
Design considerations introducing analytics as a
“dual use” in complex industrial embedded systems

Daniel Hallmans
Hitachi-ABB Power Grids

Ludvika, Sweden
daniel.hallmans@hitachi-powergrids.com

Kristian Sandström, Stig Larsson, Niclas Ericsson
RISE Research Institutes of Sweden

Västerås, Sweden
{kristian.sandstrom, stig.larsson, niclas.ericsson}@ri.se

Thomas Nolte
Mälardalen University

Västerås, Sweden
thomas.nolte@mdh.se

Abstract—Embedded systems are today often self-sufficient
with limited and predefined communication. However, this tra-
ditional view of embedded systems is changing through advance-
ments in technologies such as, communication, cloud technolo-
gies, and advanced analytics including machine learning. These
advancements have increased the benefits of building Systems
of Systems (SoS) that can provide a functionality with unique
capabilities that none of the included subsystems can accomplish
separately. By this gain of functionality the embedded system is
evolving towards a ”dual use” purpose. The use is dual in the
sense that the system still needs to handle its original task, e.g.,
control and protect of an asset, and it must provide information
for creating the SoS. Larger installations, e.g., industry plants,
power systems and generation, have in most cases a long expected
life-cycle, some up to 30-40 years without significant updates,
compared to analytical functions that evolve and change much
faster, i.e., requiring new types of data sets from the subsystems,
not know at its first deployment. This difference in development
cycles calls for new solutions supporting updates related to new
requirements inherent in analytical functions.

In this paper, within the context of ”dual usage” of systems
and subsystems, we analyze the impact on an embedded system,
new or legacy, when it is required to provide analytic data with
high quality. We compare a reference system, implementing all
functions in one CPU core, to three other alternative solutions:
a) a multi-core system where we are using a separate core for
analytics, b) using a separate analytics CPU and c) analytics
functionality located in a separate subsystem. Our conclusion is
that the choice of analytics information collection method should
to be based on intended usage, along with resulting complexity
and cost of updates compared to hardware cost.

Index Terms—embedded systems, systems-of-systems, analyt-
ics, data gathering, data collection, long life time

I. INTRODUCTION

Historically, most embedded systems have been designed as
stand-alone self-sufficient systems with a limited and prede-
fined connectivity to higher level systems, e.g., connection to
a Human Man Interface (HMI) or dispatch center via a Gate
Way Station (GWS). These types of systems have been engi-
neered, verified and validated to Control and Protect (C&P)
assets in a factory, vehicle, power plant, energy transmission
etc. This often creates a complex installation containing several
subsystems closely engineered and verified together over long
time, sometimes with several years from first design until the
system is taken in to use. New technologies, e.g., communi-
cation and cloud technologies, have given us a possibility to
create a next generation of systems, i.e., Systems of Systems

(SoS), that enable new functionality relying on advanced
analytics using Machine Learning (ML) and Digital Twins, to
be added to already existing installations. A SoS is defined as
creating new functionality enabling unique capability that none
of the subsystems can accomplish on its own, ISO/IEC/IEEE
21839 [1]. Several different initiatives around us are driving
suppliers in the direction of using the information available
in subsystems, e.g., Industry 4.0 [2], Smart manufacturing,
and Smart grids [3], to increase, for example, flexibility in
manufacturing, revenue, business opportunities, new business
models, and other competitive advantages.

Fig. 1. A subsystem controlling and protecting devices in a process at the
same time as providing data to a system on a higher level.

