Towards continuous modelling to enable DevOps: a preliminary
study with practitioners

Johan Bergelin
Milardalen University
Vasteras, Sweden
johan.bergelin@mdu.se

ABSTRACT

Model-based methods and techniques continuously evolve to meet
the increasing challenges of modern-day technical landscapes. Par-
allel to Model-based methods, other paradigms are similarly ma-
turing and being integrated, and one such paradigm is DevOps.
Model-based methods and DevOps are perceived to provide bene-
fits when viewed in isolation. Recently, there has been an increased
interest in matching the two paradigms, with various proposals
and early adoption results. However, little focus is put on the prac-
titioners’ view.

In this paper, we propose a methodology that aims to utilise
Model-driven engineering and DevOps practices in conjunction.
Together with the methodology, we present an early evaluation of
it from a practitioner’s perspective. In particular, we study a large
and long-running student project aiming to build a solar vehicle, by
presenting the current integration and potential future directions.
In this paper we limit the observation to the development phase.
Early feedback from the case study indicates significant benefits
for several identified project pain points, and it’s expected that
more benefits will emerge when more advanced DevOps aspects
are integrated with model-based methods, and the project matures.

KEYWORDS

Model-based engineering, DevOps, Simulink, Practitioners

1 INTRODUCTION

As software systems become more complex, more and more sophis-
ticated methods and workflows are emerging to meet the corre-
sponding needs and demands. Model-driven engineering (MDE)
[4] and DevOps [12] are two such methodologies that have gained
much attention both in academia and in industry. In particular, MDE
shifts the focus of software development from coding to modelling
with the underlying goal of reducing complexity; DevOps instead
envisions a seamless lifecycle where development and operations
are joint in a continuum of deployments, runtime feedback, and
extensions/refinements for the next iteration. These methodologies
have been conceived as self-standing, but recently there has been an
increasing interest in matching principles from the two paradigms
and evaluating potentials for interplay [8].

The experience matured in our industrial collaborations shows
that DevOps is becoming increasingly attractive, given the possi-
bility of responding faster to adaptation needs derived from usage
analysis, refined requirements, and so forth. Moreover, MDE meth-
ods are considered suitable for dealing with the development of
complex systems and could be a key enabler for DevOps. However,
MDE still poses important adoption challenges for practitioners:
an often mentioned issue is tooling complexity [19], together with

Antonio Cicchetti
Milardalen University
Vasteras, Sweden
antonio.cicchetti@mdu.se

scaleability and interoperability [5], or more generally a lack of
maturity [22]. Due to this challenging landscape, industry is typ-
ically reluctant to commit to large upfront investments for MDE
adoption, and indeed it is argued that a success factor for adoption
is to slowly/incrementally integrate MDE [16].

Practical observations show that in many scenarios MDE adop-
tion is a precondition for enabling DevOps, especially when aiming
at a high degree of automation [3, 20]. In particular, if system in-
tegration is performed at a low level of abstraction it becomes
difficult to analyse the feedback from the operations phase and as
a consequence to plan for the next development steps. Therefore,
in this paper we propose a continuous model-based development
process that uses an integration prototype as a pivot model. In
particular, the development starts from a simplistic but executable
representation of the integrated system, which utilises continuous
practices for maintaining the artefacts and their consistency. Then,
different teams of experts develop sub-portions of the system and
re-integrate their refinements in the prototype. In this way, the in-
tegration prototype is used as a single source of truth and problems
can be caught early. Our aim is to introduce a continuous MDE
approach by means of step-wise refinements that keep the com-
plexity of the modelling tasks manageable for domain experts. At
the same time, the integration prototype is made increasingly more
detailed and is eventually expected to be accurate enough to enable
DevOps. Interestingly, the continuous refinement of the integration
prototype can be seen as a DevOps process, where each refinement
is deployed in the single source of truth and the corresponding
operations are executions of the obtained integrated model.

We present, discuss, and perform an initial validation of our
ideas through the lens of practitioners, more specifically master
students at Malardalen University (MDU) in Sweden. We believe
that they are a suitable set of practitioners to evaluate the proposed
approach since these students collaborate in the solar car project, a
long-term initiative to design and realize a solar vehicle to compete
in the Bridgestone World Solar Challenge (BWSC)!. This initiative
spans several years and combines a broad set of skills from students
of various fields and study programs, notably robotics, aeronautics,
embedded systems, energy engineering, mechanics, and software
engineering. Moreover, developing a Cyber-Physical system (CPS)
like the solar car poses challenges such as inexperience, cross-
domain collaboration, and tight deadlines, apart from the more
technical issues.

The rest of the paper is structured as follows: Section 2 provides
the necessary background for MDE and DevOps practices. Section
3 Covers related work to what is presented. Section 4 describes the
proposed methodology. Section 5 provides the context for the solar

!https://www.worldsolarchallenge.org

https://www.worldsolarchallenge.org

team case study. Section 6 presents our initial results and Section 7
provides a discussion. Finally, section 8 concludes the paper and
describes the plans for future work.

2 BACKGROUND

Jabbari et al. define DevOps as: “a development methodology aimed
at bridging the gap between Development and Operations, empha-
sising communication and collaboration, continuous integration,
quality assurance and delivery with automated deployment utilising
a set of development practices” [12]. DevOps is typically visualised
via a figure eight, where Dev and Ops naturally combine to improve
the development and delivery pipeline(s) via various processes and
steps in development and operations.

In a DevOps workflow, or pipeline, a key aspect is automation: in-
deed, the transition through the different phases in DevOps should
preferably be automated. Reaching a fully automated workflow is
not trivial, and often requires the use of sophisticated tool-chains
and methods. As a consequence, typically a transformation towards
DevOps happens gradually, adopting more sophisticated and ad-
vanced practices in an iterative way. Best practices often include
the use of agile methods and cloud computing capabilities to further
support the adoption. It is often reported that one of the tougher
challenges of DevOps adoption is not the tools, rather the shift of
culture from traditional methods to DevOps [14, 17]. Indeed, often
DevOps is regarded as means of automating tasks, when a large part
of DevOps, especially for adoption, regards not particular technical
details but the culture and attitude of the practitioners.

