
 1

Calculating Resource Trade-offs when Mapping Component Services to
Real-Time Tasks

Johan Fredriksson, Mikael Åkerholm and Kristian Sandström
Mälardalen Real-Time Research Centre

Department of Computer Science and Engineering
Mälardalen University, Västerås, Sweden

johan.fredriksson@mdh.se
http://www.mrtc.mdh.se

Abstract
The research on real-time systems has produced

algorithms for effective scheduling of system re-
sources while guaranteeing the real-time proper-
ties. However, the issue of allocating component
services to schedulable task entities has gained little
focus, even though component based development
has attracted an increasingly interest, also in the
real-time community. Trade-offs when allocating
component services to tasks, are, e.g., cpu-
overhead, footprint and integrity.

In this paper we present a general framework for
calculating properties, such as memory consump-
tion and cpu-overhead, of a given mapping of com-
ponent services to tasks, while utilizing existing
real-time analysis.

1 Introduction

The embedded systems domain represents a class
of real-time systems where the requirements on
safety, reliability, resource usage, and cost leaven
all through development. Historically, the develop-
ment of such systems has been done using only low
level programming languages, to guarantee full
control over the system behaviour. As the complex-
ity and the amount of functionality implemented by
software increase, so does the cost for software
development. Also, since product lines are common
within the domain, issues of commonality and reuse
are central for reducing cost as well as increasing
reliability. Therefore component-based develop-
ment has shown to be an efficient and promising
approach for software development, enabling well
defined software architectures as well as reuse.

Typically, embedded systems react on the envi-
ronment and have to respond within a bounded
interval in time, i.e., they are real-time systems;
hence timing and scheduling are central concepts.
Furthermore, these systems are often resource con-
strained; consequently memory footprint and CPU
load are desired to be as low as possible.

A problem in current component based embed-
ded software development practices is the mapping
of component services to run-time threads (tasks)
[8]. Because of the real-time requirements on most
embedded systems, it is vital that the mapping con-
siders temporal attributes, such as worst case execu-
tion time (WCET), deadline (D) and period time
(T). In a system with many small component ser-
vices, the overhead from context switches will be
quite high. Embedded real-time systems consist of
periodic and sporadic events and they usually have
end-to-end timing requirements. Periodic events can
often be coordinated and executed by the same task,
while preserving temporal constraints. Hence, it is
easy to understand that there can be profits from
grouping several component services into one task.
Some of the benefits can be less memory in form of
stacks and task control blocks or lower CPU utiliza-
tion due to less overhead for context switches.
There are many trade-offs to be made when allocat-
ing component services to tasks. Different proper-
ties can be accentuated depending on how compo-
nent services are allocated to tasks, e.g., footprint,
performance or integrity.

Allocating component services to tasks, and
scheduling tasks are both complex problems and
different approaches are used. Simulated annealing
and genetic algorithms are examples of algorithms
that are frequently used for optimization problems.
However, to be able to use such algorithms, a
framework to calculate properties, such as memory
consumption and overhead, is needed. The work
described in this paper presents a general model for
reasoning about trade-offs concerning allocating
component services to tasks, while preserving extra-
functional requirements. A framework is developed
to help transit from component services, to a run-
time model while enabling verification of temporal
constraints, and optimization for low footprint and
overhead.

The problem of allocating tasks to different
nodes is a problem that has been studied by re-
searchers using different methods [6,18]. There are
also methods proposed for transforming structural

 2

models to run-time models [3,5,10], but extra-
functional properties are usually ignored or consid-
ered as non-critical [8]. However, allocating com-
ponents to tasks is a different problem. In [16], an
architecture for embedded systems is proposed, and
it is identified that components has to be grouped
into tasks, however there is no focus on the alloca-
tion of components to tasks. In [8] the authors pro-
pose a model transformation where all components
with the same priority are allocated to the same
task. The idea of assigning components to tasks
considering extra-functional properties for embed-
ded systems is a relatively uncovered area. How-
ever, similar approaches to this work have been
formulated by Shin et. al [16] and Kodase et. al [8].
In [4], the authors discuss how to minimize memory
consumption in real-time task sets. Shin et. al [15]
are discussing the code size, and how it can be
minimized.