Subsystems in an SoS setup have a dual purpose; to control
and protect an asset, and to provide information to the higher
level system, Fig. 1, e.g., to provide information to an analytics
service. An example of such a usage could be a sensor value,
e.g., flow measurement. Such a sensor value is used by the
subsystem control loop to control the output to a water pump
motor, and the same sensor value could also be used in an
advanced analytics function in the higher layer SoS, e.g.,
to predict the need for a future higher flow. A prediction
like this is probably not only based on the single flow or
voltage measurement from one object, but is rather derived
using information from several different sources that are using
the water or energy further down in the system, or other
parameters that could affect usage. The challenge for the
subsystem architecture will be to provide the information with
sufficient quality, since the quality of the analytic results is



direct proportional the the quality of the measurements. The
demand from the customer to support collecting additional
information from the subsystem will arise when the added
value of analytics generates a value that may be similar to that
of the subsystem or higher. This can for example be achieved
by using thousands of sensors in ML calculations, in order
to offer new and innovative insights in to the whole SoS,
and by that giving a competitive advantage or new business
opportunities.

Fig. 2. The SoS system has a different life cycle, shorter, vs. the subsystem,
longer. Each update of the SoS analytic will require a new set of data.

The complexity increases since the life-cycle and update
frequency of the high-level system will not fully match the
connected subsystems, consisting of a few to thousands of
subsystems. Fig. 2 shows an example where the analytics
requirements of new types of data sets are much higher than
what is provided by the update frequency of the subsystem.
The life-cycle difference becomes even more significant in
the case of systems that have an expected long life cycle
up to 30-40 years with only a few planned updated/upgrades
during its life-time. Such a system typically also require a
long design time, including verification and validation that can
take years until the system is deployed and commissioned at
a customers’ site before put into use. Only once the system
is operational, years after its initial design, the higher levels
of SoS analytics will be initiated and start to evolve, e.g.,
results from different data sets are evaluated and suggesting
additional needs for new data sets to be collected in order
to improve or enable the desired result. A typical data sci-
ence framework [4] is CRISP-DM (CRoss Industry Standard
Process for Data Mining). CRISP-DM includes six phases
(business understanding, data understanding, data preparation,
modeling, evaluation and deployment) along with a life cycle
that is repeated iterative until the expected result is archived.
Furthermore, since information from one subsystem can be
used in several other systems, the life cycle becomes even
more complex.

A large extent of future systems, and also present, will
not be able to avoid handling a ”dual usage” of both the
original and local C&P functionality together with becoming
a future enabler of, at first design time unknown, analytics
in a SoS. As a consequence careful considerations must be

made concerning and preparation for dual use already at first
design time, to avoid future expensive redesigns and costly
verification of the complete systems. Therefore, in this paper,
we have investigated the challenge of the dual purpose use of
an embedded system and how different design solutions will
effect the result.

The outline of the paper is as follows: Section II introduce
related work. Section III describes major challenges with
designing a subsystem that should be able to handle future
analytics requirements. Section IV describes the concepts,
data gathering and pre-processing. Section V analyzes four
different solutions, and Section VI includes a discussion of
the results. Finally, Section VII concludes the paper and point
out future work.

II. RELATED WORK

The field of SoS and related topics is large and includes a
number of different research areas, and several of them touches
the different challenges connected to “dual use”. On a higher
level the ISO/IEC/IEEE 21839 [1] describes the life cycle
considerations for a subsystem, i.e., System of Interest, when it
is part of a SoS. Focus on its functionality, different life cycle
stages and the concern that need to be taken to the SoS during
the stages. [5] combines the utilization, support and retirement
stage, from ISO/IEC15288 [6], to a constant evolution that
better describes the handling of larger systems that has a 30-
40 years lifetime with an evolution stage. This stage then
also need to handle changes in the “dual usage” in parallel
to the evolving SoS systems. In [7] a Survey is presented
on Concepts, Applications, and Challenges in Cyber-Physical
Systems (CPS) and they conclude that existing legacy systems
have limited awareness of the CPS requirements, and that
revolutionary design approaches are necessary to achieve the
overall system objectives. The importance of real-time data,
volatile, and nonvolatile, e.g., relevant layouts, specifications
of machinery, for digital twins are presented in [8], vs. using
common tools for process improvements. Similar examples
can be found in [9] where access of information is a key chal-
lenge concerning external control loop, system predictability
to be able to handle real-time tasks and adaptability. [10] also
highlights the retrieval of information as a challenge, in this
case for a Cyber-physical production system.

