenarios (C𝑀𝑐𝑡 )
based on requirements analysis. Moreover, the test suite (C𝐺𝑡𝑠 ) is

generated automatically by creating an XML file containing infor-
mation about the signals (C𝐺𝑓 ) (e.g. technical signal names, primary
signal names and data type etc.) and ensuring the correctness and
conformance of a model (C𝑀𝑣 ) with system requirements. On the
other hand, in case of manual testing, a tester designs test cases
(C𝑇𝑐 ) and scripts (C𝑇𝑠𝑑 ) manually by specifying and developing
system libraries (C𝑠𝑙 ).

3.5.1 Parameters for cost calculation of MBT.

• C𝑅 = Cost for Requirements Specification Analysis (C𝑅𝑓 +
C𝑅𝑛𝑓 + C𝑅𝑟 )
– C𝑅𝑓 = Cost to analyze functional Requirements
– C𝑅𝑛𝑓 = Cost to analyze non-function Requirements
– C𝑅𝑟 = Cost to review requirements

• C𝑀 = Cost for modelling the SUT (C𝑀𝑐 + C𝑀𝑣 )
– C𝑀𝑐 = Cost to create and modify model (C𝑀𝑐𝑠𝑡 + C𝑀𝑐𝑔 +
C𝑀𝑐𝑡 )
∗ C𝑀𝑐𝑠𝑡 = Cost to identify states and transitions
∗ C𝑀𝑐𝑔 = Cost to identify guard conditions
∗ C𝑀𝑐𝑡= Cost to identify test scenarios

– C𝑀𝑣 = Cost to validate the correctness of model
• C𝑇𝑆 = Cost to generate MBT test cases and test scripts (C𝐺𝑓

+ C𝐺𝑡𝑠 )
– C𝐺𝑓 = Cost to prepare XML file containing logical and
technical signal names

– C𝐺𝑡𝑠 = Cost to generate MBT abstract test cases and con-
crete test scripts

• C𝐸 = Cost to execute MBT test scripts
– C𝐸𝑝𝑟𝑒 = Cost to execute pre-conditions
– C𝐸𝑡𝑠 = Cost to execute test steps
– C𝐸𝑝𝑜𝑠𝑡= Cost to execute post-conditions

Based on the above defined parameters, the cost for MBT (C𝑀𝐵𝑇 )
can be summed below:

𝐶𝑀𝑇 = 𝐶𝑅 +𝐶𝑀 +𝐶𝑇𝑆 +𝐶𝐸

3.5.2 Parameters for cost calculation of manual testing.

• C𝑅 = Cost for Requirement Specification Analysis (C𝑅𝑓 +
C𝑅𝑛𝑓 + C𝑅𝑟 )
– C𝑅𝑓 = Cost to analyze functional Requirements
– C𝑅𝑛𝑓 = Cost to analyze non-function Requirements
– C𝑅𝑟 = Cost to review requirements

• C𝑇𝑆 = Cost for the development of test suite (C𝑠 + C𝑇𝑐 +
C𝑇𝑠 )



Evaluating System-Level Test Generation for Industrial Software AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

– C𝑠 = Cost to Identify technical signals to use in test design
– C𝑇𝑐 = Cost for writing/designing test specification – test
cases

– C𝑇𝑠 = Cost for writing concrete test scripts (C𝑇𝑠𝑙 + C𝑇𝑠𝑑 )
∗ C𝑇𝑠𝑙 = Cost for specifying and developing library func-
tions

∗ C𝑇𝑠𝑑 = Cost to develop test scripts
• C𝐸 = Cost to execute test scripts
– C𝐸𝑝𝑟𝑒 = Cost to execute pre-conditions
– C𝐸𝑡𝑠 = Cost to execute test steps
– C𝐸𝑝𝑜𝑠𝑡= Cost to execute post-conditions

Based on the above defined parameters, the total cost for manual
testing (C𝑀𝑇 ) can be summed below:

𝐶𝑀𝑇 = 𝐶𝑅 +𝐶𝑇𝑆 +𝐶𝐸

3.5.3 Parameters for cost calculation of CT.

• The testing activities required for CT include all the activities
similar to manual testing, just that test case development
is automated in CT in our case. Hence, we have used the
aforementioned parameters of manual testing to determine
the total cost for CT (C𝐶𝑇 ) too.

