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Abstract. Speech emotion recognition (SER) enables intelligent sys-
tems to detect emotions in spoken language, adapting to human needs.
However, privacy concerns arise when analyzing speech data, as it reveals
sensitive information like identity, emotions, age and gender. To address
this, Federated Learning (FL) has been developed, allowing models to
be trained locally and sharing model parameters with servers. However,
FL introduces new privacy concerns when transmitting local model pa-
rameters between clients and servers, as third parties could exploit this
information to reconstruct speech data or features, potentially disclos-
ing sensitive information. In this paper, we introduce a novel approach
called Secure and Efficient Federated Learning (SEFL) for SER applica-
tions. Our proposed method combines Paillier homomorphic encryption
(PHE) with a novel gradient pruning technique. This approach enhances
privacy and maintains confidentiality in FL setups for SER applications
while minimizing communication and computation overhead and ensur-
ing satisfactory model accuracy. As far as we know, this is the first paper
that implements Paillier homomorphic encryption in FL setup for SER
applications. During communication and aggregation, the confidentiality
of local parameters is maintained. The server can aggregate ciphertexts
without decrypting them, preventing access to confidential information.
In our experiments, we utilized a publicly available SER dataset to assess
the performance of the SEFL method. The results indicate significant ef-
ficiency gains when using a key size of 1024, including a reduction in
computation time of up to 25% and a decrease in communication traffic
of up to 70%. Notably, these improvements are achieved with minimal
impact on accuracy, ensuring that the requirements of SER applications
are met effectively.

Keywords: Federated Learning · Privacy-preservation · Homomorphic
Encryption · Speech Emotion Recognition.
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1 Introduction

Speech Emotion Recognition (SER) refers to the detection and classification
of human emotions as they are expressed in spoken language [18]. This ability
makes SER highly valuable in various fields, including mental health diagnosis
and therapy, where it can aid mental health practitioners in their decision-making
process and treatment monitoring by identifying a person’s actual emotions [27].
Educational settings can also utilize SER to track students’ emotional states and
engagement levels in e-learning, enabling teachers to implement more effective
teaching strategies [32]. Furthermore, SER has potential applications in the en-
tertainment industry, such as the development of TV recommendation systems
that accurately capture users’ emotions and provide personalized experiences,
resulting in higher levels of user satisfaction [20].

Analyzing human speech data can reveal sensitive information, including
the speaker’s biometric identity, personality traits, geographic origin, emotional
state, age, gender, and overall health condition [21]. Ethical and privacy concerns
arise when using speech data. Regulations such as the General Data Protection
Regulation (GDPR) [36] and California Consumer Privacy Act (CCPA) [13] have
been introduced to protect personal data. It is crucial to consider privacy con-
cerns when developing and implementing SER application in various domains.

Federated Learning (FL) offers a promising solution to maintain data privacy
while enabling machine learning (ML) models to be trained on decentralized
devices [28]. FL trains ML models on local client devices without transferring raw
data to a central server, which preserves data privacy and ensures compliance
with regulations such as GDPR and CCPA. For SER applications, the initial
processing of speech data and training perform on clients’ device, and only local
model parameters are sent to the central server for model aggregation [22]. This
approach can reduce the risk of privacy breaches while still achieving accurate
outcomes for SER applications.

However, FL faces new privacy concerns when it comes to transmitting lo-
cal model parameters between clients and servers. This is a concern because
the transmission data could potentially be exploited by third parties to perform
attacks that reconstruct raw speech data or features and disclose sensitive in-
formation [15]. To address this issue, additional privacy mechanisms have been
proposed together with FL to safeguard such applications.

One of the promising mechanisms commonly used in FL is Differential Pri-
vacy (DP) [19, 37, 40]. DP is employed to safeguard individual data points in
specific scenarios. However, when applied to SER applications, DP does not of-
fer acceptable accuracy due to the adverse effects of adding noise to voice data,
which can distort the audio signal [30]. Furthermore, adding noise to SER model
parameters can affect the model’s utility by distorting or misaligning the param-
eters, leading to errors in the model’s output [11]. This accuracy compromise can
pose significant challenges for industrial SER applications that require precise
results [3].

An alternative approach to ensuring privacy and preserving accuracy in SER
applications is through the use of diverse homomorphic encryption methods, one
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of which is Paillier homomorphic encryption (PHE) [10]. Incorporating these
methods safeguards users’ privacy and confidentiality in FL while maintaining
the accuracy of SER models. PHE allows local model parameters to remain
encrypted and secure during communication and computation with no adverse
effect on the accuracy of the SER model. Although there are limited research
publications on the potential benefits of PHE for SER applications in FL, a
comprehensive analysis of implementing this approach can offer valuable insights
for both academia and industry.