In [11] the subject of time series data analysis is discussed
and pointing out that it is used in almost every scientific field,
i.e., measurements are performed over time. Embedded, and
the challenges that exists with time series data. Embedded
systems and its resource constraints and the need for user
interaction to allow for dynamic exploration and refinement
of the solutions.

From a subsystem implementation point of view real-time
containers could be a promising solution to being able to
change functionality during run time. [12] presents a survey
of different alternatives, from the first container virtualization
on Linux. Identified challenges and future research that is
needed in the areas is real-time behavior, tools and container to
container communication. [13] evaluates the usage of Docker



containerization in a real-time application and, based on
experimental results, can show that it meets more soft real-
time requirements with an added processing delay. Service
oriented architectures (SOA) could also be part of a solution
to allow for offering functionality to other system, [14] extends
the traditional SOA to a Real-Time SOA to better be able to
meet timing constraints. Micro services [15] extends the SOA
concept even further with smaller sizes giving high flexibility,
modularity and possibility to evolve.

To achieve the ”dual usage” we need to combine the results
from the different related fields, e.g., cloud analytics, system
evolvability, implementation advantages with virtualization of
containers, and at the same time accomplish with out effecting
the real-time and deterministic behavior of the control and
protection system.

III. PROBLEM DESCRIPTION

In systems with long expected life cycles we have identified
two major challenges when it comes to analytics and data
gathering, often also refereed to as data collecting. In such
systems all requirements are not fully known at design time
but must be anticipated. The challenges are:

1) High-quality analytics require high quality data. Sam-
pling rate, measurement accuracy, timing, and time
stamping are examples of parameters that must be
selected to allow future processing, both local pre-
processing and remote processing by an analytics ser-
vice. High quality analytics will require data gathering
close to, and in parallel with, processing in the sub-
system. Thus, analytics functions will compete with the
original C&P functionality for the same hardware and
software resources.

2) Life cycle of the analytics’ requirements will differ
compared to the original systems’ life cycle that is sig-
nificant longer. Embedded systems in a larger complex
installation, e.g., factories, power transmission systems,
and power plants, have undergone several stages of
design, verification and validation before it has been
taken to use. These stages are sometime lasting for years,
involving several subsystems that need to co-exist and
will be in use for 10-15 years until any major update is
scheduled. Analytics on the other hand starts to provide
useful information once the system is taken in to use, and
will then evolve by applying different analytics solutions
the following 10-15 years, requiring different sets of
data during this time. New sets of data will then also
require updates to the data gathering or pre-processing
functionality in the embedded system at a rate that is
much higher than the update frequency of the embedded
system core functionality. Providing all types of data
from the start, i.e., every input, every state of the control,
and outputs, will not be possible in a larger system or
not even in a smaller system, so a configurability of what
information to gather is needed.

IV. DATA GATHERING AND PRE-PROCESSING

Simplified, there exist three types of ”live” information in an
embedded system that is valuable to gather for further analysis;
Inputs from sensors, e.g., fluid speed, internal processed infor-
mation generated from different states and calculated values in
the C&P logic, and outputs to actuators, e.g., control signals
to an electrical motor, or trip signals to a high voltage circuit
breaker.

Fig. 3. A three level scheduler with different tasks connected. Task ”I”
takes inputs from a sensor, ”P” processes the information and ”O” sends
the processed information to an actuator.

In Fig. 3 we are representing these three different types
as different tasks (I, P and O) in a scheduler with three
priority levels. We have placed them on the fastest level, i.e.,
shortest cycle time, but in reality the valuable information is
located in all tasks. In addition, pure static information is of
interest to fully understand the system configuration, e.g., used
hardware and software versions, in order to compare system
information against each other. A use case for data gathering
that should not be forgotten is advanced fault tracing or as
input for verification and validation of the system. The use
case including gathering of parameters on a embedded system
oriented level, e.g., cache misses, scheduling jitter, missed
deadlines, that would be to a high value for an embedded
engineer but probably not to a system engineer, e.g., a power
systems designer that are more interested in energy flow in
the transmission network rather than the scheduling of tasks
in the embedded system.