𝐶𝐶𝑇 = 𝐶𝑅 +𝐶𝑇𝑆 +𝐶𝐸

3.6 RQ3: Differences and Overlaps Assessment
To measure the differences and overlaps between the test suites
produced by each testing technique, we investigated the similar
test sets and created a Venn diagram to show the distribution and
intersection of different test sets between test suites. A Venn dia-
gram shows the measure of union for sets using the measure of
intersections between them. Hence, the illustration of relationships
between the elements of test suites in Venn diagram is done using
Meta-Chart5 which is an online data visualization tool. We provided
the total number of elements and intersections between different
combinations of test suites to create the Venn diagram.

3.7 Assumptions
In evaluation metrics mentioned above, we have made some explicit
assumptions:

• In the coverage metric based on MC/DC, as we do not have
access to the source code; we assume that every entry and
exit point of a program is invoked when a condition for a
decision is evaluated as true.

• In the cost model, we estimated the execution time only for
the passed test scripts.

• For the differences and overlaps between test suites, there
are multiple combinations in a test case which can be consid-
ered as ‘don’t care’ (having no effect on the decision), so we
considered only those test cases similar across the test suites
and redundant within the test suite which contains similar
combinations of inputs affecting the decision of a system.

4 RESULTS
In this section, we provide a quantitative analysis of the data to
answer the research questions.
5https://www.meta-chart.com/venn#/data

4.1 RQ1: Requirement and MC/DC Coverage
The requirement and MC/DC coverage of test suites generated by
the three different techniques (MBT, manual and CT) is shown in
Figure 4 whereas Figure 5 represents the breakdown of MC/DC
coverage according to the metric parameters.

Figure 4: Requirement and MC/DC coverage of test suites

Figure 5: MC/DC coverage of test suites according to selected
parameters

The results showed that all the test suites contained test cases
covering each requirement of the system at least once except the
test suite generated by 2-ways combinatorial test strategy that
provided 66% requirement coverage. However, the MBT-generated
test suite is the most MC/DC adequate by providing 88% MC/DC
coverage as shown in Figure 4. Test suites generated using 2-ways,
3-ways, 4-ways combinatorial test strategy and by manual testing
provided 59%, 76%, 80% and 79% MC/DC coverage, respectively.

The analysis of test suites in terms of MC/DC also showed the
effect of each technique on the conditions of MC/DC as shown
in Figure 5. The results indicated that each technique affected the
generation of such test cases which can be used to verify the ‘effect
of a condition independently on the outcome of a decision’. Conse-
quently, the MBT-generated test suite covered 55% of conditions to
verify the independent effects on a decisions, whereas test suites
generated using 2-ways, 3-ways, 4-ways combinatorial test strat-
egy, and created manually covered 5%, 5%, 22% and 16% of such
conditions, respectively. However, in case of CT test strategies, two

https://www.meta-chart.com/venn#/data


AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Zafar et al.

other conditions were affected to a larger extent with an increase in
the strength of CT (i.e. for 3- and 4-ways). These two conditions are
‘invocation of each entry and exit point in a program’ and ‘every
decision possible outcome’.

Moreover, we have also analysed theMBT and CT test generation
process to assess the impact of achieving the higher MC/DC on
the number of test cases. As MBT can generate different numbers
of test cases due to random walks, so we have generated multiple
test suites using TIGER and selected three based on the number
of test cases (min, max, median) and performed a comparative
analysis with 2-, 3-, and 4-ways testing strategy of CT. The results
showed that randomwalks of MBT had an intermittent effect on the
number of test cases and a minimal effect on the MC/DC coverage
In test suites as shown in Table 1, MBT generated 150, 245 and 145
test cases, including the redundant test cases, and provided 88%,
90% and 87% of MC/DC coverage respectively. In cases of CT, the
number of test cases increase exponentially while achieving the
higher MC/DC by increasing the strength of CT.