Additionally, using PHE as a privacy-preserving approach for SER in the
context of FL presents further challenges. The use of PHE in FL may result
in increased communication traffic and computation time [38], which can be
especially problematic in settings with limited bandwidth or resource, such as
edge devices. Therefore, careful consideration of these challenges is necessary
when implementing PHE in FL systems to ensure the privacy and efficiency of
SER applications.

In this paper, we propose a new method for SER called Secure and Efficient
Federated Learning (SEFL), which combines Paillier homomorphic encryption
with a novel gradient pruning technique. This approach enhances privacy in FL
setups for SER applications while reducing communication traffic and compu-
tation time with almost maintaining acceptable model accuracy. The gradient
pruning technique is applied to the gradient updates of each client in every train-
ing round. It is based on the magnitude of the gradients and aims to remove or
prune gradients with low magnitudes. These low-magnitude gradients contribute
less to weight updates and have limited impact on the overall performance.

The SEFL method effectively reduces the size of encrypted local model pa-
rameters transmitted between the client and server, leading to decreased commu-
nication traffic. Additionally, gradient pruning reduces the number of parameters
and floating point operations (FLOPs), shortening the encryption and decryp-
tion time and thus addressing the computation time associated with encryption
methods.

The novel contributions of this paper can be summarized as follows:

– Develop a novel SEFL algorithm for SER applications that ensures privacy
and confidentiality while enhancing efficiency in terms of reduced commu-
nication traffic and computation time, as well as maintaining acceptable
accuracy.

– Conduct a proof of concept implementation of Paillier homomorphic encryp-
tion in FL for SER applications to ensure the confidentiality of local model
parameters.

– Evaluate SEFL on a public SER dataset to demonstrate its considerable
gains in efficiency, such as a reduction of computation time by 10-25% and
communication traffic by 50-70%, depending on pruning percentage, while
having a very limited impact on accuracy, in order to meet the requirements
of SER applications.

The remainder of this paper is structured as follows. In Section 2, we provide
an overview of the background and related works on SER using FL, privacy-
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preserving techniques in FL, and communication and computation-efficient FL.
Section 3 presents the application of SEFL method for SER, including the non-
functional requirements of SER, the threat model, and the proposed method
SEFL with its algorithm. In Section 4, we present the experimental results ob-
tained using SEFL in the SER reference application. Finally, Section 5 concludes
the paper and provides insights for future developments.

2 Background and Related works

This section will cover related work in SER using FL, provide a brief overview
of various homomorphic encryption techniques used as privacy-preserving mech-
anisms in FL, and review related works on communication and computation-
efficient FL.

2.1 Speech Emotion Recognition using Federated Learning

Speech emotion recognition (SER) identifies and understands human emotions
through speech. The SER application analyzes audio signals from human speech
and applies ML algorithms to identify patterns and classify emotions conveyed
by the speech. SER models require large amounts of data, including sensitive
personal information like speech signals and emotions [2]. However, the central-
ized storage of this data entails privacy concerns. In order to mitigate these risks,
FL offers a promising solution for collaborating on decentralized devices without
transferring raw data [22].

In [34], an FL-based approach is presented for building a private decentralized
SER model using data-efficient federated self-training with minimal on-device
labelled samples. However, this method solely relies on the FL framework as a
privacy-preserving technique and does not consider threat models from clients
or servers in FL, nor does it consider other privacy-preserving techniques. Simi-
larly, [6] proposes an FL-based federated adversarial learning framework to pro-
tect both data and deep neural networks in SER, using the FL framework for data
privacy and adversarial training during the training stage for model robustness.
However, like the previous method, this approach solely relies on the FL frame-
work for privacy preservation and does not consider other privacy-preserving
techniques in FL.

2.2 Privacy-Preserving Federated Learning

Homomorphic encryption (HE) is a technique used in FL to protect user privacy
when intermediate parameters are exchanged between parties also allows for
secure aggregation [41]. Using HE in FL, data can be encrypted before it is
sent to the central server for model training. This means that the data remains
private throughout the training process, as it can only be decrypted by the owner
of the data. The central server can perform computations on the encrypted data
using homomorphic operations, such as addition and multiplication, without
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ever decrypting it. The encrypted results can then be sent back to the devices
for decryption and aggregation, allowing the model to be trained without ever
exposing sensitive data [25].

Specifically, an additively homomorphic scheme allows some operation to be
performed directly on the ciphertexts E(m1) and E(m2), so that the result of
the operation is a new ciphertext whose decryption yields the sum of plaintexts
m1 and m2. Most prevalent among HE variants are Paillier [29], FV [9], and
CKKS [7]. Paillier allows additions to encrypted data, whereas FV and CKKS
allow additions and multiplications to encrypted data. It is possible to encrypt
integers using the Paillier and FV schemes, but only approximate results can
be obtained with the CKKS scheme. However, most HE variants add additional
computational and communication overhead, making it more challenging to scale
FL to large numbers of devices.