Having a solid foundation with a defined workflow, although
lacking automation, puts the bases towards a gradual support for
automation. In this respect, a first step would be to develop Contin-
uous Integration (CI), where code is automatically integrated and
validated in some repository. It is important to note that CI is not
only finished products, but also considers work in progress [18].
By utilising CI, Continuous Delivery (CD) can be integrated. CD
enables the new code, already utilising CI, to be further automati-
cally deployed into production, even if still involving some manual
tasks. Further automation enables Continuous DEployment (CDE),
eliminating most of the human factor. Since DevOps is not strictly
defined, there are other means of developing a DevOps workflows.
Furthermore, it is also possible to partially automate workflows as
per the needs of the user(s).

Model-driven engineering [4] considers models as the primary
artefacts during development. A model is defined as an abstrac-
tion of reality for some cognitive purpose, represented in machine-
readable formats, and enabling design and analysis at a higher level
of abstraction. Modelling in its descriptive characterisation is often
considered as a means of making communication easier during
development, since artefacts can be shared and understood by a
broader audience, among other things. Moreover, in its prescrip-
tive conception modelling discloses opportunities for automation,
notably to synthesise information, perform analyses, and generate
code/documentation [11]. Given that MDE pursues a prescriptive
usage of models, adopting MDE could enable automation for several
DevOps steps, as mentioned so far. Nonetheless, the adoption of
MDE is a known challenge for practitioners [5, 19]. Additionally,

Bergelin and Cicchetti

given the complexity of the developed systems and their integra-
tion, the required level of detail for the models to effectively support
automation of DevOps steps is extensive [3].

In this paper we present our ideas and first results in promoting
the interplay between MDE and DevOps. In particular, experiments
with a modelling approach that could be considered as a “hybrid”
between descriptive and prescriptive. By going into more detail,
development is based on an executable integration model, which
is kept as the single source of truth throughout the whole process.
Moreover, different sub-parts are intended to be developed by lever-
aging separation-of-concerns and immediately after re-integrated
into the initial model to both validate the development and to up-
date the rest of the stakeholders about the performed changes.

Our experiments target the solar car project, an initiative to de-
velop a vehicle to compete in the BWSC. As it will be illustrated
later in more detail, this project tackles the development of a com-
plex CPS, which needs to effectively support DevOps and (runtime)
adaptation to be competitive. In this respect, we believe that MDE
could enable DevOps for the solar car if the system would be mod-
elled at an adequate level of details. Consequently, the underlying
aim of using an executable integration model as single source of
truth is that of promoting a continuous model-based development
process in which the details of the integration model become pro-
gressively more accurate. At the same time, the incremental fashion
of models creation and refinement is intended to keep the modelling
task complexity manageable for domain experts. Interestingly, even
if what we propose in this paper mostly relates to the development
phase of the target system, from a MDE perspective the approach
can be considered as adopting DevOps. In fact, models for each sub-
portion of the system are developed and refined, and then deployed
in the integration model. Subsequently, the integration model is
executed for validation purposes, possibly triggering plans for the
next model developments and refinements [15]. Eventually, when
the integration models would reach the desired level of maturity,
they are expected to enable the adoption of DevOps from a system
operation perspective.

3 RELATED WORK

It is evident that much of the concrete challenges for MDE regard its
adoption in industry [5]. Experience from adoption often finds many
technical aspects lacking for industry use [19], and similar concerns
are found for the user experience [1]. Other studies also identify
that a key challenge in the adoption is the fact that industry and
academia have different motives and measures of success regarding
projects and research [10]. A key similarity is also identified in the
tooling, where both students and industrial practitioners struggle
with adoption or use of modelling tools [6, 19]. DevOps similarly
has many challenges for adoption, several works report on the need
and difficulty of changing the culture to support DevOps practices
[14, 17]. In particular it is reported that without the proper culture
and attitude DevOps cannot be adopted/utilised by practitioners
across different domains/silos, at least not effectively.
Considering the combination of DevOps and MDE, a common
distinction is whether it regards MDE for DevOps, or DevOps for
MDE. MDE for DevOps aims to improve DevOps by utilising MDE
practices, DevOpsML [7] is an example of an attempt to model

Towards continuous modelling to enable DevOps: a preliminary study with practitioners

DevOps processes and platforms. While Sl et al. [20] propose
DevOps for MDE, increasing MDE capabilities via DevOps tool-
chains. Considering the efforts of utilising MDE and DevOps, the
target audience is mostly experienced users of either domain, and
considering the challenges observed in [1, 5, 19], it is evident that
adoption is important but also difficult for practitioners. Our work
aims to ease adoption of MDE utilising DevOps, and in particular to
propose an effective way to introduce modelling for practitioners.

Combemale and Wimmer discuss the Model-based DevOps for
CPS [8]. In their paper they discuss the potential combination of
the paradigms and identify challenges that are limiting the current
adoption and integration of the approaches. Specifically they iden-
tify various technical challenges that would allow the integration
to be fruitful and enable various levels of adoption. Another key
take-away from the authors is that the integration of DevOps for
MDE additionally would improve not only the lower level abstrac-
tion models, but also higher level abstraction models, as well as the
interplay between abstraction levels. Similar to what is discussed
by the authors we aim to utilise DevOps practices to increase the
value of MDE, particularly by allowing models of various levels of
abstraction to work together.

Jongeling et al. [13] formulate continuous MBD based on insights
from industrial partners adopting the V-model. They argue that
the traditional V-model, although mature, does not match modern
systems and software engineering practices. Instead of utilising the
V-model with its well formulated guards between different stages
[21], they look at continuous MBD which considers shorter less
prominent gates between phases and shorter development cycles
for each of the phases. Although DevOps is a mature technology and
much can be said about its benefits, we experience that practitioners
have a hard time adopting its practices from scratch. We believe
that using continuous MDB can be a good starting point to ease the
adoption of more mature DevOps practices, and to develop patterns
and methods to be further supported by automation. Therefore, in
this paper we are interested firstly in the Dev aspect of DevOps,
and aim to further investigate the potential of how integration of
Ops can be done as future research.

Compared to the reported literature, we aim to target practition-
ers, and we believe that MDE and DevOps can be used in conjunc-
tion: utilising MDE for shared modelling activities and artefacts
could address the culture shift often attributed to successful De-
vOps adoption; similarly, DevOps practices could be a means of
enabling practitioners to utilise MDE to its fullest.

4 APPROACH AND METHODOLOGY

Our proposed methodology is inspired by previous experience in
the rail-way domain [2]. We extract critical parts of our methodol-
ogy and generalise it for a broader scope, enabling more domains
to utilise the approach. Further, we are extending our previous ex-
periences with DevOps practices, utilising a solid MDE foundation
to allow a more refined process. Specifically, we want to enable a
cross-domain workflow with continuous integration of developed
models. Correspondingly, target users are expected to be domain
experts collaborating on the design and development of a CPS.

