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Abstract—Automated machinery and robots working with
humans are the norm in modern smart industries. A previous
work in this area proposed a tool for improving the safety
of such work places: an emergency system which halts those
machines that are visible from an emergency stop button when
it is pressed [1]. The solution presented in this paper improves
the reliability of the aforementioned one at the expense of a
higher computational complexity. Furthermore, two algorithmic
optimizations are presented to mitigate the extra computational
cost as it is shown by the results collected from the set of
experiments conducted.

Index Terms—I.2.1.g Industrial Automation; I.3.5 Computa-
tional Geometry and Object Modeling; K.4.1.d Human safety.

I. INTRODUCTION

In modern highly automated factories, humans work closely
to autonomous vehicles and stationary machinery as sketched
in Figure 1. Such environments pose several challenging
problems concerning the safety, e.g., autonomous robot path
planning and collision avoidance. Complementing the auto-
mated solutions, we intend to equip human operators with
emergency stop buttons that allow them to manually stop
the machinery and robots’ activity if a dangerous situation
is discovered.

A viable solution for factories which only contains station-
ary machinery is to strategically place a number of emergency
devices and to statically map such devices to machinery.
However, in more dynamic contexts (as the one we are aiming
at) a fixed mapping is not sufficient due to the presence of
automated moving robots and machinery. A simplistic solution
would be to stop all of them within a given area, but this could
be prohibitively costly in large scenarios.

Capannini et al. proposed a solution such that when an
emergency button is pressed, only those machines that are
visible from the button’s location are stopped [1].

As explained in Section III, however, this solution has two
main drawbacks mostly related to the assumptions made by
the authors and the approximation with which the real-world
objects are represented in the proposed model thus the limited
ability of their algorithm to discover all visible objects in some
circumstances.

The main contribution of this paper is proposing a more
accurate model representing the real-world objects in order to
guarantee the correctness of the results in all contexts. The
paper also analyses the extra computational cost derived from

using a more accurate object representation and proposes an
algorithmic optimization to reduce it.

The rest of this paper is structured as follows. Section II
formally defines the visibility problem and describes the
assumptions at the base of the solution proposed in [1]. Sec-
tion III takes up the formal definition to point out the limitation
of the existing approach. Section V introduces our solution
to the drawbacks detected and the computational complexity
of the related solution. It also presents a viable optimization
which, once applied to the original visibility algorithm, is able
to empirically double its performance (according to the test
results shown in Section VI). Conclusions and future works
are presented in Section VII.

II. FORMAL DEFINITION OF THE VISIBILITY PROBLEM

The visibility problem is a relevant topic used for modeling
and solving many problems in the computational geometry
field [2]. In computer graphics, for example, scenes are made
of meshes that includes millions of polygons placed in dif-
ferent positions and efficient visibility algorithms can help to
reduce the complexity of rendering such scenes. Again, the
robot path planning problem is frequently reduced to a planar
visibility problem and visibility algorithms can be effectively
employed for calculating a collision-free path.

In what follows, the formal definitions of polygon and
visible polygon from a given point are presented as reported
in [2], [3].

Definition 1: A polygon P is defined as two-dimensional
closed shape limited by a finite number of line segments, the
so-called edges, of which endpoints are also called the vertices
of P . The set of edges define a circuit such that they do not
intersect each other.

Definition 2: Given a set S of disjoint polygons and a query
point q, define the subset V (S, q) ⊆ S made of all those
polygons that are visible from q, where a polygon p is visible
from q if it exists an open line segment from q to any point
of p that does not intersect any other polygon in S.

Unlikely, Definition 2 does not perfectly fit into the case
where polygons in S are used to represent the moving robots
and machinery described in Section I. As observed in [1],
reducing the real-world objects to their top-view orthographic
projections inevitably creates overlaps among the resulting
polygons which, in turn, contradicts the initial assumption of
having an set of disjoint polygons as input. Moreover, as a
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Fig. 1. Possible scenarios made of human operators, moving robots, and machinery sharing the work space. Walls are an example of static obstacles delimiting
the different areas. Emergency stop buttons can be static or attached to moving entities.

consequence of their size and conformation, some objects let
the hypothetical human operator placed in q see beyond them
so that an object is possibly visible even if an second object
stands between it and q. These two facts break Definition 2
since we cannot assume that the set of input polygons are
disjoint and it is not required a unbroken line from q to an
polygon to make it visible. For such a reason, the original
visibility algorithms cannot be effectively used in this case
study.