2.3 Communication and Computation-Efficient Federated Learning

During FL training, model parameters are iteratively transmitted between de-
vices and a central server. However, this approach can lead to high commu-
nication overhead and slow down the learning process [33]. Additionally, Deep
Neural Network (DNN) models often contain millions of parameters [31], and
the training process is becoming more computationally and memory-intensive
due to the increasing complexity of the networks and the training data [23]. One
way to reduce overhead is to use compression techniques such as gradient prun-
ing, which has been shown to be effective in reducing the size of models without
sacrificing performance [16]. This technique involves setting a fixed threshold for
the gradient values and removing parameters below this threshold.

A recent study in FL which aims to reduce communication and computation
costs is the edge Stochastic Gradient Descent (eSGD) algorithm, which selects
significant gradients for server updates. However, this can lead to accuracy loss
and performance fluctuations [33]. An alternative solution proposed in [16] in-
volves joint training and pruning of a DNN model in a federated manner, re-
ducing its size and improving communication and computation time. Yet, the
weight pruning method in [16] has been criticized for its inefficiency in compu-
tation and storage overhead [26]. Additionally, the proposed approach neglects
communication overheads during the update process, which can be problematic
with many clients or additional privacy-preserving mechanisms.

Implementing privacy-preserving mechanisms like Homomorphic Encryption
(HE) on edge devices with limited computational capabilities and communica-
tion bandwidth in FL systems introduces significant overhead and impractically
long training times [17]. Optimization strategies are necessary to address these
challenges. Proposed solutions include batching multiple plaintexts into a single
one to reduce computation overhead [38], but this approach still results in high
communication overhead. Another approach is sparsification, where the client
sends only a sparse subset of local states to the server, significantly reducing
communication overhead [1,14]. However, if gradient components are encrypted
as a single ciphertext, the benefits of sparsification in HE are limited and may
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harm model accuracy. Despite recent advancements, achieving a balance between
communication, computation, and privacy in FL systems with HE remains a
challenging task. The field is continuously evolving, and there is ample room for
further improvements in efficiency.

3 Application of Secure and Efficient Federated Learning
for Speech Emotion Recognition

In this section, we will provide an overview of the non-functional requirements
for SER applications, describe the threat model for our system, and provide
a detailed explanation of the proposed SEFL (Secure and Efficient Federated
Learning) method for SER applications.

3.1 Non-functional Requirements of Speech Emotion Recognition
Application

Non-functional requirements refer to the characteristics or qualities of a system
that are related to its performance rather than its specific functionality. In the
context of SER applications, important non-functional requirements include ac-
curacy, privacy, efficiency in terms of communication traffic, and scalability. Sat-
isfying these requirements is critical to ensure user needs and expectations while
complying with legal requirements. A detailed explanation of the non-functional
requirements is provided in this part, and the evaluation section illustrates how
we meet these requirements.

1. Privacy:
(a) Personal speech data must be kept on local devices only [36].
(b) The central server must not be able to access local model parameters to

infer sensitive information.
(c) Communication between clients and servers should be protected from

unauthorized access in order to keep SER parameters confidential.
2. Efficiency:

(a) In order to reduce hardware costs and consider the typically resource-
constrained edge devices, SER computation overhead must be mini-
mized.

(b) Communication overhead between SER clients and servers must be min-
imized in order to optimize network resource consumption when using
limited bandwidth connections.

3. Accuracy:
(a) The level of accuracy of SER applications must be kept high enough

to reliably identify the correct emotions from speech samples. We can
consider a baseline accuracy of a minimum 70% in detecting the four
basic emotions - neutral, sad, happy, and angry [35].

4. Scalability:
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(a) The scalability of SER must be such to allow the management of a large
number of clients and related amounts of speech data with a linear rather
than exponential increase in execution times.

It is important to highlight that those requirements can be highly interde-
pendent. For example, privacy-preserving approaches can impact efficiency due
e.g. the computation overhead associated with FL, encryption method, etc. In
addition, it is necessary to consider the possibility of a 0-5% drop in accuracy
when implementing an SER in the FL setup [34]. This paper defines communi-
cation traffic as the number of bits transferred between clients and servers. In
SER centralized training, the amount of speech data each client sends to the
central server depends on factors like the length of an audio clip, the sampling
rate, and the pre-processing steps. For instance, the CREMA-D dataset [5] used
7,442 audio clips collected from 91 clients, each sending approximately 8-10 MB
to the central server in each centralized training round.

3.2 Threat Model

In this paper, we assume that the server complies to the honest-but-curious
(HBC) paradigm, which refers to a server that is not malicious and follows the
FL protocol, but it is still curious about the data or models of the clients [24].
This raises the following potential threats.