Table 1: MC/DC coverage of MBT and CT

Test technique No. of test cases MC/DC %

MBT (Median) 150 88.88
MBT (Max) 245 90.27
MBT (Min) 145 87.5
CT 2-ways 10 59.71
CT 3-ways 22 76.38
CT 4-ways 50 80.55

The analysis of test suites in terms of MC/DC and requirement
coverage showed that MBT and manually developed test suites
were more MC/DC and requirement coverage adequate and con-
tained complete test cases (we designate a test case as complete
having input(s), expected output(s) and timing constraint(s)). The
completeness of test cases is dependent on the availability of the
required information about the system, thus one can argue that
the test engineer and the model of the SUT utilized all the relevant
information such as the behaviour of the system (functional and
non-functional requirements), test scenarios known to the tester
based on domain knowledge and experience, and information re-
garding system environment to create test suites. Our results also
showed that adequacy of CT-generated test suite increased with
an increase of interaction strength. Moreover, it contained no in-
formation about the expected behaviour of the system and test
environment. Hence, tester’s assistance was required to specify
the expected outputs in order to complete the test suites (this cost
is captured as part of the parameter, C𝑇𝑠𝑑 = Cost to develop test
scripts, in Section 3.5).

4.2 RQ2: Efficiency of Test Suites
Efficiency of test suites is generally calculated based on three factors
i.e., time required for requirements analysis, time required for cre-
ation of a test suite and time required for execution of it. However,
for simplicity, we have not reported the time for the analysis of
requirements specification in the results as there was no significant
difference between the time spent on the analysis phase by each

technique. Moreover, we have divided the test suite development
time according to the activities required by each testing technique
as shown in Table 2. We have also reported the accumulated time
of different activities required for modelling and execution phases
as provided in Section 3.5. It is also important to mention here
that the time required by a tester for adding expected outputs to
complete the CT-generated test cases is also included in test script
development time of CT.

The results showed that the development of a test suite using
MBT was less efficient than CT due to additional activities i.e.,
modelling of the SUT and verification of the model’s conformance
with system requirements. The identification of signals in case of
MBT also had a significant effect on the development time as it
also involved the creation of XML file to generate executable test
scripts. Whereas regardless of manual test script development in
CT, CT required a significantly less test suite development time as
compared to MBT and Manual testing.

The analysis also showed that the number of generated test cases
in a test suite had a significant affect on the execution time. Conse-
quently, the test suite generated using 2-ways test strategy required
minimum execution time. The execution times required by the test
suites generated using 3-ways, 4-ways testing strategies and MBT
were greater than the manual test suite due to the additional num-
ber of test cases (more specifically, the test steps). However, based
on the total time of all activities required by each testing technique,
CT resulted in being the most efficient, MBT stood second and
manual testing came out to be the least efficient technique.

4.3 RQ3: Differences and Overlaps Between the
Test Generation Techniques

To measure the differences and overlaps between the test suites,
we have identified similar test cases in each test suite generated
from different techniques and created a subsequent Venn diagram
as shown in Figure 6. However, we have removed the redundant
test cases within each test suite to provide one-to-one mapping
between the similar test cases generated by each technique. Table 3
presents an illustration of the total number of non-redundant test
cases within the test suite, unique test cases across the test suites,
and percentage of similar test cases across the test suites on average,
whereas Tables 4 and 5 show the differences and number of test
cases overlapping between the pair of each test suite, respectively.

The analysis of Figure 6 and Table 5 showed that the MBT-
generated test suite contained the highest numbers of test cases
generated by other techniques (approx. 71% of test cases on average
as shown in Column 4 of Table 3). The test suites developed by
CT using 4-ways, 3-ways, 2-ways, and manual testing contained
approx. 53%, 44%, 25% and 54% of similar test cases on average,
respectively. MBT and 2-ways had the greatest overlap (MBT suite
contained almost 90% (7 out of 8) of test cases generated using
2-ways). MBT-generated test cases had the second greatest overlap
with manual test cases whereby MBT suite contained 76% of test
cases from manual (13 out of 17). The analysis of test suites also
showed that the test suite generated by MBT was more similar,
and hence complete, to specification-based manual testing as it
contained constraints (i.e. time) and test inputs along with expected
outputs, which can be used to determine requirement coverage



Evaluating System-Level Test Generation for Industrial Software AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

Table 2: Efficiency measurements (in seconds) of test suites created by each technique. N/A is short for not applicable.

Techniques No. of test
cases

Development time of test cases and scripts (C𝑀 ), (C𝑇𝑆 ) Execution
time (C𝐸 )

Total timeModelling of
SUT

Verification
of model

Signal identi-
fication

Test case de-
velopment

Test script de-
velopment

Manual 17 N/A N/A 2400 15600 9600 300 27900
MBT 150 16800 1800 2700 5 2 600 20107
CT 2-ways 10 N/A N/A 2400 2 7200 240 9842
CT 3-ways 22 N/A N/A 2400 2 10200 360 12962
CT 4-ways 50 N/A N/A 2400 2 13800 420 16622

and traceability. However, the generation of MBT-based test suite
is dependent on the conformance of the model representing the
SUT. CT-generated test suites did not contain expected outputs but
provided more test scenarios that can be used to validate the model
as well as to complement the manual testing of the SUT.