III. BACKGROUND AND RELATED WORK

To the best of our knowledge, the solution proposed in [1]
is the first work to address the visibility problem when in
presence of overlapping polygons as introduced in Section II.
This section illustrates, among other things, such a solution
and how the authors partially overcome the issues presented
in Section II.

The work presented in [1] assumes having every real-
world object represented with (at least) one bounding volume
enclosing the top-view orthographic projection of the object.
No assumption is made on the type of bounding volumes in
use which can vary from a simple circle to a more complex
convex hull as shown in Figure 2. For sake of simplicity, the
authors adopted AABBs. Since our work aims to improve
even the accuracy of that method, it is worth noting that
simpler bounding volumes require lower memory for their
representation and imply lower computational costs at the
expense of a lower accuracy since they are less tight fitting to
the object projection.

Fig. 2. Some of the most popular bounding volumes available in literature
[4]. From left to right: circle, axis-aligned bounding box (AABB), oriented
bounding box (OBB), and k-direction discrete orientation polytope (k-DOP).

Let the set of all bounding volumes be the set S of polygons
of Definition 2 and let q denote the query point, the first step of

the algorithm is to transform each bounding volume v ∈ S into
a segment s(v, q) which defines the portion of the visibility
field of q occupied by v, as depicted in Figure 3.

q1

q2

Fig. 3. Example of how the same bounding volume v (i.e., the red dashed
box) can originate different segments s(v, q) (i.e., the green lines) depending
on the query point q ∈ {q1, q2}.

Similarly to the solution presented by Asano et al. [3], the
algorithm then sorts the set of endpoints which define the set of
segments according to their polar angle calculated in the polar
coordinate system where the query point q is the reference
point as shown in Figure 4.
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Fig. 4. Given a query point q and a set S of n polygons, the visibility
algorithm firstly sorts the endpoints ei of all segments in the set {s(q, v)|v ∈
S} with 1 ≤ i ≤ 2n.



Successively, the algorithm goes through the set of sorted
endpoints and, for each endpoint e, tests the subset of segments
intersecting the ray r, with r = −→qe, to determine which
of such segments are visible thus the related set of visible
objects (so-called sweeping phase). To avoid useless tests,
during the sweep, the algorithm keeps track of those segments
that actually intersect r, so-called active segments, by adding
and removing them from a data structure T according to the
endpoint currently visited.

Let |S| equal n and let T be a generic binary search tree,
since |T | = O(n) and T is visited once for each endpoint, the
worst-case time complexity of the algorithm is O(n2) even if
the tests show that its performance are almost linear in n.

IV. CORRECTNESS AND ACCURACY ANALYSIS

This section points out two types of issues encountered
during the analysis of the solution proposed in [1]. As first, we
analyse the correctness of the algorithm from the perspective
of the problem definitions given in Section II, then we discuss
the accuracy of the overall model and the possible drawbacks
due to approximating real-world object by means of two-
dimensional bounding volumes.

A. Correctness

Contrary to the original solution presented by Asano et
al. [3], the approach presented by Capannini et al. [1] is
able to work correctly even when a subset of the segments
representing the polygons in S are overlapping – at the expense
of a higher computational complexity. This feature, however,
can not guarantee the correctness of the method in the presence
of overlapping polygons in S. In fact, representing polygons
with just a segment may lead to false negatives apart from the
fact that their segments overlap or not. As an example, let us
consider the case depicted in Figure 5. Here, three AABBs
are represented by means of their segment as suggested in [1]
but, even if the bottom-left vertex of B is visible, its segment
is hidden by those corresponding to A and C so that B turns
out to be hidden as well.

q

A B

C

b0

b1

Fig. 5. Example of three AABBs with the related segments and the rays cast
from the query point q to each endpoint. Even if B is visible, no rays hit
directly the segment of B which is not reported as a visible polygon.

Another class of situations where the algorithm does not
produce the correct result occurs when, in a cluster of poly-
gons, part of the segment defining one of them is visible

from the query point q, but actually no rays cast toward the
corresponding set of endpoints hits it, as shown in Figure 6.

q

Fig. 6. Example of three segments where none of the rays cast from the
query point q to the six endpoints does not hit any part of the red segment.