– The HBC server has the potential to infer sensitive information, including
the speaker’s identity, through the reconstruction of speech data by model
parameters. The server can potentially identify individuals by analyzing the
distinctive characteristics of the speaker’s voice, such as pitch, tone, and
accent.

– HBC servers can analyze reconstructed speech data by model parameters
to determine sensitive information about the speaker’s emotional state. The
speaker’s emotional state or personality can be revealed through emotions
such as anger, sadness, and anxiety.

3.3 Proposed Method: SEFL

To address the privacy threat posed by a server that is honest but curious, as well
as to meet the non-functional requirements of the SER application, we propose
a new approach called Secure and Efficient Federated Learning (SEFL). SEFL
combines the use of Paillier homomorphic encryption with a novel gradient prun-
ing method. The SEFL method ensures that the speech data remains on the end
devices during training (Requirement 1.a). By deploying Paillier homomorphic
encryption within this method, we guarantee that the HBC server only has ac-
cess to ciphertext data and cannot infer sensitive information from the model
parameters (Requirement 1.b). Additionally, the encrypted model parameters
shared by clients ensure that unauthorized parties cannot access the SER model
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Fig. 1: An overall overview of secure and efficient federated learning for speech
emotion recognition.

without compromising the cryptosystem (Requirement 1.c). Furthermore, SEFL
incorporates gradient pruning based on magnitude on the client side aim to re-
move or prune gradients with low magnitudes, as they contribute less to weight
updates and have limited effect on overall performance. This approach reduces
encryption computation and communication overhead, resulting in improved ef-
ficiency and scalability (Requirements 2 and 4), while maintaining comparable
accuracy to the initial model (Requirement 3).

Fig. 1 presents the overall overview of SEFL for SER application. In Step 1,
we initialize the initial model, and clients who wish to participate in each train-
ing round send a request to the key generation center for a key pair. The key
generation center collects these requests, generates public-private key pairs, and
returns them to the clients. Moving to Step 2, clients perform speech process-
ing to extract relevant features and train their SER models using a multilayer
perceptron network locally on their own devices. Gradients are calculated using
backpropagation, which propagates them from the loss function backwards to
help adjust the network parameters based on the gradient, reducing the error
between the output value and the desired one. Each client then applies gradi-
ent pruning techniques which is based on magnitude aim to remove or prune
gradients with low magnitudes, as they contribute less to weight updates and
have limited effect on overall performance. This pruning process helps reduce
the overall computation and communication overhead during training without
significantly impacting the model’s accuracy. Additionally, in this step, the Pail-
lier homomorphic encryption scheme is applied to encrypt the newly pruned
gradients of each client.

Advancing to Step 3, each client transmits its encrypted gradient to the
server. In Step 4, the server leverages homomorphic operations to aggregate
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all encrypted client gradients and generate a new encrypted gradient, which it
distributes to all clients. Step 5 involves clients decrypting the received new en-
crypted gradient from the server and updating their local SER model parameters
accordingly. These steps continue to iterate until the desired model is achieved
or the termination condition is met. For a more comprehensive understanding
of the SEFL method, please refer to Algorithm 1, which provides an outline of
the steps and rules involved. Additionally, Table 1 displays the parameters and
descriptions used in the SEFL for SER algorithm.

Algorithm 1: SEFL for SER
Input: Number of iterations: T , Total Number of clients: N , Speech

features of client: x, Number of selected clients: K, Local
minibatch size: B, Initial global model: w0

g , Pruning percentage:
pp, Learning rate: η

Output: Secure and Efficient Federated Learning
1 Server broadcasts wg

0

2 for t ≤ T do
3 Key generation center:
4 while listening request from clients do

5 if receive requests from clients then
6 Generate key pairs: Public key (pk), Private key (sk)
7 Return key pairs {(pk),(sk)}

8 Clients-side:
9 Request key pairs from key generation center

10 Initialize the model parameters wt
i

11 for i ∈ 1,2, ..., K do
12 Forward propagation: labeli = fp(xi, w

t
i)

13 Compute loss: c = loss(f∗(xi), labeli)
14 if c < e then
15 Break

16 else
17 Back propagation: gradi = bp(xi, w

t
i , c)

18 Gradient pruning: ˜gradi = (gradi, pp)

19 Encryption: Ei = Enc( ˜gradi, pk)
20 Send Ei to the server
21 Receive new aggregated encrypted model from server Et

g

22 Decryption: gradt+1
i = Dec(Et

g, sk)

23 Update: wt
i+1 = wt

i−η ·gradt+1
i

24 Server-side:
25 Aggregation of encrypted local model
26 Et

g = (Et
i

⊕
Et

i+1

⊕
...
⊕

Et
K)