Fig. 4. Additional to the ”IPO” tasks a data gathering task,”G”, and pre-
analytics,”A”, has been added with configuration and external storage.



In Fig. 4 we have added separate tasks for data gathering,
G, to the same scheduler and A for pre-processing of analytic
data, to reduce the amount of data that is needed to be sent
from the subsystem. G and A are both equipped with local
memory where information can be temporally stored before
transmitted with a lower priority to an external storage. Ad-
ditionally, a configuration part is added to allow for changing
what information that is collected, from I, P and O, and
also pre-processed. Adding the gathering tasks directly to the
scheduler enables that all priority signals can be sampled at
the same speed as they are generated. If there are more, slower
or lower priority signals, they could also be gathered by tasks
that are running slower or on idle priority but then without
guarantee that all data is captured.

Fig. 5. Different examples of methods for data gathering to balance the
accuracy need and at the same time reduce performance requirements, e.g.,
storage space.

To improve the quality and to reduce the size of the gathered
information, different types of gathering functions must be
implemented. If not, all samples, all the time, are streamed or
stored with the highest possible frequency, sometimes resulting
in an extreme amount of data to handle. Fig. 5 provides a few
examples of possible pre-analytics functions, e.g., only storing
the maximum (MAX), mean and minimum (MIN) value for
a specific signal during a time interval, e.g., during an hour.
This would give more information about the signal behavior,
e.g., noise level, compared to only store a single value each
hour. Storing a burst of data with a high frequency, and not
continuously, would still allow for frequency analyses, but
with a limited scope in a later stage. The same analyses can
be configured to be executed in the subsystem by utilizing
pre-processing, Fig 5 alternative D, and by that reducing the

amount of information that is sent and stored. Configurability
of what to store, i.e., from I, P and O tasks, and how to store
it, i.e., the amount of possible pre-processing functions, will
be a key function going forward to handle future use cases.

Fig. 6. Deadline miss, i.e., overload, when to many signals are gathered at
each scheduled cycle. Task A is not included in the example.

Each of the different gathering methods, and the number of
signals collected per time unit, will consume CPU resources,
e.g., clock cycles and memory, to handle and by that interfere
with the C&P functionality since it will be executed with
the same priority. Fig. 6 shows the risk of “stalling” the
system, in the example when two times, “2x”, the number of
signals are handled, giving deadline misses and risk of critical
failures in the C&P part. In a system where the priority of the
analytics’ requirements are lower than the corresponding C&P
requirements the ”overload” would probably be dropped and
reported to the SoS as ”missing samples”, but if the priority is
equal the loss of value in the SoS level would be significant.
This makes us to conclude that the amount of CPU resources
for the gathering process must be predefined, e.g., the number
of data storage buffers, already at the design of the system
and by that it will also be included in the initial verification
and validation process of the complete system to avoid any
unexpected behaviors when analytics is enabled later on in
the process.

A. Evaluated systems, criteria and method

Fig. 7. One core reference system used in the evaluation.

As a reference for our evaluation we are using a setup where
the C&P functionality and analytics are located in the same
core, independent of if it is a single core or multi-core CPU,
see Fig. 7. It is the most fundamental setup from a hardware



point of view, since no additional hardware is needed, but
with a high impact on the C&P scheduling from the analytics
functionality. We will compare the reference system to three
other alternatives: a multi-core system where we are using
a separate core for analytics, using a separate analytics CPU
located on the same hardware and last one where the analytics
functionality is located in a completely separate subsystem.