B. Accuracy

Depending on the accuracy we want to achieve and the
type of bounding volumes utilized, the computed segments can
lead to harmful over-approximations of the field of view that
an object actually hides from q which, in turn, may produce
wrong results. As shown in Figure 7, the bounding volume
A and the related segment does not accurately represent the
space hidden by the enclosed object where B is placed so that
B is not considered visible although should be.

q

A

B

Fig. 7. Simple bounding volumes can lead to over-approximate the area
hidden from a human operator as in this example where B is not considered
visible from q due to the low accuracy applied for representing A.

Figure 8 shows two other scenarios where even a tighter
bounding shape can be inaccurate. An object at position X
is considered hidden behind the green segment although in
reality it is visible. Moreover, an object at position Y is hidden
in this 2D representation, but could very well be visible under
the arm in the real-world 3D scenario.

V. OUR PROPOSED SOLUTION

This section describes a further variation to the solution
presented by Asano et al. [3] that solves the issues discussed
in Section IV.

To address the visibility inaccuracy caused by approximative
bounding shapes, we first separate the objects into two disjoint
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Fig. 8. Segment representation and difference between the real-world object
and the projected representation can also cause incorrect visibility results.

sets: covers and stoppables. Covers are objects that can impact
the visibility of other objects, such as walls or large machines.
Stoppables are the objects that can be stopped and that we thus
want to determine if they are visible or not. If some real-world
object is stoppable but also large enough to potentially hide
other objects, it would be represented as two objects: one cover
and one stoppable.

Keeping the two subsets disjoint means that we can treat
them differently when constructing their representation. The
basic idea is that we want stoppables to be over-approximated
and covers under-approximated. As a result, if the visibility
algorithm returns that a particular stoppable is not visible and
thus does not have to be stopped, we know for sure that the
actual object is also not visible in the real-world scenario.

The first difference between the two categories is the con-
struction of a 2D representation of the real-world object. For
stoppables, we use a simple top-view orthographic projection.
For covers, however, we first define a minimum and maximum
visibility height (corresponding to what we would consider
as the lowest and highest reasonable eye-level of a human
operator). Then, the projection of a cover only considers those
parts of the object that are solid between the minimum and
maximum visibility height.

The second difference is that for stoppables we use bound-
ing volumes such as the ones exemplified in Section III,
ensuring that if the stoppable object is visible, so is the
bounding volume. However, for covers we want to avoid
over-approximation and thus they are instead represented by
bounded volumes, i.e., a volume enclosed in the projection of
the object.

Figure 9 exemplifies the difference. If the object on the left
is a cover, given the min and max visibility heights, only the
large cylindrical part is used for the projection, as shown in
the bottom right together with the enclosed bounded volume.
If the object is instead a stoppable, its projection is shown in
the top right together with the enclosing bounding volume.

In the visibility algorithm, covers are treated as non-
transparent, non-stoppable objects and stoppable ones are
treated as transparent, stoppable objects, as defined in [1].

As we observed in Section IV-A, the segmentation-based
approach is subject to some drawbacks managing scenarios
with overlapping bounding volumes. A viable solution to is to
directly use all edges of each polygons instead of computing

min

max

Fig. 9. Example of the difference representing covers and stoppables.

the segments.
This has twofold benefits: overlapping polygons are cor-

rectly identified regardless of their placement and, since there
is no middle phase which transforms the bounding volumes
into segments, the approximation of the results can meet the
required accuracy by increasing (or decreasing) the tightness
of the polygons used to represent real-objects.

This, however, affects the performance of the sweeping
phase by increasing the computational complexity propor-
tionally to the average number of the polygons’ edges. The
original solution has a two-to-one ratio between the number
of endpoints to sweep and number of polygons, n, so that
the final computational complexity of the algorithm is O(n2)
as stated in Section III. While, for iterating the set of edges
defining the bounding volumes, the computational complexity
is quadratic in the number of vertices. For example, if instead
of AABBs we employ a k-DOP (see Figure 2) the average
computational complexity becomes k2-times higher.