27 Broadcast updated model parameters Et
g
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Table 1: The parameters and descriptions in the SEFL for SER algorithm.
Parameter Meaning

x Extracted speech features of clients dataset
w The parameters of the model
fp Feed forward process

Label The output label of SER in each itertaion
f∗ Activation function
loss Loss function
c Loss calculated by loss function
e Minimum error
bp Back propagation process

grad Gradient calculated by bp process
η learning rate
pp Pruning percentage

Paillier Homomorphic Encryption Within SEFL, the Paillier homomorphic
encryption scheme developed as a promising solution to ensure the confidentiality
and privacy of participants’ speech data in the context of FL, specifically for
the SER application. The Paillier cryptosystem, being a partially homomorphic
encryption scheme, allows the server to process and aggregate model parameters
with the homomorphic property on the server without requiring decryption.

One key advantage of the Paillier homomorphic cryptosystem is its resistance
against attacks from a honest-but-curious server. It has been designed to protect
against possible breaches of confidentiality by ensuring that ciphertexts do not
reveal any information about the plaintexts. This property is proven through
its resilience against the chosen plaintext attack (CPA) based on the decisional
composite residue problem. Consequently, Paillier emerges as the most efficient
partially homomorphic encryption scheme available for FL settings [39].

Basically, Paillier encryption consists of three parts: key generation center,
encryption, and decryption. We will discuss it in more detail in the following
section.

Key generation center: After receiving clients’ requests for a key pair, the
Key Generation Center generates the corresponding key pairs and returns them
to the clients. Here we explain how to generate keys in more detail by referring
to lines [3-7] of Algorithm 1. Select two primes p and q that are sufficiently large
and equal in length and satisfy gcd(p× q, (p− 1)× (q− 1)) = 1. Then, calculate
n, λ and lcm represents the least common multiple as:

n = p · q (1)

λ = lcm(p− 1, q − 1) (2)
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An integer g is a generator and satisfies g ∈ Z∗
n2 so that n can divide the order

of g. Then, define L(x) to calculate µ as:

L(x) =
(x− 1)

n
(3)

µ = (L(gλ mod n2))−1) mod n (4)

Thus, the public and private key pair in this paper can be shown as (pk, sk) =
{(n, g), (λ, µ)}.

Encryption: The encryption process (line 19 of Algorithm 1) with the public
key (pk) can be described as follows, assuming the plaintext is gradient of cleint in
each iteration grad, the ciphertext is E, and for some random r ∈ {0, . . . , n− 1}:

E = ggrad · rn mod n2 (5)

Decryption: Thus, using a private key (sk), the ciphertext E and plaintext
grad can be decrypted as follows (line 22 of Algorithm 1):

grad = L(Eλ mod n2) · µ mod n (6)

Gradient Pruning To enhance the efficiency of SEFL methodology for SER
deployment on edge devices with limited resources, we present a novel ap-
proach that combines Paillier homomorphic encryption with gradient pruning
techniques. Gradient pruning techniques, based on magnitude, aim to remove
or prune gradients with low magnitudes. The underlying principle behind this
technique is that gradients with low magnitudes contribute less to weight up-
dates. By selectively pruning these low-magnitude gradients, the computational
and memory requirements associated with computing and storing gradients can
be significantly reduced. This enables the SEFL method to reduce the size of
encrypted local model parameters transmitted between the client and server, ef-
fectively minimizing communication traffic. Moreover, gradient pruning reduces
the number of parameters and floating-point operations (FLOPs), leading to
faster encryption and decryption times and mitigating computation time related
to encryption methods.

The Algorithm 2 showcases gradient pruning techniques based on magni-
tude. This technique aims to remove or prune gradients with low magnitudes,
which have minimal impact on the overall performance of the SER model. The
algorithm incorporates a flexible pruning threshold for each layer of the neural
network, allowing it to adapt to the specific requirements of each client dur-
ing every training round. This adaptive approach enhances the effectiveness of
the pruning process. By customizing the pruning threshold to match the unique
characteristics of each layer, we ensure that only weights with minimal influence
on the continuity of the loss function are pruned. This selective pruning strategy
preserves the accuracy of the model while effectively reducing computational and
memory overhead.

To determine the pruning threshold for each layer, we consider the number of
parameters and the desired pruning percentage specific to that layer, as shown
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Algorithm 2: Gradient pruning
Input: Client gradient: gradi, Pruning threshold: pi, Pruning percentage: pp
Output: ˜gradi

1 for l ∈ gi do
2 Nl = Number of parameters in each layer
3 Pruning index = Nl ∗ pp/100
4 pi = Find pruning index-th value in lgi
5 if Each amount in l <= pi then
6 Remove gradients below threshold in this layer and update lgi

7 Update gradient based on pruning in each layer: ˜gradi

8 Return pruned gradient ˜gradi

in 2-4 lines of Alg. 2. By analyzing the gradients of each weight, we assess the
rate of change in their magnitudes and make decisions regarding whether to
prune or not based on this information. To seamlessly integrate this algorithm,
we incorporate it into line 18 of our overall SEFL Alg. 1, ensuring that the
pruning process is smoothly integrated into the larger training process. By ef-
fectively reducing the number of parameters in the network, our approach yields
a more compact and efficient model that exhibits improved memory and com-
putational efficiency. This optimization is particularly crucial for edge devices,
where resource limitations necessitate highly efficient models.