To be able to compare the different alternatives we will
use the Pugh method [16], i.e., we will give a relative score
for the different alternatives in comparison to the reference
architecture. The scoring will be S = same/equal, + = better
and - = worse than the reference system. An alternative to
using the relevant scoring in the Pugh method could be using
more specific measurements for each system, e.g., differences
in number of CPU cycles, memory bandwidth, and jitter.
The problem with such an approach is that it will be much
more hardware dependent since the exact figures will differ
between different systems, e.g., some having a better memory
bandwidth utilization vs. number of CPU cycles per function,
since the CPUs in the embedded systems would range from,
e.g., simple ARM M0 to high performance many-core systems
based on the Intel Xeon architecture. Basing the comparison
on a higher level of abstraction the Pugh method will give
a direction and more detailed investigations can then later
be used to find implementation details or further needed
studies for a specific case. For the same reason we have not
used details of specific implementations’ positive or negative
effect on, e.g., cache utilization, board space requirements, and
power requirements.

Fig. 8. Table with the different criteria that we have used for the evaluation.

In Fig. 8 we have presented the six different criteria that
we have used to evaluate the different alternatives.

The availability of I and O, i.e., sensor data and actuator
outputs, in different cores or external hardware will differ
depending on the system setup. An example with using
EtherCAT [17] for IO system data transfer in a multi-core
system, with the EtherCAT master located in one core would
have the I and O data available in that core and not in the other,
or on the other hand if a core is used for communication and
the other for processing the information will available to all
if shared via a shared memory. The processed information, P,
on the other hand will only be available in the core where

it is produced and used. If access is needed in other cores
the information must be transferred, or as an alternative, that
will be complex and contain a lot of uncertainty, would be to
replicate the complete C&P logic in another core based on I
and by that produce P. For simplicity, in our reference system
we assume that I, O and P are only available in one core, due
to that for example the EtherCAT master relies in that core.
Still in our comparison it does not change the evaluation since
P, most likely, will only be available in one core and must be
transferred.

V. ANALYSIS

A. Reference system

Fig. 9. Single core reference system.

In the reference system, acting as the base line, all functions
are executed on the same core. All information extracted from
the I-, P- and O-tasks will then be fully accessible, and any
functionality executed in the gathering task and pre-processing
(task G and A) will have a direct impact on the available
resources for the C&P part.

The life cycle for G and A will follow the rest of the system,
i.e., in a simple system G and A can not be reloaded or
restarted without affecting the C&P, instead any functional
changes to G and A must be able to be handled online.
Changes could then be done via, for example, different
configurations of already implemented functionality. A more
advanced implementation could include using of containers,
e.g., Dockers, that could be modified during run time, or a
real-time hypervisor allowing for parallel execution. Different
scripting languages, e.g., µ-phyton, LUA, could also give a
possibility to update the functionality independent on the C&P
part, since the code then is interpreted in run time. Since the
functionality is located on the same CPU and competing for
the same resources, caution has to be taken during design
on the potential effects on the C&P functionality. Some real-
time code, e.g., docker containers, must be handled in such
a way that it will not interfere with other real-time tasks
in an unpredictable manner. What is technically possible
will also be dependent on the subsystems’ performance. A
real-time hypervisor on an ARM M4 will probably not be



as effective as implementing possible scripting features or
predefined configurations.

No additional hardware is needed for the G and A tasks
giving no additional hardware cost (C) and a possibility to
”only” change the software when a system need to be updated
in the future, U, i.e., updating a legacy system with data
collection functionality. Since no new hardware is added,
additional effort must be added to handle the complexity of
the software solution, but do not scale with the amount of
updated units. A cost that also is valid for the other solutions
on different levels.

In the summary table in Fig. 9 all evaluated criteria are “S”
(Same) since it is our reference system.

B. Multi-core system with analytics on a separate core

Fig. 10. Alternative B: Multi core system with analytics on a separate core.

Allowing the analytics functionality to use a separate core
will give us a possibility to move part of the gathering of
information, G, from the C&P and by that allow for a simpler
configuration of what data to be streamed to the analytics core.
Any preprocessing, e.g., calculation of maximum or minimum
values, could then be handled in the analytics core without
affecting the C&P system. Any limitation in the number of
signals that can be transferred, e.g., over a common cache,
and by that impact on cache misses, must be evaluated during
design time for each type of system. Similar limitations are
also valid for the other types of system setups, e.g., for the
reference system when a value is stored by the CPU for later
usage, since a set of information always must be transferred
or stored in memory.