A key aspect of DevOps is automation, which can improve much
in terms of velocity and efficiency. As mentioned earlier, for com-
plex CPSs we consider models and more in general the interplay
with MDE as a necessary precondition to enable DevOps. In turn,
adopting MDE poses important issues for practitioners. Therefore,
our methodology starts with the Dev side by introducing a contin-
uous modelling approach intended to reduce complexity but still
powerful enough to enable cross-domain communication and the
analysis of system integration. Interestingly, this approach can be
seen as a DevOps method where models are deployed in the inte-
grated system, they are validated and plans for future refinements
are made. This continuous modelling phase is considered satisfying
when the models include the necessary details to realise and deploy
the target system. At that point, system operations would be used
to both plan future refinements and also measure the effectiveness
of the developed models, hence closing the loop of the process.

Plan
“»% DEV
% %
% %
Q/;, 7
¢Q
%
Q,

Figure 1: High-level view of the presented methodology

Figure 1 describes the overall process we are currently pursuing.
The activities are performed continuously, iteratively producing and
refining the models used for the development efforts. Plan regards
the elicitation of modelling requirements and the high-level activi-
ties related to system architecture analysis and formulation. Model
creation/refinement refers to modelling the various artefacts to
meet the needs of defined requirements by formulating the intended
system functionality. To enable cross-domain collaboration more
efficiently we promote separation of concerns, hence in general
the development includes a multitude of models targeting corre-
sponding concerns for the system under study. Model validation
refers to the validation and verification of the developed models
in isolation, before the integration step. Model integration com-
bines the developed domain model(s) to a single executable model,
keeping the consistency between the various sub-models. Model
execution is the act of executing the integrated model and record-
ing the execution traces for analysis purposes. Analysis utilises
the execution traces to evaluate various aspects of the system being
developed and acts as the input for the next stage of planning.

Similar to the methodology presented in [2], separating concerns
is vital to allow a flexible workflow, reducing the overall complexity
of the system coupling, and promoting more efficient collaboration.
Specifically, separating concerns allows for integrating models with
different granularity while keeping the overall cohesion strong.

Therefore, the models must remain modular and have minimal
cross-coupling between functional blocks.

5 CASE STUDY

The Solar Car project aims to design and construct a solar ve-
hicle able to compete in the BSWC? in the most rigorous class,
challenger. As the competition is organised every other year, the
observations cover two-year cycles, i.e. each time a new project
iteration is started. The project is student-driven, meaning that the
active students in the project should, to the extent of their abilities
and university regulations, manage and plan all project activities,
notably car design, project budget, construction, project logistics,
and project management. Therefore, if the competition deadlines
are met, each iteration of the project should create a new vehicle
in less than two years, meeting all competition regulations and
passing extensive official scrutiny.

Given the challenges of a project like the Solar Car, we pursued
the adoption of model-based approaches to tackle the complexity
and possibly enable DevOps in the long run. Therefore, we intro-
duced the methodology presented in Section 4 and instantiated
it for the problem at hand, as will be discussed in the rest of this
Section. At this point it is worth mentioning that targeting students
in these master projects is a reasonable proxy for industrial practi-
tioners: they own a similar education level, they are experts in their
domains, and in general they lack experience with (and typically
also not so motivated in adopting) model-based practices. Moreover,
cross-disciplinary projects like the Solar Car are valuable scenarios
to evaluate the effects of collaboration between “silos” typically
observed in industry. Indeed, cross-disciplinary collaboration is a
critical factor of DevOps adoption [8].

Apart from developing a large complex automotive system, the
project adheres to a strict set of requirements and regulations®.
Perhaps the most rigorous requirement, and indeed the focus of
the competition, is that all energy consumed by the vehicle must
be provided by solar power. The car is driven using solar cells and
a large-scale battery, driving electric motors. Due to the length of
the race, ca. 3000 km, it’s necessary to optimise energy expenditure,
weight, and aerodynamic properties, and a typical solar vehicle
might weigh between 100 and 200 Kg. Naturally, designing a car
to be competitive within the scope of a student project requires
much analysis, especially since different domains have different
trade-offs in mind and corresponding technical challenges.

Similarly, it is also crucial to, at some point, develop a connec-
tion between the physical vehicle and the digital world. The race
itself can be considered a run-time optimisation problem, where the
vehicle’s optimal speed is calculated and maintained concurrently.
Enabling correct speed optimisation puts several requirements on
the design and operation of the car. First, it must support real-time
communication across a long-range wireless channel between two
vehicles (due to the limited hardware capabilities of the onboard
computation units, another vehicle contains most of the resources
to calculate the optimum speed). Further, a cruise controller must be
implemented with sufficient accuracy and update speed to enable
smooth and accurate control via onboard actuators. Finally, there

Zhttps://www.worldsolarchallenge.org/
3https://worldsolarchallenge.org/the-challenge/regulations

Bergelin and Cicchetti

needs to be a sophisticated sensor network capable of capturing
operational conditions for optimisation purposes and concerns such
as safety, which also need to be accounted for in the various models
used for the calculations. Apart from these technical aspects, it
is also necessary to consider potential obstacles or sporadic envi-
ronmental events and account for those in the calculations. Figure
2 depicts the conditions during the competition and the vehicle
constructed during the 2019 project iteration.

|
\\ '/
-@-
71\
Environment

ro——

Control

Figure 2: The 2019 iteration vehicle and competition setup

Each participating team in the competition must drive in a con-
voy, with vehicles in front and behind. The front vehicle in Figure
2 acts as a scout for any obstacles or unforeseen events, such as
accidents. In addition, it carries a radio unit to contact any other
solar vehicle convoy and larger road transports outside of com-
petition so that a passover can be planned and performed safely.
The following vehicle is mainly responsible for determining and
providing the optimal speed for the solar vehicle, based on various
parameters and variables. The solar car aims to maintain the cur-
rent optimal speed, preferably via a cruise controller that performs
a continuous control loop. Additionally, various sensor values and
logs are continuously transmitted to the following car so that the
optimal speed can be updated when required. A human driver is
present in the solar vehicle at all times to manoeuvre the car and
take any necessary action in case of emergency. Further, the driver
is responsible for parking the car at various control stops and is the
only team member allowed to interact physically with the vehicle
during travel, apart from emergencies.