4 Experimental Results

This section provides an overview of the industrial use case and simulation set-
tings used to evaluate the SEFL method. It includes details about the public
dataset used for evaluation, the speech processing and feature extraction, the
SER model architecture, and the FL framework setting. We also comprehen-
sively evaluate SEFL. The assessment analyzes SEFL’s privacy implications,
evaluates its effectiveness in reducing communication traffic and computation
time, and determines its accuracy compared with the original model in terms
of accuracy. Scalability is examined by analyzing how SEFL performs as client
numbers increase and its impact on execution times.

4.1 Use case description and simulation setting

DAIS3 (Distributed Artificial Intelligent Systems) is a pan-European project
that aims to provide trustworthy connectivity and interoperability by combining
the Internet of Things with artificial intelligence to create a distributed edge
intelligence system to be used in several industrial applications. The project
includes extensive industry-driven use cases in domains such as digital life, smart-
manufacturing, and mobility. Speech emotion recognition in home entertainment

3DAIS Project Website: https://dais-project.eu/
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recommendation systems is one of the most important use cases in DAIS, where
digital content such as movies are recommended based on the users’ emotions.
This requires a distributed, efficient, and privacy-preserving SER system: that
was one essential motivation for exploring SEFL in FL-SER.

As part of this study, we evaluated SEFL on one of the most widely used SER
datasets, namely CREMA-D [5]. CREMA-D is a data set of 7,442 original clips
from 91 actors. These clips were from 48 male and 43 female actors between
the ages of 20 and 74 coming from a variety of races and ethnicities. Actors
spoke from a selection of 12 sentences. The sentences were presented using one
of six different emotions (Anger, Disgust, Fear, Happy, Neutral, and Sad). To
train the SER model, we chose the four most commonly occurring emotion labels
(neutral, sad, happy, and angry) based on the possible emotions expressed in the
sentences.

For speech processing and feature extraction, we generate the Emo-Base
feature set using the OpenSMILE toolkit [8]. The Emo-Base feature set is a
widely used set of features for SER tasks. These features are extracted from
the speech signal and capture various acoustic characteristics of the signal that
are associated with different emotions. The features are designed to be highly
discriminative for emotion recognition and have been shown to achieve state-
of-the-art performance in various SER tasks. After extracting the features, we
utilized a multilayer perceptron (MLP) architecture for the SER model and
trained it using the FedSGD algorithms. The model consists of two dense layers
with layer sizes of [256, 128] and ReLU activation function, along with a 0.2
dropout rate. We set a local training batch size of 20 and a learning rate of 0.1
to accelerate convergence in the FedSGD algorithm.

For the FL training on the CREMA-D dataset, each speaker serves as a
unique client since there are 91 distinct speakers in the dataset. We employed
80% of the data for local training at each client and reserved the remaining
20% for validation. To ensure the robustness of our approach, we conducted five
experiments with different test folds, and we report the average results of the
five-fold experiments. The FL scenarios were conducted over 200 global training
epochs. Our experiments were conducted on a Windows 10 Pro environment
featuring an Intel(R) Core(TM) i7 CPU @1.80GHz 1.99 GHz processor and 16.0
GB of RAM.

4.2 Privacy considerations

The SEFL method effectively addresses the privacy requirements of the SER
application while preventing information leakage by the HBC server. It guaran-
tees that the speech data remains on the end devices throughout the training
process, thus satisfying requirement 1.a. To enhance client confidentiality and
protect against potential breaches, the method incorporates Paillier homomor-
phic encryption. By utilizing this encryption technique, the HBC server only
has access to ciphertexts, ensuring that no information about the plaintexts is
revealed [39]. Consequently, requirement 1.b is met, and the risk against the
threat model is significantly reduced.
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Furthermore, the method’s design ensures that the private key remains acces-
sible to participating clients, preventing unauthorized parties or eavesdroppers
from accessing the SER model without compromising the entire cryptosystem.
Furthermore, since we can alter the key pair during each iteration, even if the
attacker manages to break a few rounds of training results, they would be un-
able to obtain the final result. This measure fulfils requirement 1.c. However, it
is crucial to acknowledge that breaking a cryptosystem, although challenging,
is not an impossible task. As suggested in [4], increasing the key size in this
method enhances the level of privacy and security. By doing so, the difficulty for
potential attackers or eavesdroppers to break the cryptosystem is heightened.
However, it’s important to note that increasing the key size typically results in
longer execution times, as depicted in Fig. 2. Thus, finding the right balance
between privacy requirements and execution time is crucial for optimizing the
SEFL method.