Since all functionality is still in the same CPU, but on
different cores, the life-cycle handling of the analytics will be
the same as for the reference system, e.g., the analytics life-
cycle can be improved by using, e.g., a real-time hypervisor or
containers, with the main difference vs. the reference system
being that the C&P functionality is impacted, performance
vise, less by the analytics part, A.

Hardware cost, C, will be more or less the same since
no additional components are added to the system, rather
choosing a CPU with more available cores to a slightly higher

price. If this decision has not been made during design time,
an upgrade of a legacy system, U, with this method is not
feasible since a core is seldom left completely unused in a
system.

C. Separate CPU in the same system

Fig. 11. Alternative C using a separate CPU for handling the analyzing tasks.

Separating the analytics part to another CPU located on the
same hardware will enable better possibilities for a different
life cycle, LA, i.e., analytics functions can be updated and
restarted independent of the C&P CPU. The data gathering,
G, is still within the C&P and by that requiring a more
complicated external communication, e.g., CAN-FD, Ethernet,
or an external dual port memory is also a possibility if the
CPU is equipped with a communication bus that can handle
the amount of data to transfer. Note that it will be more
complex/slower than an internal memory transfer giving it a
lower score for G.

Hardware cost, C, will increase due to the additional hard-
ware devices needed, e.g., CPU, memory, and power supply,
and at the same time making an upgrade, U, of a legacy system
impossible since the hardware is not available.

D. Separate system for analytics
Placing the analytics CPU on a completely separate hard-

ware has similar advantages and disadvantages as with al-
ternative C, with the exception that the upgrade possibility
becomes easier since all additional functionality, except for
data gathering (G), are located on the external hardware.

Hardware cost, C, will be higher but could also be shared
between different subsystems if one analytics hardware is
serving several C&P systems, but still higher than the ref-
erence system. Communication bus performance, e.g., using
EtherCAT, OPC-UA, between C&P and the analytic hardware
will be important and could be a bottleneck pushing more
or less of the processing to be done locally, affecting the
performance of the gathering part G negative, or as a limitation
to the amount of gathered signals and by that making all types
of signals not available.



Fig. 12. Alternative D where the analytic functionality is located in a separate
system, i.e., outside the subsystem.

VI. DISCUSSION

Collecting information that is intendend to be used for
analytics need to be done with a data quality that is not
limiting the evaluation of the results. In most cases that will
imply adding the gathering functions already in the embedded
systems next to the C&P functionality. All ”raw” signals and
data cannot be collected but instead different methods need to
be introduced to reduce the amount of data, e.g., by storing
MAX and MIN values or by preprocessing the data such that
a compact representation can be achieved, all in a way that
future changes to the data gathering will not affect the C&P
logic.

Fig. 13. Summary of the Pugh scores for the evaluated systems.

In Fig. 13 our evaluation result from the four different cases
are presented along with their corresponding Pugh-scores. In
summary the choice of solution will depend on the intended

future use together with the stage that your system is in today,
i.e., still at design stage or already in service. In addition
it is important which functionality that will be prioritized,
i.e., by adding weights to the different results as presented.
An example could be a system that already is in service for
several years and now needs to be updated/upgraded, U, with
new analytic functions. The system will then not be able to
add new CPUs to handle the analytics on the same hardware.
Alternative C, or alternative B, is also not feasible since there
are most likely no free/unused cores available. The most viable
solution is then alternative A or D. The choice between A and
D will then depend on what functionality that is prioritized: is
it cost for hardware, i.e., alternative A with only implementing
the gathering of data as a software function, or is it the higher
flexibility and additional compute resources in alternative D
that is most interesting. A limiting factor will also be the
amount of hardware resources, e.g., CPU or memory, that is
available in the legacy system for the ”dual usage”, setting
a firm constraint to the amount of signals that is possible to
handle.