The project is a massive undertaking, and although it has been
successful previously, several re-occurring key pain points are iden-
tified via observation and participation in several development
iterations:

o Sharing information and achieving a unified source of truth
e Managing students leaving and entering the project

e Gaining traction at project start

The project is split into two physical locations
Maintaining a continuous design/development velocity
Creating realistic analysis/optimisation models

https://www.worldsolarchallenge.org/
https://worldsolarchallenge.org/the-challenge/regulations

Towards continuous modelling to enable DevOps: a preliminary study with practitioners

Even though other technical pain points exist, we consider these
to be the main limiting factors, particularly regarding a stable,
maintainable, and functional workflow.

The solar car project recently entered a new iteration, aiming to
make a new vehicle in time for the 2023 competition. As students
progress in their studies, they leave naturally or graduate, and since
the project is student-driven, this requires continuous recruitment.
Similarly, the University liaison often changes, and there is a need
to keep the interaction continuously refreshed. Recruitment and
integration into various working groups and sub-teams is a slow and
tedious process, often isolated to critical development areas such as
mechanics, energy, or embedded systems. During this iteration, an
effort was made to create an early collaboration platform between
various sub-areas and teams from the very start. Therefore, we
decided to introduce the methodology presented in Section 4 by
supporting the creation of an executable high-level model of the
solar vehicle early in the project. The initial version of the model
has been inspired by our previous experiences with continuous
refinement in the rail-way domain [2].

In the remaining part of this Section we present our findings
in adopting the proposed approach by comparing various aspects
of the current development process with the one performed in
2019. As the planned race in 2021 was cancelled due to the COVID-
pandemic (and no actual development was made by any team), the
2019 iteration is the most recent apart from the ongoing efforts.
Although there are differences between project iterations, several
main concerns are similar, such as team size, target students, project
goal and structure, budget, timeline, and so forth. Nonetheless, it
is worth noting that there is limited overlap between development
iterations and little can be re-used of the vehicle, probably also
due to the previous missing adoption of any MDE methodology.
Moreover, it is rare for any team members to be part of several
iterations.

The 2019 edition produced a vehicle that met all of the regulations
imposed by the competition, passing all scrutinising activities from
the officials. Therefore, we argue that the 2019 vehicle is suitable as
a complete baseline from where to improve. As the current iteration
is still in the design and development phase of the project, we are
limited to reporting the findings in that scope. Other aspects like
the impacts on the competition vehicle or the maintainability of
the project for future iterations are left as future work.

6 RESULTS

During the earliest parts of the Solar Car project planning, we ar-
gued for utilising a model-based approach by following the method-
ology presented in this paper. A first step for the methodology
implementation was the creation of a SysML model: since the com-
petition has a history of regulations that remain largely the same
between iterations, it was possible to create an initial model with
a preliminary set of requirements. In particular, representatives
of the included domains defined the overarching use cases for the
car based on said requirements. Then members from each domain
created a high-level logical structure and architecture of the sys-
tem using Block diagrams, linking each use case to the envisioned
components with traceability links in SysML.

The SysML model identified various vital functions and sub-
systems that have been subsequently integrated into a correspond-
ing Simulink functional model enabling an executable view of the
modelled system. In particular, based on the initial structure and
connections between models in the SysML architecture, the project
team gathered in a workshop to create the first executable model
for the integrated system, as presented in Figure 3.

The different blocks and their interconnections in Figure 3 relate
to the identified key functions or concerns required for the solar
car, which are:

e Input - Scripts managing automatic test and execution con-
ditions

Output - Logs that save execution parameters for analysis
Environment - Solar radiation, road parameters, etc
Driver - Model of the driver

Solar cells - Solar cell arrays and solar cells

Battery - A large Li-ion battery

Algorithms - Algorithms to define the optimal speed to
keep for the driver based on input from other blocks
Kinematics - Models to define the kinematics of the vehicle
o Drive-chain - The motors and corresponding equipment

A MATLAB script provides the necessary simulation configu-
ration, parameterises potential variables, such as the optimisation
algorithm, and offers environmental conditions (such as solar radi-
ation, road incline, etc.). The environment block aims to primarily
simulate the current solar radiation based on the time of day and
simulated weather. The solar cells transform the solar radiation
into electrical current, so their block details the electrical aspects
to consider when charging the energy system during operation.
The energy system, in turn, interacts with the drive-chain, power-
ing the electrical motors based on the current demands. It should
be noted that the battery additionally powers all equipment on
the vehicle, notably auxiliary components and the entire electri-
cal system including controllers, sensors, actuators, and wireless
communication. The drive-chain simulates the electrical motors of
the car, providing the traction that the kinematic system uses for
determining acceleration and, subsequently, the vehicle speed. The
speed is fed to an optimisation algorithm (along with data from
the workspace simulating the round loop of information from the
actual race). It determines the target speed of the vehicle. Since the
algorithm should mature and the actual vehicle utilises a wide array
of sensor input, it is fed data continuously from the various blocks
in the simulation. Probably, it would be more realistic to feed the
algorithm by a specific block containing information via wireless
communication, but this aspect has been left as a future refinement.
The driver enacts the cruise controller to keep the target speed as
determined by the optimisation and can also represent a human
driver. Finally, the database is outside the simulation and stores the
logs from simulation runs for future analysis.

Including all the primary functionalities in the presented inte-
gration model allows the team members to collaborate on the same
model (i.e., single source of truth), and hence to work towards a con-
sistent set of models. Utilising Simulink as a baseline for modelling
efforts was decided to have some common familiarity between the

Bergelin and Cicchetti

/ Solar radiation

Solar cells

Environment config

’7 Demand LDischarge
Sim|config) Pedal input) ~ [Traction| _ -
—> Driver Drive-chain Kinematics
Database

A

Target speed

\

Energy
system

Optimization
algorithms

\Algorithm configuration

/

Figure 3: High-level view of the initial simulation models in Simulink

various domains. Further, it is a good approach for integrating mod-
els of different fidelity, hence supporting separation-of-concerns as
previously reported in [2].

6.1 Example of solar cells

To better illustrate the intended development process conveyed by
the proposed methodology, let us consider a specific concern of the
system as an example, namely the solar cells. The solar cells are one
of the essential aspects of the project, and require the collaboration
between several domains, notably energy, electronics/embedded
systems, and mechanical integration into the vehicle. Further, it is
one of the most budget-heavy aspects of the system.