The outline for the rest of the paper is as follows;
section 2 gives an overview of the component ser-
vice to task mappings, and describes the structure of
the components and tasks. In section 3 a framework
for calculating the properties of components allo-
cated to tasks. Section 4 discusses allocation and
scheduling approaches, while an illustrative exam-
ple is given in section 5. Finally in section 6, future
work is discussed and the paper is concluded.

2 Mapping component services to
real-time tasks

Component based software engineering is a
promising approach for efficient software develop-
ment, enabling well defined software architectures
as well as reuse. Temporal constraints are of great
importance in embedded real-time systems; hence
we need an efficient mapping from component
services to tasks that enables verification of tempo-
ral behaviour. End-to-end deadlines are denoted
transactions, and are defined by a sequence of com-
ponent services and a timing requirement. Given a
mapping from component services and transactions
to tasks we can determine if the mapping is valid
and schedulable, and calculate the properties mem-
ory consumption and overhead. The verification is
performed with a framework during compile-time.
The work in this paper has two main concerns:

1. Verification of mappings from component
services to tasks.

2. Calculating system properties for a mapping

This paper is a refinement of previous work,
autocomp [14], which is a component technology.
An overview of the autocomp technology can be
seen in Figure 1. The different steps in the figure is
divided into design time, compile time, and run-
time to display at which point in time during devel-

opment they are addressed or used. The component
model is used during design time for describing an
application. The compile time steps, illustrated in
Figure 1, incorporate a mapping from the compo-
nent based design, to a real-time model and map-
ping to a real-time operating system (RTOS). Dur-
ing this step the component services are replaced by
real-time tasks and the component service require-
ments are mapped to task-level attributes.

Model transformation

Real-time model

Synthesis

Design-
Time

Compile-
Time

Run-
Time

Component model

RTOS

t

Figure 1 System description.

Our general component and task model com-
bined with the notion of transactions and a pipe-
and-filter model constitutes a general approach that
should be easy to implement for a large set of com-
ponent technologies for embedded systems such as
Autocomp [14], Rubus [1], Koala [19] and Port-
based objects [17].

The component and transaction characteristics
are described in the sections 2.1 and the tasks char-
acteristics are described in section 2.2.

2.1 Component characteristics

In this paper we will describe characteristics for
a general component model that should be applica-
ble to a large set of commercial or research embed-
ded component models. The component and task
models are meta-models for modelling the most
important attributes of a mapping between compo-
nent services and tasks. The models are used for
evaluation considering a set of requirements, e.g.,
memory consumption and overhead. The compo-
nent structure used throughout this paper is a pipe-
and-filter model with transactions. In Figure 2 a
component assembly with six component services
and two transactions is described. Each component
service has a trigger; a time trigger, an event trigger
or a trigger from a preceding component. A compo-
nent transaction describes an order of component
services and defines an end-to-end timing require-
ment. Each primitive is graphically denoted in
Figure 2.

 3

Many component models do not have the notion
of transactions built in, however, if there are possi-
bilities to model end-to-end timing requirements
and precedence, then that can be seen as transac-
tions at a higher abstraction level. A system is de-
scribed with components, component services and
transactions defining the temporal requirements on
the component services.

• A component ci is described with the tuple
<S, I > where S is a set of component services
provided by the component. The isolation set
(I) defines a relation between components that
need to be isolated for guaranteeing integrity
(memory protection). This is often required for
safety critical components.

• A component service ci
j is described with the

tuple <G, wcet, mem >, G is a trigger which is
described with the tuple <S,T> where S is a
signal from another component, an external ev-
ent or a timed event. T represents the minimum
inter arrival time (MINT) in the case of an ex-
ternal event. It represents the period in the case
of a timed trigger and it is unused if the signal
is from another component. The parameter
wcet is the worst case execution time, and mem,
is the amount of memory required by the ser-
vice. A component can have an arbitrary set of
services. A component i with a service j is de-
noted as ci

j. A component service can only trig-
ger one subsequent component service. How-
ever, a subsequent component service can be
triggered by several proceeding component
services, i.e., a component service can be part
of several component transactions.