Fig. 2: Impact of key length and number of clients on total execution time.

4.3 Efficiency in terms of communication traffic

A typical scenario in centralized SER applications using the CREMA-D dataset
involves a single client transmitting approximately 8-10 MB of speech data to
the central server. While the SEFL method employs FL training for SER appli-
cations, where instead of sending raw speech data, only the local model update
is transmitted, resulting in a substantial reduction of around 70% in data size,
as evidenced in Table 2. Additionally, the SEFL method combines Paillier homo-
morphic encryption and gradient pruning on the client side. Different choices of
key sizes and pruning percentages can impact the communication traffic between
the client and the server.
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Table 2: Communication traffic of SER in FL using PHE, and SEFL based on
different key size

Method Type of Data PP Communication Traffic (MB)
KS = 128 KS = 256 KS = 512 KS = 1024

FL for SER Plaintext - 2.18 2.18 2.18 2.18
PHE Ciphertext - 7.96 14.4 27.3 53.8
SEFL Ciphertext 20% 6.55 11.7 22.2 43.4
SEFL Ciphertext 40% 5.05 8.99 17.0 32.7
SEFL Ciphertext 60% 3.55 6.20 11.4 22.2
SEFL Ciphertext 80% 2.20 3.37 6.01 11.3

During our experiments, we conducted tests using different key sizes (KS) of
128, 256, 512, and 1024 bits, in combination with gradient pruning percentages
(PP) of 20%, 40%, 60%, and 80%. The objective was to determine the optimal
key size and pruning percentage. In Table 2, we present an overview of the
communication traffic for FL of SER messages across three modes: 1) plaintext,
2) ciphertext for PHE, and 3) ciphertext for SEFL. Our findings indicate that
setting the gradient pruning percentage to 80% allows for the use of a larger key
size of 1024 bits, resulting in communication traffic of 11.3 MB, which is close
to that of a centralized SER model. This configuration achieved an accuracy of
69.89% (as shown in Table 4), which is close to the acceptable levels observed in
SER application baselines.

Fig. 3: Communication traffic for PHE and SEFL based on different key sizes.
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Additionally, a key size of 512 bits, coupled with a lower pruning percent-
age of 60% , led to a communication traffic of 11.4 MB, comparable to the
communication traffic of a centralized SER model. This configuration achieved
an accuracy of 70.32%. Additionally, with a key size of 128 bits and a prun-
ing percentage of 80%, the communication traffic is reduced to approximately
3 MB, similar to FL training use for SER applications. The corresponding ac-
curacy achieved was 69.89%, which is close to the acceptable levels observed in
SER application baselines. As illustrated in Fig. 3 and Table 2, doubling the
key size in both PHE and SEFL leads to a linear increase in communication
traffic. Notably, SEFL outperforms PHE by achieving up to an 80% reduction
in clients’ ciphertext message size when increasing the pruning percentage from
20% to 80% . This highlights the effectiveness of our proposed SEFL method in
reducing communication traffic within FL systems.

4.4 Efficiency in terms of computation time

The SEFL method reduces the computation time required for encryption and de-
cryption, aiming to enhance efficiency and fulfil the requirements. We measured
the computation time for encryption and decryption in PHE to evaluate and
compare the SEFL approaches for SER applications. By employing the experi-
mental parameters specified in the previous subsections, we obtained the results
presented in Table 3 and Fig. 4. Our findings confirm a substantial increase in
encryption and decryption time as the key size exponentially grows.

Table 3: Encryption and decryption times of PHE and SEFL in FL-SER based
on different key size

Method PP Type of Computation Computation Time (s)
KS = 128 KS = 256 KS = 512 KS = 1024

PHE - Encryption 12.9087 15.4075 38.3163 187.3240
Decryption 3.6393 4.1267 10.9752 55.1653

SEFL 20% Encryption 12.2097 13.2047 28.2548 170.359
Decryption 3.5393 4.1433 10.1937 51.0521

SEFL 40% Encryption 10.8051 13.9581 25.0631 162.3815
Decryption 3.16783 4.0514 8.1276 48.44876

SEFL 60% Encryption 9.3748 12.7632 26.7844 151.6185
Decryption 2.6446 4.0597 7.70719 48.9399

SEFL 80% Encryption 8.2718 11.4931 25.3584 140.4393
Decryption 2.2468 3.9250 7.7071 47.2599

Our findings, illustrated in Fig. 4 and Table 3, validate that increasing the
pruning percentage from 20% to 80% results in a reduction of approximately
10% to 25% in both encryption and decryption times for SEFL. This reduction
becomes particularly noticeable when utilizing a larger key size. Consequently,
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SEFL effectively reduces computation times while safeguarding user privacy in
SER within FL systems.