It can be analyzed from Figure 6 and Column 3 of Table 3 that
MBT generated most of the unique test cases. Particularly, it is
interesting to see the impact of unique test cases in each test suite
on MC/DC and requirement coverage. Hence, for experimentation
purposes, we discarded all the unique test cases from each test
suite and measured their impact. Subsequently, results indicated
that MC/DC coverage reduced from 88% to 84% in case of MBT.
However, no change was observed in requirement coverage of the
MBT-generated test suite. In case of other testing techniques, no
major effect on MC/DC and requirement coverage was reported.
We conclude that MBT-generated unique test cases are also highly
relevant for coveringMC/DC in a safety critical system as compared
to the unique test cases generated by other approaches. Moreover,
addition of these unique test cases will improve the effectiveness
of manually created test suite in terms of MC/DC coverage.

Figure 6: Venn Diagram representing the differences and
overlaps between the test suites

5 DISCUSSION
Our results regarding the requirement coverage show that all the
techniques, except 2-ways, achieved 100% requirement coverage.
The techniques differed more with respect to the fulfilment of dif-
ferent conditions for MC/DC. Overall, the MC/DC condition that
evaluates the effectiveness of the test suites in terms of ‘indepen-
dent effect on the outcome of a decision’ was the least dominant

Table 3: Number of non-redundant test cases within each test
suite and unique test cases across the test suites

Technique No. of non-
redundant
test cases
within each
test suite

No. of
unique test
cases across
the test
suites

Percentage of
similar test
cases across
the test suites
on average %

MBT 39 9 71
Manual 17 2 54
CT 2-ways 8 1 25
CT 3-ways 20 2 44
CT 4-ways 34 3 53

Table 4: Number of different test cases in each pair of test
suite

Technique MBT Manual CT
2-ways

CT
3-ways

CT
4-ways

MBT N/A 26 32 28 16
Manual 4 N/A 10 7 4
CT 2-ways 1 1 N/A 3 2
CT 3-ways 9 10 15 N/A 12
CT 4-ways 11 21 28 26 N/A

Table 5: Number of overlapped test cases in each pair of test
suite

Technique Manual CT 2-ways CT 3-ways CT 4-ways

MBT 13 7 11 23
Manual N/A 7 10 13
CT 2-ways - N/A 5 6
CT 3-ways - - N/A 8

condition fulfilled by all the test suites. The rest of the MC/DC con-
ditions were met 100% by MBT, manual testing and higher strength
CT (3- and 4-ways).

Our results have also shown that MBT gave far greater number
of unique test cases when compared with CT and manual testing. In
terms of efficiency, MBT is found to be better than manual testing
but worse than CT. For CT, we observed that increasing the strength



AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Zafar et al.

also increased the number of unique test cases alongwith increasing
the overall number of test cases. CT was the most efficient of all
the techniques but the absence of knowledge regarding expected
outcomes makes CT dependent on tester’s skills.

In an industrial setting where manual testing is performed, our
results indicate the MBT and CT can both add important test cases,
with MBT providing the most number of additions. Whether such
additions are fault revealing or not is left as a future investigation
but at least in terms of MC/DC coverage, MBT test suite also has
given evidence in support of its advantage. Our results also showed
that 2-way CT strategy does not perform better than higher strength
CT strategies and 90% of its test cases are covered by MBT as well as
higher strength CT gives more unique test cases, thus if CT is to be
adopted, our results support utilising greater than 2-way strength
CT.

What is also clear from our study is that there is no silver bul-
let when it comes to testing of safety-critical systems in terms of
effectiveness and efficiency. A mix of techniques with an under-
standing of advantages and disadvantages in terms of efficiency and
effectivness seems like the best advice for industrial practitioners.
Additionally, as with any new techniques, there are challenges at
the start, both with MBT [11] and CT [22], [24]. From a research
perspective, hybrid testing techniques that can combine the best of
CT and MBT [19] seems like an interesting avenue to take.

6 VALIDITY THREATS
This section deals with the threats which can affect the validity of
this study and the measures we took to address them.