A component transaction ctri is an ordered
relation between component services and an
end-to-end deadline. A component transac-
tion can stretch over one or several compo-
nent services and it is described with the tu-
ple < N, d >, where N is a set of component
services {ci

x, cj
y, ck

z} and d is a relative
deadline. The deadline is relative to the
event that triggered the component transac-
tion. A component transaction describes a
precedence order, i.e., the component ser-
vices defined by the N-set are executed in
the order they appear in the component
transaction (in the N-set). The same compo-
nent service can participate in several com-
ponent transactions. The precedence order is
loose, meaning that the component services
can be executed several times within the
same component transaction, i.e., the exact
order 1-2-3-4 is fulfilled also if the compo-
nent services execute in the order 1-3-2-3-4
which is also formalized below:

1{ } [] [] c
k

b
j

a
i

b
j

c
k

a
i

c
k

b
j

a
i ccccccccc

:,,

+

.
Because of the loose precedence order no
consistency or atomicity models are needed.
There are requirements and restrictions on
component transactions; the first service in a
component transaction has to be triggered by
an event, a time trigger or another compo-
nent. An event trigger may only trigger the
first service in a component transaction.

Figure 2 Component transaction model.

2.2 Task characteristics

The run-time model specifies the organization of
entities in the component model into tasks and task
transactions. During the transformation from com-
ponent model to run-time model, extra-functional
properties like schedulability and response-time
constraints must be considered in order to ensure
the correctness of the final system. Actions within a
task are executed at the same priority as the task,
and a high priority task pre-empts a low priority
task. Component services only interact through
explicit interfaces, hence tasks do not synchronize
outside the component model. The task model is for
evaluating schedulability and other properties of a
system.

• A system K is described with the tuple
<A, tcbsize, ρ > where A is a task set scheduled
by the system, tcbsize is the size of each task
control block, and can be considered constant,
and the same for all tasks. The constant ρ is the
time associated with a task switch. The system
kernel is the only explicit shared resource be-
tween tasks; hence we do not consider block-
ing. Also blocking is not the focus of this pa-
per.

1 “*” means zero or more occurenses; “+” menas one or more

occurenses

Transaction
Trigger

Time trigger
Event trigger

Service 1

Service 2

Transaction tr1
d=10

Transaction ctr2
d=8c1

2

c1
1

c2
2

c2
1 c3

1 c4
1

Transaction ctr1 < {c1
1, c2

1, c3
1, c4

1},10 >
Transaction ctr2 < {c1

2, c2
2}, 8 >

c

Transaction
Trigger

Time trigger
Event trigger

Service 1

Service 2

Transaction tr1
d=10

Transaction ctr2
d=8c1

2

c1
1

c2
2

c2
1 c3

1 c4
1

Transaction ctr1 < {c1
1, c2

1, c3
1, c4

1},10 >
Transaction ctr2 < {c1

2, c2
2}, 8 >

c

 4

• A task τi is described with the tuple
< S, T, wcet, stack> where S is an ordered set
of component services. Component services
within a task are executed in sequence. T is the
period or minimum inter arrival time of the
task. The parameters wcet and stack are worst
case execution time and stack size respectively.
The wcet, stack and period (T) are deduced
from the component services in S. Hence, for a
task τi:

•
()
∑

∈∀∀

=
Sc

j
i

j
iji

wcetcwcet .