Initially, various requirements regarding the solar cells were ex-
tracted from competition regulations and practical considerations
from the project perspective, which contributed to the definition
of the system architecture in SysML. Subsequently, the solar cells
model was refined to include structural and behavioural aspects
taking into account the connections to other sub-systems of interest
(primarily the environment and battery) and more detailed consid-
erations from the competition regulations. The results of these first
few iterations of the solar cell development can be seen in Figure 4.

By going into more detail, the figure shows three significant steps:
a single cell, a single array, and multiple arrays. Naturally, there
were many sub-steps in between, however these large milestones
are significant since they did not only evolve a sub-set of the model
but their effects propagated further in the integrated model.

A single solar cell was modeled in the first developed version,
annotated by 1. Here it was of interest to understand what type of
models could accurately describe the relationship between solar
radiation and the resulting electrical potential, specifically targeting
cells commonly utilised in the competition context. The calculated
effect of a single cell and its behaviour were scaled to approximate
the results to the system scope, based on previous data from 2019.

Once model(s) for a single cell were deemed satisfactory, the
next step was integrating several cells into an array. As a conse-
quence, complexity is introduced with a more extensive system
as the control and electrical characteristics become more inter-
connected. Additionally, at this point it becomes more critical to
evaluate the effects of the environment more in detail, as solar
cells in arrays rarely will operate identically due to fluctuations in

@

Single solar cell

0J
2) «

Solar array

A
. .. 0(0;9 X
%
j % ﬂ <&

Solar arrays

Continous
development

Figure 4: Solar cell system evolution

solar radiation, wear, and other variations, introducing additional
concerns in the modelling.

Based on the single array model(s), the third significant step was
the expansion to a more realistic scale of the solar cell integration,
based on the allowed area and type of solar cells from regulations.
In addition to the more complex electrical considerations with the
connection of several arrays, it becomes essential to understand
the solar cell placement on the physical vehicle as it affects the
array constructions. At this point, more technical details need to be
unified with other sub-systems, and effort is increasingly spent on
integration and interfacing between components. For example, the
electrical motors and battery are tightly connected with the solar
cells, and managing the dependencies and interactions between the
components is crucial.

Analogously and concurrently to the refinements happening for
the solar cell models, also the rest of the system is continuously
studied and developed in more detail; notably, the kinematics are
progressively refined to match the proposed vehicle with, among
other things, updated aerodynamic properties. Therefore, the needs

Towards continuous modelling to enable DevOps: a preliminary study with practitioners

due to the evolved interactions and interfaces between sub-systems
become more and more critical in the development efforts. In this
respect, by adopting the model-based approach described so far
much of the considerations for the eventual integration issues of
the actual vehicle are, at least on a higher level, identified early,
leading to more thoughtful decisions for the design.

6.2 Observed effects and benefits

To evaluate the effects of applying the proposed methodology we
compare the experiences from the iteration for the 2019 event and
the recent ones for 2023. In particular, we consider the effects on
the pain points described in Section 5 as the main results. Each
identified issue is presented separately, and the results are discussed
further in Section 7.

Sharing information and achieving a unified source of truth. Larger
projects typically experience difficulties in keeping a unified and
consistent view of the system as a whole. In the 2019 solar team
project, there was a huge push to try managing the spread of knowl-
edge and unifying the goals coming from each project sub-domain.
A common side-effect of having “silos” working independently
was the lack of a common language and understanding. As a con-
sequence, although many types of events, workshops, and larger
meetings were created, the core issue was never solved. As a result,
the project progressed without any common description of crucial
parts. In turn, issues emerged late during integration or testing
of the real car, often with severe consequences, for example there
were significant issues integrating the sensor system for the solar
panels with the chosen micro-controller while maintaining correct
functionality due to the required hardware I/O.

In the current iteration, one of the first unified efforts that took
place was the creation of such a common understanding. The pre-
viously shown overarching architecture in Simulink was a core
part of this understanding, together with the conjoint effort made
in modelling the system in SysML towards the requirements from
competition regulations, which then was mapped to Simulink. As
a result, the information was not only more clearly defined, but
a successful move was made from documents to models for the
critical information. This shift has benefits in the automotive do-
main [9]; in addition, it enables many of the key aspects of DevOps
practices. Besides, the use of models and the explicit purpose of
storing information about the system reduced the overflow and
spread of documentation observed in the previous iteration.

Managing students leaving and entering the project. Since the
project is student-driven over a long period of time, the partici-
pants will naturally shift in numbers and individuals continuously.
Managing this volatile state is not easy and poses strict require-
ments on documentation and standardised means of development.
Even with such practices in place, in general it is difficult to pick
up a document left by someone else, often after a longer period
of time, and grasp the contents effectively, as also observed in the
2019 iteration. Therefore, large amounts of documentation were
created and maintained to enable new participants to gather the
necessary information required to start quickly. Nonetheless, such

information was not enough and a significant issue was the con-
nection between various domains, since no one was in charge of
documenting integration aspects.

In the current iteration the model-based approach allows an
individual to quickly grasp the essential aspects of the overarching
architecture and the main concerns for all domains. Indeed, the
separation of concerns is a large part of the success in this regard.
As a result, we experience a much better high-level coherence
than previous iterations. Moreover, developing in small increments
allows for shorter cycles of sub-projects and activities. In turn, this
eases practitioners’ work given the more limited tasks, and permits
them to recruit new members for particular needs.

Gaining traction at project start. The beginning of a project is a
complex but vital part. For example, in systems engineering, the
cost of altering or adding new requirements rises exponentially as
the project progresses [21]. Similarly, the beginning defines many
activities and goals that will drive and steer the project through-
out. The 2019 iteration tried to kick-start the project via various
workshops, joint meetings, and start-up events. While successfully
introducing the project’s original idea and general scope, these
efforts did not succeed in kick-starting the technical development.
Indeed, the distance from starting the project to the beginning of
the system’s design and development was several months.

In the current iteration the technical development started from
day one by adopting the presented methodology and continuous
processes. By using iterative modelling as a basis for the design
enables practitioners to better understand the system and its com-
ponents before the physical implementation. Instead of waiting for
various inputs from other domains, utilising the integration model
as a base for the collaboration allowed the domain experts to better
understand the dependencies and common requirements/trade-offs.
Practically, this iteration was kick-started in less than one month
with a more unified start across domains.

The project is split into two physical locations. The MDU campus
is split into two locations, and different programs are based on
different campuses. Naturally, this creates an unwanted situation
regarding the project as the physical distance is not negligible. Due
to the distance, a lot of the development tends to be partitioned by
the campuses and the corresponding disciplines (similarly to what
happens with different departments in industrial scenarios). The
solution of previous iterations was to keep the physical artefacts
of the different domains separate until system integration began,
since it reduced logistics overhead.