6.1 Internal Validity
One of the main threats to internal validity is the validation and
conformance of the model with system requirements. However,
we have alleviated this factor by creating the model in multiple
iterations and continuously consulting with the testing team at
Alstom Transport AB, which eventually confirmed it as correct.
Another issue relates to the indirect cost of testing techniques, such
as maintenance cost of test suites and development time of tools like
TIGER. In this study, we have not considered the effect of indirect
costs and therefore, considering both direct and indirect costs may
affect efficiency results. We have spent a fair amount of time to
analyse all the test suites for coverage and efficiency manually; a
manual analysis of such large amount of data can result in small
errors but these should not be large to affect our results in any
meaningful way.

6.2 Reliability and External Validity
The threats related to reliability and external validity include gen-
eralization of the MBT model, size of state space, complexity of
the system, impact of human experience, generator algorithms and
modelling notations. We are working with modelling and gener-
ation of test suites at system level for the subsystems of TCMS
developed at Alstom Transport AB, so it contains particularities
for the generation of test suites that may not be applicable to other
domains. However, for the replication of this study in a similar
domain, we have tried to provide enough information about the ex-
perimentation setup. We cautiously argue that if another researcher

with similar experience of the testing domain and modelling will
replicate this study, similar results should be produced, however dif-
ferent modelling languages, testing tools and generator algorithms
may affect the results. Moreover, for this study, we have used a
part of the TCMS system with their actual number of parameters
and constraints. Nevertheless, more case studies are required to
generalize the results of this study to larger systems.

6.3 Construct Validity
The operational measures used in this study for cost estimation of
testing techniques were inspired by taxonomy of MBT provided
by Kramer et al. [23] and industrial practices at Alstom Transport
AB, Sweden. Moreover, the measure for requirement and MC/DC
coverage for comparative analysis of test suites were determined
by a thorough investigation of literature and industrial applicability
of testing strategies.

7 CONCLUSION AND FUTUREWORK
This paper provides a comparative analysis between MBT, CT and
manual testing techniques in terms of MC/DC and requirement
coverage. It also evaluates the efficiency of testing techniques and
determines the differences and overlaps of test suites generated
by each testing technique. The experimentation results based on
an industrial case study showed that regardless of test objectives
used to develop test cases for each technique (i.e. boundary value
analysis (BVA) and equivalence partitioning (EP) for manual test-
ing, edge coverage in MBT and t-ways interactions of parameters
in CT), each test suite achieved a substantial level of MC/DC cov-
erage. However, the test suite generated using MBT provided a
higher MC/DC coverage. MBT-generated test suite contained ap-
proximately 71% of similar test cases, on average, generated by
other testing techniques as well as highest number of unique test
cases, which also had an observable effect on MC/DC adequacy.
Furthermore, the analysis also showed that MBT-generated test
suite is highly relevant to manual specification-based testing in
terms of complete test case generation due to model’s conformance
with requirements. Hence, we argue that MBT-generated test suite
is most likely to uncover system-level faults and it could be used
to improve manual testing. On the other hand, CT was the most
efficient technique when compared to MBT and manual testing but
exponential growth of test cases while achieving higher MC/DC
could affect its efficiency. Also, MBT-generated test suite contains
redundant test cases and their exclusioncan reduce the execution
time, consequently efficiency could be improved.

In future, we intend to perform a thorough evaluation of the
generated test suites in terms of fault detection effectiveness and
to investigate approaches to reduce test suite generated by MBT.

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Horizon
2020 research and innovation program under grant agreement Nos.
871319, 957212; from the Swedish Innovation Agency (Vinnova)
through the XIVT project and from the ECSEL Joint Undertaking
(JU) under grant agreement No 101007350.



Evaluating System-Level Test Generation for Industrial Software AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Wasif Afzal, Ahmad Nauman Ghazi, Juha Itkonen, Richard Torkar, Anneliese

Andrews, and Khurram Bhatti. 2015. An experiment on the effectiveness and
efficiency of exploratory testing. Empirical Software Engineering 20 (2015), 844–
878.

[2] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, Antonia
Bertolino, et al. 2013. An orchestrated survey of methodologies for automated
software test case generation. Journal of Systems and Software 86, 8 (2013),
1978–2001.

[3] Andrea Bombarda and Angelo Gargantini. 2020. An Automata-Based Generation
Method for Combinatorial Sequence Testing of Finite State Machines. In 2020
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 157–166.