Fig. 4: Encryption times for PHE and SEFL based on different key size.

4.5 Accuracy and other performance related metrics: F1-score,
precision, and loss

The requirements section mentioned that centralized SER systems typically
achieve a minimum baseline accuracy of 70%. Additionally, it has been observed
that there may be a possibility of a 0-5% drop in accuracy when implement-
ing SER in the FL setup [34]. Our initial SER model in the FL setup achieved
an accuracy of 72.90%, which meets the requirements. To evaluate the perfor-
mance of SER in the FL setup using PHE and SEFL, we measured accuracy,
F1-score, precision, and loss function. Our analysis indicates that using PHE
maintains accuracy and other metrics at the same level as SER performance in
FL. However, SEFL has a limited impact on accuracy and other metrics due to
using gradient pruning techniques. Despite this limitation, even with the highest
pruning percentage, the accuracy remains close to 70% , still satisfying the SER
application’s requirements as shown in Fig. 5 and Table 4.

We conducted experiments using a key size value of 128, with 20 clients per
training round and 200 total epochs. We also applied gradient pruning at levels
of 20%, 40%, 60%, and 80%. The results, as shown in Fig. 5 and Table 4, indicate
that even with the highest level of gradient pruning applied (i.e., 80%), SEFL
has only a minor impact on accuracy and other performance parameters. The
accuracy achieved is still very close to the acceptable accuracy in the baseline
for SER application.
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Table 4: Performance comparison of FL in SER, PHE, and SEFL method, in
terms of accuracy, F1-score, precision, and loss.

Method PP Accuracy F1-score Precision Loss
FL in SER - 72.90% 64.84% 67.49% 0.675025

PHE - 72.87% 64.81% 67.26% 0.678717
SEFL 20% 71.82% 63.52% 65.99% 0.686997
SEFL 40% 71.55% 62.54% 65.17% 0.689617
SEFL 60% 70.32% 61.46% 65.04% 0.706784
SEFL 80% 69.89% 58.39% 60.49% 0.74095

Fig. 5: Accuracy comparison of SER in FL and SEFL.

4.6 Scalability: the impact of different key size values and increasing
client numbers on execution time

Scalability is another requirement for SER applications, as they must handle
growing numbers of users and data while maintaining performance. The SEFL
design itself exhibits scalability, as evidenced by the evaluation of total execution
time, which increases linearly by approximately 1.25 times for each additional
client across most key sizes. A simulation, illustrated in Figs. 6 and 2, demon-
strates the increase in the number of clients from 2 to 7, with key sizes of 128,
256, and 512, while employing a fixed number of training epochs (T = 20).

In SEFL, the number of homomorphic operations necessary increases lin-
early with the number of clients, resulting in a corresponding rise in total ex-
ecution time. Fig. 2 illustrates the correlation between execution time and the
number of clients. It is worth noting that encryption time represents the most
time-consuming aspect of the Paillier homomorphic encryption algorithm, tak-
ing approximately 2.5 times longer than decryption time, as depicted in Fig.
6.
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Fig. 6: Impact of key length and number of clients on encryption and decryption
time

5 Conclusions and Future work

This paper introduces a novel approach, Secure and Efficient Federated Learning
(SEFL), designed specifically for speech emotion recognition applications. SEFL
utilizes Paillier homomorphic encryption and gradient pruning to ensure privacy
and confidentiality when using FL. This approach significantly reduces com-
putation time and communication traffic while maintaining acceptable model
accuracy. Experimental evaluations have shown that SEFL, employing a key
size of 1024, achieves a significant reduction of 25% in computation time and an
impressive 70% reduction in communication traffic compared to PHE without
gradient pruning. With these improvements, the proposed method manages to
maintain a satisfactory model accuracy, reaching approximately 69.89%, which
fulfils the requirements of SER applications. So, SEFL proves to be an effec-
tive solution for SER on resource-constrained edge devices, optimizing resource
utilization by striking a balance between privacy and performance. With the
increasing importance of trustworthy artificial intelligence in supporting higher
levels of autonomy [12], we believe that the proposed method can be extended
to other domains with similar requirements.

As part of our future research, we aim to explore the potential of a multi-key
homomorphic encryption method in FL for SER. In this method, model updates
are first encrypted using an aggregated public key before being shared with a
server for aggregation. Decryption requires collaboration among all participating
devices. This approach can prevent privacy leakage from publicly shared infor-
mation in FL and is resistant to collusion between the participating devices and
the server.
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