If the system is still at design stage we have more options
to tailor the solution to allow for future flexibility. Alternative
B with a separate core for the analytic pre-processing has
the advantage of reducing the complexity for the C&P part
but the life-cycle issues are still the same as of a single
core system. Technologies such as virtualization, containers,
interpreted languages, could improve the flexibility by adding
and changing functionality – independent on being a single- or
multi-core system. Adding an additional CPU already at design
time will improve the life cycle updates by, for example,
allowing for restart/reload of that part but at a higher cost for
hardware, and also required a larger physical space. Having a
complete external Hardware, alternative D, will allow for even
higher flexibility when it comes to improving local processing
of analytics and future changes in functionality. This is also an
option that is independent on the system being a brown field
installation, i.e., the system is already available, or a green
field system, i.e., a new installation.

All alternatives are still dependent on that the core C&P
functionality is modified to provide the “raw” data samples
and that it is implemented in a way such that it will not
risk any C&P functionality, today or in any future update of
analytics needs. Due to this, when the system is designed,
caution must be taken to set the limits of number of maximum
allowed samples, CPU resources, memory bandwidth etc., i.e.,
not overloading the system, but at the same time allow for
configurability of what data to collect. We are today not aware
of the exact set of signals needed by future analytics, and at the
same time we are not able to store all possible signals. Instead
the flexibility, future possible evolvability and configurability,
will be important, but system limitations will be critical aspects
to consider.

VII. CONCLUSION AND FUTURE WORK

A majority of future embedded system will not be stand
alone. Instead these embedded systems will be connected as



subsystems to a higher level of systems and by that creating a
SoS. The information provided from the subsystems will allow
for the SoS to deliver new sets of functionalities that enable
functionality larger than the sum of all installed subsystems.
Advances in new technologies, e.g., Machine Learning, are
pushing the limits and possible usage of a SoS to a level
where the value that they will introduce will be equally or
more important compared to the functionality of the original
subsystems. To prepare for this, embedded systems created
today need to consider this ”dual usage” already at design
time to avoid expensive and time consuming modifications
and verification later on. This is especially true for systems
in a complex environment and/or for systems that have an
expected long life cycle, up to 30-40 years. Even if it may
be difficult to fully understand what data and information that
may be needed from a subsystem in the future, precautions
must be taken s.t. it is possible to make as much as possible
of such information available for a potential future usage.

In this paper we have analyzed challenges when it comes
to this “dual usage”, i.e., to handle it original intentions of
C&P at the same time as gathering information for coming
installations in a SoS. In this context we also analyze the effect
of different life-cycle requirements for the C&P and analytics.
To evaluate the impact of different implementations, and by
that give us directions going forward with an implementation,
we have investigated four different CPU configurations; A)
where C&P and analytics are located in the same core, B)
where they are separated on diffident cores in one CPU, C)
where we divide them on two different CPUs on the same
hardware, and D) where they are located in two separated
systems. A multicore implementation would most likely be
the best solution if the upgrade ability is not calculated or if
it is prepared for already at design time.

In summary we cannot avoid connecting our systems to-
gether in the coming future, small or large, if we want to
be able to fully benefit from future advanced features relying
on, e.g., analytics. Such features are important and have the
potential to provide a competitive edge of systems that are
installed and allowed to evolve over time. To enable the dual
functionality of subsystems discussed in this paper we need to
prepare our system already at design time, i.e., to handle the
local system functionalities at the same time as we provide
a higher level system with information, to avoid costly and
complex updates and verification later in the system life cycle.

A. Future work

In the context of the local system we will continue our
research when it comes to how to efficiently share resources
between different functions without having them to cause
unpredictable interference among each other. Here we in-
vestigate the usage of hypervisors, containers, and different
scheduling algorithms that are providing such guarantees.
Since the amount of idle time in a system vary due to external
factors inherent in usage shared resources, a flexible approach
to pre-processing that allows for temporary overloads and
catch-up in between seems to offer an interesting solution, i.e.,

a solution that changes between storage of ”raw” information
vs. pre-processing of information, all dependent on the current
situation of available resources.