[4] Josip Bozic, Bernhard Garn, Ioannis Kapsalis, Dimitris Simos, Severin Winkler,
and Franz Wotawa. 2015. Attack pattern-based combinatorial testing with con-
straints for web security testing. In 2015 IEEE International Conference on Software
Quality, Reliability and Security. IEEE, 207–212.

[5] Jörg Brauer, Jan Peleska, and Uwe Schulze. 2012. Efficient and trustworthy tool
qualification for model-based testing tools. In IFIP International Conference on
Testing Software and Systems. Springer, 8–23.

[6] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209–224.

[7] Yin Chen, Sven Linder, and Jonas Wigstein. 2019. An Approach of Creating
Component Design Specification for Safety-Related Software in Railway. In 2019
Annual Reliability and Maintainability Symposium (RAMS). IEEE, 1–4.

[8] John Joseph Chilenski and Steven P Miller. 1994. Applicability of modified
condition/decision coverage to software testing. Software Engineering Journal 9,
5 (1994), 193–200.

[9] Myra B Cohen, Peter B Gibbons, Warwick B Mugridge, and Charles J Colbourn.
2003. Constructing test suites for interaction testing. In 25th International Con-
ference on Software Engineering, 2003. Proceedings. IEEE, 38–48.

[10] Siddhartha R Dalal, Ashish Jain, Nachimuthu Karunanithi, JM Leaton, Christo-
pher M Lott, Gardner C Patton, and Bruce M Horowitz. 1999. Model-based
testing in practice. In Proceedings of the 21st international conference on Software
engineering. 285–294.

[11] Arilo C. Dias-Neto and Guilherme H. Travassos. 2010. A Picture from the Model-
Based Testing Area: Concepts, Techniques, and Challenges. In Advances in
Computers, Marvin V. Zelkowitz (Ed.). Advances in Computers, Vol. 80. Elsevier,
45–120.

[12] Arnaud Dupuy and Nancy Leveson. 2000. An empirical evaluation of the MC/DC
coverage criterion on the HETE-2 satellite software. In 19th DASC. 19th Digital
Avionics Systems Conference. Proceedings (Cat. No. 00CH37126), Vol. 1. IEEE, 1B6–
1.

[13] Mounia El qortobi, Amine Rahj, Jamal Bentahar, and Rachida Dssouli. 2020. Test
Generation Tool for Modified Condition/Decision Coverage: Model Based Testing.
In Proceedings of the 13th International Conference on Intelligent Systems: Theories
and Applications. 1–6.

[14] Eduard Enoiu, Daniel Sundmark, Adnan Čaušević, and Paul Pettersson. 2017.
A Comparative Study of Manual and Automated Testing for Industrial Control
Software. In 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST). 412–417. https://doi.org/10.1109/ICST.2017.44

[15] Miraldi Fifo, Eduard Enoiu, and Wasif Afzal. 2019. On measuring combinatorial
coverage of manually created test cases for industrial software. In 2019 IEEE
International Conference on Software Testing, Verification and ValidationWorkshops
(ICSTW). IEEE, 264–267.

[16] Svetoslav R Ganov, Chip Killmar, Sarfraz Khurshid, and Dewayne E Perry. 2008.
Test generation for graphical user interfaces based on symbolic execution. In
Proceedings of the 3rd international workshop on Automation of software test.
33–40.

[17] Gregory Gay, Ajitha Rajan, Matt Staats, Michael Whalen, and Mats PE Heimdahl.
2016. The effect of program and model structure on the effectiveness of mc/dc test
adequacy coverage. ACM Transactions on Software Engineering and Methodology
(TOSEM) 25, 3 (2016), 1–34.

[18] Jon Hagar, Rick Kuhn, Raghu Kacker, and Tom Wissink. 2014. Introducing
combinatorial testing in a large organization: Pilot project experience report. In
2014 IEEE Seventh International Conference on Software Testing, Verification and
Validation Workshops. IEEE, 153–153.

[19] Jon Hagar, Rick Kuhn, Raghu Kacker, and Tom Wissink. 2014. Introducing
Combinatorial Testing in a Large Organization: Pilot Project Experience Report.
In 2014 IEEE Seventh International Conference on Software Testing, Verification and
Validation Workshops.

[20] Kelly J Hayhurst. 2001. A practical tutorial on modified condition/decision coverage.
DIANE Publishing.