• ()).max(memcScstack j
i

j
iji ∈∀∀=

• () ()TGcScT j
i

j
iji ..min∈∀∀=

• A task transaction ttri The timing require-
ments of a task transaction ttri are deduced
from the timing requirements of the component
transactions ctri. A task transaction ttri is de-
scribed with the tuple < M, d >, where M is a
set of tasks { τi, τj, τk

 } and d is a relative dead-
line. The task transaction ttri is a direct map-
ping from the component transaction ctri. The
task transaction ttri has the same parameters as
the component transactions ctri but τi, τj and τk
are the tasks that map the services ci

j, cj
k and

ck
l respectively, see Figure 3. The task transac-

tion defines a loose precedence order between
tasks, meaning that a task transaction is real-
ized when the tasks have executed in the order
they appear in the task transaction, i.e. even if
the component services do not execute in the
exact order 1-2-3-4 they can execute in the or-
der 1-3-2-3-4, which is still a valid task trans-
action. This is due to the pipe-and-filter model
where the data flow through the component
services defines the task transaction. The same
restrictions applied on the component transac-
tions ctri, apply on the task transactions ttri.

ctr1 (d=10)

ctr2 (d=8)c1
2

c1
1

c2
2

c2
1 c3

1 c4
1

ttr1 (d=10)

ttr2 (d=8)

τ1 τ3 τ4

Transaction ttr1 < {τ1, τ3, τ4}, 10 >

Transaction ttr2 < {τ2, τ3}, 8 >

τ2

Transaction ctr1 < {c1
1, c2

1, c3
1, c4

1},10 >
Transaction ctr2 < {c1

2, c2
2}, 8 >

ctr1 (d=10)

ctr2 (d=8)c1
2

c1
1

c2
2

c2
1 c3

1 c4
1

ttr1 (d=10)

ttr2 (d=8)

τ1 τ3 τ4

Transaction ttr1 < {τ1, τ3, τ4}, 10 >

Transaction ttr2 < {τ2, τ3}, 8 >

τ2

Transaction ctr1 < {c1
1, c2

1, c3
1, c4

1},10 >
Transaction ctr2 < {c1

2, c2
2}, 8 >

Figure 3, translation of component transac-

tions, to task transaction.

2.3 Constraints on transactions

If several task transactions ttri span over the ex-
act same tasks, the task transaction with the
shortest deadline is the only valid.

A component transaction defines precedence
between component services. When component
services are allocated to tasks, the precedence
defined by the component transactions must
never be broken. In other words, a set of com-
ponent services c1

1, c2
1 and c3

1 with the prece-
dence 1-2-3, may be allocated to tasks in any
way that do not break the precedence. Hence,
only services c1

1 and c3
1 may not be allocated

to the same task. However, services c1
1 and c2

1,
or c2

1 and c3
1 may be allocated (Figure 4), thus

the component service precedence is preserved.

Figure 4 Three different allocations

Allocations (1), (2), (3) and (5) do not violate
the precedence S1-S2-S3. Allocation (4) has
violated the precedence (S1-S3).

If component transactions intersect, there are dif-
ferent strategies for how to allocate the component
where the transactions intersect. The component in
the intersection (cint) has to be allocated to a sepa-
rate task when a transaction that has an event trigger
intersects another transaction. The task cint has to be

c1
1 c2

1 c3
1

c1
1 c2

1 c1
1 c3

1

c3
1 c2

1

(2) (3) (4)

c1
1 c2

1

c3
1

(1)

c3
1c2

1c1
1

(5)

c2
1 c3

1

c1
1

 5

triggered by both transactions. This is done to in-
crease the schedulability by increasing responsive-
ness.

In Figure 5 (1) the component cint is allocated to
a separate task because an event triggered transac-
tion is intersecting an other transaction. In Figure 5
(2) there is no event triggered transaction, and cint
can be allocated to any task. Two intersecting time
triggered transactions can be handled in any way
that does not violate the precedence relations.

Figure 5 Intersecting transactions, event-

triggered vs. time-triggered.

3 Evaluation framework

The evaluation framework is a set of models for
calculating properties of allocations of component
services to tasks. The properties calculated with the
framework are used for optimization algorithms, to
find a feasible allocation that fulfils given require-
ments on memory consumption and performance
overhead.