In realistic scenarios the problem of a physical location cannot
be avoided, introducing compromises regardless of the solution.
Notably, due to the COVID-19 pandemic, the current iteration has
been negatively affected and required inevitable adaptions like
virtual meetings. However, using digital artefacts as key for design
and development lessened the issue of physical distance to some
degree. An additional benefit of a primarily digital workflow was
the increased ease of collaboration, particularly on parallel work.

Maintaining a continuous design/development velocity. Perhaps
the most overarching difficulty of the project in the past and cur-
rent iterations is to keep an adequate development velocity to meet
the strict timing requirements of necessary project deliverables.

Inadequate velocity poses a risk especially during the earlier phases
of the project when not all requirements or details of the system
are understood. In addition, since students are in charge of all as-
pects and are often inexperienced in complex system development,
starting any activity can take a significant amount of time due to
the overwhelming quantity of information and scope of the system
to be developed.

By means of an early common view of the system, it was signifi-
cantly easier to manage the difficulties of maintaining a continuous
velocity, especially regarding the design. In particular, the observed
benefits are attributed to the fact that an executable model was
available early, which, apart from the previously mentioned ben-
efits, allowed the students to start analysing the system at a high
level early on with different system configurations. Further, as the
model(s) are defined and refined during project progresses, the anal-
ysis becomes progressively more powerful and valuable, leading to
an increased understanding of potential solutions; moreover, the
history of model(s) refinements enables a better comprehension of
emerging issues and to backtrack to previous decision points.

Difficulty of creating a realistic analysis model. Creating a phys-
ical car can be considered half of the challenge when it comes to
creating an excellent solar vehicle. The other half is due to making
a good analysis model enabling optimal speed for the car, ideally
letting the battery fully discharge exactly at the finish line. The
optimal speed should preferably also be implemented via a cruise
controller, minimising driver input for maintaining a certain speed.

Although the wireless communication and cruise controller defi-
nitions are not trivial, they do not require the entire team for their
design and implementation. On the contrary, formulating the anal-
ysis model is a cross-disciplinary team effort. For example, in 2019
experts of a single domain made an effort to create an analysis
model: resulting in a set of well-defined models, but as expected
limited to that domain. Consequently, the analysis became quite
limited, and only simplistic models could be created for the other
domains due to many assumptions in the proposed analysis. Practi-
cally, it was impossible to implement any form of analysis model
to be used in real-time analysis or to be deployed for speed op-
timisation computations during the race, which was the original
intent.

In the current iteration, given the focus on collaborating on a
single unified set of models, the process and creation of the anal-
ysis model are inherently improved. Firstly, the method actively
promotes collaboration, and as a result, the models are more rep-
resentative of the different domains and increase interoperability.
Secondly, the model is developed in increments, continuously en-
abling analysis to help refine requirements and design. Thirdly, it
allows the team to understand and plan for the possible model inte-
gration into the race, as support for real-time speed optimisation.

7 DISCUSSION

The feedback from adopting the methodology proposed in this
paper can be considered a work in progress: the current develop-
ment iteration of the solar vehicle (the first using our methodology
and proposed activities) is still ongoing. This means that we can-
not claim much regarding the benefits past the current stages of
the project and the related activities, placing this work in the Dev

Bergelin and Cicchetti

aspects of DevOps when considering the solar car. However, the
proposed methodology enacts a DevOps process at modelling level,
in which models are continuously refined, deployed in the integra-
tion model, and the execution analysis of the integration triggers
plans for the next refinements. In this respect, we can safely claim
that, at the very least, the methodology and associated activities
promote many valuable and effective practices at the design and ar-
chitecture stage of system development. We are therefore confident
that at least part of these benefits can also be transferred towards
the support of a DevOps workflow.

Although it is hard to measure the success of various aspects,
especially regarding the development of singular systems, we have
strong indications that many benefits exist from introducing a
model-based approach. Especially we observe many soft benefits,
perhaps not visible externally or measurable to any significant ex-
tent. One of the most evident differences is that the people working
together using the model-based method refer to themselves as a uni-
fied team instead of a particular domain. Similarly, the continuous
integration of models eases the integration efforts. In contrast, in
previous iterations many person-hours were spent on integration is-
sues, e.g., the battery and wireless communication integration, due
to being developed by separate teams and integrated late in process.
Another significant benefit is that the software is being developed
in clear stages of varying abstraction levels. Indeed previous itera-
tions were very code-centric from the beginning of development
and often started with details first and the big picture later. In the
current iteration instead it is pretty much understood at a high
level how various aspects should be eventually implemented and
integrated between various sub-systems, reversing the previous
approach from the bottom up to the top down. As a consequence,
while in the 2019 iteration various high-level system descriptions
and diagrams co-existed, they were not necessarily consistent with
each other, the methodology proposed in this paper keeps a shared
and consistent view of the system as a whole.

An aspect we considered critical since the very beginning was
the ease of adoption of our proposed methodology, and from our
observations we can claim that it has been adequately smooth.
By taking into account well-known challenges for practitioners of
MDE and DevOps, we aimed to aid the adoption for practitioners
mainly targeting the tooling and the complexity of the modelling
tasks. With respect to the tooling we adopted the Mathworks tools
along with the open-source tool Modelio* for SysML. In fact, both
tools are used at the University in other contexts, so project mem-
bers are expected to be familiar with the tooling to an acceptable
extent. As feedback, the practitioners showed less reluctance in the
adoption and were more convinced about the discussed benefits
for them when considering the typical difficulties of the earlier
project iterations. We experienced few challenges in adopting the
continuous modelling process, mainly due to the required famil-
iarity with the tooling and the need for a different mindset in
approaching the design and development process. In particular, the
proposed methodology prescribes to proceed through continuous
refinements, from higher to lower levels of abstractions, and from
less to more details. In this way, the methodology eases the adoption
of modelling since the complexity of the tasks increases gradually

*https://www.modelio.org/

https://www.modelio.org/

Towards continuous modelling to enable DevOps: a preliminary study with practitioners

with the maturity of the project. Moreover, it eases integration
since the development proceeds through small cycles. However, it
also requires the practitioners to be acquainted with adopting an
adequate level of abstraction as per the maturity reached by the
project, and most of the project members are not familiar with it.