Furthermore, to address cases like the ones in Figure 6,
it is required to cast additional rays toward the intersection
points between different segments, or edges once we adopt
them instead of segments. To define the direction of these
extra-rays requires to preventively discover any cluster of
overlapping polygons in S (referred as broad phase) by means,
for example, of a collision detection method that theoretically
is solvable in O(n log n + c) where c denotes the number
of pairwise collisions [5]. On each cluster, we successively
calculate the intersection points for the edges of the pertaining
polygons (referred as narrow phase). Dividing the process in
two phases (i.e., broad and narrow) reduces the overhead that
we would pay by applying the collision detection algorithm
to the whole set of polygon edges at once [6].

A. Algorithmic Optimizations

Let us consider the bounding volumes in Figure 5 when
using all polygon edges instead of calculating the segments.
Actually, to discover that B is visible from q, it is not
necessary to test the all edges of B, but only those facing q,
namely those lying within the triangle with vertices: q, b0, and
b1 that are the endpoints of the segment s(B, q). In general,
hence, the edges of a generic bounding volume that are hidden
by other edges of the same polygon can be safely skipped
during the sweep phase.



As a consequence, given a query point q, for each bounding
volume v ∈ S, we calculate s(v, q) then we represent v
only by means of the significant edges belonging to one of
the two possible paths between the endpoints of s(v, q) (i.e.,
the pair of vertices with minimum and the maximum polar
angle calculated in the polar coordinate system where q is the
reference point). Let e0 and e1 denote such endpoints for a
given segment, we call P⟲ the path traversing the edges of
v from e0 to e1 in the counterclockwise direction while P⟳

identifies complement P⟲ i.e., the path containing the edges
of v from e0 to e1 in clockwise direction. To select the path,
since the edges of v do not intersect each other according to
Definition 1, we simply choose the one passing closer to q, as
shown in the example in Figure 10.

q
e1

e0

Fig. 10. Only the green edges of the given polygon (i.e., the bounding volume)
are visible from q and correspond to the path P⟳ so that the others can be
skipped during the sweep phase.

A second viable optimization is to restrict the calculation of
the significant edges to the subset of the input polygons that
overlap each other while the remaining disjoint ones can be
represented by means of the segment s(v, q) as the original
approach does. Furthermore, the subset to which a polygon
belongs to, can be easily defined by reusing the result of the
broad collision-detection phase so that the overall computa-
tional cost of the algorithm will not be further penalized.

Figure 11 recaps how we combined all the proposed tech-
niques to manage a cluster of polygons like the one depicted
in that figure: the broad collision-detection phase discovers
the cluster then, for each involved polygon, we define the set
of significant edges (denoted by the solid edges in the figure)
representing the polygon during the sweep phase and that are
used by the narrow collision-detection phase to calculate the
edges’ intersection points toward which the sweep phase will
cast the additional rays (the three ones having a square arrow-
head in the figure).

VI. EXPERIMENTAL RESULTS

This section shows the results of the experiment conducted
to compare the performance of four solutions: the one pro-
posed by Capannini et al. [1] which is considered as baseline,
the naı̈ve approach introduced in Section V, and the two
solutions based on the optimizations discussed in Section V-A.
In what follows, these four methods are referred as baseline,
naı̈ve, path, and path&coll, respectively. For our three pro-

q

Fig. 11. Sketch of a possible cluster made of three polygons: red, green, and
blue. Every polygon is represented by its the edges facing q. The intersection
points between different paths define the direction of additional rays.

posed methods, the collision detection algorithm applied was
the solution proposed by Larsson et al. [7].

All the experiments presented in this section were conducted
on an Intel® Core™ i3-10110U CPU equipped with 16 GB of
RAM and GCC 9.3.0 installed.

As first, we run a set of synthetic benchmarks (since it was
not yet possible to conduct tests in real world scenarios) to
measure the general performance of all methods. We generated
different sets of scenes with a varying number, n, of irregular
polygons. For each input size, 200 different scenes have been
created by generating and placing randomly the n polygons
according to the standard uniform distribution around a given
query point q. Test results are shown in Table I where m
denotes the average number of edges generated for any n-size
set of scenes.