For a task set A that has been mapped from com-
ponent services to tasks in a one-to-one fashion, it is
trivial to calculate the system memory consumption
and performance overhead since each task has the
same properties as the basic component service.
When several component services are grouped to
one task we need to calculate the tasks properties.
For a set of component services, c1

1…cn
n, mapped

to a set of tasks A the following properties are con-
sidered.

• Performance overhead pA

• Memory consumption mA

The performance overhead is not dependent on
how many services are allocated to a task. Each
service ci

j has a memory consumption stack. The
Stack of the task is the maximum size of all services
stacks allocated to the task since all services will
use the same stack.

The CPU overhead p, the memory consumption
m for a task set A in a system K is described below:

•
()
∑

∈∀

=
A i

A
ii

T
Kp

τ τ
ρ

.

.

• ()
()
∑

∈∀

+=
A

iA
ii

tcbsizeKmm
τ

τ ..

3.1 Constraints on allocations

It is not realistic to expect that components can
be grouped in an arbitrary way. There may be ex-
plicit dependencies that prohibits that certain com-
ponents are grouped together. Therefore each com-
ponent has an isolation set I that defines with which
components it may not be grouped.

A component ci may have defined an isolation

set Ii{ck,…,cn}, with components which it may not
be allocated to ensure integrity between compo-
nents. Hence it must be assured that two compo-
nents that are defined to be isolated do not reside in
the same task. The isolation is a restriction on
which components may not be allocated to the same
task. The isolation of a task set A can be validated
and confirmed with:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∉∧∉

→∈∧∈∧∈∧≠
∀∀∀=

ICCICC
SCSCAkj

I
kjjk

ikiji
kjiA ..

.. ?? τττ 2

Some grouping of component services to tasks
can be performed without impacting the schedula-
bility negatively. Component services with a prece-
dence order can be grouped into a task if they have
no other explicit dependencies, thereby lowering the
overhead generated by context switches and lower-
ing the memory usage by using one stack, see (1) in
Figure 6. Component services with the same period
time can be grouped if they do not have any other
explicit dependencies, (2) Figure 6.

 A B => A B (1)

 T T => T T (2)

Figure 6 Component service grouping.

Schedulability analysis is highly dependent on
the scheduling policy chosen. Depending on the
system design, different analyses approaches have
to be considered. The task and task transaction
meta-models are constructed to fit different sched-
uling analyses.

2 Question mark Ci

? indicates component Ci independent of
which service is handled

cint
 cint

cint cint

(1)

(2)

 6

Furthermore, only allocations with several com-
ponents to one task are considered, hence we leave
out multiple-to-multiple allocations. Multiple-to-
multiple allocations make the system less analyz-
able and increase the complexity. Also It is assumed
that if the system is schedulable in a one-to-one
mapping fashion, it is also schedulable after the
component service to task allocation.

4 Using the framework

An allocation can be performed in several differ-
ent ways. In a small system all possible allocations
can be evaluated and the best chosen. For a larger
system, however, this is not possible due to the
combinatorial explosion. Different algorithms can
be used to find a feasible allocation and scheduling
of tasks. For any algorithm to work there must be
some way to evaluate an allocation or real-time
schedule. The proposed evaluation framework can
be used to calculate schedulability, performance
overhead and total memory load.

Simulated annealing, genetic algorithms and bin
packing are well known algorithms often used for
optimization problems. These algorithms have been
used for problems similar to those described in this
paper; bin packing, e.g., has been proposed in [13].
Here we discuss how theses algorithms can be used
with the described framework, to perform compo-
nent to task allocations.

Bin Packing is a method well suited for our
framework. In [7] a bin packing model that handles
arbitrary conflicts (BPAC) is presented. The BPAC
model constrains certain elements from being
packed into the same bin. which directly can be
used in our model as the isolation set I. The bin-
packing feasibility function is the schedulability,
and the performance and memory overhead consti-
tute the optimization function.

Genetic algorithms can solve, roughly, any prob-
lem as long as there is some way of comparing two
solutions. The framework proposed in this paper
give the possibility to use the properties memory
consumption, performance overhead and schedula-
bility as grades for an allocation, in order to evolve
new allocation specimen. Similar work with genetic
algorithms has been made in, e.g., [12] and [11].