7.1 Lessons learned

The lessons learned are presented based on our current endeavours
and observations. We believe these might assist others in adopting
similar practices for practitioners and avoid certain pitfalls we have
encountered.

The process should be adapted for the practitioners. It is not ex-
pected that Simulink or SysML will fit all projects nor that it is
possible to unite modelling activities altogether. Therefore it is es-
sential not to become rigid in processes. In our case, the process
has been subject to much tuning to match the actual circumstances
of the project, and many discussions involved the tooling. It was
essential to allow the modelling to be performed on the terms famil-
iar for the practitioners, as most were beginners. Our chosen setup
aimed to meet practitioners’ needs while enabling the proposed
workflows; in this respect we believe that having an executable
model of the target system from the beginning makes modelling
more appealing for practitioners.

It should be clear what type of model is good enough at each
stage. Proceeding in iterations and increasingly moving through
levels of details is a significant benefit to keeping the modelling and
integration tasks manageable throughout the process. This however
introduces the problem of clarifying what models are suitable for
what purpose and abstraction level. As mentioned in Section 7,
it is usually hard for beginners in modelling practices to manage
the level of abstraction adequately, especially without having a
clear understanding of what suffices as a “good enough” model
in a certain refinement step. Therefore, at each step it is critical
to harmonise the practitioners’ views about what level of fidelity
should be expected, trying to match the effort and scope of the
modelling across domains. In our experience, project requirements
and criteria on models granularity are suitable goals to refer to in
order to ease such a common view.

Modelling guidelines are essential for uncertain aspects. Similarly
to how it is necessary to define what type of models are expected
and links to related requirements, it needs to be clear how to best
manage uncertainty in the modelling activities. In fact, by using
the proposed iterative approach more and more knowledge will
be progressively introduced. As a consequence, assumptions or
decisions often have to be based on uncertain premises, especially
early on. Further, the degree of interconnection between the models
magnifies the consequences of inconsistencies. Distributed devel-
opment inherently raises conflicts and inconsistency issues that
need to be properly handled by the practitioners. Therefore, it is
imperative to both keep track of the uncertainties existing at the
current level of maturity and also to coordinate the efforts to deal
with potential inconsistencies.

Prioritise the separation of concerns. Although continuous in-
tegration is the core of the proposed methodology, it should be

avoided to introduce more coupling between the involved domains
to shorten/simplify the integration task. In fact, keeping an ad-
equate separation of concerns makes the workflow much more
flexible and can ease the integration. Moreover, while enabling
discussions and collaboration between domains is essential, it is im-
portant not to overwhelm the practitioners with irrelevant details.
In the current project iteration the separation of concerns limits the
cross-domain coupling primarily to the interfaces of the different
sub-systems and components. In this way, it is possible to manage
varying levels of granularity for the model(s) taking into account
the needs of each specific domain.

7.2 Threats to validity

Our case study considers student projects and teams of students
as practitioners, which might limit its generalisation to industry.
Nonetheless, we believe that the case study is representative of
industrial scenarios for several reasons. Firstly, the tools and lan-
guages used, SysML and Mathworks products, are common to the
industry and are therefore apt for a practitioner evaluation. Further,
the projects conditions are pretty significant, as they span over sev-
eral years and involve a large number of other resources; moreover,
the requirements for a successful product are extensive, demand-
ing rigorous methods and documentation. Eventually, the involved
students are close to their Master’s degree, hence experts in their
domain, and usually not well acquainted with modelling techniques.
Therefore, we argue that the case study provides reliable scenarios
for observing and evaluating the effects of our methodology in
modelling adoption for complex system development. The sole less
realistic aspect that we would mention is the size of the develop-
ment teams, which are far smaller in the presented case if compared
to a large enterprise.

Given that our approach is observed via multiple iterations of the
same project, it could be argued that some of the observed benefits
stem from previous experience and lessons learned. While that is
true to some extent, the basis for trying the workflow discussed
in the paper is exactly the issues due to starting the development
from scratch at each project iteration. Indeed, each iteration is
designed to be student-driven and the key activities are all planned
and performed by students. The contributions coming from the
university and alumni are limited to providing facilities, previous
documentation, and high-level guidance and supervision.

Eventually, it could be argued that improvements were naturally
due to the adoption of a clear development process rather than
the particular methodology proposed in this paper. In this respect,
also previous iterations adopted development methods with proper
foundations and rigour (notably agile). Furthermore, for the 2019
iteration a clear workflow was created to meet the regulations and
requirements of the competition, and as a matter of facts such
iteration yielded a functional and correct vehicle by the regulations.
Therefore, we are confident that the improvements, especially those
related to the identified pain points, are positively affected by the
proposed methodology.

8 CONCLUSION AND FUTURE WORK

Existing research reports that adopting MDE is challenging, espe-
cially for industrial practitioners. In turn, these difficulties can limit

the gains of other methodologies, notably DevOps. In this paper, we
have presented an approach utilising DevOps practices for MDE,
aiming to ease the adoption of MDE and possibly enable DevOps
practices. In particular, we targeted domain experts who might be
novices to MDE, by proposing a continuous modelling approach
that borrows concepts from DevOps: an executable integration
model is iteratively checked and refined until the desired fidelity
is achieved. In this way, domain experts perceive the immediate
benefit of using the integration model as a single source of truth,
while modelling tasks are kept at a manageable level of complexity
due to separation of concerns and step-wise refinements.

We also report on the adoption of the proposed methodology in
practice by means of a use case of a solar car design and develop-
ment endeavour. The continuous modelling approach is successful
in coordinating the development from all the disciplines involved in
the project and in keeping a consistent view of the system from all
the domain experts. In turn, these positively affect the development
velocity. We observe that the successful adoption by practitioners
strictly depends on the knowledge of the tools and the suitability
of the process concerning the requirements and concerns conveyed
by the project. Moreover, it is essential to clearly define modelling
guidelines so beginners can smoothly adopt the practices, especially
to deal with modelling uncertainty. To further enable modelling
activities, we also stress the importance of keeping an adequate
separation of concerns for interconnected domain models of com-
ponents and sub-systems.

For future work, we plan to report a more mature evaluation
and experiences from applying the process for the solar car project
iteration. Specifically, we intend to investigate how the continuous
modelling performs in the long run and what challenges might
emerge later in complex system development. Moreover, we aim
to verify whether the current methodology is enough to enable
DevOps for the solar car, that is to continuously refine the vehicle
through a high degree of automation. Eventually, we would like to
test our methodology in different domains, e.g. robotics, to elicit
potential domain-specific challenges.