[21] Hadi Hemmati, Syed S Arefin, and Howard W Loewen. 2018. Evaluating
specification-level MC/DC criterion in model-based testing of safety critical
systems. In 2018 IEEE/ACM 40th International Conference on Software Engineering:

Software Engineering in Practice Track (ICSE-SEIP). IEEE, 256–265.
[22] Linghuan Hu, W. Eric Wong, D. Richard Kuhn, and Raghu N. Kacker. 2020.

How does combinatorial testing perform in the real world: an empirical study.
Empirical Software Engineering 25 (2020), 2661–2693.

[23] Anne Kramer and Bruno Legeard. 2016. Model-based testing essentials-guide to
the ISTQB certified model-based tester: foundation level. John Wiley & Sons.

[24] Peter M. Kruse, Nelly Condori-Fernández, Tanja E.J. Vos, Alessandra Bagnato, and
Etienne Brosse. 2013. Combinatorial Testing Tool Learnability in an Industrial
Environment. In 2013 ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement.

[25] D Richard Kuhn, Raghu N Kacker, Yu Lei, et al. 2015. Combinatorial coverage as
an aspect of test quality. CrossTalk 28, 2 (2015), 19–23.

[26] Rick Kuhn and Raghu Kacker. 2011. Practical combinatorial (t-way) methods for
detecting complex faults in regression testing. In 2011 27th IEEE International
Conference on Software Maintenance (ICSM). IEEE, 599–599.

[27] Kiran Lakhotia, Phil McMinn, and Mark Harman. 2009. Automated Test Data
Generation for Coverage: Haven’t We Solved This Problem Yet?. In 2009 Testing:
Academic and Industrial Conference - Practice and Research Techniques. 95–104.
https://doi.org/10.1109/TAICPART.2009.15

[28] Hareton KN Leung and Lee J White. 1991. A cost model to compare regression
test strategies.. In ICSM, Vol. 91. 201–208.

[29] Dong Li, Linghuan Hu, Ruizhi Gao, W Eric Wong, D Richard Kuhn, and Raghu N
Kacker. 2017. Improving MC/DC and fault detection strength using combinatorial
testing. In 2017 IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C). IEEE, 297–303.

[30] W. Li, F. Le Gall, and N. Spaseski. 2017. A survey on model-based testing tools for
test case generation. In International Conference on Tools and Methods for Program
Analysis. Springer.

[31] Arthur Marques, Franklin Ramalho, and Wilkerson L Andrade. 2014. Comparing
model-based testing with traditional testing strategies: An empirical study. In
2014 IEEE Seventh International Conference on Software Testing, Verification and
Validation Workshops. IEEE, 264–273.

[32] Ahmed Mateen, Qingsheng Zhu, and Salman Afsar. 2018. Comparitive Analysis
of Manual vs Automotive Testing for Software Quality. In Proceedings of the 7th
International Conference on Software Engineering and New Technologies. 1–7.

[33] Stefan Mohacsi, Michael Felderer, and Armin Beer. 2015. Estimating the Cost and
Benefit ofModel-Based Testing: ADecision Support Procedure for theApplication
of Model-Based Testing in Industry. In 2015 41st Euromicro Conference on Software
Engineering and Advanced Applications. 382–389. https://doi.org/10.1109/SEAA.
2015.18

[34] Cu D Nguyen, Alessandro Marchetto, and Paolo Tonella. 2012. Combining model-
based and combinatorial testing for effective test case generation. In Proceedings
of the 2012 International Symposium on Software Testing and Analysis. 100–110.

[35] Sebastian Oster, Ivan Zorcic, Florian Markert, and Malte Lochau. 2011. MoSo-
PoLiTe: tool support for pairwise and model-based software product line testing.
In Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive
Systems. 79–82.

[36] Mike Papadakis and Nicos Malevris. 2010. Automatic mutation test case genera-
tion via dynamic symbolic execution. In 2010 IEEE 21st International Symposium
on Software Reliability Engineering. IEEE, 121–130.

[37] Rudolf Ramler, Theodorich Kopetzky, and Wolfgang Platz. 2012. Combinatorial
Test Design in the TOSCA Testsuite: Lessons Learned and Practical Implications.
In 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation. 569–572. https://doi.org/10.1109/ICST.2012.142

[38] Sanjai Rayadurgam and Mats Heimdahl. 2003. Generating MC/DC adequate test
sequences through model checking. (2003).