The simulated annealing (SA) is a global optimi-
zation technique that is regularly used for solving
NP-Hard problems. The energy function consists of
a schedulability test, the memory consumption and
performance overhead. In [18] and [2] simulated
annealing is used to place tasks on nodes in a dis-
tributed system.

5 Evaluation

In order to evaluate the performance of our allo-
cation approach we have made an implementation
of the framework. We choose to perform a set of
allocations and compare the results to a basic map-
ping where each service is allocated to a task. We
compare the allocations with respect to memory
usage and cpu overhead.

The implementation is based on genetic algo-
rithms (GA) [20]. Each gene represents a service,
and contains a reference to the task it is assigned.
Each chromosome represents the entire system with
all services assigned to tasks. Each allocation pro-
duced by the GA is evaluated by the framework,
and is given a fitness value dependent on the valid-
ity of the allocation and the memory consumption
and cpu overhead.

Figure 7 The genetic algorithm view of the com-
ponent service to task mapping; A system with

10 services.

A simulator generates systems with a given number
of services, components and transactions. The GA
framework then performs an allocation and record
the improvement in memory usage and cpu over-
head compared to a one-to-one mapping. The aver-
age stack usage and the cpu overhead for one-to-
one mapping and for our component service map-
ping is shown in Table 1. The data set consists of
approximately 300 simulations.

One-to-one mapping
Component service

mapping Number
of

services Stack Overhead % Stack Overhead %

5 2898 9% 2253 5%

10 5705 18% 4516 12%

15 8250 27% 6451 17%

20 11068 35% 8369 21%

25 13516 37% 10364 23%

30 16737 41% 12431 25%
Table 1 Average stack usage and cpu overhead

for one-to-one mappings and component service
mappings.

Note that the improvement is almost constant inde-
pendent of the number of services. Figure 8 summa-
rizes the improvement in stack size and cpu over-
head in component service mapping compared to
one-to-one mapping. The number of tasks generated
for different number of component services is

τ1 τ2 τ3 τ4τ2 τ3
 τ4

 τ1
 τ2

 τ1

c1
1 c1

2 c2
1 c2

2 c1
3 c3

1 c3
2 c3

3 c3
4 c4

1

gene

chromosome

 7

shown in Figure 9. Hence we can see a clear im-
provement in both memory usage and cpu overhead
when facilitating the framework for allocating com-
ponent services to tasks. In an average case our
studies suggest an improvement in memory usage
of 35%. For cpu overhead the improvement is ap-
proximately 20%.

0%

10%

20%

30%

40%

50%

5 10 15 20 25 30
Number of services

%
 im

pr
ov

em
en

t

avg. stack impr.
avg. overhead impr.

Figure 8 Average improvement of stack and
overhead; comparing component service map-

ping to one-to-one mapping.

3

7

10

12

15

17

0

2

4

6

8

10

12

14

16

18

20

5 10 15 20 25 30
Number of services

N
um

be
r o

f t
as

ks

Number of tasks …..
Figure 9 Number of tasks generated regarding

the number of component services.

6 Conclusion and Future Work

For embedded real-time systems resource effi-
ciency, both performance and memory wise, is very
important. Schedulability, considering resource
efficiency, has gained much focus, however the
mapping between component services to tasks has
gained little focus. Hence, in this paper we have
described an evaluation framework for allocating
component services to tasks, to facilitate existing
scheduling and optimization algorithms such as
genetic algorithms, bin packing or simulated an-
nealing. The framework can be extended to support
other optimizations, besides performance and mem-
ory overhead. We also show that the framework can
give substantial improvements both in terms of
memory usage and cpu overhead. In future work,

the framework will be extended with jitter and
blocking requirements. We will also look into how
different cpu load will affect the mapping of a sys-
tem.

7 References

 [1] Arcticus, Arcticus Systems Home Page,
http://www.arcticus.se, 3-29-2004.