ACKNOWLEDGMENTS

This work was partly funded by the AIDOaRt project, an ECSEL
Joint Undertaking (JU) under grant agreement No. 101007350. Addi-
tionally it was partly funded by the Heterogeneous battery system
for autonomous vehicles project, a collaborative project between
Volvo Construction Equipment (VCE) and Milaradalen University.

REFERENCES

[1] Silvia Abrahdo, Francis Bourdeleau, Betty Cheng, Sahar Kokaly, Richard Paige,
Harald Stéerrle, and Jon Whittle. 2017. User Experience for Model-Driven Engi-
neering: Challenges and Future Directions. In 2017 ACM/IEEE 20th International
Conference on Model Driven Engineering Languages and Systems (MODELS). 229—
236. https://doi.org/10.1109/MODELS.2017.5

[2] Johan Bergelin, Antonio Cicchetti, and Emil Lundin. 2022. Early validation of
heterogeneous battery systems in the railway domain. In 2022 IEEE International
Systems Conference (SysCon). 1-8. https://doi.org/10.1109/SysCon53536.2022.
9773852

[3] Francis Bordeleau, Jordi Cabot, Juergen Dingel, Bassem S Rabil, and Patrick
Renaud. 2019. Towards modeling framework for devops: Requirements derived
from industry use case. In International Workshop on Software Engineering As-
pects of Continuous Development and New Paradigms of Software Production and
Deployment. Springer, 139-151.

[4] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-driven software
engineering in practice. Synthesis lectures on software engineering 3, 1 (2017),

[5]

—
&

(10]

[11

[12

[13

[14

(15]

=
&

[17]

(18

[19

™
=

[21]

[22

Bergelin and Cicchetti

1-207.

Antonio Bucchiarone, Jordi Cabot, Richard F Paige, and Alfonso Pierantonio.
2020. Grand challenges in model-driven engineering: an analysis of the state of
the research. Software and Systems Modeling 19, 1 (2020), 5-13.

Peter] Clarke, Yali Wu, Andrew A Allen, and Tarig M King. 2009. Experiences
of teaching model-driven engineering in a software design course. In Online
Proceedings of the 5th Educators’ Symposium of the MODELS Conference. 6-14.
Alessandro Colantoni, Luca Berardinelli, and Manuel Wimmer. 2020. DevopsML:
Towards modeling devops processes and platforms. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings. 1-10.

Benoit Combemale and Manuel Wimmer. 2019. Towards a model-based devops
for cyber-physical systems. In International Workshop on Software Engineering
Aspects of Continuous Development and New Paradigms of Software Production
and Deployment. Springer, 84-94.

Joseph D’Ambrosio and Grant Soremekun. 2017. Systems engineering challenges
and MBSE opportunities for automotive system design. In 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2075-2080.

Vahid Garousi, Kai Petersen, and Baris Ozkan. 2016. Challenges and best prac-
tices in industry-academia collaborations in software engineering: A systematic
literature review. Elsevier Information and Software Technology 79 (2016), 106—
127.

Rogardt Heldal, Patrizio Pelliccione, Ulf Eliasson, Jonn Lantz, Jesper Derehag,
and Jon Whittle. 2016. Descriptive vs Prescriptive Models in Industry. In
Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems (Saint-malo, France) (MODELS ’16). As-
sociation for Computing Machinery, New York, NY, USA, 216-226. https:
//doi.org/10.1145/2976767.2976808

Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. 2016. What is
DevOps? A systematic mapping study on definitions and practices. In Proceedings
of the Scientific Workshop Proceedings of XP2016. 1-11.

Robbert Jongeling, Federico Ciccozzi, Jan Carlson, and Antonio Cicchetti. 2022.
Consistency management in industrial continuous model-based development
settings: a reality check. Software and Systems Modeling (2022), 1-20.

Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo Bonifacio. 2019. Adopting
DevOps in the real world: A theory, a model, and a case study. Journal of Systems
and Software 157 (2019), 110384.

John TJ Mathieson, Thomas Mazzuchi, and Shahram Sarkani. 2020. The sys-
tems engineering DevOps lemniscate and model-based system operations. IEEE
Systems Journal 15, 3 (2020), 3980-3991.

Parastoo Mohagheghi, Miguel A Fernandez, Juan A Martell, Mathias Fritzsche,
and Wasif Gilani. 2008. MDE adoption in industry: challenges and success criteria.
In International Conference on Model Driven Engineering Languages and Systems.
Springer, 54-59.

Leah Riungu-Kalliosaari, Simo Méakinen, Lucy Ellen Lwakatare, Juha Tiihonen,
and Tomi Ménnisto. 2016. DevOps adoption benefits and challenges in practice:
A case study. In International conference on product-focused software process
improvement. Springer, 590-597.

Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. 2017. Continuous
integration, delivery and deployment: a systematic review on approaches, tools,
challenges and practices. IEEE Access 5 (2017), 3909-3943.

Jagadish Suryadevara and Saurabh Tiwari. 2018. Adopting MBSE in construction
equipment industry: An experience report. In 2018 25th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 512-521.

Jorn Guy Suf3, Samantha Swift, and Eban Escott. 2022. Using DevOps toolchains
in Agile model-driven engineering. Software and Systems Modeling (2022), 1-16.
David D Walden, Garry J Roedler, and Kevin Forsberg. 2015. INCOSE systems
engineering handbook version 4: updating the reference for practitioners. In
INCOSE International Symposium, Vol. 25. Wiley Online Library, 678—686.

Jon Whittle, John Hutchinson, Mark Rouncefield, Hikan Burden, and Rogardt
Heldal. 2013. Industrial adoption of model-driven engineering: Are the tools
really the problem?. In International Conference on Model Driven Engineering
Languages and Systems. Springer, 1-17.

https://doi.org/10.1109/MODELS.2017.5
https://doi.org/10.1109/SysCon53536.2022.9773852
https://doi.org/10.1109/SysCon53536.2022.9773852
https://doi.org/10.1145/2976767.2976808
https://doi.org/10.1145/2976767.2976808

	Abstract
	1 Introduction
	2 Background
	3 Related work
	4 Approach and methodology
	5 Case study
	6 Results
	6.1 Example of solar cells
	6.2 Observed effects and benefits

	7 Discussion
	7.1 Lessons learned
	7.2 Threats to validity

	8 Conclusion and future work
	Acknowledgments
	References