[39] Mary Sánchez-Gordón, Laxmi Rijal, and Ricardo Colomo-Palacios. 2020. Beyond
Technical Skills in Software Testing: Automated versus Manual Testing. In Pro-
ceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops. 161–164.

[40] Christoph Schulze, Dharmalingam Ganesan, Mikael Lindvall, Rance Cleaveland,
and Daniel Goldman. 2014. Assessing model-based testing: an empirical study
conducted in industry. In Companion Proceedings of the 36th International Confer-
ence on Software Engineering. 135–144.

[41] Ossi Taipale, Jussi Kasurinen, Katja Karhu, and Kari Smolander. 2011. Trade-off
between automated and manual software testing. International Journal of System
Assurance Engineering and Management 2, 2 (2011), 114–125.

[42] M. Utting and B. Legeard. 2010. Practical model-based testing: a tools approach.
Elsevier.

[43] Erik Van Veenendaal, Dorothy Graham, and Rex Black. 2008. “Foundations of
Software Testing: ISTQB Certification. Cengage Learning EMEA (2008), 30.

[44] Sergiy Vilkomir, Aparna Alluri, D Richard Kuhn, and Raghu N Kacker. 2017.
Combinatorial and MC/DC coverage levels of random testing. In 2017 IEEE
International Conference on Software Quality, Reliability and Security Companion
(QRS-C). IEEE, 61–68.

[45] Michael Wagner, Kristoffer Kleine, Dimitris E. Simos, Rick Kuhn, and Raghu
Kacker. 2020. CAGEN: A fast combinatorial test generation tool with support
for constraints and higher-index arrays. In 2020 IEEE International Conference

https://doi.org/10.1109/ICST.2017.44
https://doi.org/10.1109/TAICPART.2009.15
https://doi.org/10.1109/SEAA.2015.18
https://doi.org/10.1109/SEAA.2015.18
https://doi.org/10.1109/ICST.2012.142


AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Zafar et al.

on Software Testing, Verification and Validation Workshops (ICSTW). 191–200.
https://doi.org/10.1109/ICSTW50294.2020.00041

[46] Allan L White. 2001. Comments on modified condition/decision coverage for
software testing [of flight control software]. In 2001 IEEE Aerospace Conference
Proceedings (Cat. No. 01TH8542), Vol. 6. IEEE, 2821–2827.

[47] Muhammad Nouman Zafar, Wasif Afzal, and Eduard Enoiu. 2021. Towards a
Workflow for Model-Based Testing of Embedded Systems. In Proceedings of the
12th International Workshop on Automating TEST Case Design, Selection, and
Evaluation. Association for Computing Machinery, New York, NY, USA.

[48] Muhammad Nouman Zafar, Wasif Afzal, Eduard Paul Enoiu, Athanasios Stratis,
Aitor Arrieta, and Goiuria Sagardui. 2021. Model-Based Testing in Practice: An
Industrial Case Study using GraphWalker. In Innovations in Software Engineering
Conference 2021. http://www.es.mdh.se/publications/6101-

[49] Muhammad Nouman Zafar, Wasif Afzal, Eduard Paul Enoiu, Athanasios Stratis,
and Ola Sellin. 2021. A Model-Based Test Script Generation Framework for
Embedded Software. In The 17th Workshop on Advances in Model Based Testing.
http://www.es.mdh.se/publications/6172-

https://doi.org/10.1109/ICSTW50294.2020.00041
http://www.es.mdh.se/publications/6101-
http://www.es.mdh.se/publications/6172-

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Test Generation Techniques
	2.2 Test Coverage
	2.3 Related Work

	3 Methodology
	3.1 Research Questions
	3.2 Description of SUT
	3.3 Test Suite Creation
	3.4 RQ1: Coverage Assessment
	3.5 RQ2: Efficiency Evaluation Criteria
	3.6 RQ3: Differences and Overlaps Assessment
	3.7 Assumptions

	4 Results
	4.1 RQ1: Requirement and MC/DC Coverage
	4.2 RQ2: Efficiency of Test Suites
	4.3 RQ3: Differences and Overlaps Between the Test Generation Techniques

	5 Discussion
	6 Validity Threats
	6.1 Internal Validity
	6.2 Reliability and External Validity
	6.3 Construct Validity

	7 Conclusion and Future work
	Acknowledgments
	References