 [2] Cheng S.-T. and Agrawala A. K., "Allocation
and Scheduling of Real-Time Periodic Tasks
with Relative Timing Constraints", In pro-
ceeding of Second International Workshop
on Real-Time Computing Systems and Appli-
cations (RTCSA) pp. 210-217, 1995.

 [3] Douglas B. P., Doing Hard Time , Addison
Wesely, 1999.

 [4] Gai P. and Lipari G., "Minimizing memory
utilization of real-time task sets in single and
multi-processor systems-on-a-chip", IEEE,
2001.

 [5] Gomaa H., Designing Concurrent Distrib-
uted, and Real-Time Applications with UML,
Addison Wesley, 2000.

 [6] Hou C. and Shin K. G., "Allocation of peri-
odic Task Modules with precedence and
deadline Constraints in Distributed Real-
Time System", In IEEE Transactions on
Computers, volume 46, No 12, 1997.

 [7] Jansen K. and Öhring S. R., "Approximation
algorithms for time constrained scheduling",
In proceeding of Workshop on Parallel Algo-
rithms and Irregularly Structured Problems
pp. 143-157, 1995.

 [8] Kodase S., Wang S., and Shin K. G., "Trans-
forming structural model to runtime model of
embedded software with real-time con-
straints", In proceeding of Design, Automa-
tion and Test in Europe Conference and Ex-
hibition pp. 170-175, 2003.

 [9] Liu C.L. and Layland J. W., "Scheduling
Algorithms for Multiprogramming in a Hard
Real-Time Environment", In Journal of
ACM, volume 20, issue 1, 1973.

 [10] Mills K. and Gomaa H., "Knowledge-based
automation of a design method for concur-
rent systems", In IEEE Transactions on
Software Engineering, volume 28, issue 3,
2002.

 [11] Monnier Y., Beauvais J.-P., and Deplanche
A.-M., "A genetic algorithm for scheduling
tasks in a real-time distributed system", In
proceeding of 24th Euromicro Conference
,nr 2, pp. 708-714, 1998.

 8

 [12] Montana D., Brinn M., Moore S., and
Bidwell G., "Genetic algorithms for com-
plex, real-time scheduling", In proceeding of
IEEE International Conference on Systems,
Man, and Cybernetics , nr 3, pp. 2213-2218,
1998.

 [13] Oh Y. and Son S. H., On Constrained Bin-
packing Problem, report CS-95-14, Univer-
sity of Virginia, 1995.

 [14] Sandström K., Fredriksson J., and Åkerholm
M., "Introducing a Component Technology
for Safety Critical Embedded Real-Time
Systems", In proceeding of CBSE7 Interna-
tional Symposium on Component-based
Software Engineering, 2004.

 [15] Shin I., Lee I., and Sang M., "Embedded
system design framework for minimizing
code size and guaranteeing real-time re-
quirements", IEEE, 2002.

 [16] Shin K. G. and Wang S., "An architecture for
embedded software integration using reus-
able components", In proceeding of the in-
ternational conference on Compilers, archi-
tectures, and synthesis for embedded sys-
tems, San Jose, California, United States,
pp. 110-118, 2000.

 [17] Stewart D.B., Volpe R.A., and Khosla P.K.,
Design of Dynamically Reconfigurable Real-
Time Software Using Port-Based Objects,
IEEE Transaction on Software Engineering,
volume 23, issue 12, 1997.

 [18] Tindell K., Burns A., and Wellings A., "Al-
locating Hard Real-Time Tasks (An NP-Hard
Problem Made Easy)", In Real-Time Systems,
volume 4, issue 2, pp. 145-165, Kluwer Aca-
demic Publishers , 1992.

 [19] van Ommering R., van der Linden F., and
Kramer J., "The Koala Component Model for
Consumer Electronics Software", In IEEE
Computer, volume 33, issue 3, pp. 78-85,
2000.

[20] Fonseca C. M., Fleming P. J., “An overview
of evolutionary algorithms in multiobjective
optimization”. Evolutionary Computation,
3(1):1--16, 1995.