TABLE I
ELAPSED TIMES OF THE SYNTHETIC BENCHMARK RUN FOR ALL
APPROACHES VARYING THE PROBLEM SIZE (IN MILLISECONDS).

n m baseline naı̈ve path path&coll
125 939 0.01 0.07 0.04 0.03
250 1879 0.02 0.15 0.09 0.06
500 3751 0.05 0.30 0.17 0.13

1000 7497 0.10 0.62 0.35 0.23
2000 14987 0.19 1.25 0.71 0.45
4000 30005 0.38 2.51 1.43 0.93
8000 60007 0.77 5.21 2.88 1.82
16000 120001 1.50 9.98 5.60 3.65
32000 240005 2.93 20.74 11.34 7.58
64000 480009 6.51 44.72 24.50 17.32

128000 960082 16.46 107.52 59.10 42.92

All the three methods presented run slower than the baseline
which, as discussed in Section IV, possibly produces false
negatives depending on the input scenario (we observed an av-
erage error in the number of visible polygons discovered equal
to ∼1.5%). In fact, as discussed in Section III, this approach
does not preform any preliminary collision detection phase
and, during the sweep phase, each polygon is represented by
a single segment so as to keep as low as possible the number
of endpoints to iterate. On the other hand, the naı̈ve approach



is the slowest one by sweeping the largest number of elements,
i.e., m polygon edges. Results also show the effectiveness of
two optimizations proposed in Section V-A that are able to
lighten the computational load of sweep phase with respect to
the naı̈ve approach by preserving the correctness of the results.
On the average, the path-based solution was able to skip about
one half of the edges while such a ratio rose up to 82% for the
path&coll-based solution. As a consequence, the speedup of
the path solution over the naı̈ve one is ∼1.8× on the largest
problem instances while, for the path&coll-based solution, the
measured speedup achieved ∼2.5×.

Since all phases of any visibility algorithm are affected by
the clustering degree of the input set S, we conducted a second
set of tests by varying the polygon density of the scenes. The
polygon density, denoted by d, is calculated as the ratio of the
sum of all polygon areas over the area of the entire scene. In
particular, the density value d calculated on the scenes reported
in Table I was 5% while, for this second test, we tested only
the path&coll-based solution with d ∈ {15%, 25%, 35%}. We
expect that, by increasing d, even the overall computational
work increases for each of our three proposed methods. In
particular, higher density means higher chance that a generic
pair of polygons overlaps. This increases the computational
complexity of the collision detection algorithm (as stated in
[5], [7]) as well as the number of edges to be processed during
the sweep and the other intermediary phases (e.g., sorting).
Results are shown in Table II.

TABLE II
ELAPSED TIMES OF THE SYNTHETIC BENCHMARK RUN FOR THE

PATH&COLL APPROACH VARYING THE PROBLEM SIZE AND DENSITY (IN
MILLISECONDS).

n d = 15% d = 25% d = 35%

125 0.04 0.04 0.05
250 0.08 0.09 0.10
500 0.15 0.17 0.20
1000 0.30 0.35 0.39
2000 0.60 0.70 0.83
4000 1.20 1.46 1.70
8000 2.45 2.99 3.62

16000 4.83 6.17 7.46
32000 10.51 13.32 16.60
64000 24.00 31.04 38.76
128000 59.79 79.06 98.67

To better interpret the results in Table II, we restricted our
analysis to the largest instances of the problem and measured
how the different phases of the visibility computation are
affected by the density variation in term of effectiveness and
performance. It turned out that comparing the results obtained
for d = 5% (see Table I) and d = 35%, the number of skipped-
edges dropped from 82% to 65% while the number of fired
rays almost doubled. Furthermore, as shown in Figure 12,
the performances of the collision detection phase and the
other intermediary phases were more slightly affected by the
increased density than the sweep phase of which elapsed
time rose ∼7× due to the greater number of fired rays and,
even more, the higher average amount of concurrently active

elements to test for every ray.
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Fig. 12. Elapsed time breakdown by phases testing the path&coll solution
by varying the density, d, with n equal to 128000.

VII. CONCLUSIONS AND FUTURE WORKS

We presented a more reliable version of the visibility
algorithm proposed in [1] which, at the expense of a higher
computational cost, is able to correctly solve scenarios where
the input set of polygons can possibly overlap. To address the
drop of performance, we proposed two algorithmic optimiza-
tions that we merged together in one approach.

As a future work, we would like to address the drop of
performance pointed out in the last test. To this end we have
a chance to reduce the average-case time complexity through
the parallelization of the algorithm phases. Finally, we are
also trying to solve the visibility problem by means of a three-
dimensional model to address the accuracy issues of the overall
emergency stop system.
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