From a system point of view also other parts of the system
will be affected, e.g., network, storage, cyber-security, data
modeling and configuration, since the understanding of the
provided information will be a challenge that most likely also
grows with the age of the system. A technology solution
that would be interesting to look into, but not limited to,
is Time Sensitive Networking (TSN), which is a promising
technology allowing for priority sharing on the same network.
In this case analytics could potentially be added at a later
stage without disturbing the legacy traffic, if free resources are
made available for such usage already at design time. Hence,
a similar thinking as for the local data gathering, i.e., that it
must be prepared already at design time.

REFERENCES

[1] “Iso/iec/ieee international standard – systems and software engineering –
system of systems (sos) considerations in life cycle stages of a system,”
ISO/IEC/IEEE 21839:2019(E), pp. 1–40, 2019.

[2] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0,” Business & information systems engineering, vol. 6, no. 4, pp.
239–242, 2014.

[3] X. Yu and Y. Xue, “Smart grids: A cyber–physical systems perspective,”
Proceedings of the IEEE, vol. 104, no. 5, pp. 1058–1070, 2016.

[4] R. Wirth and J. Hipp, “Crisp-dm: Towards a standard process model for
data mining,” in Proceedings of the 4th international conference on the
practical applications of knowledge discovery and data mining, vol. 1.
Springer-Verlag London, UK, 2000.

[5] D. Hallmans, M. Jägemar, S. Larsson, and T. Nolte, “Identifying
evolution problems for large long term industrial evolution systems,”
in 2014 IEEE 38th International Computer Software and Applications
Conference Workshops. IEEE, 2014, pp. 384–389.

[6] I. ISO, “Iso/iec 15288: Systems and software engineering—system life
cycle processes,” ISO, IEC, pp. 24 748–1, 2008.

[7] V. Gunes, S. Peter, T. Givargis, and F. Vahid, “A survey on concepts, ap-
plications, and challenges in cyber-physical systems.” KSII Transactions
on Internet & Information Systems, vol. 8, no. 12, 2014.

[8] T. H.-J. Uhlemann, C. Schock, C. Lehmann, S. Freiberger, and R. Stein-
hilper, “The digital twin: Demonstrating the potential of real time data
acquisition in production systems,” Procedia Manufacturing, vol. 9, pp.
113–120, 2017.

[9] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing
letters, vol. 3, pp. 18–23, 2015.

[10] L. Monostori, “Cyber-physical production systems: Roots, expectations
and r&d challenges,” Procedia Cirp, vol. 17, pp. 9–13, 2014.

[11] P. Esling and C. Agon, “Time-series data mining,” ACM Computing
Surveys (CSUR), vol. 45, no. 1, pp. 1–34, 2012.

[12] V. Struhár, M. Behnam, M. Ashjaei, and A. V. Papadopoulos, “Real-
time containers: A survey,” in 2nd Workshop on Fog Computing and the
IoT (Fog-IoT 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2020.

[13] M. Sollfrank, F. Loch, S. Denteneer, and B. Vogel-Heuser, “Evaluating
docker for lightweight virtualization of distributed and time-sensitive
applications in industrial automation,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 5, pp. 3566–3576, 2020.

[14] W. Tsai, Y.-H. Lee, Z. Cao, Y. Chen, and B. Xiao, “Rtsoa: real-
time service-oriented architecture,” in 2006 Second IEEE International
Symposium on Service-Oriented System Engineering (SOSE’06). IEEE,
2006, pp. 49–56.

[15] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” Present and ulterior software engineering, pp. 195–216, 2017.

[16] S. Pugh, “The systems engineering tool box,” 2009.
[17] M. Rostan, J. E. Stubbs, and D. Dzilno, “Ethercat enabled advanced

control architecture,” in 2010 IEEE/SEMI Advanced Semiconductor
Manufacturing Conference (ASMC). IEEE, 2010, pp. 39–44.


